JP2011249898A - Passive optical network system, transmission light control method, optical multiplex terminator, and optical network terminator - Google Patents

Passive optical network system, transmission light control method, optical multiplex terminator, and optical network terminator Download PDF

Info

Publication number
JP2011249898A
JP2011249898A JP2010118034A JP2010118034A JP2011249898A JP 2011249898 A JP2011249898 A JP 2011249898A JP 2010118034 A JP2010118034 A JP 2010118034A JP 2010118034 A JP2010118034 A JP 2010118034A JP 2011249898 A JP2011249898 A JP 2011249898A
Authority
JP
Japan
Prior art keywords
level
onu
optical
transmission
olt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010118034A
Other languages
Japanese (ja)
Other versions
JP5411805B2 (en
Inventor
Takuhiro Tanaka
卓弘 田中
Kenji Tosaka
健志 登坂
Toru Kazawa
徹 加沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010118034A priority Critical patent/JP5411805B2/en
Publication of JP2011249898A publication Critical patent/JP2011249898A/en
Application granted granted Critical
Publication of JP5411805B2 publication Critical patent/JP5411805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a passive optical network system capable of eliminating wasteful use of power consumption as much as possible by reducing a transmission power at an OLT per ONU.SOLUTION: An OLT 300 calculates a transmission path loss from a difference between a reception level of an ONU 200 and a transmission optical output power of the OLT itself. The ONU 200 lowers the transmission optical output power based on a calculated value to such a level that reception errors do not occur. In case of the occurrence of a period below or equal to the level that no error occurs (PON link interruption) in the ONU 200 side according to the transmission path loss performed in each ONU 200, a PON link establishment is held by determining the PON link establishment and link interruption based on an existence of a grant signal reception sent by the OLT 300 for a PON link judgement.

Description

本発明は、受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置に係り、特に、複数の加入者接続装置が光伝送回線を共有する受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置に関する。   The present invention relates to a passive optical network system, a transmission optical control method, an optical multiple termination device, and an optical network termination device, and more particularly, a passive optical network system and a transmission optical control method in which a plurality of subscriber connection devices share an optical transmission line. The present invention relates to an optical multiple termination device and an optical network termination device.

大容量の画像信号やデータを通信網を介して送受信する為に、通信網の高速・広帯域化が加入者を通信網へ接続するアクセス網でも進められ、国際電気通信連合(以下ITU−Tと称す)の勧告G.984.1−3等で規定された受動網光システム(Passive Optical Network system:以下PONと称する)の導入が図られている。PONは、上位の通信網と接続される光多重終端装置(Optical Line Terminator:以下OLTと称する)と、複数の加入者の端末(PCや電話)を収容する光網終端装置(Optical Network Unit:以下ONUと称する)とを、基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光受動網で接続したシステムである。具体的には、各ONUに接続された端末(PC他)からの信号を光信号で支線光ファイバから光スプリッタを介して基幹光ファイバで光学(時分割)多重してOLTに送り、OLTが各ONUからの信号を通信処理して上位の通信網に送信する、あるいは、OLTに接続される他のONUに送信するという形態で通信を行うものである。   In order to transmit and receive large-capacity image signals and data via a communication network, the speed and bandwidth of the communication network has been increased in the access network connecting subscribers to the communication network. Recommendation G. A passive optical network system (Passive Optical Network system: hereinafter referred to as PON) defined in 984.1-3 and the like is being introduced. The PON is an optical multiple terminator (hereinafter referred to as OLT) connected to a host communication network and an optical network terminator (Optical Network Unit) that accommodates a plurality of subscriber terminals (PCs and telephones). (Hereinafter referred to as ONU) is connected by an optical passive network including a backbone optical fiber, an optical splitter, and a plurality of branch optical fibers. Specifically, signals from terminals (PCs, etc.) connected to each ONU are optically (time-division-multiplexed) from the branch optical fiber via the optical splitter via the optical fiber splitter (time division) and sent to the OLT. Communication is performed in a form in which signals from each ONU are processed and transmitted to a higher-level communication network, or transmitted to another ONU connected to the OLT.

PONの開発・導入は64kbit/秒のような低速信号を扱うシステムから始まり、固定長のATMセルを最大約600Mbit/秒で送受信するBPON(Broadband PON)あるいはイーサネット(登録商標)の可変長パケットを最大約1Gbit/秒で送受信するイーサネット(登録商標)PON(EPON)や、より高速な2.4Gbit/秒程度の信号を扱うITU−T勧告G.984.1、G.984.2およびG.984.3で標準化されたGPON(Gigabit PON)の導入が進められている。更に、今後は10Gbit/秒から40Gbit/秒の信号を扱うことが可能な高速PONの実現が求められている。これらの高速PONを実現する手段としては、複数の信号を時分割多重するTDM(Time Division Multiplexing)、波長多重するWDM(Wavelength Division Multiplexing)、符号多重するCDM(Code Division Multiplexing)等の多重化方法が検討されている。なお、現状のPONはTDMを採用しており、例えば、GPONは、上り(ONUからOLT)の信号と下り(OLTからONU)の信号とで異なる波長を用い、OLTと各ONU間の通信は、各ONUに対して信号の通信時間を割当てる構成である。また、従来の固定長信号を処理する構成から、より多様な種別の信号(音声、画像、データ等)を扱い易いバースト状の可変長信号(バースト信号)も処理する構成になってきている。今後の高速PONも、上述したように様々な多重化方法が検討されているが、TDMを採用する方向での検討が主になりつつある。
上記各PONの形態では、様々な場所に点在する加入者宅にONUを設置するためOLTから各ONUまでの距離が異なる。すなわち、OLTから各ONU迄の基幹光ファイバと支線光ファイバを併せた光ファイバの長さ(伝送距離)がばらつくため、各ONUとOLT間の伝送遅延(遅延量)がばらつき、各ONUが異なるタイミングで信号を送信しても基幹光ファイバ上で各ONUから出力される光信号同士が衝突・干渉する可能性がある。このため、各PONにおいては、例えばG.984.3の10章で規定したような、レンジングと称される技術を用いて、OLTとONUとの間の距離測定を行った後に、各ONUからの信号出力が衝突しないように各ONUの出力信号の遅延を調整するようにしている。
The development and introduction of PON begins with a system that handles low-speed signals such as 64 kbit / s, and BPON (Broadband PON) or Ethernet (registered trademark) variable-length packets that transmit and receive fixed-length ATM cells at a maximum of approximately 600 Mbit / s. Ethernet (registered trademark) PON (EPON) that transmits and receives at a maximum of about 1 Gbit / sec, and ITU-T recommendation G.2 that handles higher-speed signals of about 2.4 Gbit / sec. 984.1, G.A. 984.2 and G.A. Introduction of GPON (Gigabit PON) standardized in 984.3 is underway. Furthermore, in the future, it is required to realize a high-speed PON capable of handling signals of 10 Gbit / second to 40 Gbit / second. As means for realizing these high-speed PONs, multiplexing methods such as TDM (Time Division Multiplexing) for time division multiplexing of a plurality of signals, WDM (Wavelength Division Multiplexing) for wavelength multiplexing, CDM (Code Division Multiplexing) for code multiplexing, and the like. Is being considered. The current PON uses TDM. For example, GPON uses different wavelengths for upstream (ONU to OLT) and downstream (OLT to ONU) signals, and communication between the OLT and each ONU is performed. The signal communication time is assigned to each ONU. Further, the conventional configuration for processing fixed-length signals has been configured to process burst-like variable-length signals (burst signals) that can easily handle various types of signals (sound, image, data, etc.). As for the future high-speed PON, as described above, various multiplexing methods have been studied, but studies in the direction of adopting TDM are becoming main.
In the above-described PON forms, ONUs are installed at subscriber homes scattered in various places, and the distance from the OLT to each ONU is different. That is, since the length (transmission distance) of the optical fiber including the backbone optical fiber and the branch optical fiber from the OLT to each ONU varies, the transmission delay (delay amount) between each ONU and the OLT varies, and each ONU is different. Even if signals are transmitted at the timing, optical signals output from the ONUs on the backbone optical fiber may collide and interfere with each other. For this reason, in each PON, for example, G.M. After measuring the distance between the OLT and the ONU using a technique called ranging as defined in Chapter 10 of 984.3, the ONUs of each ONU are prevented from colliding. The delay of the output signal is adjusted.

更に、OLTは、動的帯域割当て(Dynamic Bandwidth Assignment:以下DBAと称する)と称される技術を用いて各ONUからの送信要求に基づき該ONUに送信を許可する信号の帯域を決めると、上述したレンジングで測定した遅延量も考慮した上で、各ONUからの光信号が基幹光ファイバ上で衝突・干渉しないように各ONUへ送信タイミングを指定するようにしている。すなわち、PONは、OLTと各ONU間で送受信される信号のタイミングがシステム内で管理された状態で通信の運用がなされるように構成されている。
OLTと各ONU間との信号の送受信においては、例えばG.984.2の8.3.3章の規定によれば、ONUからOLTの信号は、OLTが基幹光ファイバで多重された各ONUからの信号を識別して処理できるように、例えば、各ONUからの信号の先頭に最大12バイトからなる干渉防止用のガードタイムと、OLT内受信器の信号識別閾値の決定およびクロック抽出に利用するプリアンブルと、受信信号の区切りを識別するデリミタと呼ばれるバーストオーバヘッドバイトと、PONの制御信号(オーバーヘッドあるいはヘッダと称することもある)等が、データ(ペイロードと称することもある)に付加される。なお、各データは可変長のバーストデータであるため、各データの先頭には、可変長データを処理するためのGEM(G−PON Encapsulation Method)ヘッダと呼ばれるヘッダも付加される。
一方、OLTから各ONU宛の信号には、各ONUがOLTからの信号を識別して処理できるように、OLTから各ONUに向けて送信される信号の先頭に、例えば、先頭を識別するためのフレーム同期パタンと、監視・保守・制御情報を送信するPLOAM領域と、各ONUの信号送信タイミングを指示するグラント指示領域と呼ばれるオーバヘッド(ヘッダと称されることもある)等が、各ONU宛に時分割多重化されたデータに付加される構成である。なお、多重化される各ONU宛のデータには、ONUからの信号と同様に、可変長データを処理するためのGEMヘッダが付加されている。OLTは、グラント指示領域を用いて各ONUの上り送信許可タイミング(送信開始(Start)と終了(Stop))を各ONUにバイト単位で指定する。この送信許可タイミングをグラントと称している。そして、各ONUが該許可タイミングでOLT宛のデータを送信すると、これらが光ファイバ上で光学(時分割)多重されOLTで受信される。
Further, when the OLT determines a band of a signal permitted to be transmitted to each ONU based on a transmission request from each ONU using a technique called dynamic bandwidth assignment (hereinafter referred to as DBA), Considering the delay amount measured by the ranging, the transmission timing is designated to each ONU so that the optical signal from each ONU does not collide or interfere on the backbone optical fiber. That is, the PON is configured such that communication is performed in a state where the timing of signals transmitted and received between the OLT and each ONU is managed in the system.
In signal transmission / reception between the OLT and each ONU, for example, G. According to the provisions of section 83.3 of 984.2, for example, each ONU can receive an OLT signal so that the OLT can identify and process the signal from each ONU multiplexed on the backbone optical fiber. A burst time called a delimiter for identifying a received signal delimiter and a guard time for preventing interference consisting of a maximum of 12 bytes at the beginning of the signal from the receiver, a preamble used for determining a signal identification threshold of the receiver in the OLT and for clock extraction Bytes, PON control signals (sometimes called overhead or header), and the like are added to data (sometimes called payload). Since each data is variable-length burst data, a header called a GEM (G-PON Encapsulation Method) header for processing variable-length data is also added to the head of each data.
On the other hand, for signals addressed to each ONU from the OLT, for example, the head is identified at the head of the signal transmitted from the OLT to each ONU so that each ONU can identify and process the signal from the OLT. Frame synchronization pattern, PLOAM area for transmitting monitoring / maintenance / control information, and overhead (sometimes referred to as a header) called a grant indication area for instructing the signal transmission timing of each ONU. In this configuration, the data is added to the time-division multiplexed data. Note that a GEM header for processing variable length data is added to the data addressed to each ONU to be multiplexed, similarly to the signal from the ONU. The OLT specifies the upstream transmission permission timing (transmission start (Start) and end (Stop)) of each ONU in units of bytes using the grant indication area. This transmission permission timing is called a grant. When each ONU transmits data addressed to the OLT at the permission timing, these are optically (time-division) multiplexed on the optical fiber and received by the OLT.

ITU−T勧告G.984.1(P.1〜)ITU-T Recommendation G. 984.1 (P.1) ITU−T勧告G.984.2(P.9〜P.27)ITU-T Recommendation G. 984.2 (P.9-P.27) ITU−T勧告G.984.3(P.64〜P.84)ITU-T Recommendation G. 984.3 (P.64-P.84) ITU−T勧告G.984.2 Amendment 1(P.1〜P.3)ITU-T Recommendation G. 984.2 Amendment 1 (P.1 to P.3)

PONは、BPONからGPONへの移行のように、低速信号を処理するものから、より高速信号を処理するものへと開発・導入が進んできている。PONの信号伝送機能を提供する要素部品である光モジュールやLSIは、伝送速度が速いほど大量の電力を消費することが知られている。また、加入者の増加による親局の消費電力増大が課題になってきた。
一方、PONに関して言えば、親局から各加入者までの伝送路区間における損失は光スプリッタによる分岐や、ファイバ長等によって加入者毎に異なっているが、OLT、ONU共にレーザーの送信出力は一定であり、それぞれ受信側において受信レベルに応じた増幅器の利得制御を行っている。また、伝送路上の損失の少ない加入者向け下り光は、必要以上の送信パワーで出力されていることに相当し、消費電力の無駄が生じている場合がある。
本発明は、以上の点に鑑み、光網終端装置毎に誤りの発生しないレベルまで光出力を低下させることにより、消費電力の無駄を極力減らすことの可能な受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置を実現させることを目的とする。
PON has been developed and introduced from one that processes low-speed signals to one that processes higher-speed signals, such as a transition from BPON to GPON. It is known that optical modules and LSIs, which are component parts that provide a PON signal transmission function, consume a large amount of power as the transmission speed increases. In addition, an increase in power consumption of the master station due to an increase in subscribers has become a problem.
On the other hand, with regard to PON, the loss in the transmission line section from the master station to each subscriber differs for each subscriber depending on the branching by the optical splitter, fiber length, etc., but the laser transmission output is constant for both OLT and ONU. Each of the receivers performs gain control of the amplifier in accordance with the reception level. In addition, downstream light for subscribers with little loss on the transmission path corresponds to being output with transmission power more than necessary, and there is a case where power consumption is wasted.
In view of the above, the present invention provides a passive optical network system and a transmission light control method capable of reducing waste of power consumption as much as possible by reducing the optical output to a level at which no error occurs for each optical network termination device. An object of the present invention is to realize an optical multiple termination device and an optical network termination device.

上記課題を解決するために、本発明の受動光網システムは、子局であるONUで受信した下り光の受信レベルを親局であるOLTに通知し、OLTにおいて自身の光出力レベルとの差分から伝送路損失を計算し、ONU側での受信において誤りの発生しないレベルまで光出力を低下させる。この出力レベル制御を各ONU宛の下りデータ毎に行うことで最適なエネルギー効率を得られる。   In order to solve the above-described problem, the passive optical network system of the present invention notifies the reception level of downstream light received by the ONU that is the slave station to the OLT that is the master station, and the difference from the optical output level of the passive optical network system in the OLT Then, the transmission line loss is calculated, and the optical output is reduced to a level at which no error occurs during reception on the ONU side. Optimum energy efficiency can be obtained by performing this output level control for each downlink data addressed to each ONU.

本発明の第1の解決手段によると、
上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおいて、
前記OLTは、各前記ONUへ、下り信号を送信し、
各前記ONUは、前記下り信号を受信し、その受信レベル又は他の送信光パワーの制御レベルを判定し、前記OLTに受信レベル又は他の送信光パワーの制御レベルを通知し、
前記OLTは、各前記ONUから、受信レベル又は他の送信光パワーの制御レベルを受信し、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを設定レベルと特定し、
前記OLTは、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定する
ようにした受動光網システムが提供される。
According to the first solution of the present invention,
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical In a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,
The OLT transmits a downstream signal to each ONU,
Each ONU receives the downlink signal, determines its reception level or other transmission optical power control level, notifies the OLT of the reception level or other transmission optical power control level,
The OLT receives a reception level or other transmission optical power control level from each ONU, and specifies a reception level or other transmission optical power control level equal to or lower than a predetermined value or a predetermined level as a set level. ,
The OLT refers to the optical output level of the downstream signal, and according to each transmission line loss or each optical fiber length between the OLT and each ONU, the reception level or other transmission in each ONU A passive optical network system is provided in which the transmission optical power to each ONU is set so that the optical power control level becomes the set level.

本発明の第2の解決手段によると、
上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおける送信光制御方法であって、
前記OLTは、各前記ONUへ、下り信号を送信し、
各前記ONUは、前記下り信号を受信し、その受信レベル又は他の送信光パワーの制御レベルを判定し、前記OLTに受信レベル又は他の送信光パワーの制御レベルを通知し、
前記OLTは、各前記ONUから、受信レベル又は他の送信光パワーの制御レベルを受信し、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを設定レベルと特定し、
前記OLTは、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定する
ようにした送信光制御方法が提供される。
According to the second solution of the present invention,
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical A transmission light control method in a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,
The OLT transmits a downstream signal to each ONU,
Each ONU receives the downlink signal, determines its reception level or other transmission optical power control level, notifies the OLT of the reception level or other transmission optical power control level,
The OLT receives a reception level or other transmission optical power control level from each ONU, and specifies a reception level or other transmission optical power control level equal to or lower than a predetermined value or a predetermined level as a set level. ,
The OLT refers to the optical output level of the downstream signal, and according to each transmission line loss or each optical fiber length between the OLT and each ONU, the reception level or other transmission in each ONU A transmission light control method is provided in which the transmission light power to each ONU is set so that the control level of the optical power becomes the set level.

本発明の第3の解決手段によると、
上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおける光多重終端装置であって、

各前記ONUでの下り信号の光受信レベル又は他の送信光パワーの制御レベルを取り出すフレーム分離部と、
前記フレーム分離部にて取り出された各前記ONUの受信レベル値又は他の送信光パワーの制御レベルと、前記OLTが送信した光出力レベルとの差分から伝送路損失又は光ファイバ長を計算する受信レベル処理部と、
前記受信レベル処理部で計算された伝送路損失又は光ファイバ長から前記ONU側での受信において誤りの発生しないレベルまで光出力を低下させるように送信光パワーを制御するための送信パワー制御部と、
を備え、
各前記ONUへ、下り信号を送信し、
前記フレーム分離部は、各前記ONUから、前記下り信号の受信レベル又は他の送信光パワーの制御レベルを受信し、
前記受信レベル処理部は、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを設定レベルと特定し、
前記送信パワー制御部は、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定する
ようにした光多重終端装置が提供される。
According to the third solution of the present invention,
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical An optical multiple termination device in a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,

A frame separation unit for extracting the optical reception level of the downstream signal in each ONU or the control level of other transmission optical power;
Reception for calculating transmission line loss or optical fiber length from the difference between the reception level value of each ONU extracted by the frame separation unit or the control level of other transmission optical power and the optical output level transmitted by the OLT A level processing unit;
A transmission power control unit for controlling the transmission optical power so as to reduce the optical output from the transmission line loss or optical fiber length calculated by the reception level processing unit to a level at which no error occurs in reception on the ONU side; ,
With
Send a downstream signal to each ONU,
The frame separation unit receives a reception level of the downlink signal or a control level of other transmission optical power from each of the ONUs,
The reception level processing unit identifies a reception level that is a minimum or less than a predetermined value or a control level of other transmission optical power as a set level,
The transmission power control unit refers to the optical output level of the downstream signal, and according to each transmission line loss or each optical fiber length between the OLT and each ONU, the reception level in each ONU or the There is provided an optical multiplex termination apparatus configured to set the transmission optical power to each ONU so that the control level of the other transmission optical power becomes the set level.

本発明の第4の解決手段によると、
上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおける光網終端装置であって、

受信レベル又は他の送信光パワーの制御レベルを判定し、送信許可タイミングを抽出し、前記受信レベル及びフレーム終端により抽出されるグラント信号の受信有無に基づき、リンク確立又はリンク断の判断を制御する制御部と、
前記制御部により抽出された送信許可タイミングで、上り信号に前記受信レベルを加えて送信するためのフレーム生成部と、
を備え、

前記制御部は、前記OLTからの下り信号を受信し、その受信レベル又は他の送信光パワーの制御レベルを判定し、
前記フレーム生成部は、前記OLTに受信レベル又は他の送信光パワーの制御レベルを通知し、

前記OLTは、各前記ONUから、受信レベル又は他の送信光パワーの制御レベルを受信し、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを、前記ONU側での受信において誤りの発生しない設定レベルと特定し、及び、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定し、

前記制御部は、
前記OLTからの下り信号において受信できないレベルの期間の有無を判定し、
受信できないレベルの期間がない場合は、リンク確立と判断し、
受信できないレベルの期間がある場合は、グラント信号の受信の有無を判定し、所定周期内又は所定時間内にグラント信号を受信した場合はリンク確立と判断し、所定周期内又は所定時間内にグラント信号を受信しない場合はリンク断と判断する
ようにした光網終端装置が提供される。
According to the fourth solution of the present invention,
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical An optical network termination device in a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,

Determine the reception level or other transmission optical power control level, extract the transmission permission timing, and control the determination of link establishment or link disconnection based on the reception level and the presence / absence of the grant signal extracted by the end of the frame A control unit;
A frame generation unit for transmitting by adding the reception level to an uplink signal at a transmission permission timing extracted by the control unit;
With

The control unit receives a downstream signal from the OLT, determines the reception level or other transmission optical power control level,
The frame generation unit notifies the OLT of a reception level or other transmission optical power control level,

The OLT receives a reception level or other transmission optical power control level from each of the ONUs, and sets the reception level or other transmission optical power control level below the minimum or predetermined value on the ONU side. In accordance with each transmission line loss or each optical fiber length between the OLT and each ONU with reference to the optical output level of the downstream signal, Set the transmission optical power to each ONU so that the reception level or the control level of the other transmission optical power in the ONU becomes the set level,

The controller is
Determining whether or not there is a period of a level that cannot be received in the downstream signal from the OLT;
If there is no period that cannot be received, it is determined that the link is established,
If there is a period that cannot be received, it is determined whether or not a grant signal has been received. If a grant signal is received within a predetermined period or time, it is determined that a link has been established, and the grant signal is determined within a predetermined period or time. An optical network termination device is provided that determines that the link is broken when no signal is received.

本発明によると、各ONUで送路損失の違いによる下り光の出力パワーを最適化できる構成のPONにおいて、OLTの出力パワーにおいて消費電力の無駄を極力減らすことの可能な受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置を実現することができる。   According to the present invention, a passive optical network system and a transmission capable of reducing waste of power consumption as much as possible in the output power of the OLT in a PON configured to optimize the output power of downstream light due to a difference in transmission path loss in each ONU and transmission An optical control method, an optical multiple termination device, and an optical network termination device can be realized.

PONを用いた光アクセス網の構成例を示す網構成図である。It is a network block diagram which shows the structural example of the optical access network using PON. 本実施の形態でのONU構成図である。It is an ONU block diagram in this Embodiment. 本実施の形態でのOLT構成図である。It is an OLT block diagram in this Embodiment. ONUの受信レベルからOLTの送信出力パワーを最適化するフロー図である。It is a flowchart which optimizes the transmission output power of OLT from the reception level of ONU. OLTの送信出力パワーの最適化後の光アクセス網の構成例を示す網構成図である。It is a network block diagram which shows the structural example of the optical access network after the optimization of the transmission output power of OLT. PONの動作例を示すシーケンス図である。It is a sequence diagram which shows the operation example of PON. PONリンク保持の制御部を加えたONUの構成図である。It is a block diagram of ONU which added the control part of PON link maintenance. グラント情報受信によるPONリンク判断のフロー図である。It is a flowchart of PON link judgment by grant information reception.

1.送信出力パワーの最適化

図1に、本実施の形態が適用される光アクセス網の構成を示す。
アクセス網1は、例えばPON10を介して上位の通信網である公衆通信網(この例では、PSTN/インターネット20(以下、上位網と称することがある))に接続されて、データを送受信する。PON10は光スプリッタ100、幹線光ファイバ110、支線光ファイバ120、OLT300、加入者の端末(電話(TEL)40、PC41等)を収容する複数のONU200を備える。幹線光ファイバ110と光スプリッタ100と複数の支線光ファイバ120を有する光受動網でOLT300と各ONU200を接続して、上位網20と加入者端末40、41との通信、または、加入者端末40、41同士の通信を行う。OLT300には、1本の幹線光ファイバ110、光スプリッタ100および支線光ファイバ120を介して、複数台(n台、例えば32台等)のONU200が接続可能である。図1には、一例として、5台(n=5)のONU200が図示されており、それぞれOLT300からのファイバ長が異なる。図示された例では、ONU200−1はOLT300からのファイバ長が1km、ONU200−2はOLT300からのファイバ長が10km、ONU200−3はOLT300からのファイバ長が20km、ONU200−4はOLT300からのファイバ長が10km、ONU200−nはOLT300からのファイバ長が15kmである。なお、図中、各ONU200の下のかっこ内(XX Km)は、OLT−ONU間のファイバ長を示す。
1. Transmission output power optimization

FIG. 1 shows the configuration of an optical access network to which the present embodiment is applied.
The access network 1 is connected to a public communication network (in this example, a PSTN / Internet 20 (hereinafter also referred to as an upper network)) via the PON 10 to transmit and receive data. The PON 10 includes a plurality of ONUs 200 that accommodate an optical splitter 100, a trunk optical fiber 110, a branch optical fiber 120, an OLT 300, and subscriber terminals (telephone (TEL) 40, PC 41, etc.). The OLT 300 and each ONU 200 are connected by an optical passive network having a trunk optical fiber 110, an optical splitter 100, and a plurality of branch optical fibers 120, and communication between the host network 20 and the subscriber terminals 40 and 41, or the subscriber terminal 40 , 41 communicate with each other. A plurality of (n, for example, 32, etc.) ONUs 200 can be connected to the OLT 300 via one main optical fiber 110, the optical splitter 100, and the branch optical fiber 120. FIG. 1 shows five ONUs 200 (n = 5) as an example, and the fiber lengths from the OLT 300 are different. In the illustrated example, the ONU 200-1 has a fiber length from the OLT 300 of 1 km, the ONU 200-2 has a fiber length from the OLT 300 of 10 km, the ONU 200-3 has a fiber length of 20 km from the OLT 300, and the ONU 200-4 has a fiber length from the OLT 300. The length is 10 km, and the ONU 200-n has a fiber length from the OLT 300 of 15 km. In the figure, the parenthesis (XX Km) under each ONU 200 indicates the fiber length between the OLT and the ONU.

以下に、本発明及び本実施の形態に関連する技術における、OLT300及びONU200−1〜nにおける送信信号及び受信信号のレベルについて説明する。OLT300からONU200の方向に伝送される下り信号130にはそれぞれのONU200宛の下り送信信号130−1〜nが時分割多重されて伝送される。各ONU200−1〜nで受信された下り受信信号140−1〜nは、OLT300と各ONU200−1〜n間のファイバ長(又は伝送路損失)の違いにより受信レベルが異なる。例えば、ONU200−1宛ての下り送信信号130−1は、ONU−1での下り受信信号140−1となり、ONU200−2宛ての下り送信信号130−2は、ONU−2での下り受信信号140−2となる。ここで、ONU200毎にファイバ長の違いにより受信レベルが異なるため、図示のように、同じ送信パワーとして同報信号で送信された下り送信信号130−1〜2は、受信時には下り受信信号140−1〜2のように受信レベルが異なる。すなわち、ファイバ長(又は伝送路損失)に従い、下り受信信号140−1は下り受信信号140−2より大きいレベルとなる。また、自分宛の信号であるか否かをONU200内で判断し、信号の宛先に基づいて、電話40やPC41に送られる。ONU200からOLT300の方向では、ONU200−1から伝送される上り送信信号160−1、ONU200−2から伝送される上り送信信号160−2、ONU200−3から伝送される上り送信信号160−3、ONU200−4から伝送される上り送信信号160−4、ONU200−nから伝送される上り送信信号160−nは、光スプリッタ100を通った後に時分割多重されて、光多重化された上り信号150となり、OLT300に到達する。なお、各ONU200とOLT300間のファイバ長(又は伝送路損失)が異なるため、上り信号150は振幅が異なる上り受信信号150−1〜nが多重化される形態となる。例えば、上り送信信号160−1及び160−2は同じ送信パワーであるが、ファイバ長(又は伝送路損失)に従い、上り受信信号150−1は上り受信信号150−2より大きいレベルとなる。
なお、下り信号130及び、下り送信信号130−1〜n、下り受信信号140−1〜nは、例えば波長帯1.5μmの光信号、上り信号150及び上り受信信号150−1〜n、上り送信信号160−1〜nは、例えば波長帯1.3μmの光信号が用いられ、両方の光信号が同じ光ファイバ110、120を波長多重(WDM)されて送受信される。
Hereinafter, the levels of transmission signals and reception signals in the OLT 300 and the ONUs 200-1 to n in the technology related to the present invention and the present embodiment will be described. Downlink transmission signals 130-1 to 130-n addressed to the respective ONUs 200 are time-division multiplexed and transmitted in the downlink signal 130 transmitted from the OLT 300 to the ONU 200. The downlink reception signals 140-1 to 140-n received by the respective ONUs 200-1 to 200-n have different reception levels depending on the fiber length (or transmission path loss) between the OLT 300 and each of the ONUs 200-1 to 200-n. For example, the downlink transmission signal 130-1 addressed to the ONU 200-1 becomes the downlink reception signal 140-1 at the ONU-1, and the downlink transmission signal 130-2 addressed to the ONU 200-2 is the downlink reception signal 140 at the ONU-2. -2. Here, since the reception level differs depending on the fiber length for each ONU 200, the downlink transmission signals 130-1 and 130-2 transmitted as broadcast signals with the same transmission power as illustrated in FIG. The reception levels are different as in 1-2. That is, according to the fiber length (or transmission path loss), the downlink reception signal 140-1 is at a level higher than the downlink reception signal 140-2. Further, it is determined in the ONU 200 whether or not the signal is addressed to itself, and is sent to the telephone 40 or the PC 41 based on the destination of the signal. In the direction from ONU 200 to OLT 300, upstream transmission signal 160-1 transmitted from ONU 200-1, upstream transmission signal 160-2 transmitted from ONU 200-2, upstream transmission signal 160-3 transmitted from ONU 200-3, ONU 200 -4 and the upstream transmission signal 160-n transmitted from the ONU 200-n are time-division multiplexed after passing through the optical splitter 100 to become an optically multiplexed upstream signal 150. The OLT 300 is reached. Since the fiber length (or transmission path loss) between each ONU 200 and the OLT 300 is different, the uplink signal 150 is multiplexed with the uplink reception signals 150-1 to 150-n having different amplitudes. For example, the upstream transmission signals 160-1 and 160-2 have the same transmission power, but the upstream reception signal 150-1 has a level higher than that of the upstream reception signal 150-2 according to the fiber length (or transmission path loss).
The downlink signal 130, the downlink transmission signals 130-1 to n, and the downlink reception signals 140-1 to n are, for example, an optical signal having a wavelength band of 1.5 μm, an uplink signal 150, and uplink reception signals 150-1 to n, For example, optical signals having a wavelength band of 1.3 μm are used as the transmission signals 160-1 to 160-n, and both optical signals are wavelength-division multiplexed (WDM) on the same optical fibers 110 and 120 and transmitted / received.

図2に、本実施の形態が適用されるONU200の構成例を示す。
ONU200は、大きくWDMフィルタ201、受信部240、送信部241、ユーザーインターフェース部207を備える。受信部240は、O/E変換部202、AGC203、クロック抽出部204、PONフレーム分離部205、パケットバッファ206、グラント終端部213、受信レベル制御部214を備える。また、送信部241は、パケットバッファ208、送信制御部209、PONフレーム生成部210、ドライバ211、E/O変換部212を備える。
支線ファイバ120から受信した光信号は、WDMフィルタ201にて波長分離され、O/E変換部202にて光信号を電気信号に変換し、AGC203にて振幅値が一定となるように制御を行い、クロック抽出部204にてリタイミングを行い、PONフレーム分離部205でPON区間のオーバーヘッドが分離され、パケットバッファ206に一時格納された後、ユーザーIF207を経て出力される。また、ユーザーIF207から入力された信号は、パケットバッファ208に一時的に格納された後、送信制御部209の制御のもとに読み出され、PONフレーム生成部210にてPON区間のオーバーヘッドを加えて組み立てられる。組み立てられた信号は、ドライバ211にて電流に変換され、E/O変換部212にて光信号に変換され、WDMフィルタ201を経て支線ファイバ120に向けて送信される。また、送信制御部209は、グラント終端部213から抽出された送信許可タイミングに従い、データをパケットバッファ208から読み出す。また、AGC203での電圧値に基づき受信レベル制御部214により受信レベルを判定し、PONフレーム生成部210にてONUでの下り受信信号の受信レベルをデータに加えて、上り送信信号がOLT300に向けて、抽出された送信許可タイミングで送信されることで、OLT300に受信レベルが通知される。
FIG. 2 shows a configuration example of the ONU 200 to which the present embodiment is applied.
The ONU 200 includes a WDM filter 201, a receiving unit 240, a transmitting unit 241, and a user interface unit 207. The reception unit 240 includes an O / E conversion unit 202, an AGC 203, a clock extraction unit 204, a PON frame separation unit 205, a packet buffer 206, a grant termination unit 213, and a reception level control unit 214. The transmission unit 241 includes a packet buffer 208, a transmission control unit 209, a PON frame generation unit 210, a driver 211, and an E / O conversion unit 212.
The optical signal received from the branch fiber 120 is wavelength-separated by the WDM filter 201, converted to an electric signal by the O / E converter 202, and controlled so that the amplitude value becomes constant by the AGC 203. Then, the clock extraction unit 204 performs retiming, the PON frame separation unit 205 separates the overhead of the PON section, temporarily stores it in the packet buffer 206, and then outputs it via the user IF 207. The signal input from the user IF 207 is temporarily stored in the packet buffer 208 and then read out under the control of the transmission control unit 209. The PON frame generation unit 210 adds the overhead of the PON section. Assembled. The assembled signal is converted into current by the driver 211, converted to an optical signal by the E / O conversion unit 212, and transmitted to the branch fiber 120 through the WDM filter 201. Further, the transmission control unit 209 reads data from the packet buffer 208 in accordance with the transmission permission timing extracted from the grant termination unit 213. Further, the reception level control unit 214 determines the reception level based on the voltage value at the AGC 203, and the PON frame generation unit 210 adds the reception level of the downstream reception signal at the ONU to the data, and the upstream transmission signal is directed to the OLT 300. Thus, the OLT 300 is notified of the reception level by transmitting at the extracted transmission permission timing.

図3に、本実施の形態が適用されるOLT300の構成例を示す。
OLT300は、大きく、網IF301、制御部330、送信部340、受信部341、WDMフィルタ306を備える。送信部340は、パケットバッファ302、PONフレーム生成部303、ドライバ304、E/O変換部305を備える。受信部は、O/E変換部307、固定ゲイン増幅部308、クロック抽出部309、PONフレーム分離部310、パケットバッファ311を備える。制御部330は、ONU受信レベル処理部312、送信パワー制御部313を備える。
網IF301は、PSTN/インターネット20からの信号を受信する。この信号は一時的にパケットバッファ302に格納された後、PONフレーム生成部303に送られPON区間のオーバーヘッドを加えて電気の送信信号を生成し、ドライバ304にて電流に変換され、E/O変換部305にて光信号に変換され、WDMフィルタ306を経て幹線光ファイバ110に向けて送信される。幹線光ファイバ110から受信した光信号は、WDMフィルタ306にて波長分離され、O/E変換部307にて光信号を電気信号に変換し、固定ゲイン増幅部308にて増幅され、クロック抽出部309にてリタイミングを行い、PONフレーム分離部310にてオーバーヘッドが分離されてパケットバッファ311に一時格納された後、網IF301から網側へ信号が出力される。
FIG. 3 shows a configuration example of the OLT 300 to which the present embodiment is applied.
The OLT 300 is roughly provided with a network IF 301, a control unit 330, a transmission unit 340, a reception unit 341, and a WDM filter 306. The transmission unit 340 includes a packet buffer 302, a PON frame generation unit 303, a driver 304, and an E / O conversion unit 305. The reception unit includes an O / E conversion unit 307, a fixed gain amplification unit 308, a clock extraction unit 309, a PON frame separation unit 310, and a packet buffer 311. The control unit 330 includes an ONU reception level processing unit 312 and a transmission power control unit 313.
The network IF 301 receives a signal from the PSTN / Internet 20. This signal is temporarily stored in the packet buffer 302, and then sent to the PON frame generation unit 303 to add an overhead of the PON section to generate an electric transmission signal, which is converted into a current by the driver 304, and the E / O The signal is converted into an optical signal by the conversion unit 305 and transmitted to the trunk optical fiber 110 through the WDM filter 306. The optical signal received from the trunk optical fiber 110 is wavelength-separated by the WDM filter 306, converted into an electrical signal by the O / E converter 307, amplified by the fixed gain amplifier 308, and clock extractor At 309, retiming is performed, and the overhead is separated by the PON frame separation unit 310 and temporarily stored in the packet buffer 311, and then a signal is output from the network IF 301 to the network side.

また、PONフレーム分解部310にて取り出されたONUでの下り光受信レベル値は、ONU受信レベル処理部312に送られ、OLT300自身の光出力レベルとの差分から伝送路損失を計算し、計算値を送信パワー制御部313に送る。送信パワー制御部313では、ONU受信レベル処理部312により計算された値からONU200側での受信において誤りの発生しないレベルまで光出力を低下させるようにドライバ304に信号を送り送信光パワーを制御する。ONU200側での受信において誤りの発生しないレベルまで光出力を低下させることを具体例に示すと、図1のアクセス網の構成において、ファイバ長が一番長い(又は伝送路損失が一番大きい)ファイバに接続されたONU200−3における受信レベルを最小受光レベルとした場合に、ONU200−1〜nの受信レベルをONU200−3の受信レベルと同じ最小受光レベルになるように、OLT300の送信光パワーを下げる。なお、具体例ではONU200−1〜nにおいて最小受光レベルにする制御方法で説明したが、OLT300の送信光パワーの制御量は他の値をとっても良い。   Further, the downstream optical reception level value in the ONU extracted by the PON frame decomposition unit 310 is sent to the ONU reception level processing unit 312, and the transmission line loss is calculated from the difference from the optical output level of the OLT 300 itself. The value is sent to the transmission power control unit 313. The transmission power control unit 313 controls the transmission optical power by sending a signal to the driver 304 so as to reduce the optical output from the value calculated by the ONU reception level processing unit 312 to a level at which no error occurs in reception on the ONU 200 side. . A specific example of reducing the optical output to a level at which no error occurs in reception on the ONU 200 side is as follows. In the access network configuration of FIG. 1, the fiber length is the longest (or the transmission line loss is the largest). When the reception level at the ONU 200-3 connected to the fiber is the minimum light reception level, the transmission optical power of the OLT 300 is set so that the reception levels of the ONUs 200-1 to n are the same as the reception level of the ONU 200-3. Lower. In the specific example, the control method for setting the minimum light reception level in the ONUs 200-1 to 200-n has been described. However, the control amount of the transmission optical power of the OLT 300 may take other values.

図4にONU200の受信レベルをOLT300に送信し、各ONU200−1〜nへの最適な光送信出力パワーに設定するフロー図を示す。
まず、OLT300は下り信号130を送信(401)し、各ONU200−1〜nでその信号を受信する(402)。各ONU200−1〜nはAGC203での電圧値を受信レベル制御部214により受信レベルを判定し、OLT300に受信レベルを通知する(403)。OLT300は、各ONU200−1〜nからの受信レベルを受信(404)し、ONU受信レベル処理部312にて、OLT300自身の光出力レベルとの差分から各ONU200−1〜nに対する伝送路損失を計算(405)し、送信パワー制御部313にて各ONU200−1〜n側での受信において誤りの発生しないレベルまで光出力を低下させるように出力パワーを設定する(406)。たとえば、OLT300は、各ONU200−1〜nから受信した下り受信信号レベルを抽出し、その中から最小受光レベルであるONUを選択する。そして、OLT300は、各ONU200−1〜nの下り受信信号レベルが最小受光レベルのONUの下り受信信号レベルと同じレベルになるように各ONU200−1〜nの下り送信信号レベル(出力パワー)を制御する。
FIG. 4 shows a flowchart for transmitting the reception level of the ONU 200 to the OLT 300 and setting the optimum optical transmission output power to each of the ONUs 200-1 to 200-n.
First, the OLT 300 transmits a downstream signal 130 (401), and each ONU 200-1 to n receives the signal (402). Each ONU 200-1 to n determines the reception level of the voltage value in the AGC 203 by the reception level control unit 214 and notifies the OLT 300 of the reception level (403). The OLT 300 receives the reception level from each ONU 200-1 to n (404), and the ONU reception level processing unit 312 calculates the transmission line loss for each ONU 200-1 to n from the difference from the optical output level of the OLT 300 itself. The calculation is performed (405), and the transmission power control unit 313 sets the output power so as to reduce the optical output to a level at which no error occurs in the reception on each of the ONUs 200-1 to 200-n (406). For example, the OLT 300 extracts the downlink reception signal level received from each of the ONUs 200-1 to 200-n, and selects the ONU that is the minimum light reception level from the extracted downlink reception signal levels. The OLT 300 then sets the downstream transmission signal level (output power) of each ONU 200-1 to n so that the downstream reception signal level of each ONU 200-1 to n is the same level as the downstream reception signal level of the ONU having the minimum light reception level. Control.

図5にOLT300の出力パワーを最適化した光アクセス網1の構成例を示す。
図1の光アクセス網1の構成例との違いは、OLT300の送信光パワーを各ONU200−1〜n毎に最適しているので、送信信号の振幅が各ONU200−1〜n毎に違う下り送信信号530−1〜nを含む下り送信信号530として送信されることにより、各ONU200−1〜nでの受信レベルが誤りの発生しないレベルで各ONU200−1〜n宛の下り受信信号540−1〜nの受信レベルがほぼ等しくなる。例えば、ONU200−1宛ての下り送信信号530−1は、ONU−1での下り受信信号540−1となり、ONU200−2宛ての下り送信信号530−2は、ONU−2での下り受信信号540−2となる。ここで、ONU200毎にファイバ長(又は伝送路損失)の違いにより受信レベルが異なるため、送信パワーを調整して同報信号で送信された下り送信信号530−1〜2は、受信時には下り受信信号540−1〜2のように受信レベルがほぼ等しくなる。しかも、この例では、ファイバ長の一番長い(又は伝送路損失が一番大きい)ONU200−3の受信レベルに従いOLTの送信パワー(出力パワー)を設定しているので、図1と比較すると小さい受信レベルではあるが、全てのONU200−1〜nでの受信において誤りの発生しないレベルまで光出力が低下されている。よって、OLT300の送信パワーの最適化により送信出力パワーにおいて消費電力の無駄を極力減らすことの可能な受動光網システムを実現することができる。
FIG. 5 shows a configuration example of the optical access network 1 in which the output power of the OLT 300 is optimized.
The difference from the configuration example of the optical access network 1 in FIG. 1 is that the transmission optical power of the OLT 300 is optimized for each ONU 200-1 to n, so that the transmission signal amplitude is different for each ONU 200-1 to n. By being transmitted as the downlink transmission signal 530 including the transmission signals 530-1 to 530-n, the downlink reception signal 540-addressed to each ONU 200-1 to n at a level where no error occurs at each ONU 200-1 to n. The reception levels 1 to n are almost equal. For example, the downlink transmission signal 530-1 addressed to the ONU 200-1 becomes the downlink reception signal 540-1 at the ONU-1, and the downlink transmission signal 530-2 addressed to the ONU 200-2 is the downlink reception signal 540 at the ONU-2. -2. Here, since the reception level differs depending on the fiber length (or transmission path loss) for each ONU 200, the downlink transmission signals 530-1 and 530-2 transmitted by the broadcast signal after adjusting the transmission power are received at the time of reception. The reception levels are almost equal as in signals 540-1 and 540-2. In addition, in this example, since the transmission power (output power) of the OLT is set according to the reception level of the ONU 200-3 having the longest fiber length (or the largest transmission line loss), it is small compared with FIG. Although it is the reception level, the optical output is reduced to a level at which no error occurs in reception by all ONUs 200-1 to 200-n. Accordingly, it is possible to realize a passive optical network system capable of reducing waste of power consumption as much as possible in the transmission output power by optimizing the transmission power of the OLT 300.

2.PONリンク確立の維持

だが、構成例で最短距離のONU200−1に最適化されたOLT300からの下り信号530は、ONU200−1より長いファイバ長の(又はONU200−2が接続されるファイバより大きい伝送路損失のファイバで接続される)ONU200−2,ONU200−3,ONU200−4,ONU200−nでは受信できないレベルとなる可能性がある。ONU200−2に最適化されたOLT300からの下り信号は、ONU200−1、ONU200−4では受信可能なレベルとなるが、ONU200−2より長いファイバ長の(又はONU200−2が接続されるファイバより大きい伝送路損失のファイバで接続される)ONU200−3,ONU200−nでは受信できないレベルとなる可能性がある。構成例で最長距離のONU200−3に最適化されたOLT300からの下り信号は、ONU200−1、ONU200−2、ONU200−4、ONU200−nでは受信可能なレベルとなる可能性がある。ONU200−4に最適化されたOLT300からの下り信号は、ONU200−1、ONU200−2では受信可能なレベルとなるが、ONU200−4より長いファイバ長の(又はONU200−2が接続されるファイバより大きい伝送路損失のファイバで接続される)ONU200−3,ONU200−nでは受信できないレベルとなる可能性がある。ONU200−nに最適化されたOLT300からの下り信号は、ONU200−1、ONU200−2、ONU200−4では受信可能なレベルとなるが、ONU200−nより長いファイバ長の(又はONU200−2が接続されるファイバより大きい伝送路損失のファイバで接続される)ONU200−3では受信できないレベルとなる可能性がある。
このことからONU200は、従来技術では、受信できないレベルの期間においてPONリンク断の状態となる可能性があるため、常にPONリンク確立を維持する方法が必要となる。以下、PONリンク確立を維持する方法の実施例を述べる。
2. Maintaining PON link establishment

However, the downstream signal 530 from the OLT 300 optimized for the shortest distance ONU 200-1 in the configuration example is a fiber having a longer fiber length than the ONU 200-1 (or a transmission line loss larger than the fiber to which the ONU 200-2 is connected). There is a possibility that the level may not be received by the ONU 200-2, ONU 200-3, ONU 200-4, and ONU 200-n. The downstream signal from the OLT 300 optimized for the ONU 200-2 is at a level that can be received by the ONU 200-1 and the ONU 200-4, but the fiber length is longer than the ONU 200-2 (or the fiber to which the ONU 200-2 is connected). There is a possibility that the ONU 200-3 and ONU 200-n (connected with a fiber having a large transmission line loss) cannot receive. The downlink signal from the OLT 300 optimized for the longest distance ONU 200-3 in the configuration example may be at a level that can be received by the ONU 200-1, ONU 200-2, ONU 200-4, and ONU 200-n. The downstream signal from the OLT 300 optimized for the ONU 200-4 is at a level that can be received by the ONU 200-1 and the ONU 200-2, but is longer than the fiber length of the ONU 200-4 (or the fiber to which the ONU 200-2 is connected). There is a possibility that the ONU 200-3 and ONU 200-n (connected with a fiber having a large transmission line loss) cannot receive. Downstream signals from the OLT 300 optimized for the ONU 200-n can be received by the ONU 200-1, the ONU 200-2, and the ONU 200-4, but have a longer fiber length than the ONU 200-n (or the ONU 200-2 is connected). There is a possibility that the ONU 200-3 (connected by a fiber having a transmission path loss larger than that of the transmission fiber) cannot receive.
For this reason, in the conventional technique, the ONU 200 may be in a PON link disconnection state during a period in which the ONU 200 cannot be received. Therefore, a method for always maintaining the PON link establishment is required. Hereinafter, an embodiment of a method for maintaining PON link establishment will be described.

図6にPONの動作例のシーケンス図を示す。DBA動作および周期と、各DBAの結果に基づくグラント動作および周期の関係を示すものである。
OLT300は、例えば、周期125μ秒のグラント周期毎にグラント指示を含む送信許可メッセージ600を各ONU200−1〜200−3に向けて送信する。この送信許可メッセージ600には、各ONUが備えた送信キューに溜まっている送信待ちデータ量の報告を要求する情報(Request report)も含まれている。各ONU200−1〜3は、グラント指示のStartとEndによって指示されたタイムスロットで送信キューに溜まったデータを送信するとともに、送信待ちのデータ量を上りメッセージ601に含まれるキュー長を用いてOLT300に報告する。さらに、各ONU200−1〜3は、図2にてすでに説明したONU受信レベルの通知を上りメッセージ601に含めてOLT300に報告する。
ここでOLT300は、一定のグラント周期602〜605で送信許可メッセージ600を送っているので、送信許可メッセージ600の受信有無によりPONリンク確立の判断する方法を使えば受信できないレベルの期間があるONU200において、PONリンク確立を維持することができると考える。
FIG. 6 shows a sequence diagram of an example of PON operation. This shows the relationship between the DBA operation and cycle and the grant operation and cycle based on the result of each DBA.
For example, the OLT 300 transmits a transmission permission message 600 including a grant instruction to each ONU 200-1 to 200-3 at every grant period of 125 μs. This transmission permission message 600 also includes information (Request report) for requesting a report of the amount of transmission waiting data accumulated in the transmission queue of each ONU. Each of the ONUs 200-1 to 200-3 transmits data accumulated in the transmission queue in the time slot specified by the grant instruction Start and End, and uses the queue length included in the upstream message 601 to indicate the amount of data waiting for transmission using the OLT 300. To report to. Furthermore, each ONU 200-1 to 3 includes the ONU reception level notification already described with reference to FIG.
Here, since the OLT 300 transmits the transmission permission message 600 at a certain grant period 602 to 605, the ONU 200 has a period of a level that cannot be received by using the method for determining the establishment of the PON link depending on whether or not the transmission permission message 600 is received. The PON link establishment can be maintained.

図7にPONリンク制御部を加えたONU200の構成例を示す。
図2の構成例との違いは、制御部220をONU200内部に備える。制御部220は、図2における受信レベル制御部214及びグラント終端部213の機能も含む。その他の各構成ブロック及び動作については図2で説明したものと同様である。制御部220にて受信レベル判定・制御、グラント終端(送信許可タイミングの抽出等)に加えて、PONリンクを制御し、AGC203での電圧値を受信レベル判定・制御により得られた受信レベルと、PONフレーム終端にて抽出されるグラント処理情報のグラント受信有無とに基づき、PONリンクの判断を制御する。なお、OLTはグラント信号及び/又は送信許可メッセージを送信する場合、最大の出力光パワー又は予め定められた値より大きい出力光パワーで送信する。具体的なPONリンク判断の実施例は、図8を用いて説明する。
FIG. 7 shows a configuration example of the ONU 200 to which a PON link control unit is added.
A difference from the configuration example of FIG. 2 is that the control unit 220 is provided inside the ONU 200. The control unit 220 also includes the functions of the reception level control unit 214 and the grant termination unit 213 in FIG. Other constituent blocks and operations are the same as those described in FIG. In addition to reception level determination / control and grant termination (extraction of transmission permission timing, etc.) by the control unit 220, the PON link is controlled, and the voltage level at the AGC 203 is obtained by reception level determination / control. Based on whether or not the grant processing information is extracted at the end of the PON frame, the PON link determination is controlled. When transmitting the grant signal and / or the transmission permission message, the OLT transmits the signal with the maximum output optical power or an output optical power larger than a predetermined value. A specific example of PON link determination will be described with reference to FIG.

図8にPONリンク制御の実施例のシーケンス図を示す。
まず、OLTからの下り信号において受信できないレベルの期間の有無を判定する(801)。ここで、受信できないレベルの期間がない場合はPONリンク確立(802)となる。受信できないレベルの期間がある場合は、続いてグラント信号の受信の有無を判定する(803)。グラント信号を受信した場合は、PONリンク確立(802)となる。グラント信号を受信しない場合は、一定のグラント周期で送信許可メッセージを送っているので、次のグラント信号の受信の有無を確認する(804)。ここでグラント信号を受信した場合は、PONリンク確立(802)となる。さらにグラント信号を受信しない場合は、もう一度グラント信号の受信の有無を判定する(805)。ここでグラント信号を受信した場合は、PONリンク確立(802)となる。さらにグラント信号を受信しない場合は、PONリンク断となる(806)。なお、実施例では3回のグラント信号の有無でPONリンク判断を行うシーケンスとして説明したが、グラント信号の受信の有無の確認回数はこれ以外をとっても良い。
以上のように、ONU200は、OLT300側の送信光出力パワーを調整した際に、伝送路損失の大小によりONU200側において誤りの発生しないレベル以下の期間となり、それにより他のONU200が受信できないレベルの期間が発生する可能性がある。このようなとき、従来ではPONリンク断の状態と判定される場合があるが、本発明及び本実施の形態では、そのようなときであっても、PONリンク確立の維持をOLTからの送信メッセージであるグラント信号の有無によって判断することができる。
FIG. 8 shows a sequence diagram of an embodiment of PON link control.
First, it is determined whether there is a period of a level that cannot be received in the downstream signal from the OLT (801). Here, if there is no period of a level that cannot be received, the PON link is established (802). If there is a period in which the signal cannot be received, it is subsequently determined whether a grant signal is received (803). When the grant signal is received, the PON link is established (802). When the grant signal is not received, the transmission permission message is transmitted at a constant grant period, and therefore the presence / absence of reception of the next grant signal is confirmed (804). If the grant signal is received here, the PON link is established (802). If no grant signal is received, it is determined again whether or not a grant signal is received (805). If the grant signal is received here, the PON link is established (802). If no grant signal is received, the PON link is disconnected (806). In the embodiment, the sequence for determining the PON link based on the presence / absence of three grant signals has been described. However, the number of confirmations of whether or not a grant signal is received may be other than this.
As described above, when the ONU 200 adjusts the transmission optical output power on the OLT 300 side, the ONU 200 has a period that is less than the level at which no error occurs on the ONU 200 side due to the size of the transmission path loss, and thus the other ONUs 200 cannot receive. Period may occur. In such a case, it is conventionally determined that the PON link is broken. However, in the present invention and the present embodiment, even in such a case, the transmission message from the OLT is used to maintain the PON link establishment. This can be determined by the presence or absence of a grant signal.

10 PON
40、41 端末
100 スプリッタ
110、120 光ファイバ
130、140、530、540 下り信号
150、160 上り信号
200 ONU
240 ONU受信部
241 ONU送信部
300 OLT
330 OLT制御部
340 OLT送信部
341 OLT受信部
10 PON
40, 41 Terminal 100 Splitter 110, 120 Optical fiber 130, 140, 530, 540 Down signal 150, 160 Up signal 200 ONU
240 ONU receiver 241 ONU transmitter 300 OLT
330 OLT control unit 340 OLT transmission unit 341 OLT reception unit

Claims (10)

上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおいて、
前記OLTは、各前記ONUへ、下り信号を送信し、
各前記ONUは、前記下り信号を受信し、その受信レベル又は他の送信光パワーの制御レベルを判定し、前記OLTに受信レベル又は他の送信光パワーの制御レベルを通知し、
前記OLTは、各前記ONUから、受信レベル又は他の送信光パワーの制御レベルを受信し、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを設定レベルと特定し、
前記OLTは、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定する
ようにした受動光網システム。
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical In a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,
The OLT transmits a downstream signal to each ONU,
Each ONU receives the downlink signal, determines its reception level or other transmission optical power control level, notifies the OLT of the reception level or other transmission optical power control level,
The OLT receives a reception level or other transmission optical power control level from each ONU, and specifies a reception level or other transmission optical power control level equal to or lower than a predetermined value or a predetermined level as a set level. ,
The OLT refers to the optical output level of the downstream signal, and according to each transmission line loss or each optical fiber length between the OLT and each ONU, the reception level or other transmission in each ONU A passive optical network system in which the transmission optical power to each ONU is set so that the control level of optical power becomes the set level.
前記OLTは、各前記ONUから受信した受信レベル又は他の送信光パワーの制御レベルを、前記ONU側での受信において誤りの発生しない設定レベルと特定し、
該制御レベルと、前記下り信号の光出力レベルとを比較して、前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長を計算すること
ことを特徴とする請求項1に記載の受動光網システム。
The OLT specifies a reception level received from each ONU or a control level of other transmission optical power as a setting level at which no error occurs in reception on the ONU side,
2. The transmission level loss or optical fiber length between the OLT and each ONU is calculated by comparing the control level with the optical output level of the downstream signal. The passive optical network system described.
前記OLTは、前記下り信号として、グラント周期毎にグラント信号を含む送信許可メッセージを各前記ONUに向けて送信し、
各前記ONUは、前記グラント信号によって指示されたタイムスロットでデータを送信するとともに、前記受信レベル又は他の送信光パワーの制御レベルの通知を上り信号に含めて前記OLTに報告する
ことを特徴とする請求項1又は2に記載の受動光網システム。
The OLT transmits, as the downlink signal, a transmission permission message including a grant signal for each grant period toward each ONU.
Each ONU transmits data in a time slot indicated by the grant signal, and reports the reception level or other transmission optical power control level to the OLT by including it in an upstream signal. The passive optical network system according to claim 1 or 2.
前記OLTは、グラント信号を含む前記送信許可メッセージを送信する場合、最大値又は予め定められた値以上の送信光パワーで出力するようにしたことを特徴とする請求項1乃至3のいずれかに記載の受動光網システム。   4. The OLT according to claim 1, wherein when transmitting the transmission permission message including a grant signal, the OLT is configured to output with a transmission optical power equal to or greater than a maximum value or a predetermined value. The passive optical network system described. 前記ONUは、
前記OLTからの下り信号において受信できないレベルの期間の有無を判定し、
受信できないレベルの期間がない場合は、リンク確立と判断し、
受信できないレベルの期間がある場合は、グラント信号の受信の有無を判定し、所定周期内又は所定時間内にグラント信号を受信した場合はリンク確立と判断し、所定周期内又は所定時間内にグラント信号を受信しない場合はリンク断と判断する
ことを特徴とする請求項1乃至4のいずれかに記載の受動光網システム。
The ONU is
Determining whether or not there is a period of a level that cannot be received in the downstream signal from the OLT;
If there is no period that cannot be received, it is determined that the link is established,
If there is a period that cannot be received, it is determined whether or not a grant signal has been received. If a grant signal is received within a predetermined period or time, it is determined that a link has been established, and the grant signal is determined within a predetermined period or time. 5. The passive optical network system according to claim 1, wherein when the signal is not received, it is determined that the link is broken.
上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおける送信光制御方法であって、
前記OLTは、各前記ONUへ、下り信号を送信し、
各前記ONUは、前記下り信号を受信し、その受信レベル又は他の送信光パワーの制御レベルを判定し、前記OLTに受信レベル又は他の送信光パワーの制御レベルを通知し、
前記OLTは、各前記ONUから、受信レベル又は他の送信光パワーの制御レベルを受信し、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを設定レベルと特定し、
前記OLTは、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定する
ようにした送信光制御方法。
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical A transmission light control method in a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,
The OLT transmits a downstream signal to each ONU,
Each ONU receives the downlink signal, determines its reception level or other transmission optical power control level, notifies the OLT of the reception level or other transmission optical power control level,
The OLT receives a reception level or other transmission optical power control level from each ONU, and specifies a reception level or other transmission optical power control level equal to or lower than a predetermined value or a predetermined level as a set level. ,
The OLT refers to the optical output level of the downstream signal, and according to each transmission line loss or each optical fiber length between the OLT and each ONU, the reception level or other transmission in each ONU A transmission light control method in which the transmission optical power to each ONU is set so that the optical power control level becomes the set level.
前記OLTは、グラント信号を含む前記送信許可メッセージを送信する場合、最大値又は予め定められた値以上の送信光パワーで出力するようにしたことを特徴とする請求項6に記載の送信光制御方法。   The transmission light control according to claim 6, wherein, when transmitting the transmission permission message including a grant signal, the OLT outputs a transmission optical power with a maximum value or a predetermined value or more. Method. 前記ONUは、
前記OLTからの下り信号において受信できないレベルの期間の有無を判定し、
受信できないレベルの期間がない場合は、リンク確立と判断し、
受信できないレベルの期間がある場合は、グラント信号の受信の有無を判定し、所定周期内又は所定時間内にグラント信号を受信した場合はリンク確立と判断し、所定周期内又は所定時間内にグラント信号を受信しない場合はリンク断と判断する
ことを特徴とする請求項6又は7に記載の送信光制御方法。
The ONU is
Determining whether or not there is a period of a level that cannot be received in the downstream signal from the OLT;
If there is no period that cannot be received, it is determined that the link is established,
If there is a period that cannot be received, it is determined whether or not a grant signal has been received. If a grant signal is received within a predetermined period or time, it is determined that a link has been established, and the grant signal is determined within a predetermined period or time. 8. The transmission light control method according to claim 6 or 7, wherein when no signal is received, it is determined that the link is broken.
上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおける光多重終端装置であって、

各前記ONUでの下り信号の光受信レベル又は他の送信光パワーの制御レベルを取り出すフレーム分離部と、
前記フレーム分離部にて取り出された各前記ONUの受信レベル値又は他の送信光パワーの制御レベルと、前記OLTが送信した光出力レベルとの差分から伝送路損失又は光ファイバ長を計算する受信レベル処理部と、
前記受信レベル処理部で計算された伝送路損失又は光ファイバ長から前記ONU側での受信において誤りの発生しないレベルまで光出力を低下させるように送信光パワーを制御するための送信パワー制御部と、
を備え、
各前記ONUへ、下り信号を送信し、
前記フレーム分離部は、各前記ONUから、前記下り信号の受信レベル又は他の送信光パワーの制御レベルを受信し、
前記受信レベル処理部は、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを設定レベルと特定し、
前記送信パワー制御部は、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定する
ようにした光多重終端装置。
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical An optical multiple termination device in a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,

A frame separation unit for extracting the optical reception level of the downstream signal in each ONU or the control level of other transmission optical power;
Reception for calculating transmission line loss or optical fiber length from the difference between the reception level value of each ONU extracted by the frame separation unit or the control level of other transmission optical power and the optical output level transmitted by the OLT A level processing unit;
A transmission power control unit for controlling the transmission optical power so as to reduce the optical output from the transmission line loss or optical fiber length calculated by the reception level processing unit to a level at which no error occurs in reception on the ONU side; ,
With
Send a downstream signal to each ONU,
The frame separation unit receives a reception level of the downlink signal or a control level of other transmission optical power from each of the ONUs,
The reception level processing unit identifies a reception level that is a minimum or less than a predetermined value or a control level of other transmission optical power as a set level,
The transmission power control unit refers to the optical output level of the downstream signal, and according to each transmission line loss or each optical fiber length between the OLT and each ONU, the reception level in each ONU or the An optical multiplex termination apparatus in which the transmission optical power to each ONU is set so that the control level of the other transmission optical power becomes the set level.
上位の通信網と接続される光多重終端装置(以下OLTと称する)と、ひとつ又は複数の端末を収容する複数の光網終端装置(以下ONUと称する)とが、ひとつの基幹光ファイバと光スプリッタと複数の支線光ファイバとを含む光ファイバ網で接続された受動光網システムにおける光網終端装置であって、

受信レベル又は他の送信光パワーの制御レベルを判定し、送信許可タイミングを抽出し、前記受信レベル及びフレーム終端により抽出されるグラント信号の受信有無に基づき、リンク確立又はリンク断の判断を制御する制御部と、
前記制御部により抽出された送信許可タイミングで、上り信号に前記受信レベルを加えて送信するためのフレーム生成部と、
を備え、

前記制御部は、前記OLTからの下り信号を受信し、その受信レベル又は他の送信光パワーの制御レベルを判定し、
前記フレーム生成部は、前記OLTに受信レベル又は他の送信光パワーの制御レベルを通知し、

前記OLTは、各前記ONUから、受信レベル又は他の送信光パワーの制御レベルを受信し、最小又は予め定められた値以下の受信レベル又は他の送信光パワーの制御レベルを、前記ONU側での受信において誤りの発生しない設定レベルと特定し、及び、前記下り信号の光出力レベルを参照して前記OLTと各前記ONUとの間の各伝送路損失又は各光ファイバ長に応じて、各前記ONUにおける前記受信レベル又は前記他の送信光パワーの制御レベルが前記設定レベルになるように各前記ONUへの送信光パワーをそれぞれ設定し、

前記制御部は、
前記OLTからの下り信号において受信できないレベルの期間の有無を判定し、
受信できないレベルの期間がない場合は、リンク確立と判断し、
受信できないレベルの期間がある場合は、グラント信号の受信の有無を判定し、所定周期内又は所定時間内にグラント信号を受信した場合はリンク確立と判断し、所定周期内又は所定時間内にグラント信号を受信しない場合はリンク断と判断する
ようにした光網終端装置。
An optical multiplex terminator (hereinafter referred to as OLT) connected to a higher-level communication network and a plurality of optical network terminators (hereinafter referred to as ONUs) accommodating one or a plurality of terminals are combined with one backbone optical fiber and optical An optical network termination device in a passive optical network system connected by an optical fiber network including a splitter and a plurality of branch optical fibers,

Determine the reception level or other transmission optical power control level, extract the transmission permission timing, and control the determination of link establishment or link disconnection based on the reception level and the presence / absence of the grant signal extracted by the end of the frame A control unit;
A frame generation unit for transmitting by adding the reception level to an uplink signal at a transmission permission timing extracted by the control unit;
With

The control unit receives a downstream signal from the OLT, determines the reception level or other transmission optical power control level,
The frame generation unit notifies the OLT of a reception level or other transmission optical power control level,

The OLT receives a reception level or other transmission optical power control level from each of the ONUs, and sets the reception level or other transmission optical power control level below the minimum or predetermined value on the ONU side. In accordance with each transmission line loss or each optical fiber length between the OLT and each ONU with reference to the optical output level of the downstream signal, Set the transmission optical power to each ONU so that the reception level or the control level of the other transmission optical power in the ONU becomes the set level,

The controller is
Determining whether or not there is a period of a level that cannot be received in the downstream signal from the OLT;
If there is no period that cannot be received, it is determined that the link is established,
If there is a period that cannot be received, it is determined whether or not a grant signal has been received. If a grant signal is received within a predetermined period or time, it is determined that a link has been established, and the grant signal is determined within a predetermined period or time. An optical network terminating device that determines that the link is broken when no signal is received.
JP2010118034A 2010-05-24 2010-05-24 Passive optical network system, transmission light control method, optical multiple termination device, and optical network termination device Expired - Fee Related JP5411805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118034A JP5411805B2 (en) 2010-05-24 2010-05-24 Passive optical network system, transmission light control method, optical multiple termination device, and optical network termination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118034A JP5411805B2 (en) 2010-05-24 2010-05-24 Passive optical network system, transmission light control method, optical multiple termination device, and optical network termination device

Publications (2)

Publication Number Publication Date
JP2011249898A true JP2011249898A (en) 2011-12-08
JP5411805B2 JP5411805B2 (en) 2014-02-12

Family

ID=45414665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118034A Expired - Fee Related JP5411805B2 (en) 2010-05-24 2010-05-24 Passive optical network system, transmission light control method, optical multiple termination device, and optical network termination device

Country Status (1)

Country Link
JP (1) JP5411805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056735A (en) * 2016-09-28 2018-04-05 三菱電機株式会社 Station side termination device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136192A (en) * 1997-10-24 1999-05-21 Nec Corp Optical communication system in pds system and its communication method
JP2006203656A (en) * 2005-01-21 2006-08-03 Fuji Xerox Co Ltd Optical communication device
JP2007221517A (en) * 2006-02-17 2007-08-30 Mitsubishi Electric Corp Pon (passive optical network) system
JP2009065341A (en) * 2007-09-05 2009-03-26 Fujitsu Telecom Networks Ltd Pon system
JP2009159189A (en) * 2007-12-26 2009-07-16 Hitachi Communication Technologies Ltd Network system, optical concentrator, and optical network device
JP2009200716A (en) * 2008-02-20 2009-09-03 Oki Electric Ind Co Ltd Optical communications network and intensity adjustment method for optical communications network
JP2010081278A (en) * 2008-09-26 2010-04-08 Hitachi Ltd Passive optical network system and method of operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136192A (en) * 1997-10-24 1999-05-21 Nec Corp Optical communication system in pds system and its communication method
JP2006203656A (en) * 2005-01-21 2006-08-03 Fuji Xerox Co Ltd Optical communication device
JP2007221517A (en) * 2006-02-17 2007-08-30 Mitsubishi Electric Corp Pon (passive optical network) system
JP2009065341A (en) * 2007-09-05 2009-03-26 Fujitsu Telecom Networks Ltd Pon system
JP2009159189A (en) * 2007-12-26 2009-07-16 Hitachi Communication Technologies Ltd Network system, optical concentrator, and optical network device
JP2009200716A (en) * 2008-02-20 2009-09-03 Oki Electric Ind Co Ltd Optical communications network and intensity adjustment method for optical communications network
JP2010081278A (en) * 2008-09-26 2010-04-08 Hitachi Ltd Passive optical network system and method of operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056735A (en) * 2016-09-28 2018-04-05 三菱電機株式会社 Station side termination device

Also Published As

Publication number Publication date
JP5411805B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5094247B2 (en) Passive optical network system and communication method thereof
JP5286155B2 (en) Passive optical network system and parent station apparatus thereof
JP5114268B2 (en) Passive optical network system and operation method thereof
JP5314760B2 (en) Optical multiplex terminator, wavelength multiplex passive optical network system, downlink wavelength transmission method
JP5097641B2 (en) Passive optical network system, optical multiple termination device, and optical network termination device
JP4942680B2 (en) PASSIVE OPTICAL NETWORK SYSTEM, OPTICAL MULTIPLE TERMINAL DEVICE, AND PASSIVE OPTICAL NETWORK SYSTEM COMMUNICATION METHOD
JP5097655B2 (en) Passive optical network system and optical multiple terminator
JP5210959B2 (en) Optical passive network system and operation method thereof
JP4340692B2 (en) Passive optical network system and operation method thereof
JP5564393B2 (en) Passive optical network system
JP4820880B2 (en) Station side equipment
JP5216656B2 (en) Passive optical network system and operation method thereof
WO2010116487A1 (en) Optical multiplexing terminating device, passive optical network system, and method for allocating frequency
JP2007174641A (en) Tdma pon olt system for broadcasting service
EP2056495A1 (en) Electrical point-to-multipoint repeater for PON
US8391715B2 (en) Passive optical network system
JP2013255086A (en) Multirate pon system and station side and home optical line terminating device thereof
JP2011217298A (en) Pon system, station-side device and terminal-side device thereof, and rtt correction method
WO2012149770A1 (en) Method, device and system for converting terminal device identifiers
JP5411805B2 (en) Passive optical network system, transmission light control method, optical multiple termination device, and optical network termination device
JP5487292B2 (en) Passive optical network system and operation method thereof
JP2009218920A (en) Communication system and communication method
JP5487293B2 (en) Passive optical network system and operation method thereof
WO2017179241A1 (en) Optical signal relay apparatus and relay method
JP2009118116A (en) Station side device of pon system and frame processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131108

LAPS Cancellation because of no payment of annual fees