JP2011249551A - Interposer substrate and electronic component mounting structure using the same - Google Patents

Interposer substrate and electronic component mounting structure using the same Download PDF

Info

Publication number
JP2011249551A
JP2011249551A JP2010121060A JP2010121060A JP2011249551A JP 2011249551 A JP2011249551 A JP 2011249551A JP 2010121060 A JP2010121060 A JP 2010121060A JP 2010121060 A JP2010121060 A JP 2010121060A JP 2011249551 A JP2011249551 A JP 2011249551A
Authority
JP
Japan
Prior art keywords
wiring layer
substrate
interposer substrate
hole
interposer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010121060A
Other languages
Japanese (ja)
Inventor
Shozo Ochi
正三 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010121060A priority Critical patent/JP2011249551A/en
Publication of JP2011249551A publication Critical patent/JP2011249551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

PROBLEM TO BE SOLVED: To provide an interposer substrate which does not make it difficult to transmit a high speed signal even when an interposer substrate having low specific resistance is used, which deals with miniaturization and narrowing of pitches, which reduces the manufacturing cost.SOLUTION: A wiring layer (5) is formed on one surface of an interposer substrate (1) composed of a semiconductor material. One end of a through electrode (14) is electrically connected to the wiring layer (5), and the other end reaches the other surface of the interposer substrate (1). Through holes (11) are formed on the interposer substrate (1) located under the wiring layer (5) so as to be spaced in the length direction of the wiring layer (5). An insulation material (16) is filled in the through electrode (14) and the through hole (11) to respectively dispose insulating layers (10, 13) between the interposer substrate (1) and the wiring (5) and between the through hole (11) and the insulating material (16).

Description

本発明は、インターポーザ基板とこれを用いた電子部品実装構造体に関する。   The present invention relates to an interposer substrate and an electronic component mounting structure using the same.

近年、電子機器の小型・軽量化、高機能・高性能化の要求は一段と激しさを増している。LSIの高機能化に伴う半導体プロセスルールの微細化により、LSI端子の多ピン、狭ピッチ化が進んでおり、半導体パッケージを構成するインターポーザ基板には微細化が要求されている。   In recent years, demands for electronic devices that are smaller and lighter, and have higher functionality and higher performance have become increasingly intense. With the miniaturization of semiconductor process rules accompanying higher functionality of LSIs, LSI pins are becoming more multi-pin and narrower in pitch, and miniaturization is required for interposer substrates constituting semiconductor packages.

この微細なインターポーザ基板とLSIを接続する方法として、LSI端子をインターポーザ基板に直接に、はんだボールや金バンプで接続するフリップチップ実装が用いられている。   As a method for connecting this fine interposer substrate and LSI, flip chip mounting is used in which LSI terminals are directly connected to the interposer substrate by solder balls or gold bumps.

従来、フリップチップ実装する際には、インターポーザ基板として樹脂を用いた基板が用いられていた。しかしながら、フリップチップ実装ではインターポーザ基板にLSI表層と同等の微細パターンが必要とされるため、半導体プロセスルールの微細化に追従するのが困難になる。   Conventionally, when flip-chip mounting, a substrate using a resin has been used as an interposer substrate. However, flip chip mounting requires a fine pattern equivalent to the LSI surface layer on the interposer substrate, making it difficult to follow the miniaturization of semiconductor process rules.

そこで、更なる高密度化に対応するためのインターポーザ基板として、シリコンインターポーザ基板を用いた半導体パッケージが着目されている。
シリコンインターポーザ基板はLSI同様に半導体プロセスで比較的簡単に作製できるために微細化への対応が可能であり、熱膨張係数がLSIと同じなので、温度変化による膨張収縮等の形状変化もLSIと同じとなり、信頼性の高い半導体パッケージが作製できる。
Therefore, attention is focused on a semiconductor package using a silicon interposer substrate as an interposer substrate for coping with further higher density.
Since silicon interposer substrates can be manufactured relatively easily by semiconductor processes like LSIs, they can cope with miniaturization, and since the thermal expansion coefficient is the same as LSIs, shape changes such as expansion and contraction due to temperature changes are the same as LSIs. Thus, a highly reliable semiconductor package can be manufactured.

他方、半導体デバイスの高速・高周波化が急速に進行しており、これらの半導体デバイスを正常に機能させる重要技術として、高速・高周波化に対応した半導体パッケージの設計技術が必要とされている。   On the other hand, high-speed and high-frequency semiconductor devices are advancing rapidly, and a semiconductor package design technology corresponding to high-speed and high-frequency is required as an important technique for causing these semiconductor devices to function properly.

ここで、シリコンインターポーザ基板を用いたパッケージとしては、例えば以下のようなものが提案されている。下記の表1はシリコンをコア材とした配線基板において、シリコンの比抵抗を変えた場合、周波数20GHzの高周波信号を流した時の伝送損失を調べたものであるが、シリコンの比抵抗が大きくなるほど伝送損失は小さくなるという性質があるので、伝送損失を極力抑えるために、シリコンの比抵抗を10Ωcm以上にするというものである(特許文献1)。あるいは、さらに伝送損失を抑えるためにシリコンの比抵抗を100Ωcm以上にするというものもある(特許文献2)。   Here, as a package using a silicon interposer substrate, for example, the following is proposed. Table 1 below shows the transmission loss when a high frequency signal with a frequency of 20 GHz is flowed when the specific resistance of silicon is changed in a wiring board using silicon as a core material. The specific resistance of silicon is large. As the transmission loss becomes smaller, the specific resistance of silicon is set to 10 Ωcm or more in order to suppress the transmission loss as much as possible (Patent Document 1). Alternatively, there is a technique in which the specific resistance of silicon is set to 100 Ωcm or more to further suppress transmission loss (Patent Document 2).

Figure 2011249551
Figure 2011249551

特開2005−167048号公報Japanese Patent Laid-Open No. 2005-167048 特開2007−67335号公報JP 2007-67335 A

しかしながら、シリコンの比抵抗を高くするためには、ボロンやリンなどの不純物イオンを注入して、不純物濃度を調整する必要があるため、比抵抗の高いシリコンを同一の物性値で安定にかつ大量に供給することは非常に困難であり、材料プロセスコストも高くなる。
本発明は、比抵抗の低いシリコンなどの半導体材料をインターポーザ基板として用いる場合であっても、高速信号の伝送を困難にすることなく、微細化、狭ピッチ化に対応し、製造コストを低減できる半導体パッケージを提供することを目的とする。
However, in order to increase the specific resistance of silicon, it is necessary to implant impurity ions such as boron and phosphorus to adjust the impurity concentration. Therefore, silicon having a high specific resistance can be stably manufactured in large quantities with the same physical properties. Is very difficult to supply, and the material process costs are high.
Even when a semiconductor material such as silicon having a low specific resistance is used as an interposer substrate, the present invention can cope with miniaturization and narrow pitch without making high-speed signal transmission difficult, and can reduce manufacturing costs. An object is to provide a semiconductor package.

本発明のインターポーザ基板は、半導体材料により構成された基板の一方の面に形成された配線層と、一端が前記配線層に電気接続され他端が前記基板の他方の面に達する貫通電極と、前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され絶縁材料が充填された貫通孔と、基板と前記配線層の間、前記貫通孔と前記絶縁材料の間に介装された絶縁層を有することを特徴とする。   The interposer substrate of the present invention includes a wiring layer formed on one surface of a substrate made of a semiconductor material, a through electrode having one end electrically connected to the wiring layer and the other end reaching the other surface of the substrate, A through-hole formed in the substrate positioned below the wiring layer at an interval in the length direction of the wiring layer and filled with an insulating material; between the substrate and the wiring layer; the through-hole and the insulating material And an insulating layer interposed therebetween.

本発明の電子部品実装構造体は、インターポーザ基板と、前記インターポーザ基板に接続された半導体チップを有し、前記インターポーザ基板は、半導体材料により構成された基板の一方の面に形成され前記半導体チップが接続された配線層と、一端が前記配線層に電気接続され他端が前記基板の他方の面に達する貫通電極と、前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され絶縁材料が充填された貫通孔と、基板と前記配線層の間、前記貫通孔と前記絶縁材料の間に介装された絶縁層を有することを特徴とする。   The electronic component mounting structure of the present invention has an interposer substrate and a semiconductor chip connected to the interposer substrate, and the interposer substrate is formed on one surface of a substrate made of a semiconductor material, and the semiconductor chip is A connected wiring layer; a through electrode that has one end electrically connected to the wiring layer and the other end reaching the other surface of the substrate; and a length of the wiring layer on the substrate located under the wiring layer It is characterized by having a through hole formed with a space and filled with an insulating material, an insulating layer interposed between the substrate and the wiring layer, and between the through hole and the insulating material.

また、本発明のインターポーザ基板は、半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、前記配線層の近傍位置に前記配線層に沿って形成された貫通孔を有することを特徴とする。   The interposer substrate of the present invention includes a wiring layer formed on one surface of a substrate made of a semiconductor material via an insulating layer, and a penetration formed along the wiring layer at a position near the wiring layer. It has a hole.

また、本発明の電子部品実装構造体は、インターポーザ基板と、前記インターポーザ基板に接続された半導体チップを有し、前記インターポーザ基板は、半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、前記配線層の近傍位置に前記配線層に沿って形成された貫通孔を有することを特徴とする。   The electronic component mounting structure according to the present invention includes an interposer substrate and a semiconductor chip connected to the interposer substrate, and the interposer substrate has an insulating layer interposed on one surface of the substrate made of a semiconductor material. And a through hole formed along the wiring layer at a position near the wiring layer.

また、本発明のインターポーザ基板は、半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され貫通孔を有することを特徴とする。   The interposer substrate of the present invention includes a wiring layer formed on one surface of a substrate made of a semiconductor material via an insulating layer, and the length of the wiring layer on the substrate located below the wiring layer. It is characterized by having through holes formed at intervals in the direction.

また、本発明の電子部品実装構造体は、インターポーザ基板と、前記インターポーザ基板に接続された半導体チップを有し、前記インターポーザ基板は、半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され貫通孔を有することを特徴とする。   The electronic component mounting structure according to the present invention includes an interposer substrate and a semiconductor chip connected to the interposer substrate, and the interposer substrate has an insulating layer interposed on one surface of the substrate made of a semiconductor material. And a through hole formed in the substrate positioned below the wiring layer at intervals in the length direction of the wiring layer.

本発明によると、シリコンなどの半導体材料を基板に用いた場合であっても、高速信号の伝送を困難にすることなく、微細化・狭ピッチ化に対応し、製造コストを低減できる。   According to the present invention, even when a semiconductor material such as silicon is used for the substrate, it is possible to cope with miniaturization / narrow pitch and to reduce the manufacturing cost without making high-speed signal transmission difficult.

本発明の実施の形態1にかかる電子部品実装構造体の拡大平面図とそのX−X断面図The enlarged plan view of the electronic component mounting structure concerning Embodiment 1 of this invention, and its XX sectional drawing. 同実施の形態のインターポーザ基板の平面図Plan view of interposer substrate of the same embodiment 同実施の形態のインターポーザ基板の形成工程図Process diagram for forming interposer substrate of the embodiment 別の具体例を示す断面図Sectional drawing which shows another specific example 本発明の実施の形態2にかかる電子部品実装構造体の拡大平面図とそのY−Y断面図The enlarged plan view of the electronic component mounting structure concerning Embodiment 2 of this invention, and its YY sectional drawing 同実施の形態のインターポーザ基板の平面図Plan view of interposer substrate of the same embodiment 同実施の形態のインターポーザ基板の形成工程図Process diagram for forming interposer substrate of the embodiment 別の具体例を示す平面図Plan view showing another specific example さらに別の具体例を示す断面図Sectional drawing which shows another specific example

以下、本発明のインターポーザ基板とこれを用いた電子部品実装構造体を各実施の形態に基づいて説明する。
(実施の形態1)
図1〜図3はインターポーザ基板を用いた電子部品実装構造体を示す。
Hereinafter, an interposer substrate of the present invention and an electronic component mounting structure using the same will be described based on each embodiment.
(Embodiment 1)
1 to 3 show an electronic component mounting structure using an interposer substrate.

この電子部品実装構造体は、図1(a)(b)に示すように、インターポーザ基板1と、インターポーザ基板1に接続された半導体チップ2を有する電子部品実装構造体3が、さらに別のインターポーザ基板4に実装して構成されている。   As shown in FIGS. 1A and 1B, this electronic component mounting structure includes an interposer substrate 1 and an electronic component mounting structure 3 having a semiconductor chip 2 connected to the interposer substrate 1. It is configured to be mounted on the substrate 4.

半導体チップ2は、図2に示したインターポーザ基板1の上面の配線層5に、突起電極6を介して実装されている。電子部品実装構造体3は、インターポーザ基板4の上面の電極端子7に、突起電極8を介して実装されている。   The semiconductor chip 2 is mounted on the wiring layer 5 on the upper surface of the interposer substrate 1 shown in FIG. The electronic component mounting structure 3 is mounted on the electrode terminal 7 on the upper surface of the interposer substrate 4 via the protruding electrode 8.

インターポーザ基板1はシリコンなどの半導体材料からなっている。
このインターポーザ基板1は、図3に示す工程で製造する。
図3(a)に示すように、半導体材料からなる基板9の片面上に絶縁層10を形成し、さらにその上に配線層5を形成する。配線層5には電気信号を伝送するための配線パターンが形成されている。
The interposer substrate 1 is made of a semiconductor material such as silicon.
The interposer substrate 1 is manufactured by the process shown in FIG.
As shown in FIG. 3A, an insulating layer 10 is formed on one side of a substrate 9 made of a semiconductor material, and a wiring layer 5 is further formed thereon. A wiring pattern for transmitting an electrical signal is formed on the wiring layer 5.

つぎに、図3(b)に示すように、基板9の所定の位置に複数の貫通孔11を形成する。この貫通孔11は配線層5で形成された配線パターンの直下に存在する。貫通孔11の大きさは、直径が10μmから100μmの範囲にある。直径が10μm未満の場合には、配線パターン直下の領域の中で貫通孔の領域を十分に確保できないため、配線の伝送特性が悪くなる。直径が100μmを越えた場合には、多ピン、狭ピッチ化に対応するための微細配線化ができなくなる。   Next, as shown in FIG. 3B, a plurality of through holes 11 are formed at predetermined positions of the substrate 9. The through hole 11 exists immediately below the wiring pattern formed by the wiring layer 5. The size of the through hole 11 is in the range of 10 μm to 100 μm in diameter. When the diameter is less than 10 μm, the area of the through hole cannot be sufficiently secured in the area immediately below the wiring pattern, so that the transmission characteristics of the wiring are deteriorated. When the diameter exceeds 100 μm, it is impossible to make a fine wiring to cope with the multi-pin and narrow pitch.

図3(c)に示すように、基板9の下面に絶縁層12を形成し、さらに貫通孔11の側壁にも絶縁層13を形成する。
図3(d)に示すように、所定の貫通孔11として、ここでは配線層5の端部の貫通孔11に導電体を充填して貫通電極14を形成し、さらに貫通電極14に配線層15を形成する。この時、配線層5と配線層15が貫通電極14を介して接続されている。
As shown in FIG. 3C, the insulating layer 12 is formed on the lower surface of the substrate 9, and the insulating layer 13 is also formed on the side wall of the through hole 11.
As shown in FIG. 3 (d), as the predetermined through hole 11, here, a through electrode 14 is formed by filling the through hole 11 at the end of the wiring layer 5 with a conductor, and the wiring layer is formed on the through electrode 14. 15 is formed. At this time, the wiring layer 5 and the wiring layer 15 are connected via the through electrode 14.

最後に図3(e)に示すように、基板9の下面と残りの貫通孔11に樹脂材料16を充填して貫通ビアを形成することによって、インターポーザ基板1を作製できる。
なお、配線層5は、例えばアルミニウムなどによって形成されているが、銅のようにアルミニウムよりも導電率が高くて酸化しにくい金属を用いても良い。
Finally, as shown in FIG. 3E, the interposer substrate 1 can be manufactured by filling the resin material 16 in the lower surface of the substrate 9 and the remaining through holes 11 to form through vias.
The wiring layer 5 is made of, for example, aluminum. However, a metal that has higher conductivity than aluminum and is difficult to oxidize, such as copper, may be used.

また、貫通電極14に充填された導電体は、例えば銅ペーストなどによって形成されているが、導電率の高い銀ペーストを用いても良い。また、完全に充填されている必要はなく、例えば銅めっきなどによって絶縁層13の側壁に形成されていても良い。   In addition, the conductor filled in the through electrode 14 is formed of, for example, a copper paste or the like, but a silver paste having a high conductivity may be used. Moreover, it does not need to be completely filled, and may be formed on the side wall of the insulating layer 13 by, for example, copper plating.

また、樹脂材料16は、誘電正接の低い材料、もしくは比抵抗の高い材料が好ましい。この実施の形態では、エポキシ樹脂、アクリル樹脂などによって形成されているが、例えばシリコーン樹脂であっても良い。また、ポリイミド樹脂、フェノール樹脂などであってもよい。   The resin material 16 is preferably a material having a low dielectric loss tangent or a material having a high specific resistance. In this embodiment, it is formed of an epoxy resin, an acrylic resin or the like, but may be a silicone resin, for example. Moreover, a polyimide resin, a phenol resin, etc. may be sufficient.

また、貫通孔11はできる限り狭ピッチで形成することが好ましい。この実施の形態では、信号ラインの線幅15μmに対して、貫通孔11の穴径10μm、貫通孔11のピッチ20μmで形成されている。   Moreover, it is preferable to form the through holes 11 at a narrow pitch as much as possible. In this embodiment, the signal line is formed with a hole diameter of 10 μm and a pitch of 20 μm of the through holes 11 with respect to a line width of 15 μm.

このように、インターポーザ基板1を使用した電子部品実装構造体3は、配線層5を通じて信号ラインを形成し、さらにその信号ラインは突起電極6を介して半導体チップ2の信号ラインに接続される。最終的には貫通電極14と突起電極8と電極端子7を介してインターポーザ基板4の信号ラインに接続される。   As described above, the electronic component mounting structure 3 using the interposer substrate 1 forms a signal line through the wiring layer 5, and the signal line is connected to the signal line of the semiconductor chip 2 through the protruding electrode 6. Finally, it is connected to the signal line of the interposer substrate 4 through the through electrode 14, the protruding electrode 8, and the electrode terminal 7.

このように、半導体チップ2をフリップチップ実装した電子部品実装構造体3を、さらに樹脂のインターポーザ基板4にフリップチップ実装することによって、比抵抗の低いシリコンインターポーザ基板を用いる場合であっても、高速信号の伝送特性に優れ、微細化・狭ピッチ化に対応した小型パッケージを安価に製造できる。   As described above, the electronic component mounting structure 3 on which the semiconductor chip 2 is flip-chip mounted is further flip-chip mounted on the resin interposer substrate 4, so that even when a silicon interposer substrate having a low specific resistance is used, high speed A small package that excels in signal transmission characteristics and supports miniaturization and narrow pitch can be manufactured at low cost.

貫通孔11の形状が円筒状であったが、これは図4に示すように円錐台状であってもよい。
(実施の形態2)
図5〜図7はインターポーザ基板を用いた電子部品実装構造体を示す。
Although the shape of the through-hole 11 was cylindrical, this may be a truncated cone as shown in FIG.
(Embodiment 2)
5 to 7 show an electronic component mounting structure using an interposer substrate.

図5(a)は、実施の形態2にかかる電子部品実装構造体の構成を示す平面図である。図5(b)は、図5(a)におけるY−Y断面図である。
実施の形態1では半導体材料の基板9をインターポート基板1とした電子部品実装構造体3が、突起電極8を介して、別のインターポーザ基板4に実装して構成されていたが、この実施の形態の電子部品実装構造体は、電子部品実装構造体17がワイヤーボンド18によって、別のインターポーザ基板4の電極端子7に実装して構成されている。
FIG. 5A is a plan view showing the configuration of the electronic component mounting structure according to the second exemplary embodiment. FIG. 5B is a YY cross-sectional view in FIG.
In the first embodiment, the electronic component mounting structure 3 having the semiconductor material substrate 9 as the interport substrate 1 is configured to be mounted on another interposer substrate 4 via the protruding electrodes 8. The electronic component mounting structure of the form is configured by mounting the electronic component mounting structure 17 on the electrode terminal 7 of another interposer substrate 4 by wire bonds 18.

インターポーザ基板4は有機材料で形成されている。インターポーザ基板1はシリコンなどの半導体材料からなっている。
半導体材料からなるインターポーザ基板1は、半導体材料により構成された基板9の一方の面に絶縁層10を介して形成された配線層5と、図6に示すように配線層5の近傍位置に配線層5に沿って形成された貫通孔11を有する。
The interposer substrate 4 is made of an organic material. The interposer substrate 1 is made of a semiconductor material such as silicon.
An interposer substrate 1 made of a semiconductor material includes a wiring layer 5 formed on one surface of a substrate 9 made of a semiconductor material via an insulating layer 10 and wiring in the vicinity of the wiring layer 5 as shown in FIG. It has a through-hole 11 formed along the layer 5.

このインターポーザ基板1は、図7の工程により作製できる。
はじめに図7(a)に示すように、半導体材料からなる所定の厚みを持った基板9を準備する。
The interposer substrate 1 can be manufactured by the process of FIG.
First, as shown in FIG. 7A, a substrate 9 made of a semiconductor material and having a predetermined thickness is prepared.

つぎに図7(b)に示すように、基板9の上面に所定の厚みを持った絶縁層10を形成する。
図7(c)に示すように、絶縁層10の上に所定の配線パターンを持った配線層5を形成する。
Next, as shown in FIG. 7B, an insulating layer 10 having a predetermined thickness is formed on the upper surface of the substrate 9.
As shown in FIG. 7C, a wiring layer 5 having a predetermined wiring pattern is formed on the insulating layer 10.

最後に、基板9の所定の位置に複数の貫通孔11を形成することによって、図7(d)に示すインターポーザ基板1を作製できる。この時、貫通孔11は図6にも示すように配線層5で形成された配線パターンをその両側から挟み込むように形成する。   Finally, by forming a plurality of through holes 11 at predetermined positions on the substrate 9, the interposer substrate 1 shown in FIG. At this time, the through hole 11 is formed so as to sandwich the wiring pattern formed of the wiring layer 5 from both sides as shown in FIG.

なお、配線層5は、例えばアルミニウムなどによって形成されているが、銅のようにアルミニウムよりも導電率が高くて酸化しにくい金属を用いても良い。
また、貫通孔11が配線層5と異なる位置に形成されているが、図8に示すように配線層5の下の基板9に形成しても良い。空洞の貫通孔11の位置は、できる限り、配線層5の直下に近いところに形成することが好ましい。さらに、できる限り貫通孔の数を増やすか、もしくは穴径を大きくすることによって、インターポーザ基板1内での貫通孔の占有面積を増やすことが好ましい。
The wiring layer 5 is made of, for example, aluminum. However, a metal that has higher conductivity than aluminum and is difficult to oxidize, such as copper, may be used.
Further, although the through hole 11 is formed at a position different from the wiring layer 5, it may be formed in the substrate 9 below the wiring layer 5 as shown in FIG. The position of the hollow through hole 11 is preferably formed as close to the wiring layer 5 as possible. Furthermore, it is preferable to increase the occupied area of the through holes in the interposer substrate 1 by increasing the number of through holes as much as possible or increasing the hole diameter.

このように、基板に空洞の貫通孔11を形成することによって、インターポーザ全体として誘電正接が低くなる。もしくはインターポーザ全体として比抵抗が低くなる。さらに、信号ライン周辺に貫通ビアが存在するので、信号ラインから発生する電磁界に対して影響を与えることが可能となり、比抵抗の低いシリコンインターポーザ基板を用いる場合であっても、高速信号の伝送特性を困難にすることなく、微細化・狭ピッチ化に対応し、製造コストを低減できる半導体パッケージを提供できる。   Thus, by forming the hollow through hole 11 in the substrate, the dielectric loss tangent of the entire interposer is lowered. Alternatively, the specific resistance of the interposer as a whole is lowered. Furthermore, since there are through vias around the signal line, it is possible to influence the electromagnetic field generated from the signal line, and even when using a silicon interposer substrate with low specific resistance, high-speed signal transmission is possible. Without making the characteristics difficult, it is possible to provide a semiconductor package that can cope with miniaturization and narrow pitch and reduce the manufacturing cost.

また、貫通孔11は、貫通開口部としての空隙部により形成されているが、樹脂材料などが充填されていても良い。この場合の樹脂は、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、ポリイミド樹脂、フェノール樹脂などを使用できる。   Moreover, although the through-hole 11 is formed by the space | gap part as a through-opening part, you may be filled with the resin material etc. In this case, epoxy resin, acrylic resin, silicone resin, polyimide resin, phenol resin, or the like can be used as the resin.

また、貫通孔11の形状が円筒状であったが、これは図9に示すように円錐台状であってもよい。   Moreover, although the shape of the through-hole 11 was a cylindrical shape, this may be a truncated cone shape as shown in FIG.

本発明の種々の電子機器、特にデジタルAV機器や携帯用電子機器分野に有用である。   The present invention is useful in various electronic devices of the present invention, particularly in the field of digital AV devices and portable electronic devices.

1 インターポーザ基板
2 半導体チップ
3 電子部品実装構造体
4 インターポーザ基板
5 配線層
6 突起電極
7 電極端子
8 突起電極
9 半導体材料からなる基板
10 絶縁層
11 貫通孔
12,13 絶縁層
14 貫通電極
15 配線層
16 樹脂材料
17 電子部品実装構造体
18 ワイヤーボンド
DESCRIPTION OF SYMBOLS 1 Interposer substrate 2 Semiconductor chip 3 Electronic component mounting structure 4 Interposer substrate 5 Wiring layer 6 Protruding electrode 7 Electrode terminal 8 Protruding electrode 9 Substrate made of semiconductor material 10 Insulating layer 11 Through hole 12, 13 Insulating layer 14 Through electrode 15 Wiring layer 16 Resin material 17 Electronic component mounting structure 18 Wire bond

Claims (7)

半導体材料により構成された基板の一方の面に形成された配線層と、
一端が前記配線層に電気接続され他端が前記基板の他方の面に達する貫通電極と、
前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され絶縁材料が充填された貫通孔と、
基板と前記配線層の間、前記貫通孔と前記絶縁材料の間に介装された絶縁層を有する
インターポーザ基板。
A wiring layer formed on one surface of a substrate made of a semiconductor material;
A through electrode having one end electrically connected to the wiring layer and the other end reaching the other surface of the substrate;
A through hole filled with an insulating material that is formed at an interval in the length direction of the wiring layer on the substrate located under the wiring layer;
An interposer substrate having an insulating layer interposed between the substrate and the wiring layer, and between the through hole and the insulating material.
前記絶縁材料は、
前記半導体材料よりも比抵抗の大きな材料、または
前記半導体材料よりも比誘電率の低い材料、または
前記半導体材料よりも誘電正接の低い材料である
請求項1に記載のインターポーザ基板。
The insulating material is
2. The interposer substrate according to claim 1, wherein the interposer substrate is a material having a higher specific resistance than the semiconductor material, a material having a lower relative dielectric constant than the semiconductor material, or a material having a lower dielectric loss tangent than the semiconductor material.
インターポーザ基板と、前記インターポーザ基板に接続された半導体チップを有し、
前記インターポーザ基板は、
半導体材料により構成された基板の一方の面に形成され前記半導体チップが接続された配線層と、
一端が前記配線層に電気接続され他端が前記基板の他方の面に達する貫通電極と、
前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され絶縁材料が充填された貫通孔と、
基板と前記配線層の間、前記貫通孔と前記絶縁材料の間に介装された絶縁層を有する
電子部品実装構造体。
An interposer substrate and a semiconductor chip connected to the interposer substrate,
The interposer substrate is
A wiring layer formed on one surface of a substrate made of a semiconductor material and connected to the semiconductor chip;
A through electrode having one end electrically connected to the wiring layer and the other end reaching the other surface of the substrate;
A through hole filled with an insulating material that is formed at an interval in the length direction of the wiring layer on the substrate located under the wiring layer;
An electronic component mounting structure having an insulating layer interposed between a substrate and the wiring layer, and between the through hole and the insulating material.
半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、
前記配線層の近傍位置に前記配線層に沿って形成された貫通孔を有する
インターポーザ基板。
A wiring layer formed on one surface of a substrate made of a semiconductor material via an insulating layer;
An interposer substrate having a through hole formed along the wiring layer at a position near the wiring layer.
インターポーザ基板と、前記インターポーザ基板に接続された半導体チップを有し、
前記インターポーザ基板は、
半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、
前記配線層の近傍位置に前記配線層に沿って形成された貫通孔を有する
電子部品実装構造体。
An interposer substrate and a semiconductor chip connected to the interposer substrate,
The interposer substrate is
A wiring layer formed on one surface of a substrate made of a semiconductor material via an insulating layer;
An electronic component mounting structure having a through hole formed along the wiring layer at a position near the wiring layer.
半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、
前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され貫通孔を有する
インターポーザ基板。
A wiring layer formed on one surface of a substrate made of a semiconductor material via an insulating layer;
An interposer substrate having a through-hole formed in the substrate located below the wiring layer at intervals in the length direction of the wiring layer.
インターポーザ基板と、前記インターポーザ基板に接続された半導体チップを有し、
前記インターポーザ基板は、
半導体材料により構成された基板の一方の面に絶縁層を介して形成された配線層と、
前記配線層の下に位置する前記基板に前記配線層の長さ方向に間隔を空けて形成され貫通孔を有する
電子部品実装構造体。
An interposer substrate and a semiconductor chip connected to the interposer substrate,
The interposer substrate is
A wiring layer formed on one surface of a substrate made of a semiconductor material via an insulating layer;
An electronic component mounting structure having a through-hole formed in the substrate located below the wiring layer at intervals in the length direction of the wiring layer.
JP2010121060A 2010-05-27 2010-05-27 Interposer substrate and electronic component mounting structure using the same Pending JP2011249551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121060A JP2011249551A (en) 2010-05-27 2010-05-27 Interposer substrate and electronic component mounting structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121060A JP2011249551A (en) 2010-05-27 2010-05-27 Interposer substrate and electronic component mounting structure using the same

Publications (1)

Publication Number Publication Date
JP2011249551A true JP2011249551A (en) 2011-12-08

Family

ID=45414457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121060A Pending JP2011249551A (en) 2010-05-27 2010-05-27 Interposer substrate and electronic component mounting structure using the same

Country Status (1)

Country Link
JP (1) JP2011249551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826285A (en) * 2015-01-04 2016-08-03 华为技术有限公司 Chip and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826285A (en) * 2015-01-04 2016-08-03 华为技术有限公司 Chip and electronic device
US10141250B2 (en) 2015-01-04 2018-11-27 Huawei Technologies Co., Ltd. Chip and electronic device

Similar Documents

Publication Publication Date Title
KR101333801B1 (en) Flip chip substrate package assembly and process for making same
JP5500870B2 (en) Substrate with connection terminal and socket for electronic parts
TWI289416B (en) Wiring substrate and semiconductor device using the same
US7476965B2 (en) Electronic device with integrated heat distributor
JP5581933B2 (en) Package substrate, module using the same, and electric / electronic device
TWI525769B (en) Package substrate and manufacturing method thereof
US10187971B2 (en) Wiring board and method of manufacturing wiring board
US8723319B2 (en) BGA package structure and method for fabricating the same
US10129980B2 (en) Circuit board and electronic component device
US20100327452A1 (en) Mounting structure and method of manufacturing the same
US8829361B2 (en) Wiring board and mounting structure using the same
US8304665B2 (en) Package substrate having landless conductive traces
JP5153364B2 (en) Stacked semiconductor package and electronic device
JP2011249551A (en) Interposer substrate and electronic component mounting structure using the same
JP2007173862A (en) Structure comprising relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate, and substrate
US10332826B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2010519769A (en) High speed memory package
JP6236841B2 (en) Multilayer wiring board and manufacturing method thereof
JP2010021468A (en) Circuit substrate, and manufacturing method thereof
KR20140047877A (en) Printed circuit boards and manufacturing methods thereof
KR101326534B1 (en) Flip chip package
JP2004228446A (en) Printed circuit board
JP2005011908A (en) Relay substrate, relay substrate with semiconductor element, substrate with relay substrate, and structure composed of semiconductor element, relay substrate and substrate
JP2005039232A (en) Intermediate substrate with semiconductor element, substrate with intermediate substrate, and structure composed of semiconductor element, intermediate substrate, and substrate
KR20140114932A (en) Package using a hybrid substrate and manufacturing method thereof