JP2011249565A - Magnetization device and magnetization head - Google Patents

Magnetization device and magnetization head Download PDF

Info

Publication number
JP2011249565A
JP2011249565A JP2010121378A JP2010121378A JP2011249565A JP 2011249565 A JP2011249565 A JP 2011249565A JP 2010121378 A JP2010121378 A JP 2010121378A JP 2010121378 A JP2010121378 A JP 2010121378A JP 2011249565 A JP2011249565 A JP 2011249565A
Authority
JP
Japan
Prior art keywords
end side
magnetized
magnetizing
tip surface
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010121378A
Other languages
Japanese (ja)
Other versions
JP4846863B2 (en
Inventor
信一 ▲高▼橋
Shinichi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MGLAB CO Ltd
Original Assignee
MGLAB CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MGLAB CO Ltd filed Critical MGLAB CO Ltd
Priority to JP2010121378A priority Critical patent/JP4846863B2/en
Publication of JP2011249565A publication Critical patent/JP2011249565A/en
Application granted granted Critical
Publication of JP4846863B2 publication Critical patent/JP4846863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetization device and a magnetization head which can secure highly accurate magnetization pitch while allowing for magnetization by larger magnetic force than that of previous rotation magnetization types.SOLUTION: A magnetization device which magnetizes a subject to be magnetized 1 so that the polarity changes alternately in a prescribed magnetization direction comprises: a core having an apical surface which is facingly contacting or is adjacent to the magnetization surface of the subject to be magnetized 1; a positioning means to position and place a conductive wire 3 which extends to the apical surface from one end side of the apical surface to the other end side; a magnetization head 16 which is positioned so that the direction running from one end side of the apical surface to the other end side is vertical to a prescribed magnetization direction of the subject to be magnetized 1; a drive part to rotate or move the subject to be magnetized 1 or the magnetization head 16 so that the apical surface of the magnetization head 16 rotates or moves relatively to the prescribed magnetization direction of the magnetization surface of the subject to be magnetized 1; a power source 18 which supplies alternation current to the conductive wire 3 while the drive part rotates or moves the subject to be magnetized 1 or the magnetization head 16.

Description

本発明は,被着磁体を所定着磁方向に極性が交互に変化するように多極着磁する着磁装置及び着磁ヘッドに関し,特に,車輪用軸受などに配置される環状の磁気エンコーダの着磁に好適な着磁装置及び着磁ヘッドに関する。   The present invention relates to a magnetizing device and a magnetizing head for magnetizing a magnetized body so as to alternately change the polarity in a predetermined magnetizing direction, and more particularly to an annular magnetic encoder disposed in a wheel bearing or the like. The present invention relates to a magnetizing apparatus and a magnetizing head suitable for magnetizing.

多くの自動車の車輪用軸受(ハブベアリング)にはABS(アンチロック・ブレーキ・システム:(横滑り防止装置))とESC(エレクトロニック・スタビリティ・コントロール(車両姿勢安定装置))の制御に必要な車輪回転センサが装着されている。車輪回転センサは,磁石のN極,S極の極性変化を検出する磁気センサと,円周方向にN極とS極が交互に同一間隔で着磁されたリング状の磁石である磁気エンコーダとを有して構成されている。車輪の回転に伴って磁気エンコーダの極性が交互に変化する状況を磁気センサが検出し,車輪回転信号として捉え,ABSやESCなどの車両制御に用いられる。この磁気エンコーダを製造するための着磁装置が開発されている。   Many automobile wheel bearings (hub bearings) require the wheels required to control ABS (anti-lock braking system: (skid prevention device)) and ESC (electronic stability control (vehicle attitude stabilization device)). A rotation sensor is attached. The wheel rotation sensor includes a magnetic sensor that detects a change in the polarity of the N and S poles of the magnet, and a magnetic encoder that is a ring-shaped magnet in which N and S poles are alternately magnetized at equal intervals in the circumferential direction. It is comprised. A magnetic sensor detects the situation in which the polarity of the magnetic encoder changes alternately with the rotation of the wheel, and it is used as a wheel rotation signal for vehicle control such as ABS and ESC. A magnetizing apparatus for manufacturing the magnetic encoder has been developed.

特許文献1は,この磁気エンコーダを製造するための従来の着磁装置及び着磁方法について開示している。従来の着磁装置としては,特許文献1の例えば段落0003−0004に記載される一発着磁式装置と,特許文献1の例えば段落0005に記載される回転着磁式装置とが提案されている。   Patent Document 1 discloses a conventional magnetizing apparatus and magnetizing method for manufacturing this magnetic encoder. As a conventional magnetizing device, a one-shot magnetizing device described in, for example, paragraphs 0003-0004 of Patent Document 1 and a rotary magnetizing device described in, for example, paragraph 0005 of Patent Document 1 have been proposed. .

一発着磁式装置は,特許文献1の図8に示すように,着磁ヘッド10の上面の導電線の間にN極とS極が交互に並ぶように導電線が円周上に配置され,その上面にリング状の磁性体(被着磁体)を固定し,導電線に通電することで発生する磁界により,被着磁体を着磁する。   As shown in FIG. 8 of Patent Document 1, in the one-shot magnetizing apparatus, the conductive wires are arranged on the circumference so that N poles and S poles are alternately arranged between the conductive wires on the upper surface of the magnetizing head 10. The ring-shaped magnetic body (magnetized body) is fixed on the upper surface, and the magnetized body is magnetized by a magnetic field generated by energizing the conductive wire.

従来の回転着磁式装置は,特許文献1の図9に示すように,リング状の磁性体(被着磁体)の円周方向に2極ヘッドを回転させ,N極とS極の着磁ピッチに合わせて,2極ヘッドに巻き付けられたコイルに交番電流を流すことで2極ヘッドの先端から発生する磁界により,被着磁体を着磁する。さらに,特許文献1では,2極ヘッドに代わって,コイルが巻かれたセンターヘッドとセンターヘッドの両側のサイドヘッドを有する3極ヘッドによる回転着磁式について開示している。なお,特許文献2についても,従来の一発着磁式装置及び従来の回転着磁式装置について記載されており,特許文献2では,励磁コイルが巻かれた着磁ヨークからなる着磁ヘッドの一端と他端を対向させ,その間に被着磁体を配置することで,被着磁体の表面と裏面の両方から着磁する回転着磁式装置について開示している。   As shown in FIG. 9 of Patent Document 1, a conventional rotary magnetizing apparatus rotates a two-pole head in the circumferential direction of a ring-shaped magnetic body (magnetized body) to magnetize N and S poles. The magnetized body is magnetized by a magnetic field generated from the tip of the dipole head by passing an alternating current through a coil wound around the dipole head in accordance with the pitch. Further, Patent Document 1 discloses a rotary magnetizing method using a three-pole head having a center head wound with a coil and side heads on both sides of the center head instead of the two-pole head. Patent Document 2 also describes a conventional one-shot magnetizing apparatus and a conventional rotary magnetizing apparatus. In Patent Document 2, one end of a magnetizing head including a magnetizing yoke around which an exciting coil is wound is described. And the other end are opposed to each other, and a rotationally magnetized apparatus is disclosed that magnetizes from both the front surface and the back surface of the magnetized body by disposing the magnetized body between them.

特開2003−59718号公報JP 2003-59718 A 特開2003−344098号公報JP 2003-344098 A

しかしながら,一発着磁式装置は,特許文献1にも記載されるように,N極とS極の着磁ピッチの精度は,着磁ヘッドの上面に配置される電線の配置精度に依存し,電線配置は手作業により行われているため,高精度な着磁ピッチを確保することは困難である。   However, as described in Patent Document 1, the accuracy of the magnetization pitch of the N pole and the S pole depends on the arrangement accuracy of the electric wires arranged on the upper surface of the magnetizing head. Since the wires are arranged by hand, it is difficult to secure a highly accurate magnetization pitch.

また,従来の回転着磁式装置は,交番電流の周期を高精度に制御できるため,一発着磁式と比較して高精度な着磁ピッチを得ることができるが,ヘッドに巻かれたコイルに通電することで,ヘッド先端に発生する磁界で着磁するため,被着磁体が直接コイルと接触して着磁される一発着磁式装置と比較して,被着磁体に着磁される磁力は弱い。被着磁体の磁力が比較的弱いと,被着磁体を車輪用軸受の磁気エンコーダとして取り付けた場合,制御に必要なレベル以上の車輪回転信号を磁気センサが検知するには,磁気エンコーダと磁気センサとの間隔を狭くする必要があり,高い組み付け精度が要求される。   In addition, since the conventional rotary magnetization type device can control the alternating current cycle with high accuracy, it can obtain a high-precision magnetization pitch compared to the one-shot magnetization type, but the coil wound around the head The magnetized body is magnetized by the magnetic field generated at the tip of the head, so that the magnetized body is magnetized compared to the one-shot magnetized device in which the magnetized body is in direct contact with the coil and magnetized. Magnetic force is weak. If the magnetic force of the adherend is relatively weak, when the adherend is attached as a magnetic encoder for a wheel bearing, the magnetic sensor and the magnetic sensor must detect the wheel rotation signal above the level required for control. It is necessary to narrow the distance between the two and high assembly accuracy is required.

そこで,本発明の目的は,高精度な着磁ピッチを確保しつつ,従来の回転着磁式装置よりも大きな磁力による着磁を可能とする着磁装置及び着磁ヘッドを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetizing device and a magnetizing head capable of magnetizing with a larger magnetic force than a conventional rotary magnetizing device while ensuring a highly accurate magnetizing pitch. .

上記目的を達成するための本発明の着磁装置の構成は,被着磁体を所定着磁方向に極性が交互に変化するように着磁する着磁装置において,被着磁体の着磁面に対向して接触又は近接する先端面を有するコアを有し,前記先端面に当該先端面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられ,前記先端面の一端側から他端側への方向が前記被着磁体の所定着磁方向に垂直となるように配置される着磁ヘッドと,前記着磁ヘッドの先端面が前記被着磁体の着磁面の前記所定方向に相対的に回転又は移動するように,前記被着磁体又は前記着磁ヘッドを回転又は移動させる駆動部と,前記駆動部により前記被着磁体又は前記着磁ヘッドを回転又は移動させながら,前記導電線に交番電流を供給する電源とを備えることを特徴とする。   In order to achieve the above object, the magnetizing device according to the present invention comprises a magnetizing device for magnetizing a magnetized body so that the polarity alternately changes in a predetermined magnetizing direction. A positioning means for positioning and arranging a conductive wire extending from one end side to the other end side of the tip surface on the tip surface; A magnetizing head disposed so that a direction from one end side to the other end side is perpendicular to a predetermined magnetization direction of the magnetized body; and a tip surface of the magnetizing head is a magnetized surface of the magnetized body. A drive unit that rotates or moves the magnetized body or the magnetized head so as to rotate or move relative to the predetermined direction; and the drive unit that rotates or moves the magnetized body or the magnetized head. A power supply for supplying an alternating current to the conductive wire. It is characterized in.

上記目的を達成するための本発明の着磁ヘッドの構成は,被着磁体を所定着磁方向に極性が交互に変化するように着磁する着磁装置に用いられる着磁ヘッドにおいて,被着磁体の着磁面に対向して接触又は近接する先端面を有するコアを有し,前記先端面に当該先端面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられることを特徴とする。   In order to achieve the above object, a magnetizing head according to the present invention comprises a magnetizing head used in a magnetizing device for magnetizing a magnetized body so that the polarity alternately changes in a predetermined magnetizing direction. A positioning means is provided which has a core having a tip surface facing or close to the magnetized surface of the magnetic body, and positioning and arranging a conductive wire extending from one end side to the other end side of the tip surface on the tip surface. It is characterized by being able to.

本発明によれば,着磁ヘッドが被着磁体の着磁面に対向して接触又は近接する先端面を有し,その先端面の一端側から他端側に延びる溝に導電線を収容し,導電線に交番電流を供給しながら,着磁ヘッドの先端面が被着磁体の着磁面の所定方向に相対的に回転又は移動させて着磁を行うことで,着磁面への大きな磁力による着磁が可能となり,また,交番電流により高精度な着磁ピッチを確保することができる。   According to the present invention, the magnetizing head has a leading end surface facing or close to the magnetized surface of the magnetized body, and the conductive wire is accommodated in the groove extending from one end side to the other end side of the leading end surface. While the alternating current is supplied to the conductive wire, the tip surface of the magnetizing head rotates or moves in a predetermined direction relative to the magnetized surface of the magnetized body, thereby magnetizing the magnetized surface. Magnetization by magnetic force is possible, and a high-precision magnetization pitch can be secured by an alternating current.

本発明の実施の形態における着磁装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the magnetizing apparatus in embodiment of this invention. インバータ回路の原理を説明する図である。It is a figure explaining the principle of an inverter circuit. 本実施の形態における着磁ヘッド16の第一の構成例を示す図である。It is a figure which shows the 1st structural example of the magnetizing head 16 in this Embodiment. 本実施の形態における着磁ヘッド16の第一の構成例を示す図である。It is a figure which shows the 1st structural example of the magnetizing head 16 in this Embodiment. 本実施の形態における着磁ヘッド16の第二の構成例を示す図である。It is a figure which shows the 2nd structural example of the magnetizing head 16 in this Embodiment. 本実施の形態における着磁ヘッド16の第二の構成例を示す図である。It is a figure which shows the 2nd structural example of the magnetizing head 16 in this Embodiment. 第二の構成例における溝2cに配置される導電線3の配置パターンを示す図である。It is a figure which shows the arrangement pattern of the conductive line 3 arrange | positioned in the groove | channel 2c in a 2nd structural example. 被着磁体1に印加される磁界の状態を示す図である。FIG. 3 is a diagram showing a state of a magnetic field applied to the adherend 1. 従来の一発着磁式装置による着磁による磁束密度分布図を示す。The magnetic flux density distribution figure by the magnetization by the conventional one-shot magnetization type | formula apparatus is shown. 従来の回転着磁式装置による着磁による磁束密度分布図を示す。The magnetic flux density distribution map by the magnetization by the conventional rotation magnetization type apparatus is shown. 本実施の形態例における着磁装置を用いた着磁による磁束密度分布図を示す。The magnetic flux density distribution map by the magnetization using the magnetizing apparatus in the present embodiment is shown. 被着磁体1の形状例を示す平面図である。3 is a plan view showing an example of the shape of the adherend 1. FIG.

以下,図面を参照して本発明の実施の形態について説明する。しかしながら,かかる実施の形態例が,本発明の技術的範囲を限定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, this embodiment does not limit the technical scope of the present invention.

図1は,本発明の実施の形態における着磁装置の概略構成例を示す図である。本実施の形態例では,円盤状の被着磁体をその円周方向に極性が交互に変化するように着磁する着磁装置を例示する。本実施の形態における着磁装置は,着磁対象となる円盤状の被着磁体1を回転可能に保持する回転保持部10と,回転保持部に回転駆動させるモータ12と,モータ12の回転角度に対応するパルス信号を出力するエンコーダ14と,被着磁体1を磁化する着磁ヘッド16と,電源装置18と,制御手段20とを有する。また,着磁された被着磁体1の磁気を検出する磁気センサ30が設けられる。   FIG. 1 is a diagram showing a schematic configuration example of a magnetizing apparatus according to an embodiment of the present invention. The present embodiment exemplifies a magnetizing apparatus that magnetizes a disk-shaped magnetized body so that the polarity changes alternately in the circumferential direction. The magnetizing apparatus according to the present embodiment includes a rotation holding unit 10 that rotatably holds a disk-shaped magnetized body 1 to be magnetized, a motor 12 that rotates the rotation holding unit, and a rotation angle of the motor 12. The encoder 14 outputs a pulse signal corresponding to the above, a magnetizing head 16 that magnetizes the magnetized body 1, a power supply device 18, and a control means 20. Further, a magnetic sensor 30 for detecting the magnetism of the magnetized magnetic body 1 that has been magnetized is provided.

被着磁体1は,着磁によって磁気エンコーダなどの多極磁化環状体となる部材であり,環状の磁性体である。被着磁体1は,例えば,大きな磁束密度が得られる希土類焼結磁石が好ましいが,もちろんフェライトボンド磁石など他の磁石も適用可能である。   The magnetized body 1 is a member that becomes a multipolar magnetized annular body such as a magnetic encoder by magnetization, and is an annular magnetic body. As the adherend 1, for example, a rare earth sintered magnet capable of obtaining a large magnetic flux density is preferable, but other magnets such as a ferrite bonded magnet can also be applied.

回転保持部10は,被着磁体1と同心の主軸であり,図示されないチャックにより被着磁体1は回転保持部10に回転可能に固定される。本実施の形態例では,着磁ヘッド16を固定し,被着磁体1を着磁ヘッド16に対して回転させる構成であるが,固定された被着磁体1に対して着磁ヘッド16を回転させる構成も原理的には可能である。   The rotation holding unit 10 is a main shaft concentric with the magnetized body 1, and the magnetized body 1 is rotatably fixed to the rotation holding unit 10 by a chuck (not shown). In this embodiment, the magnetizing head 16 is fixed and the magnetized body 1 is rotated with respect to the magnetized head 16. However, the magnetizing head 16 is rotated with respect to the fixed magnetized body 1. In principle, the configuration to be made is also possible.

モータ12は,回転精度に優れた例えばブラシレスモータが用いられ,回転保持部10を回転駆動させる。エンコーダ14は,モータ12の回転角度に対応するパルス信号を出力し,その分解能は高いほどピッチ誤差を小さくすることができ,例えば,1回転当たり1万パルス以上のパルス信号を出力するものが好ましい。   As the motor 12, for example, a brushless motor excellent in rotation accuracy is used, and the rotation holding unit 10 is driven to rotate. The encoder 14 outputs a pulse signal corresponding to the rotation angle of the motor 12, and the higher the resolution, the smaller the pitch error. For example, the encoder 14 preferably outputs a pulse signal of 10,000 pulses or more per rotation. .

着磁ヘッド16は,後に詳述するように,被着磁体の着磁面に対向して接触又は近接する先端面を有し,先端面に当該先端面の一端側から他端側に延びる溝が設けられ,当該溝に沿って導電線が配置される。また,着磁ヘッド16は,その先端面の一端側から他端側への方向が被着磁体の円周方向とは垂直である被着磁体の半径方向となるように位置決めされる。   As will be described in detail later, the magnetizing head 16 has a front end surface facing or close to the magnetized surface of the magnetized body, and a groove extending from one end side to the other end side of the front end surface on the front end surface. Are provided, and conductive lines are arranged along the grooves. Further, the magnetizing head 16 is positioned so that the direction from one end side to the other end side of the front end surface thereof is the radial direction of the magnetized body perpendicular to the circumferential direction of the magnetized body.

電源装置18は,着磁ヘッド16の上記先端面に収容される電線に着磁電流を与える装置であり,例えばサイリスタなどのスイッチング素子を用いたインバータ回路である。スイッチング素子のON/OFF周期を制御することで,任意の周波数の交番電流を得ることができる。   The power supply device 18 is a device that applies a magnetizing current to the electric wire accommodated in the tip surface of the magnetizing head 16, and is an inverter circuit using a switching element such as a thyristor. An alternating current having an arbitrary frequency can be obtained by controlling the ON / OFF cycle of the switching element.

図2は,インバータ回路の原理を説明する図である。スイッチS1,S2,S3及びS4を備えた図2(a)に示す回路構成において,スイッチング素子S1,S3の組み合わせとスイッチング素子S2,S4の組み合わせを,図2(b)に示すように,交互にON/OFF動作させることで,負荷に流れる電流方向が逆向きとなり,その周期Tはスイッチング素子のON/OFF周期を制御することで自在に設定することができる。   FIG. 2 is a diagram for explaining the principle of the inverter circuit. In the circuit configuration shown in FIG. 2A provided with the switches S1, S2, S3 and S4, the combination of the switching elements S1 and S3 and the combination of the switching elements S2 and S4 are alternated as shown in FIG. The ON / OFF operation of the switching element reverses the direction of the current flowing through the load, and the period T can be freely set by controlling the ON / OFF period of the switching element.

制御手段20は,電源装置18を制御する制御回路21とその上位の全体制御装置22とを有する。制御回路21は,電源装置18の交番電流の周期を制御する回路であり,全体制御装置22は,エンコーダ14からのパルス信号を取得し,モータ12及び制御回路21を制御する。さらには,制御手段20は,磁気センサ30からの信号を取得することで,着磁された被着磁体1の磁束密度を検出し,正常に着磁されたか否かの判定を行うこともできる。磁気センサ30は,ホール素子及びガウスメータを備えて構成される。全体制御装置22は,例えばパーソナルコンピュータであり,所定の制御プログラムをCPUが実行することで各種制御が実行される。   The control means 20 includes a control circuit 21 that controls the power supply device 18 and an overall control device 22 that is higher than that. The control circuit 21 is a circuit that controls the cycle of the alternating current of the power supply device 18, and the overall control device 22 acquires a pulse signal from the encoder 14 and controls the motor 12 and the control circuit 21. Furthermore, the control means 20 can detect the magnetic flux density of the magnetized magnetized body 1 by acquiring a signal from the magnetic sensor 30 and determine whether or not the magnetized body is normally magnetized. . The magnetic sensor 30 includes a Hall element and a Gauss meter. The overall control device 22 is, for example, a personal computer, and various controls are executed by the CPU executing a predetermined control program.

次に,着磁ヘッド16の構成を図面を参照しながら詳述する。   Next, the configuration of the magnetizing head 16 will be described in detail with reference to the drawings.

図3及び図4は,本実施の形態における着磁ヘッド16の第一の構成例を示す図である。着磁ヘッド16の第一の構成例は,例えばコバルト合金(例えばパーメンジュール)などの強磁性体で形成されるコア2と,当該コア2の被着磁体1と対向する面(先端面)に設けられた溝(導電線位置決め手段)2cに収容される導電線3とを備えて構成される。導電線3は例えば銅線である。   3 and 4 are diagrams showing a first configuration example of the magnetizing head 16 in the present embodiment. A first configuration example of the magnetizing head 16 includes, for example, a core 2 formed of a ferromagnetic material such as a cobalt alloy (for example, permendur), and a surface (tip surface) of the core 2 facing the magnetized body 1. And a conductive wire 3 accommodated in a groove (conductive wire positioning means) 2c provided in the structure. The conductive wire 3 is, for example, a copper wire.

図3(a),(b),(c)はそれぞれコア2の底面図,正面図,側面図であり,図3(d)は図3(b)の点線囲み部pの詳細図である。コア2の底面は,コア2の被着磁体1に対向する先端面である。また,図4は,コア2の先端面に導電線3が配置された状態を示し,図4(a)は図3(a)と同様のコア2の先端面である底面を示し,図4(b)は,図4(a)に示すコア2の先端面の中心線A−A線の断面図,図4(c)は,図4(a)に示すコア2の先端面の中心線B−B線の断面図である。   FIGS. 3A, 3B, and 3C are a bottom view, a front view, and a side view of the core 2, respectively, and FIG. 3D is a detailed view of a dotted line enclosing portion p in FIG. 3B. . The bottom surface of the core 2 is a tip surface facing the magnetized body 1 of the core 2. 4 shows a state in which the conductive wire 3 is disposed on the front end surface of the core 2. FIG. 4 (a) shows a bottom surface that is the front end surface of the core 2 similar to FIG. 3 (a). 4B is a cross-sectional view of the center line AA of the tip surface of the core 2 shown in FIG. 4A, and FIG. 4C is the center line of the tip surface of the core 2 shown in FIG. It is sectional drawing of a BB line.

第一の構成例においては,コア2の先端面2aは細長状面であり,その寸法は,例えば短手方向長さ3mm,長手方向長さ20mmである。また,コア2は,高さ方向において,先端面2aから当該短手方向長さ及び長手方向長さでの所定高さ(例えば10mm程度)まで延びる第一の高さ部分と,当該所定高さ位置から短手方向長さが先端面2aの短手方向長さより長い長さ(例えば20mm程度)で高さ方向に延びる第二の高さ部分を有する。第二の高さ部分の高さは約50mm程度であり,先端面2aからその反対面2bまでの全体の高さは約60mm程度である。第二の高さ部分は,図3(c)に示すように,第二の高さ部分において,短手方向長さが末広がり状に長くなるように形成されてもよく,また,そのような長さ変化部分を設けずに,矩形状に短手方向長さの長さが長くなるように形成されてもよい。第二の高さ部分は,図示されない着磁ヘッド取付装置に着磁ヘッド16を固定するために必要な寸法を確保するためのものであり,図示されない着磁ヘッド位置決め装置に着磁ヘッド16を固定するためのねじ穴2bなどが設けられる。また,第一の構成例では,先端面2aが1本の導電線3を長手方向に延びて配置できるだけの領域を有していればよいため,図3に示すように,先端面2aを細長状面である例を示したが,先端面2aの短手方向長さを,第二の高さ部分の短手方向長さと同じ寸法で形成してもかまわない。なお,着磁ヘッド取付装置は,着磁ヘッド16をX,Y,Z軸の3軸方向に位置決めするための既知のXYZステージである。   In the first configuration example, the front end surface 2a of the core 2 is an elongated surface, and the dimensions thereof are, for example, a short side length of 3 mm and a long side length of 20 mm. The core 2 includes a first height portion extending from the front end surface 2a to a predetermined height (for example, about 10 mm) in the short side length and the long side length in the height direction, and the predetermined height. It has a second height portion extending in the height direction with a length (for example, about 20 mm) longer in the short direction than the length in the short direction from the position. The height of the second height portion is about 50 mm, and the total height from the tip surface 2a to the opposite surface 2b is about 60 mm. As shown in FIG. 3 (c), the second height portion may be formed so that the length in the short direction is widened in the second height portion. Instead of providing the length changing portion, it may be formed in a rectangular shape such that the length in the short direction is long. The second height portion is for securing a dimension necessary for fixing the magnetizing head 16 to a magnetizing head mounting device (not shown). The magnetizing head 16 is attached to a magnetizing head positioning device (not shown). A screw hole 2b or the like for fixing is provided. Further, in the first configuration example, the distal end surface 2a only needs to have a region that can be disposed by extending one conductive wire 3 in the longitudinal direction, so that the distal end surface 2a is elongated as shown in FIG. Although an example of the shape surface is shown, the length in the short direction of the tip surface 2a may be formed with the same dimension as the length in the short direction of the second height portion. The magnetizing head mounting device is a known XYZ stage for positioning the magnetizing head 16 in the three-axis directions of the X, Y, and Z axes.

先端面2aには,その一端側から他端側の長手方向に直線状に延びる溝2cが形成され,図4(b)及び図4(c)に示されるように,導電線3が溝2c内に保持され,先端面2aの長手方向に延びて配置される。溝2cは,導電線3を収容可能な程度の深さ及び幅を有し,導電線の直径が例えば1mm程度の場合,図3(d)に示されるように,幅及び深さとも例えば1.1mm程度の寸法で形成される。なお,溝2cの断面形状は,図3(d)に示されるようなほぼ円形断面のほか,もちろん矩形断面でもかまわず,導電線を収容可能な形状であればその形状は問わない。また,導電線の断面形状も円形断面,矩形断面など,溝2cに収容可能な形状であれば,その形状を問わない。   A groove 2c extending linearly in the longitudinal direction from one end side to the other end side is formed on the distal end surface 2a. As shown in FIGS. 4 (b) and 4 (c), the conductive wire 3 is formed in the groove 2c. It is hold | maintained inside and is extended and arrange | positioned in the longitudinal direction of the front end surface 2a. The groove 2c has a depth and a width that can accommodate the conductive wire 3, and when the diameter of the conductive wire is, for example, about 1 mm, as shown in FIG. It is formed with a dimension of about 1 mm. The cross-sectional shape of the groove 2c is not limited to a substantially circular cross-section as shown in FIG. 3D, and may be a rectangular cross-section. In addition, the cross-sectional shape of the conductive wire is not particularly limited as long as it can be accommodated in the groove 2c, such as a circular cross-section or a rectangular cross-section.

コア2には,さらに,導電線3を長手方向に貫通させるための貫通孔2dが形成されている。図4(c)に示されるように,電源装置18から延びる導電線3は,先端面2aの一端側から他端側へ溝2c内を延び,先端面2aの他端側から出た導電線3は,逆向きに,先端面2aの他端側から一端側に貫通孔2d内を延び,先端面2aの一端側から電源装置18に戻る。被着磁体1から見て,溝2c内を延びる導電線部分と貫通孔2d内を延びる導電線部分を流れる電流の向きは反対であり,貫通孔2d内を延びる導電線部分を流れる電流により発生する磁界が,溝2c内を延びる導電線部分を流れる電流により発生する磁界を打ち消さない程度に,貫通孔2dは,先端面より高さ方向に離れて形成される。第一の構成例では,貫通孔2dの高さ位置は,先端面2aより15mm程度である。   The core 2 is further formed with a through hole 2d for penetrating the conductive wire 3 in the longitudinal direction. As shown in FIG. 4C, the conductive wire 3 extending from the power supply device 18 extends in the groove 2c from one end side to the other end side of the front end surface 2a, and comes out from the other end side of the front end surface 2a. 3 extends in the opposite direction from the other end side of the front end surface 2a to the one end side through the through hole 2d and returns to the power supply device 18 from one end side of the front end surface 2a. The direction of the current flowing through the conductive line portion extending through the through hole 2d is opposite to the direction of the current flowing through the through hole 2d when viewed from the adherend 1 and is generated by the current flowing through the conductive line portion extending through the through hole 2d. The through hole 2d is formed away from the tip surface in the height direction so that the magnetic field to be generated does not cancel the magnetic field generated by the current flowing through the conductive line portion extending in the groove 2c. In the first configuration example, the height position of the through hole 2d is about 15 mm from the tip surface 2a.

図5及び図6は,本実施の形態における着磁ヘッド16の第二の構成例を示す図である。図5(a),(b),(c)はそれぞれコア2の底面図,正面図,側面図であり,図5(d)は図5(b)の点線囲み部qの詳細図である。第一の構成例と同様に,コア2の底面はコア2の被着磁体1に対向する先端面である。また,図6は,コア2の先端面に導電線3が配置された状態を示し,図6(a)は図5(a)と同様のコア2の先端面である底面を示し,図6(b)は,図6(a)に示すコア2の先端面の中心線A−A線の断面図,図6(c)は,図5(a)に示すコア2の先端面の中心線B−B線の断面図である。   5 and 6 are diagrams showing a second configuration example of the magnetizing head 16 in the present embodiment. FIGS. 5A, 5B, and 5C are a bottom view, a front view, and a side view of the core 2, respectively, and FIG. 5D is a detailed view of a dotted line encircled portion q in FIG. 5B. . Similar to the first configuration example, the bottom surface of the core 2 is a front end surface of the core 2 facing the magnetized body 1. 6 shows a state in which the conductive wire 3 is arranged on the front end surface of the core 2, FIG. 6 (a) shows a bottom surface which is the front end surface of the core 2 similar to FIG. 5 (a), and FIG. 6B is a cross-sectional view of the center line AA of the front end surface of the core 2 shown in FIG. 6A, and FIG. 6C is a center line of the front end surface of the core 2 shown in FIG. It is sectional drawing of a BB line.

着磁ヘッド16の第二の構成例は,第一の構成例と同様に,例えばコバルト合金などの強磁性体で形成されるコア2と,当該コア2の被着磁体1と対向する面(先端面)に設けられた導電線位置決め手段としての溝2cに収容される導電線3とを備えて構成される。   As in the first configuration example, the second configuration example of the magnetizing head 16 includes a core 2 formed of a ferromagnetic material such as a cobalt alloy and a surface of the core 2 facing the magnetized body 1 ( And a conductive wire 3 accommodated in a groove 2c as a conductive wire positioning means provided on the front end surface.

第二の構成例においては,コア2の先端面2aは,着磁ヘッド位置決め装置に取り付けるためのねじ穴を有する高さ位置(第一の構成例における第二の高さ部分に相当)の縦横寸法と同じ寸法を有し,その寸法は例えば20mm×20mmである。また,コア2は,先端面2aから高さ方向に同一の縦横寸法で延びており,その全体高さは約60mm程度である。そして,先端面2aには,図5(a)に示されるように,その一端側から他端側へ延びる並列に配置された3つの溝2c−1,2c−2,2c−3(総称する場合溝2cと称する)が形成される。より詳しくは,3つの溝2cは,先端面2aが被着磁体1に対向して配置された場合に,被着磁体1の円周方向に所定間隔で並列に配置され,且つ先端面2aの一端側から他端側へ被着磁体1の半径方向に沿って直線状に延びるように形成される。さらに,溝2cは,先端面2aの一端側より所定長さ内側から及び他端側より所定長さ内側まで形成され,一本の導電線3が,先端面2a上において,先端面2aの一端側及び他端側で逆方向に折り曲げられて隣接する溝2cに収容されて逆方向に延びるようになっている。   In the second configuration example, the front end surface 2a of the core 2 is vertically and horizontally at a height position (corresponding to the second height portion in the first configuration example) having a screw hole for attachment to the magnetizing head positioning device. The dimension is the same as the dimension, and the dimension is, for example, 20 mm × 20 mm. The core 2 extends from the front end surface 2a in the height direction with the same vertical and horizontal dimensions, and the overall height is about 60 mm. As shown in FIG. 5 (a), the front end surface 2a has three grooves 2c-1, 2c-2, 2c-3 (collectively named) arranged in parallel extending from one end side to the other end side. (Referred to as groove 2c). More specifically, the three grooves 2c are arranged in parallel at a predetermined interval in the circumferential direction of the adherend 1 when the tip face 2a is arranged to face the adherend 1 and It is formed so as to extend linearly from one end side to the other end side along the radial direction of the adherend 1. Further, the groove 2c is formed from one end side of the front end surface 2a to a predetermined length inside and from the other end side to a predetermined length inner side, and one conductive wire 3 is formed on one end of the front end surface 2a on the front end surface 2a. It is bent in the opposite direction on the side and the other end side and is accommodated in the adjacent groove 2c so as to extend in the opposite direction.

図7は,第二の構成例における溝2cに配置される導電線3の配置パターンを示す図である。電源装置18から延びる導電線3は,先端面の一端側において,中央の溝2c−2の延長線上から所定角度折り曲げられて溝2c−1内に配置されて先端面2aの一端側から他端側に延び,溝2c−1の他端側で逆方向折り曲げられて,隣接する溝2c−2内に配置されて先端面2aの他端側から一端側に延び,さらに,溝2c−2の一端側で逆方向に折り曲げられて,隣接すする溝2c−3内に配置されて先端面2aの一端側から他端側に延び,溝2c−3の他端側で中央の溝2c−2の延長線上に延びるように折り曲げられる。   FIG. 7 is a diagram showing an arrangement pattern of the conductive lines 3 arranged in the grooves 2c in the second configuration example. The conductive wire 3 extending from the power supply device 18 is bent at a predetermined angle from the extended line of the central groove 2c-2 on one end side of the front end surface, and is disposed in the groove 2c-1, and from the one end side to the other end of the front end surface 2a. Extending in the opposite direction, bent in the opposite direction at the other end of the groove 2c-1, and disposed in the adjacent groove 2c-2, extending from the other end side of the front end surface 2a to one end side. It is bent in the opposite direction on one end side, is disposed in the adjacent groove 2c-3, extends from one end side to the other end side of the front end surface 2a, and the central groove 2c-2 on the other end side of the groove 2c-3. It is bent so as to extend on the extension line.

第二の構成例における溝2cは,第一の構成例と同様に,導電線3を収容可能な程度の深さ及び幅を有し,導電線の直径が例えば1mm程度の場合,図5(d)に示されるように,幅及び深さとも例えば1.1mm程度の寸法で形成される。なお,溝2cの断面形状は,図5(d)に示されるような矩形断面のほか,例えば底部が円弧となるような断面でもかまわず,導電線を収容可能な形状であればその形状は問わない。   As in the first configuration example, the groove 2c in the second configuration example has a depth and width that can accommodate the conductive wire 3, and when the diameter of the conductive wire is about 1 mm, for example, FIG. As shown in d), both the width and the depth are formed with dimensions of about 1.1 mm, for example. The cross-sectional shape of the groove 2c may be a rectangular cross-section as shown in FIG. 5 (d), for example, a cross-section having a circular bottom, or any shape that can accommodate a conductive wire. It doesn't matter.

コア2には,さらに,導電線3を先端面の他端側から先端面側に貫通されるための貫通孔2dが形成されている。貫通孔2dは,溝2c−2の真下の高さ位置に設けられる。図7で示したパターンによって先端面2aの溝2c−3の他端側から出た導電線3は,図6(c)に示すように,折り曲げられて逆向きに先端面2aの他端側から一端側に貫通孔2d内の延び,先端面2aの一端側から電源装置18に戻る。このとき,溝2c−2内の延びる導電線部分と貫通孔2d内を延びる導電線部分を流れる電流の向きは同じである。従って,貫通孔2dを流れる電流によって発生する磁界も被着磁体1の着磁に寄与することから,貫通孔2dは,できるだけ先端面2aに近い位置に形成され,好ましくは,図5(d)に示されるように,溝2c−2に真下に隣接して設けられ,溝2c−2の底部が貫通孔2dに連通していてもよい。もちろん,溝2c−2の底部が貫通孔2dに連通せずに,可能な限り溝2c−2に近い溝2c−2の真下位置に貫通孔2dが形成されてもよい。   The core 2 is further formed with a through hole 2d for allowing the conductive wire 3 to penetrate from the other end side of the distal end surface to the distal end surface side. The through hole 2d is provided at a height position directly below the groove 2c-2. As shown in FIG. 6 (c), the conductive wire 3 coming out from the other end side of the groove 2c-3 on the front end surface 2a according to the pattern shown in FIG. 7 is bent and oppositely directed to the other end side of the front end surface 2a. Extends from the one end side of the front end surface 2a back to the power supply unit 18. At this time, the direction of the current flowing through the conductive line portion extending in the groove 2c-2 and the conductive line portion extending through the through hole 2d is the same. Accordingly, since the magnetic field generated by the current flowing through the through hole 2d also contributes to the magnetization of the magnetized body 1, the through hole 2d is formed as close to the tip surface 2a as possible, and preferably, as shown in FIG. As shown in FIG. 4, the groove 2c-2 may be provided immediately below and the bottom of the groove 2c-2 may communicate with the through hole 2d. Of course, the through hole 2d may be formed at a position directly below the groove 2c-2 as close to the groove 2c-2 as possible without the bottom of the groove 2c-2 communicating with the through hole 2d.

また,第二の構成例における着磁ヘッド16についても,第一の構成例と同様に,図示されない着磁ヘッド位置決め装置に着磁ヘッド16を固定するためのねじ穴2bなどが適宜設けられる。   Similarly to the first configuration example, the magnetizing head 16 in the second configuration example is appropriately provided with a screw hole 2b for fixing the magnetizing head 16 to a magnetizing head positioning device (not shown).

第一及び第二の構成例におけるコア2の溝2c,貫通孔2d及びねじ穴2bなどは,機械加工により形成される。また,先端面2aの導電線3を固定するために,コア2の先端面2aの一端側と他端側より外側に出た導電線3を,例えばエポキシ樹脂などでコア2の側面に対して固定してもよい。   The grooves 2c, the through holes 2d, the screw holes 2b, and the like of the core 2 in the first and second configuration examples are formed by machining. Further, in order to fix the conductive wire 3 on the distal end surface 2a, the conductive wire 3 extending outward from one end side and the other end side of the distal end surface 2a of the core 2 is made to the side surface of the core 2 with, for example, epoxy resin It may be fixed.

次に,着磁方法について説明する。着磁対象の被着磁体1を回転保持部10で保持し,モータ12を駆動させて,回転保持部に固定された被着磁体1を回転させる。着磁ヘッド16は,その先端面2aが被着磁体1にわずかに離間して対向するように位置決めされる。原理的には,先端面2a(本実施の形態例では,溝2cの深さは導電線3の直径よりも深く設計されているので,先端面2a上の導電線3は溝2cから突出していないが,溝2cの深さが導電線3の直径よりも浅い場合は,溝2cから突出する導電線3)を被着磁体1に接触させる構成が,最も強い磁界を被着磁体に印加することができるが,摩擦による先端面2aの摩耗を考慮して,被着磁体1と着磁ヘッド16の先端面2aとの間には,わずかな間隙が設けられる。   Next, the magnetization method will be described. The magnetized body 1 to be magnetized is held by the rotation holding unit 10 and the motor 12 is driven to rotate the magnetized body 1 fixed to the rotation holding unit. The magnetizing head 16 is positioned so that the front end surface 2a faces the magnetized body 1 with a slight distance therebetween. In principle, the tip surface 2a (in this embodiment, the depth of the groove 2c is designed to be deeper than the diameter of the conductive wire 3, so that the conductive wire 3 on the tip surface 2a protrudes from the groove 2c. However, when the depth of the groove 2c is shallower than the diameter of the conductive wire 3, the configuration in which the conductive wire 3) protruding from the groove 2c is in contact with the adherend 1 applies the strongest magnetic field to the adherend. However, in consideration of wear of the tip surface 2a due to friction, a slight gap is provided between the magnetized body 1 and the tip surface 2a of the magnetized head 16.

そして,全体制御装置22は,エンコーダ14からのパルス信号を取得し,パルス信号周期に同期して,被着磁体1が1回転中に,着磁する極数に対応する周波数の交番電流を発生するように,制御回路21に制御信号を送出し,制御回路21は,その制御信号に応じて電源装置18のスイッチング回路(インバータ回路)のスイッチ制御を行う。例えば,96極着磁する場合,1極あたりの回転角度は3.75度であり,全体制御装置22は,被着磁体1が3.75度回転する時間に相当するパルス信号数をカウントし,当該パルス信号数をカウントする毎に,電流方向を反転させるように,制御回路21に制御信号を送出する。   Then, the overall control device 22 acquires a pulse signal from the encoder 14 and generates an alternating current having a frequency corresponding to the number of poles to be magnetized during one rotation of the magnetized body 1 in synchronization with the pulse signal cycle. As described above, a control signal is sent to the control circuit 21, and the control circuit 21 performs switch control of the switching circuit (inverter circuit) of the power supply device 18 in accordance with the control signal. For example, when 96 poles are magnetized, the rotation angle per pole is 3.75 degrees, and the overall controller 22 counts the number of pulse signals corresponding to the time for which the magnetized body 1 rotates 3.75 degrees. Each time the number of pulse signals is counted, a control signal is sent to the control circuit 21 so as to reverse the current direction.

電源装置18から供給される交番電流は,着磁ヘッド16の導電線3を流れ,被着磁体1に極めて近い位置の先端面2aの溝2cに配置された導電線3に流れる電流により発生する磁界により,被着磁体1は着磁される。   The alternating current supplied from the power supply device 18 is generated by a current flowing through the conductive wire 3 of the magnetizing head 16 and flowing through the conductive wire 3 disposed in the groove 2c of the tip surface 2a at a position very close to the magnetized body 1. The magnetized body 1 is magnetized by the magnetic field.

図8は,被着磁体1に印加される磁界の状態を示す図である。図8(a)は第一の構成例の着磁ヘッド16により印加される磁界,図8(b)は第二の構成例の着磁ヘッド16により印可される磁界を示す。   FIG. 8 is a diagram showing the state of the magnetic field applied to the adherend 1. 8A shows the magnetic field applied by the magnetizing head 16 of the first configuration example, and FIG. 8B shows the magnetic field applied by the magnetizing head 16 of the second configuration example.

図8(a)に示すように,第一の構成例の着磁ヘッド16により被着磁体1を着磁する場合,先端面2aの溝2cに配置された導電線3により発生する磁界により,被着磁体1の着磁面を磁束が通過し,被着磁体1の所定角度(96極着磁の場合,3.75度)間隔が一方の極(例えばN極)に着磁される。その後,被着磁体1の回転による隣接する次の所定角度間隔では,上述のように,導電線3を流れる電流方向が逆向きとなるので,もう一方の極(例えばS極)に着磁され,これを,所定角度間隔毎に繰り返すことにより,所定極数による多極着磁が実現される。また,エンコーダ14からのパルス信号に同期させて,電源装置18が発生する交番電流の周期を任意に変化させることで,任意の極数(例えば2〜10000極)による多極着磁が可能である。   As shown in FIG. 8A, when the magnetized body 1 is magnetized by the magnetizing head 16 of the first configuration example, the magnetic field generated by the conductive wire 3 disposed in the groove 2c of the tip surface 2a A magnetic flux passes through the magnetized surface of the magnetized body 1, and a predetermined angle (3.75 degrees in the case of 96-pole magnetizing) is magnetized to one pole (for example, N pole). Thereafter, at the next adjacent predetermined angular interval due to the rotation of the magnetized body 1, the direction of the current flowing through the conductive wire 3 is reversed as described above, so that the other pole (for example, the S pole) is magnetized. This is repeated at predetermined angular intervals to realize multipolar magnetization with a predetermined number of poles. In addition, by changing the period of the alternating current generated by the power supply device 18 in synchronization with the pulse signal from the encoder 14, multipolar magnetization with any number of poles (for example, 2 to 10000 poles) is possible. is there.

従来技術の項でも説明したように,従来の回転着磁式は,着磁ヘッドに巻回されたコイルへの通電によりコイルが発生する磁界でコアを磁化し,その磁化されたコアの磁界により,被着磁体を磁化していたため,従来の一発着磁式と比較して磁力が弱いという問題を有していたが,本実施の形態例における着磁装置では,導電線3が発生する磁界で磁化されたコア2が発生する磁界に加えて,被着磁体1に接触又は僅かに離間して近接する導電線3が発生する磁界により直接被着磁体1を磁化するため,従来の回転着磁式よりも大きな磁力で着磁することができる。また,従来の一発着磁式では,高精度な着磁ピッチを確保することが困難であったが,第一の構成例の着磁ヘッド16を用いた本実施の形態における着磁装置では,インバータにより交番電流の周期をより高精度に制御できるため,高精度な着磁ピッチを得ることができる。   As explained in the section of the prior art, the conventional rotary magnetization type magnetizes the core by the magnetic field generated by the coil energized by the coil wound around the magnetizing head, and the magnetic field of the magnetized core Since the magnetized body was magnetized, there was a problem that the magnetic force was weaker than that of the conventional one-shot magnetizing type. However, in the magnetizing apparatus in the present embodiment, the magnetic field generated by the conductive wire 3 is present. In addition to the magnetic field generated by the core 2 magnetized by the magnetic field, the magnetized body 1 is directly magnetized by the magnetic field generated by the conductive wire 3 that is in contact with or slightly spaced from the magnetized body 1. It can be magnetized with a larger magnetic force than the magnetic type. Further, in the conventional one-shot magnetization type, it has been difficult to ensure a high-precision magnetization pitch. However, in the magnetization apparatus in the present embodiment using the magnetization head 16 of the first configuration example, Since the cycle of the alternating current can be controlled with high accuracy by the inverter, a highly accurate magnetization pitch can be obtained.

このように,本実施の形態例における着磁装置は,高精度な着磁ピッチを確保しつつ,従来の回転着磁式よりも大きな磁力による着磁を可能とする。   As described above, the magnetizing apparatus according to the present embodiment enables magnetizing with a larger magnetic force than the conventional rotary magnetizing type while ensuring a highly accurate magnetizing pitch.

図8(b)に示すように,第二の構成例の着磁ヘッド16により被着磁体1を着磁する場合も,上述の第一の構成例の着磁ヘッド16による着磁と基本的には同様の動作となる。第二の構成例では,溝2c−2の導電線3とその両側の溝2c−1及び2c−3の導電線3を流れる電流の向きが逆である。例えば,溝2c−2の導電線3が発生する磁界により被着磁体1がN極に着磁される場合,その両側はS極に着磁される。上述したように,溝2c−1,2c−2及び2c−3は,着磁極数に応じた着磁ピッチに相当する回転角度間隔で配列されているため,溝2c−2の導電線3の発生する磁界による着磁を基準とすると,溝2c−2の導電線3の発生する磁界による着磁の前後にそれぞれ溝2c−1及び2c−3の導電線3の発生する磁界による着磁も合わせて,1回転中に合計3回の着磁が行われることになる。   As shown in FIG. 8B, when the magnetized body 1 is magnetized by the magnetizing head 16 of the second configuration example, the magnetization by the magnetizing head 16 of the first configuration example described above is basically performed. The same operation is performed. In the second configuration example, the direction of the current flowing through the conductive line 3 of the groove 2c-2 and the conductive lines 3 of the grooves 2c-1 and 2c-3 on both sides thereof is reversed. For example, when the magnetized body 1 is magnetized to the N pole by the magnetic field generated by the conductive wire 3 in the groove 2c-2, both sides thereof are magnetized to the S pole. As described above, since the grooves 2c-1, 2c-2, and 2c-3 are arranged at a rotation angle interval corresponding to the magnetization pitch according to the number of magnetic poles, the conductive lines 3 of the groove 2c-2 When the magnetization by the generated magnetic field is used as a reference, the magnetization by the magnetic field generated by the conductive wire 3 of the grooves 2c-1 and 2c-3 is also before and after the magnetization by the magnetic field generated by the conductive line 3 of the groove 2c-2. In total, magnetization is performed three times during one rotation.

さらに,第二の構成例の着磁ヘッド16は,図4に示されたように,貫通孔2dを通る導電線3が,溝2c−2に隣接する直下を通り,溝2c−2の導電線と貫通孔2dを通る導電線3の電流の向きは同一であり且つ貫通孔2dを通る導電線3も被着磁体1と極めて近い位置にあるので,貫通孔2dを通る導電線3により発生する磁界も,溝2c−2に対向する着磁面の着磁に寄与する。従って,溝2c−2の位置に対向する着磁面は,実質的に2本の導電線による着磁となり,両側に隣接する溝2c−1及び2c−3の位置に対向する着磁面よりも強く磁化される。   Further, as shown in FIG. 4, in the magnetizing head 16 of the second configuration example, the conductive wire 3 passing through the through-hole 2d passes immediately below the groove 2c-2, and the conduction of the groove 2c-2. The direction of the current of the conductive wire 3 passing through the through hole 2d is the same as that of the wire, and the conductive wire 3 passing through the through hole 2d is located very close to the magnetized body 1, and therefore is generated by the conductive wire 3 passing through the through hole 2d. The applied magnetic field also contributes to the magnetization of the magnetized surface facing the groove 2c-2. Accordingly, the magnetized surface facing the position of the groove 2c-2 is substantially magnetized by the two conductive lines, and the magnetized surface facing the positions of the grooves 2c-1 and 2c-3 adjacent to both sides. Is also strongly magnetized.

このように,第二の構成例の着磁ヘッド16を用いた本実施の形態における着磁装置では,第一の構成例の場合と同様に,大きな磁力と高精度な着磁ピッチの両方を高水準で両立するとともに,第一の構成例の場合よりもさらに大きな磁力による着磁が可能となる。   As described above, in the magnetizing apparatus according to the present embodiment using the magnetizing head 16 of the second configuration example, as in the case of the first configuration example, both a large magnetic force and a highly accurate magnetization pitch are provided. In addition to being compatible at a high level, it is possible to magnetize with a larger magnetic force than in the case of the first configuration example.

また,着磁動作とともに,その着磁された被着磁体1の各磁極の磁束密度を磁気センサ30によって検出し,全体制御装置20は,その検出信号に基づいて,着磁動作とともに正常に着磁されたか否かを判定することができる。合否判定は,各磁極の磁束密度と着磁ピッチについて行われ,着磁ピッチは,磁気センサ30の検出する磁束密度の符号から検出することができる。着磁動作とともに着磁結果を検査できるため,着磁動作の後に品質管理のための検査工程を別途を行う必要がない。   Further, along with the magnetizing operation, the magnetic sensor 30 detects the magnetic flux density of each magnetic pole of the magnetized magnetized body 1, and the overall control device 20 performs normal magnetization along with the magnetizing operation based on the detection signal. It can be determined whether or not it has been magnetized. The pass / fail judgment is performed for the magnetic flux density and the magnetization pitch of each magnetic pole, and the magnetization pitch can be detected from the sign of the magnetic flux density detected by the magnetic sensor 30. Since the magnetization result can be inspected together with the magnetization operation, it is not necessary to separately perform an inspection process for quality control after the magnetization operation.

また,全体制御装置22は,磁気センサ30により検出される磁束密度により,交番電流の強さを制御することができる。全体制御装置22は,各磁極に磁束密度の差が小さくなるように,制御回路21に電流量を調整するための制御信号を送出し,制御回路21はその制御信号に基づいて交番電流値をフィードバック制御することができる。また,全体制御装置22は,磁気センサ30により検出される着磁ピッチの誤差を抑えるように,モータ12の回転速度をフィードバック制御することができる。   The overall control device 22 can control the strength of the alternating current based on the magnetic flux density detected by the magnetic sensor 30. The overall control device 22 sends a control signal for adjusting the amount of current to the control circuit 21 so that the difference in magnetic flux density between the magnetic poles becomes small, and the control circuit 21 calculates the alternating current value based on the control signal. Feedback control can be performed. Further, the overall control device 22 can feedback control the rotational speed of the motor 12 so as to suppress an error in the magnetization pitch detected by the magnetic sensor 30.

図9,図10及び図11は,それぞれ従来の一発着磁式による着磁,従来の回転着磁式による着磁及び本実施の形態例の着磁装置を用いた着磁による磁束密度分布の測定例を示す。被着磁体の磁極数は96であり,測定では,本実施の形態例の着磁装置として,第一の構成例における着磁ヘッド16を備えた着磁装置が用いられ,当該3種類の着磁方法によりそれぞれ2つの被着磁体を着磁した。   9, 10, and 11 show magnetic flux density distributions obtained by the conventional one-shot magnetization method, the conventional rotary magnetization method, and the magnetization using the magnetization device of this embodiment. A measurement example is shown. The number of magnetic poles of the magnetized body is 96, and in the measurement, the magnetizing device provided with the magnetizing head 16 in the first configuration example is used as the magnetizing device of the present embodiment. Two magnetized bodies were each magnetized by a magnetic method.

図9,図10及び図11の磁束密度分布を比較した表を以下の表1に示す。   A table comparing the magnetic flux density distributions of FIGS. 9, 10 and 11 is shown in Table 1 below.

Figure 2011249565
Figure 2011249565

図9乃至図11及び表1から明らかなように,本実施の形態例における着磁装置(本願装置)による着磁では,平均磁束密度(mT)は,従来の回転着磁式装置はもとより従来の一発着磁式装置よりも大きな値を得ることができた。また,着磁ピッチ精度(最大単ピッチ精度及び最小単ピッチ精度)も,従来の一発着磁式装置はもとより従来の回転着磁式装置よりも高精度なピッチ精度を得ることができた。   As is apparent from FIGS. 9 to 11 and Table 1, in the magnetization by the magnetizing device (the device of the present application) in this embodiment, the average magnetic flux density (mT) is not limited to the conventional rotary magnetizing device. A value larger than that of the one-shot magnetizing apparatus could be obtained. Also, with regard to the magnetization pitch accuracy (maximum single pitch accuracy and minimum single pitch accuracy), it was possible to obtain a higher pitch accuracy than the conventional one-shot magnetizing device and the conventional rotary magnetizing device.

図12は,被着磁体1の形状例を示す平面図である。本実施の形態例では,図12(a)に示すような円盤状の被着磁体1の平面部分を着磁面として,その円周方向に極性が交互に変化するように着磁する着磁装置を例示したが,着磁面は,円盤状の被着磁体1の端面(側面)部分であってもよい。また,本実施の形態における着磁装置は,例えば,図12(b)に示す短冊状の被着磁体1を直線状に極性が変化するように着磁する場合にも適用可能である。短冊状の被着磁体1の極性を交互に変化させる直線状の所定着磁方向に,着磁ヘッド16又は短冊状の被着磁体1を相対的にスライド移動させることで,リニアな多極着磁が可能となる。   FIG. 12 is a plan view showing a shape example of the adherend 1. In the present embodiment, the planar portion of the disk-shaped magnetized body 1 as shown in FIG. 12A is used as the magnetized surface, and magnetization is performed so that the polarity changes alternately in the circumferential direction. Although the apparatus is illustrated, the magnetized surface may be an end surface (side surface) portion of the disk-shaped magnetized body 1. Moreover, the magnetizing apparatus in this Embodiment is applicable, for example, also when magnetizing the strip-shaped to-be-magnetized body 1 shown in FIG.12 (b) so that polarity may change linearly. Linear multipole attachment is achieved by relatively sliding the magnetizing head 16 or the strip-shaped magnetized body 1 in a predetermined linear magnetization direction that alternately changes the polarity of the strip-shaped magnetized body 1. Magnetism is possible.

本実施の形態例では,導電線を先端面への位置決め手段として,先端面に設けられる溝を例示したが,溝に限らず,例えば,導電線の幅(径)で先端面の一端側から他端側に延びる突出部を設け,当該突出部上に導電線を接着する構成であってもよい。   In the present embodiment, the groove provided in the tip surface is exemplified as a means for positioning the conductive wire on the tip surface. However, the groove is not limited to the groove, and, for example, the width (diameter) of the conductive wire is measured from one end side of the tip surface. The structure which provides the protrusion part extended in the other end side, and adhere | attaches a conductive wire on the said protrusion part may be sufficient.

1:被着磁体,2:コア,2a:先端面,2b:ねじ穴,2c:溝,2d:貫通孔,3:導電線,10:回転保持部,12:モータ,14:エンコーダ,16:着磁ヘッド,18:電源装置,20:制御手段,21:制御回路,22:全体制御装置,30:磁気センサ   1: magnetized body, 2: core, 2a: tip surface, 2b: screw hole, 2c: groove, 2d: through hole, 3: conductive wire, 10: rotation holding part, 12: motor, 14: encoder, 16: Magnetization head, 18: power supply device, 20: control means, 21: control circuit, 22: overall control device, 30: magnetic sensor

上記目的を達成するための本発明の着磁装置の構成は,被着磁体を所定着磁方向に極性が交互に変化するように着磁する着磁装置において,被着磁体の着磁面に対向して接触又は近接する先端面を有するコアを有し,前記先端面に当該先端面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられ,前記先端面の一端側から他端側への方向が前記被着磁体の所定着磁方向に垂直となるように配置される着磁ヘッドと,前記着磁ヘッドの先端面が前記被着磁体の着磁面の前記所定方向に相対的に回転又は移動するように,前記被着磁体又は前記着磁ヘッドを回転又は移動させる駆動部と,前記駆動部により前記被着磁体又は前記着磁ヘッドを回転又は移動させながら,前記導電線に交番電流を供給する電源とを備え,前記コアは,前記先端面の内部に,前記先端面の一端側から他端側に貫通する貫通孔を有し,前記先端面の他端側に延びた導電線は,前記貫通孔を前記他端側から一端側に延びることを特徴とする。 In order to achieve the above object, the magnetizing device according to the present invention comprises a magnetizing device for magnetizing a magnetized body so that the polarity alternately changes in a predetermined magnetizing direction. A positioning means for positioning and arranging a conductive wire extending from one end side to the other end side of the tip surface on the tip surface; A magnetizing head disposed so that a direction from one end side to the other end side is perpendicular to a predetermined magnetization direction of the magnetized body; and a tip surface of the magnetizing head is a magnetized surface of the magnetized body. A drive unit that rotates or moves the magnetized body or the magnetized head so as to rotate or move relative to the predetermined direction; and the drive unit that rotates or moves the magnetized body or the magnetized head. while, a power supply for supplying an alternating current to the conductive wire The core has a through-hole penetrating from one end side to the other end side of the tip surface inside the tip surface, and a conductive wire extending to the other end side of the tip surface is connected to the through-hole. It extends from the end side to one end side .

上記目的を達成するための本発明の着磁ヘッドの構成は,被着磁体を所定着磁方向に極性が交互に変化するように着磁する着磁装置に用いられる着磁ヘッドにおいて,被着磁体の着磁面に対向して接触又は近接する先端面を有するコアを有し,前記先端面に当該先端面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられ,前記コアは,前記先端面の内部に,前記先端面の一端側から他端側に貫通する貫通孔を有し,前記先端面の他端側に延びた導電線は,前記貫通孔を前記他端側から一端側に延びることを特徴とする。 In order to achieve the above object, a magnetizing head according to the present invention comprises a magnetizing head used in a magnetizing device for magnetizing a magnetized body so that the polarity alternately changes in a predetermined magnetizing direction. A positioning means is provided which has a core having a tip surface facing or close to the magnetized surface of the magnetic body, and positioning and arranging a conductive wire extending from one end side to the other end side of the tip surface on the tip surface. The core has a through-hole penetrating from one end side to the other end side of the tip surface inside the tip surface, and the conductive wire extending to the other end side of the tip surface has the through-hole. It extends from the other end side to one end side .

図7は,第二の構成例における溝2cに配置される導電線3の配置パターンを示す図である。電源装置18から延びる導電線3は,先端面の一端側において,中央の溝2c−2の延長線上から所定角度折り曲げられて溝2c−1内に配置されて先端面2aの一端側から他端側に延び,溝2c−1の他端側で逆方向折り曲げられて,隣接する溝2c−2内に配置されて先端面2aの他端側から一端側に延び,さらに,溝2c−2の一端側で逆方向に折り曲げられて,隣接する溝2c−3内に配置されて先端面2aの一端側から他端側に延び,溝2c−3の他端側で中央の溝2c−2の延長線上に延びるように折り曲げられる。 FIG. 7 is a diagram showing an arrangement pattern of the conductive lines 3 arranged in the grooves 2c in the second configuration example. The conductive wire 3 extending from the power supply device 18 is bent at a predetermined angle from the extended line of the central groove 2c-2 on one end side of the front end surface, and is disposed in the groove 2c-1, and from the one end side to the other end of the front end surface 2a. Extending in the opposite direction, bent in the opposite direction at the other end of the groove 2c-1, and disposed in the adjacent groove 2c-2, extending from the other end side of the front end surface 2a to one end side. in one end bent in the opposite direction, from one end of the disposed adjacent the groove 2c-3 and the distal end surface 2a extends at the other end, the groove 2c-3 at the other end the center of the groove 2c-2 of It is bent so as to extend on the extension line.

Claims (8)

被着磁体を所定着磁方向に極性が交互に変化するように着磁する着磁装置において,
被着磁体の着磁面に対向して接触又は近接する先端面を有するコアを有し,前記先端面に当該先端面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられ,前記先端面の一端側から他端側への方向が前記被着磁体の前記所定着磁方向に垂直となるように配置される着磁ヘッドと,
前記着磁ヘッドの先端面が前記被着磁体の着磁面の前記所定着磁方向に相対的に回転又は移動するように,前記被着磁体又は前記着磁ヘッドを回転又は移動させる駆動部と,
前記駆動部により前記被着磁体又は前記着磁ヘッドを回転又は移動させながら,前記導電線に交番電流を供給する電源とを備えることを特徴とする着磁装置。
In a magnetizing apparatus for magnetizing a magnetized body such that the polarity changes alternately in a predetermined magnetizing direction,
Positioning means having a core having a tip surface facing or close to the magnetized surface of the magnetized body, and positioning and arranging a conductive wire extending from one end side to the other end side of the tip surface on the tip surface And a magnetizing head arranged so that a direction from one end side to the other end side of the tip end surface is perpendicular to the predetermined magnetization direction of the magnetized body;
A drive unit that rotates or moves the magnetized body or the magnetized head so that a front end surface of the magnetized head rotates or moves relative to the magnetized surface of the magnetized body in the predetermined magnetization direction; ,
A magnetizing apparatus comprising: a power source that supplies an alternating current to the conductive wire while rotating or moving the magnetized body or the magnetizing head by the driving unit.
請求項1において,
前記位置決め手段は,前記先端面の一端側から他端側に直線状に延びる一つの溝であり,前記導電線は,前記溝に沿って前記先端面の一端側から他端側へ直線状に延びていることを特徴とする着磁装置。
In claim 1,
The positioning means is one groove extending linearly from one end side to the other end side of the tip surface, and the conductive wire is linearly extended from one end side to the other end side of the tip surface along the groove. A magnetizing device characterized by extending.
請求項1において,
前記駆動部は,前記着磁ヘッドの先端面が前記被着磁体の着磁面の極性変化方向である円周方向に相対的に回転するように,前記被着磁体又は前記着磁ヘッドを回転させ,
前記位置決め手段は,それぞれ前記先端面の一端側から他端側に直線状に延び且つ前記円周方向に所定間隔で並列に配置される第1の溝,第2の溝及び第3の溝を有し,前記導電線は,前記第1の溝に沿って前記先端面の一端側から他端側へ延び,前記先端面の他端側で逆方向に折り曲げられ,前記第2の溝に沿って前記先端面の他端側から一端側へ延び,前記先端面の一端側でさらに逆方向に折り曲げられ,前記第3の溝に沿って前記先端面の一端側から他端側へ延びていることを特徴とする着磁装置。
In claim 1,
The drive unit rotates the magnetized body or the magnetized head so that the front end surface of the magnetized head rotates relatively in a circumferential direction that is a polarity changing direction of the magnetized surface of the magnetized body. Let
The positioning means includes a first groove, a second groove, and a third groove that extend linearly from one end side to the other end side of the tip end surface and are arranged in parallel at predetermined intervals in the circumferential direction. The conductive line extends from one end side to the other end side of the tip surface along the first groove, is bent in the opposite direction at the other end side of the tip surface, and extends along the second groove. Extending from the other end side of the tip surface to one end side, further bent in the opposite direction at one end side of the tip surface, and extending from one end side of the tip surface to the other end side along the third groove A magnetizing apparatus characterized by that.
請求項1又は2において,
前記コアは,前記先端面の内部に,前記先端面の一端側から他端側に貫通する貫通孔を有し,前記先端面の他端側に延びた導電線は,前記貫通孔を前記他端側から一端側に延びることを特徴とする着磁装置。
In claim 1 or 2,
The core has a through-hole penetrating from one end side to the other end side of the tip surface inside the tip surface, and a conductive wire extending to the other end side of the tip surface is connected to the through-hole. A magnetizing device that extends from one end to one end.
請求項3において,
前記コアは,前記先端面の内部であって且つ前記第2の溝に隣接する真下に前記先端面の一端側から他端側に貫通する貫通孔を有し,前記先端面の他端側に延びた導電線は,前記貫通孔を前記他端側から一端側に延びることを特徴とする着磁装置。
In claim 3,
The core has a through-hole penetrating from one end side to the other end side of the tip surface inside the tip surface and immediately below the second groove, and on the other end side of the tip surface. The magnetizing device, wherein the extended conductive wire extends from the other end side to the one end side through the through hole.
請求項1乃至5のいずれか1項において,
前記電源は,交番電流の周波数を任意に変化させることができるインバータを含むことを特徴とする着磁装置。
In any one of Claims 1 thru | or 5,
The magnetizing device, wherein the power source includes an inverter capable of arbitrarily changing the frequency of the alternating current.
被着磁体を所定着磁方向に極性が交互に変化するように着磁する着磁装置に用いられる着磁ヘッドにおいて,
被着磁体の着磁面に対向して接触又は近接する先端面を有するコアを有し,前記先端面に当該先端面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられることを特徴とする着磁ヘッド。
In a magnetizing head used in a magnetizing apparatus that magnetizes a magnetized body so that the polarity alternately changes in a predetermined magnetizing direction,
Positioning means having a core having a tip surface facing or close to the magnetized surface of the magnetized body, and positioning and arranging a conductive wire extending from one end side to the other end side of the tip surface on the tip surface A magnetizing head characterized by comprising:
請求項7において,
前記コアは,前記先端面の内部に,前記先端面の一端側から他端側に貫通する貫通孔を有し,前記先端面の他端側に延びた導電線は,前記貫通孔を前記他端側から一端側に延びることを特徴とする着磁ヘッド。
In claim 7,
The core has a through-hole penetrating from one end side to the other end side of the tip surface inside the tip surface, and a conductive wire extending to the other end side of the tip surface is connected to the through-hole. A magnetizing head that extends from one end to one end.
JP2010121378A 2010-05-27 2010-05-27 Magnetizing apparatus and magnetizing head Active JP4846863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121378A JP4846863B2 (en) 2010-05-27 2010-05-27 Magnetizing apparatus and magnetizing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121378A JP4846863B2 (en) 2010-05-27 2010-05-27 Magnetizing apparatus and magnetizing head

Publications (2)

Publication Number Publication Date
JP2011249565A true JP2011249565A (en) 2011-12-08
JP4846863B2 JP4846863B2 (en) 2011-12-28

Family

ID=45414464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121378A Active JP4846863B2 (en) 2010-05-27 2010-05-27 Magnetizing apparatus and magnetizing head

Country Status (1)

Country Link
JP (1) JP4846863B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120600A (en) * 2012-12-17 2014-06-30 Mglab Co Ltd Magnetization method and magnetization device
JP2018073986A (en) * 2016-10-28 2018-05-10 電子磁気工業株式会社 Magnetization head and multipolar magnetization device
CN109716458A (en) * 2016-09-20 2019-05-03 Ntn株式会社 The magnetizing assembly and Magnitizing method of magnetic encoder

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224305A (en) * 1989-02-27 1990-09-06 Apollo Iryoki Kk Method and device for magnetization of linear magnetic material
JPH0383907A (en) * 1989-08-28 1991-04-09 Matsushita Electric Works Ltd Production of antimicrobial agent
JPH0391906A (en) * 1989-08-30 1991-04-17 Torrington Co:The Method and apparatus for forming magnetized band on magnetizable object
JPH08279415A (en) * 1995-04-06 1996-10-22 Daido Steel Co Ltd Yoke for multipolar magnetization
JP2000012331A (en) * 1998-06-25 2000-01-14 Sumitomo Metal Mining Co Ltd Method and apparatus for magnetizing
JP2002058215A (en) * 2000-08-10 2002-02-22 Mitsubishi Electric Corp Magnetizing apparatus for permanent magnet rotor
JP2003059718A (en) * 2001-06-08 2003-02-28 Nok Corp Magnetizing unit and rotary magnetizing method using the same
JP2011119621A (en) * 2009-12-07 2011-06-16 Nippon Denji Sokki Kk Magnetizer and magnetizing head

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224305A (en) * 1989-02-27 1990-09-06 Apollo Iryoki Kk Method and device for magnetization of linear magnetic material
JPH0383907A (en) * 1989-08-28 1991-04-09 Matsushita Electric Works Ltd Production of antimicrobial agent
JPH0391906A (en) * 1989-08-30 1991-04-17 Torrington Co:The Method and apparatus for forming magnetized band on magnetizable object
JPH08279415A (en) * 1995-04-06 1996-10-22 Daido Steel Co Ltd Yoke for multipolar magnetization
JP2000012331A (en) * 1998-06-25 2000-01-14 Sumitomo Metal Mining Co Ltd Method and apparatus for magnetizing
JP2002058215A (en) * 2000-08-10 2002-02-22 Mitsubishi Electric Corp Magnetizing apparatus for permanent magnet rotor
JP2003059718A (en) * 2001-06-08 2003-02-28 Nok Corp Magnetizing unit and rotary magnetizing method using the same
JP2011119621A (en) * 2009-12-07 2011-06-16 Nippon Denji Sokki Kk Magnetizer and magnetizing head

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120600A (en) * 2012-12-17 2014-06-30 Mglab Co Ltd Magnetization method and magnetization device
CN109716458A (en) * 2016-09-20 2019-05-03 Ntn株式会社 The magnetizing assembly and Magnitizing method of magnetic encoder
CN109716458B (en) * 2016-09-20 2021-01-15 Ntn株式会社 Magnetizing device and magnetizing method for magnetic encoder
JP2018073986A (en) * 2016-10-28 2018-05-10 電子磁気工業株式会社 Magnetization head and multipolar magnetization device

Also Published As

Publication number Publication date
JP4846863B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP6463789B2 (en) Magnetic angular position sensor
CN106104986B (en) Motor and the electric power steering device for using the motor
EP1902287B1 (en) An apparatus for magnetizing a magnetizable element
KR102169541B1 (en) Sensor arrangement and magnetization device, and use of the sensor arrangement in a motor vehicle control device
US20060108881A1 (en) Electric machine, particularly a brushless direct current motor
JP3740984B2 (en) Electric pole position detector
US9667127B2 (en) Method and apparatus for determining a rotor position and rotation speed of an electrical machine
CN103814508B (en) Compact positioning component including actuator and the sensor being incorporated into the yoke of actuator
JP2006217672A (en) Small motor with encoder
JP4846863B2 (en) Magnetizing apparatus and magnetizing head
JP2019020402A (en) Magnetic position sensing system, magnetic position sensing system manufacturing method, and rotor position estimation method
JP2010145371A (en) Angle detection apparatus
EP3176923B1 (en) Electric motor rotor manufacturing method and manufacturing device
JP2021192588A (en) motor
JP5421198B2 (en) Rotation angle detector
JP2015061411A (en) Linear/rotary actuator and method for controlling the same
JP2010040914A (en) Magnetization method of multi-pole magnet, and multi-pole magnet and magnetic encoder using the same
CN102668360A (en) Method and device for determining a rotor position of a synchronous machine
JP5615892B2 (en) Magnetization method and apparatus
JP4863167B2 (en) Magnet structure and position detection apparatus using the same
KR20160084586A (en) Proximity sensor BLDC motor using Radio Frequency Oscillator
JP5012130B2 (en) Angle sensor
KR101551468B1 (en) Brush holder apparatus provided with hall sensor
JP2014048065A (en) Electric current sensor
JP2002186236A (en) Magnetic pole position detecting device of motor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250