JP2011249008A - Separator for lithium ion secondary battery - Google Patents

Separator for lithium ion secondary battery Download PDF

Info

Publication number
JP2011249008A
JP2011249008A JP2010117504A JP2010117504A JP2011249008A JP 2011249008 A JP2011249008 A JP 2011249008A JP 2010117504 A JP2010117504 A JP 2010117504A JP 2010117504 A JP2010117504 A JP 2010117504A JP 2011249008 A JP2011249008 A JP 2011249008A
Authority
JP
Japan
Prior art keywords
base material
material layer
fiber
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010117504A
Other languages
Japanese (ja)
Inventor
Masanobu Matsuoka
昌伸 松岡
Kenji Hyodo
建二 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2010117504A priority Critical patent/JP2011249008A/en
Publication of JP2011249008A publication Critical patent/JP2011249008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a lithium ion secondary battery which has no pinhole, improves interlayer detachability between a layer obtained by electrospinning and a base material layer, improves heat resistance and also improves internal resistance.SOLUTION: A separator for a lithium ion secondary battery has a base material layer including a synthetic resin short fiber and fibrillated lyocell fiber as essential components, and an ultra fine fiber layer obtained by electrospinning is stacked at least on one surface.

Description

本発明は、リチウムイオン二次電池、リチウムイオンポリマー二次電池等のリチウムイオン二次電池に好適に使用できるリチウムイオン二次電池用セパレータに関する。   The present invention relates to a separator for a lithium ion secondary battery that can be suitably used for a lithium ion secondary battery such as a lithium ion secondary battery or a lithium ion polymer secondary battery.

近年の携帯電子機器の普及及びその高性能化に伴い、高エネルギー密度を有する二次電池が望まれている。この種の電池として、有機電解液(非水電解液)を使用するリチウムイオン二次電池が注目されてきた。このリチウムイオン二次電池は、平均電圧として従来の二次電池であるアルカリ二次電池の約3倍である3.7V程度が得られることから高エネルギー密度となるが、アルカリ二次電池のように水系の電解液を用いることができないため、十分な耐酸化還元性を有する非水電解液を用いている。非水電解液は可燃性であるため、発火等の危険性があり、その使用において、安全性には細心の注意が払われている。発火等の危険に曝されるケースとしていくつか考えられるが、特に過充電が危険である。   With the recent spread of portable electronic devices and higher performance, secondary batteries having high energy density are desired. As this type of battery, a lithium ion secondary battery using an organic electrolyte (non-aqueous electrolyte) has attracted attention. This lithium ion secondary battery has an energy density of about 3.7 V, which is about three times that of an alkaline secondary battery, which is a conventional secondary battery, and thus has a high energy density. Since a water-based electrolyte cannot be used, a non-aqueous electrolyte having sufficient oxidation-reduction resistance is used. Since non-aqueous electrolytes are flammable, there is a risk of ignition and the like, and careful attention is paid to safety in their use. There are several possible cases of exposure to fire and other hazards, but overcharging is particularly dangerous.

過充電を防止するために、現状の非水系二次電池では定電圧・定電流充電が行われ、電池に精密なIC(保護回路)が装備されている。この保護回路にかかるコストは大きく、非水系二次電池をコスト高にしている要因にもなっている。   In order to prevent overcharging, current non-aqueous secondary batteries are charged at a constant voltage and a constant current, and the battery is equipped with a precise IC (protection circuit). The cost required for this protection circuit is large, and it is a factor that increases the cost of non-aqueous secondary batteries.

保護回路で過充電を防止する場合、当然保護回路がうまく作動しないことも想定され、本質的に安全であるとは言い難い。現状の非水系二次電池には、過充電時に保護回路が壊れ、過充電されたときに安全に電池を破壊する目的で、安全弁・PTC素子の装備、セパレータには熱ヒューズ機能を有する工夫がなされている。しかし、上記のような手段を装備していても、過充電される条件によっては、確実に過充電時の安全性が保証されているわけではなく、実際には非水系二次電池の発火事故は現在でも起こっている。   When overcharging is prevented by the protection circuit, it is naturally assumed that the protection circuit does not operate well, and it is difficult to say that it is intrinsically safe. The current non-aqueous secondary battery has a safety circuit / PTC element equipped and a separator with a thermal fuse function for the purpose of destroying the battery safely when overcharged. Has been made. However, even if equipped with the above-mentioned means, depending on the overcharge conditions, the safety during overcharge is not guaranteed, and in fact, non-aqueous secondary battery ignition accidents Is still happening.

セパレータとしては、ポリエチレン等のポリオレフィンからなるフィルム状の多孔質フィルムが多く使用されており、電池内部の温度が130℃近傍になった場合、溶融して微多孔を塞ぐことで、リチウムイオンの移動を防ぎ、電流を遮断させる熱ヒューズ機能(シャットダウン機能)があるが、何らかの状況により、さらに温度が上昇した場合、ポリオレフィン自体が溶融してショートし、熱暴走する可能性が示唆されている。そこで、現在、200℃近くの温度でも溶融及び収縮しない耐熱性セパレータが開発されている。   As the separator, a film-like porous film made of a polyolefin such as polyethylene is often used. When the temperature inside the battery reaches around 130 ° C., it melts and closes the micropores, thereby transferring lithium ions. Although there is a thermal fuse function (shutdown function) that cuts off the current and shuts off the current, it is suggested that if the temperature further increases due to some situation, the polyolefin itself melts and short-circuits, causing a thermal runaway. In view of this, a heat-resistant separator that does not melt and shrink even at temperatures close to 200 ° C. has been developed.

そこで、不織布や織布へのフィラー粒子の含有、樹脂の表面塗工による多孔膜の形成等の複合化にて、耐熱性を持たせる例が報告されている(例えば、特許文献1参照)。しかしながら、基材として用いられている不織布については、孔が大きく、表面の平滑性が低いため、表面塗工により複合化した際の表面のバラつきが大きく、また、フィラー粒子や樹脂等の複合化物の脱落を招きやすくなり、その結果、使用できる分野が限定されることや内部抵抗等の電池特性に劣るといった課題があった。   Then, the example which gives heat resistance by compounding, such as formation of the porous film by content of the filler particle in a nonwoven fabric or a woven fabric, and resin surface coating, is reported (for example, refer patent document 1). However, the non-woven fabric used as the base material has large pores and low surface smoothness, so the surface variation when combined by surface coating is large, and composites such as filler particles and resins As a result, there are problems such as limited fields that can be used and poor battery characteristics such as internal resistance.

また、静電紡糸法により紡糸された特定サイズの微細繊維からなる層を不織布のような網目構造シートの両面に積層する例が報告されている(例えば、特許文献2参照)。しかしながら、このようなセパレータでは、網目構造シートの繊維間の大き過ぎる空隙を十分に目止めするために、静電紡糸法による微細繊維層の目付を重くする必要があり、その結果、内部抵抗が悪くなるといった課題があった。さらに、静電紡糸法により紡糸された微細繊維層と網目シートが十分に結合できないため、層間強度が不足し、実使用に耐えないといった課題もあった。   In addition, there has been reported an example in which layers made of fine fibers of a specific size spun by an electrostatic spinning method are laminated on both surfaces of a network structure sheet such as a nonwoven fabric (for example, see Patent Document 2). However, in such a separator, it is necessary to increase the basis weight of the fine fiber layer by the electrospinning method in order to sufficiently seal the excessive gap between the fibers of the network structure sheet. There was a problem of getting worse. Furthermore, since the fine fiber layer spun by the electrostatic spinning method and the mesh sheet cannot be sufficiently bonded, there is a problem that the interlaminar strength is insufficient and cannot be used in actual use.

また、静電紡糸法による低目付の微細繊維層と湿式不織布層とを重ね合わせた後に、加温加圧して両層を接着一体化する例が報告されている(例えば、特許文献3参照)。この方法では、強度の面から、静電紡糸法による低目付の微細繊維層を安定して得ることができないだけでなく、微細繊維層と湿式不織布層とが層間剥離しやすいといった課題があった。   In addition, an example is described in which, after superimposing a low-weight fine fiber layer and a wet nonwoven fabric layer by an electrostatic spinning method, both layers are bonded and integrated by heating and pressurization (see, for example, Patent Document 3). . In this method, from the viewpoint of strength, there is a problem that not only the fine fiber layer with a low basis weight can be stably obtained by the electrostatic spinning method, but also the fine fiber layer and the wet nonwoven fabric layer are easily delaminated. .

特表2005−536857号公報JP 2005-536857 A 特開2006−92829号公報JP 2006-92829 A 国際公開第2006/049151号パンフレットInternational Publication No. 2006/049151 Pamphlet

本発明の課題は、ピンホールがなく、静電紡糸法により得られた層と基材層との層間剥離性が優れ、耐熱性に優れると共に内部抵抗に優れたリチウムイオン二次電池用セパレータを提供することにある。   An object of the present invention is to provide a lithium ion secondary battery separator having no pinholes, excellent delamination between the layer obtained by the electrospinning method and the base material layer, excellent heat resistance and excellent internal resistance. It is to provide.

本発明者らは、上記課題を解決するために鋭意研究した結果、合成樹脂短繊維とフィブリル化したリヨセル繊維とを必須成分として含有した基材層を有し、静電紡糸法により得た超極細繊維層が直接該基材層上に堆積して積層されてなることを特徴とするリチウムイオン二次電池用セパレータを見出した。   As a result of diligent research to solve the above-mentioned problems, the present inventors have a base material layer containing essential synthetic resin short fibers and fibrillated lyocell fibers as an essential component, and obtained by an ultraspinning method. The inventors have found a lithium ion secondary battery separator characterized in that an ultrafine fiber layer is directly deposited and laminated on the base material layer.

本発明のリチウムイオン二次電池用セパレータは、合成樹脂短繊維とフィブリル化したリヨセル繊維とを必須成分として含有した耐熱性に優れた基材層を有し、該基材層の少なくとも片面に、静電紡糸法により得られた超極細繊維層が積層されていることを特徴とする。基材層では、フィブリル化したリヨセル繊維が合成樹脂短繊維と絡み合い、適度な空隙を有することで、静電紡糸法により得られた極細繊維が、基材層の空隙内のフィブリル化したリヨセル繊維と絡み合うことができ、基材層と超極細繊維層との層間剥離が起きにくくなる。さらに、基材層では、フィブリル化したリヨセル繊維が合成樹脂短繊維と絡み合い、緻密な構造となることで、静電紡糸法により得られた超極細繊維層が薄膜であっても内部短絡を生じることがないので、結果、内部抵抗に優れる特徴を有する。すなわち、本発明のリチウムイオン二次電池用セパレータでは、耐熱性に優れると共に、静電紡糸法により得られた超極細繊維層と基材層との層間強度が強く、内部抵抗に優れる特徴を有する。   The separator for a lithium ion secondary battery of the present invention has a base layer excellent in heat resistance containing a synthetic resin short fiber and a fibrillated lyocell fiber as essential components, and on at least one side of the base layer, It is characterized in that super extra fine fiber layers obtained by an electrospinning method are laminated. In the base material layer, the fibrillated lyocell fibers are intertwined with the synthetic resin short fibers and have appropriate voids, so that the ultrafine fibers obtained by the electrospinning method are fibrillated lyocell fibers in the voids of the base material layer. And the delamination between the base material layer and the ultrafine fiber layer is less likely to occur. Furthermore, in the base material layer, the fibrillated lyocell fiber is entangled with the synthetic resin short fiber to form a dense structure, thereby causing an internal short circuit even if the ultrafine fiber layer obtained by the electrospinning method is a thin film. As a result, it has a feature of excellent internal resistance. In other words, the lithium ion secondary battery separator of the present invention has excellent heat resistance, strong interlaminar strength between the ultrafine fiber layer obtained by the electrostatic spinning method and the base material layer, and excellent internal resistance. .

以下、本発明のリチウムイオン二次電池用セパレータについて詳説する。本発明のリチウムイオン二次電池用セパレータは、合成樹脂短繊維とフィブリル化したリヨセル繊維とを必須成分として含有した基材層と、該基材層の少なくとも片面に、静電紡糸法により得られた超極細繊維層とを有する積層不織布からなる。基材層に使われる合成樹脂短繊維を構成する樹脂としては、ポリエステル系樹脂、ポリ酢酸ビニル系樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリビニルエーテル系樹脂、ポリビニルケトン系樹脂、ポリエーテル系樹脂、ポリビニルアルコール系樹脂、ジエン系樹脂、ポリウレタン系樹脂、フェノール系樹脂、メラミン系樹脂、フラン系樹脂、尿素系樹脂、アニリン系樹脂、不飽和ポリエステル系樹脂、アルキド樹脂、フッ素系樹脂、シリコーン系樹脂等が挙げられる。このうち、耐熱性に優れるポリエステル系樹脂、アクリル系樹脂からなる繊維を使用することが好ましい。   Hereinafter, the separator for a lithium ion secondary battery of the present invention will be described in detail. The separator for a lithium ion secondary battery of the present invention is obtained by an electrospinning method on at least one surface of a base material layer containing synthetic resin short fibers and fibrillated lyocell fibers as essential components. It consists of a laminated nonwoven fabric having a super extra fine fiber layer. The resins that make up the synthetic resin short fibers used in the base material layer include polyester resins, polyvinyl acetate resins, ethylene-vinyl acetate copolymer resins, polyamide resins, acrylic resins, polyolefin resins, and polychlorinated resins. Vinyl resin, polyvinylidene chloride resin, polyvinyl ether resin, polyvinyl ketone resin, polyether resin, polyvinyl alcohol resin, diene resin, polyurethane resin, phenol resin, melamine resin, furan resin, Examples include urea resins, aniline resins, unsaturated polyester resins, alkyd resins, fluorine resins, and silicone resins. Among these, it is preferable to use the fiber which consists of polyester-type resin and acrylic resin excellent in heat resistance.

ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート系、ポリブチレンテレフタレート系、ポリトリメチレンテレフタレート系、ポリエチレンナフタレート系、ポリブチレンナフタレート系、ポリエチレンイソフタレート系等が挙げられる。これらの中でも、リチウムイオン二次電池用セパレータに使用する場合には、耐熱性に優れているポリエチレンテレフタレート系が好ましい。   Examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and polyethylene isophthalate. Among these, when used for a separator for a lithium ion secondary battery, a polyethylene terephthalate system having excellent heat resistance is preferable.

アクリル系樹脂としては、アクリロニトリル100%の重合体からなるもの、アクリロニトリルに対して、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル等の(メタ)アクリル酸誘導体、酢酸ビニル等を共重合させたもの等が挙げられる。   Acrylic resin is made of 100% acrylonitrile polymer, and acrylonitrile is copolymerized with (meth) acrylic acid derivatives such as acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, vinyl acetate, etc. And the like.

合成樹脂短繊維は、単一の樹脂からなる繊維(単繊維)であっても良いし、2種以上の樹脂からなる繊維(複合繊維)であっても良い。また、本発明のリチウムイオン二次電池用セパレータに含まれる合成樹脂短繊維は、1種でも良いし、2種類以上を組み合わせて使用しても良い。   The synthetic resin short fiber may be a fiber (single fiber) made of a single resin, or may be a fiber (composite fiber) made of two or more kinds of resins. Moreover, the synthetic resin short fiber contained in the separator for lithium ion secondary batteries of the present invention may be one kind or a combination of two or more kinds.

合成樹脂短繊維として、バインダーとして機能する熱融着性短繊維を使用しても良い。熱融着性短繊維は、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型の複合繊維または単繊維等が挙げられるが、均一性を得るという点から、特に単一成分タイプであることが好ましく、特に、未延伸ポリエステル系短繊維を使用することが好ましい。また、均一でかつ高強度を得るという点から、芯鞘型ポリエステル系短繊維を使用することが好ましい。   As the synthetic resin short fiber, a heat-fusible short fiber that functions as a binder may be used. Examples of the heat-fusible short fiber include a core-sheath type, an eccentric type, a side-by-side type, a sea-island type, an orange type, a multi-bimetal type composite fiber, or a single fiber. One-component type is preferable, and it is particularly preferable to use unstretched polyester short fibers. Moreover, it is preferable to use a core-sheath-type polyester short fiber from the point of obtaining uniform and high strength.

合成樹脂短繊維の繊度は、0.007〜0.8dtexが好ましく、0.02〜0.6dtexがより好ましく、0.04〜0.3dtexがさらに好ましい。合成樹脂短繊維の繊度が0.8dtexを超えた場合、厚さ方向における繊維本数が少なくなるため、必要とされる緻密性が確保できなくなる場合がある。合成樹脂短繊維の繊度が0.007dtex未満の場合、繊維の安定製造が困難になる場合がある。   The fineness of the synthetic resin short fibers is preferably 0.007 to 0.8 dtex, more preferably 0.02 to 0.6 dtex, and further preferably 0.04 to 0.3 dtex. When the fineness of the synthetic resin short fibers exceeds 0.8 dtex, the number of fibers in the thickness direction decreases, and thus the required denseness may not be ensured. When the fineness of the synthetic resin short fiber is less than 0.007 dtex, stable fiber production may be difficult.

合成樹脂短繊維の繊維長としては、1mm以上7mm以下が好ましく、1mm以上5mm以下がより好ましく、1mm以上3mm以下がさらに好ましい。繊維長が7mmを超えた場合、地合不良となることがある。一方、繊維長が1mm未満の場合には、基材層の機械的強度が低くなって、静電紡糸法により得た超極細繊維層を積層する際に基材層が破損する場合がある。   The fiber length of the synthetic resin short fiber is preferably 1 mm or more and 7 mm or less, more preferably 1 mm or more and 5 mm or less, and further preferably 1 mm or more and 3 mm or less. When the fiber length exceeds 7 mm, the formation may be poor. On the other hand, when the fiber length is less than 1 mm, the mechanical strength of the base material layer becomes low, and the base material layer may be damaged when the super extra fine fiber layer obtained by the electrostatic spinning method is laminated.

フィブリル化したリヨセル繊維の「リヨセル」とは、ISO規格及び日本のJIS規格に定める用語で「セルロース誘導体を経ずに、直接、有機溶剤に溶解させて紡糸して得られるセルロース繊維」のことである。   “Lyocell” of fibrillated lyocell fiber is a term defined in ISO standards and Japanese JIS standards, and refers to “cellulose fibers obtained by spinning directly in an organic solvent without spinning through cellulose derivatives”. is there.

リヨセル繊維は、通常のパルプ繊維と同様に、ビーター、PFIミル、シングルディスクリファイナー(SDR)、ダブルディスクリファイナー(DDR)、また、顔料等の分散や粉砕に使用するボールミル、ダイノミル等の叩解・分散設備でフィブリル化が可能である。これらの分散設備を用いて、最適にフィブリル化したリヨセル繊維を用いることが望ましい。   Lyocell fibers are beater and dispersion equipment such as beaters, PFI mills, single disc refiners (SDR), double disc refiners (DDR), ball mills and dyno mills used to disperse and pulverize pigments, etc. Can be fibrillated. It is desirable to use lyocell fibers that are optimally fibrillated using these dispersing facilities.

本発明のリチウムイオン二次電池用セパレータの基材層に用いるフィブリル化したリヨセル繊維は、変法濾水度が0〜250mlであることが好ましく、0〜160mlがさらに好ましい。変法濾水度が250mlを超える場合は、微細化処理が不十分であり、繊維の分割が十分に進まず、繊維径が太いまま残る割合が多くなるため、基材層に大きな貫通孔ができ、静電紡糸法により得られた超極細繊維層が裏抜けしてしまうことがある。さらに、本発明のリチウムイオン二次電池用セパレータの基材層に用いるフィブリル化したリヨセル繊維の長さ加重平均繊維長は、0.20〜2.00mmがより好ましく、0.40〜1.60mmがさらに好ましい。長さ加重平均繊維長が0.20mm未満だと、基材層からフィブリル化したリヨセル繊維が脱落することや毛羽立ちにより静電紡糸法により得られた超極細繊維層に破れが生じることがあり、一方、2.00mmより長いと、基材層の繊維が絡まりやすく、地合むらや厚みむらが生じることがある。   The fibrillated lyocell fiber used for the base material layer of the lithium ion secondary battery separator of the present invention preferably has a modified freeness of 0 to 250 ml, more preferably 0 to 160 ml. When the modified freeness exceeds 250 ml, the refinement process is insufficient, the fiber division does not proceed sufficiently, and the ratio of the fiber diameter remaining large increases, so that a large through hole is formed in the base material layer. In some cases, the ultra-fine fiber layer obtained by the electrospinning method may come through. Furthermore, the length weighted average fiber length of the fibrillated lyocell fiber used for the base material layer of the separator for a lithium ion secondary battery of the present invention is more preferably 0.20 to 2.00 mm, and 0.40 to 1.60 mm. Is more preferable. When the length-weighted average fiber length is less than 0.20 mm, the fibrillar lyocell fiber may fall off from the base material layer, and the ultrafine fiber layer obtained by the electrostatic spinning method may be broken due to fuzzing. On the other hand, if it is longer than 2.00 mm, the fibers of the base material layer tend to be entangled, and unevenness in the formation and unevenness in thickness may occur.

本発明における変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網(PULP AND PAPER RESEARCH INSTITUTE OF CANADA製)を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度を意味し、特に断りのない限り、単に「変法濾水度」と表記する。本発明における溶剤紡糸セルロース繊維の長さ加重平均繊維長は、繊維にレーザー光を当てて得られる偏向特性を利用して求めることができ、市販の繊維長測定器を用いて測定することができる。   The modified freeness in the present invention is an 80-mesh wire mesh (PULP AND PAPER RESEARCH INSTITUTE OF CANADA) having a wire diameter of 0.14 mm and an aperture of 0.18 mm as a sieve plate and a sample concentration of 0.1%. Except for the above, it means the modified freeness measured in accordance with JIS P8121, and is simply expressed as “modified freeness” unless otherwise specified. The length-weighted average fiber length of the solvent-spun cellulose fiber in the present invention can be obtained by using a deflection characteristic obtained by applying laser light to the fiber, and can be measured using a commercially available fiber length measuring device. .

本発明のリチウムイオン二次電池用セパレータの基材層において、合成樹脂短繊維とフィブリル化したリヨセル繊維との含有質量比率は、90/10〜20/80が好ましく、80/20〜30/70がより好ましく、70/30〜40/60がさらに好ましい。フィブリル化したリヨセル繊維の含有比率が10質量%未満の場合、十分な耐熱性が得られないことや、緻密性や均一性が向上しないことがある。また、フィブリル化したリヨセル繊維の含有比率が80質量%を超えると、静電紡糸法により得た超極細繊維層を積層する際に基材が破損することがある。   In the base material layer of the separator for a lithium ion secondary battery of the present invention, the content mass ratio between the synthetic resin short fibers and the fibrillated lyocell fibers is preferably 90/10 to 20/80, and 80/20 to 30/70. Is more preferable, and 70/30 to 40/60 is more preferable. When the content ratio of the fibrillated lyocell fiber is less than 10% by mass, sufficient heat resistance may not be obtained, and denseness and uniformity may not be improved. Moreover, when the content ratio of the fibrillated lyocell fiber exceeds 80% by mass, the base material may be damaged when the super fine fiber layer obtained by the electrostatic spinning method is laminated.

なお、本発明のリチウムイオン二次電池用セパレータの基材層は、合成樹脂短繊維と変法濾水度が0〜250mlで、且つ、長さ加重平均繊維長が0.20〜2.00mmのフィブリル化したリヨセル繊維以外の繊維を含有しても良い。例えば、天然セルロース繊維、天然セルロース繊維のパルプ化物やフィブリル化物、溶剤紡糸セルロースの短繊維、合成樹脂からなるフィブリッド、パルプ化物、フィブリル化物、無機繊維、変法濾水度が250ml超のフィブリル化したリヨセル繊維、長さ加重平均繊維長が0.20mm未満または2.00mm超のフィブリル化したリヨセル繊維が挙げられる。天然セルロース繊維のパルプ化物やフィブリル化物の変法濾水度は0〜400mlが好ましい。無機繊維としては、ガラス、アルミナ、シリカ、セラミックス、ロックウールが挙げられる。無機繊維を含有する場合は、リチウムイオン二次電池用セパレータの耐熱寸法安定性や突刺強度が向上するため好ましい。   The base material layer of the lithium ion secondary battery separator of the present invention has a synthetic resin short fiber and a modified freeness of 0 to 250 ml, and a length weighted average fiber length of 0.20 to 2.00 mm. Fibers other than the fibrillated lyocell fibers may be contained. For example, natural cellulose fibers, pulped and fibrillated natural cellulose fibers, short fibers of solvent-spun cellulose, fibrils made of synthetic resin, pulped products, fibrillated products, inorganic fibers, modified fibrillation with a freeness of more than 250 ml Examples include lyocell fibers and fibrillated lyocell fibers having a length-weighted average fiber length of less than 0.20 mm or more than 2.00 mm. The modified freeness of the natural cellulose fiber pulped product or fibrillated product is preferably 0 to 400 ml. Examples of the inorganic fiber include glass, alumina, silica, ceramics, and rock wool. When inorganic fiber is contained, it is preferable because the heat-resistant dimensional stability and puncture strength of the lithium ion secondary battery separator are improved.

基材層の目付は、3.0〜30.0g/mが好ましく、5.0〜20.0g/mがより好ましく、6.0〜16.0g/mがさらに好ましい。30.0g/mを超えると、基材だけでセパレータの大半を占めることになり、静電紡糸法により得た超極細繊維層との積層化による効果を得られ難くなり、3.0g/m未満であると、十分な強度を得ることが難しくなり、超極細繊維層との積層化後の表面に大きなバラつきが発生しやすくなることがある。なお、目付はJIS P 8124(紙及び板紙−坪量測定法)に規定された方法に基づく坪量を意味する。 Weight per unit area of the base material layer is preferably 3.0~30.0g / m 2, more preferably 5.0~20.0g / m 2, more preferably 6.0~16.0g / m 2. If it exceeds 30.0 g / m 2 , the base material alone occupies most of the separator, and it becomes difficult to obtain the effect of lamination with the ultrafine fiber layer obtained by the electrospinning method. If it is less than m 2 , it will be difficult to obtain sufficient strength, and a large variation may easily occur on the surface after lamination with the ultrafine fiber layer. The basis weight means the basis weight based on the method defined in JIS P 8124 (paper and paperboard—basis weight measurement method).

本発明のリチウムイオン二次電池用セパレータに用いられる静電紡糸法とは、原料ポリマーを溶解または溶融したポリマー原液に高電圧を印加すると、チャージしたポリマー原液が分裂して、アースをとったターゲットに極細繊維が堆積され、超極細繊維層が形成されることを利用した方法である。有機溶媒溶液をポリマー原液として用いた場合には、有機溶媒は繊維形成と微細化の段階で容易に蒸発して除かれて、また、溶融液をポリマー原液として用いた場合には、溶融温度以下に冷却されて、ポリマー原液供給部より、一定間隔で離れて設置された捕集ベルトまたは捕集シート上に配置した基材層上に堆積する。ポリマー原液を紡糸空間へ供給するポリマー原液供給部としては、一般的な紡糸ノズルを複数使用する方法を採用しても良いし、紡糸ノズルを使用しない方法を採用しても良い。   The electrostatic spinning method used for the separator for the lithium ion secondary battery of the present invention is a target in which, when a high voltage is applied to a polymer stock solution in which a raw material polymer is dissolved or melted, the charged polymer stock solution is split and grounded. This is a method utilizing the fact that ultrafine fibers are deposited on an ultrafine fiber layer. When an organic solvent solution is used as a polymer stock solution, the organic solvent is easily evaporated and removed at the stage of fiber formation and refinement, and when a melt is used as a polymer stock solution, it is below the melting temperature. And is deposited on a base material layer disposed on a collection belt or a collection sheet installed at a predetermined interval from the polymer stock solution supply unit. As the polymer stock solution supply section for supplying the polymer stock solution to the spinning space, a method using a plurality of general spinning nozzles may be employed, or a method using no spinning nozzle may be employed.

静電紡糸法により得られる極細繊維のポリマーとしては、溶液化可能か、溶融化可能なものであれば特に限定されず、使用可能である。このようなポリマーとして、例えば、ポリビニルアルコール系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、フッ素系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、セルロース、酢酸セルロース、ポリ塩化ビニル系樹脂及びポリ乳酸系樹脂などの溶融または適正溶媒に溶解可能な様々なポリマーが適用可能であり、これらの共重合体及び混合物なども使用可能である。なお、前記ポリマー原液に合成樹脂などのエマルジョンまたは有機物若しくは無機物の粉末を混合して用いることもできる。これらの中でも、リチウムイオン二次電池用セパレータに使用する場合には、耐熱性に優れているポリビニルアルコール系樹脂、アクリル系樹脂、フッ素系樹脂、ポリイミド系樹脂、ポリスチレン系樹脂、セルロース、ポリアミド系樹脂及びポリエステル系樹脂が好ましく、さらには、ポリビニルアルコール系樹脂、アクリル系樹脂、フッ素系樹脂が好ましい。   The polymer of the ultrafine fiber obtained by the electrospinning method is not particularly limited as long as it can be made into a solution or meltable, and can be used. Examples of such polymers include polyvinyl alcohol resins, acrylic resins, polyimide resins, polyamide resins, fluorine resins, polystyrene resins, polyester resins, cellulose, cellulose acetate, polyvinyl chloride resins, and polylactic acid. Various polymers that can be melted or dissolved in an appropriate solvent such as a resin can be used, and copolymers and mixtures thereof can also be used. The polymer stock solution may be mixed with an emulsion such as a synthetic resin or an organic or inorganic powder. Among these, when used for a separator for a lithium ion secondary battery, a polyvinyl alcohol resin, an acrylic resin, a fluorine resin, a polyimide resin, a polystyrene resin, a cellulose, and a polyamide resin that are excellent in heat resistance. And polyester resins are preferred, and polyvinyl alcohol resins, acrylic resins, and fluorine resins are more preferred.

上記ポリマーを溶液化させるときの溶媒としては、特に限定されるものではないが、例えば、(a)揮発性の高いアセトン、エタノール、メタノール、イソプロパノール、クロロホルム、トルエン、テトラヒドロフラン、水、ベンゼン、ベンジルアルコール、1,プロパノール、4−ジオキサン、四塩化炭素、シクロヘキサン、シクロヘキサノン、塩化メチレン、フェノール、ピリジン、トリクロロエタン、酢酸など、(b)揮発性が相対的に低いN,N−ジメチルホルムアミド、ジメチルスルホキシド、N,N−ジメチルアセトアミド、1−メチル−2−ピロリドン、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、アセトニトリル、ジエチルエーテル、ジエチルカーボネート、1,2−ジメトキシエタン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジオキソラン、エチルメチルカーボネート、メチルプロピオネート、2−メチルテトラヒドロフランなどがある。なお、揮発性の高い溶媒と相対的に低い揮発性を有する溶媒とを混合した混合溶媒を用いれば、溶媒の揮発性を増加させることやポリマー原液の粘度を低下させることができ、ポリマー原液供給部材からの吐出量を増加させて、静電紡糸法による微細繊維層の生産性を向上させることができる。   The solvent for dissolving the polymer is not particularly limited. For example, (a) highly volatile acetone, ethanol, methanol, isopropanol, chloroform, toluene, tetrahydrofuran, water, benzene, benzyl alcohol , 1, propanol, 4-dioxane, carbon tetrachloride, cyclohexane, cyclohexanone, methylene chloride, phenol, pyridine, trichloroethane, acetic acid, etc. (b) N, N-dimethylformamide, dimethyl sulfoxide, N , N-dimethylacetamide, 1-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, dimethyl carbonate, acetonitrile, diethyl ether, diethyl carbonate, 1,2-dimethoxyethane, 1, - dimethyl-2-imidazolidinone, 1,3-dioxolane, ethyl methyl carbonate, methyl propionate, and the like 2-methyltetrahydrofuran. If a mixed solvent in which a highly volatile solvent and a solvent having relatively low volatility are mixed is used, the volatility of the solvent can be increased and the viscosity of the polymer stock solution can be reduced. By increasing the discharge amount from the member, the productivity of the fine fiber layer by the electrostatic spinning method can be improved.

超極細繊維層の目付は、0.1〜15.0g/mが好ましく、0.3〜10.0g/mがより好ましく、0.3〜8.0g/mがさらに好ましい。15.0g/mを超えると、超極細繊維層の比率が高くなり、内部抵抗が悪くなることがあり、0.1g/m未満であると、基材層の空隙を埋めきれずに、短絡が発生しやすくなることがある。 Basis weight of the microfiber layer is preferably 0.1~15.0g / m 2, more preferably 0.3~10.0g / m 2, more preferably 0.3~8.0g / m 2. If it exceeds 15.0 g / m 2 , the ratio of the ultrafine fiber layer is increased, and the internal resistance may be deteriorated. If it is less than 0.1 g / m 2 , the gap in the base material layer cannot be filled. Short circuit may occur easily.

本発明のリチウムイオン二次電池用セパレータの基材層と超極細繊維層とを積層する方法は、特に限定するものではないが、静電紡糸法により得た超極細繊維層を、直接、基材層シート上に堆積させて積層する方法が好ましい。一旦、静電紡糸法により得た極細繊維からなるシートを製造し、この超極細繊維層シートと基材層シートとを接着剤を介して貼り合わせる方法や、超極細繊維層または基材層に熱溶融性樹脂からなる繊維を使用し、両層を熱溶融性樹脂の融点以上で加熱加圧するなどして積層する方法もあるが、これらの積層方法では、基材層と超極細繊維層との剥離強度に劣ることがある。   The method for laminating the base material layer and the ultrafine fiber layer of the separator for the lithium ion secondary battery of the present invention is not particularly limited, but the ultrafine fiber layer obtained by the electrostatic spinning method is directly bonded to the substrate. A method of depositing and laminating on the material layer sheet is preferable. Once a sheet made of ultrafine fibers obtained by an electrospinning method is manufactured, the superfine fiber layer sheet and the base material layer sheet are bonded together with an adhesive, or the super fine fiber layer or the base material layer There is also a method of using fibers made of a heat-melting resin and laminating both layers by heating and pressurizing at a temperature equal to or higher than the melting point of the heat-melting resin, but in these laminating methods, the base material layer, the ultrafine fiber layer, The peel strength may be inferior.

本発明のリチウムイオン二次電池用セパレータの厚みは、特に限定されるものではないが、3〜50μmが好ましく、6〜40μmがより好ましく、8〜30μmがさらに好ましい。50μmを超えると膜厚が厚くなりすぎてしまい、内部抵抗が劣ることがあり、3μm未満であると、セパレータの強度が低くなりすぎて、電池に組み込む際に破損することがある。なお、厚みはJIS B 7502に規定された方法により測定した値、つまり、5N荷重時の外側マイクロメーターにより測定された値を意味する。また、本発明のリチウムイオン二次電池用セパレータの目付は、3.1〜40.0g/mが好ましく、5〜30.0g/mがより好ましく、6〜20g/mがさらに好ましい。40.0g/mを超えると、膜厚が厚くなりすぎることや、緻密性が密になりすぎ、内部抵抗が悪くなることがあり、3.1g/m未満であると、十分な強度を得ることが難しくなり、短絡も発生しやすくなり、セパレータとしての実使用に適しないことがある。 Although the thickness of the separator for lithium ion secondary batteries of this invention is not specifically limited, 3-50 micrometers is preferable, 6-40 micrometers is more preferable, 8-30 micrometers is further more preferable. If it exceeds 50 μm, the film thickness becomes too thick and the internal resistance may be inferior, and if it is less than 3 μm, the strength of the separator becomes too low and may be damaged when assembled in a battery. In addition, thickness means the value measured by the method prescribed | regulated to JISB7502, ie, the value measured with the outside micrometer at the time of 5N load. Also, the basis weight of the separator for lithium ion secondary battery of the present invention is preferably 3.1~40.0g / m 2, more preferably 5~30.0g / m 2, more preferably 6~20g / m 2 . If it exceeds 40.0 g / m 2 , the film thickness becomes too thick, the denseness becomes too dense, and the internal resistance may deteriorate, and if it is less than 3.1 g / m 2 , sufficient strength is obtained. It is difficult to obtain a short circuit, and a short circuit is likely to occur, which may not be suitable for actual use as a separator.

本発明のリチウムイオン二次電池用セパレータにおいて、基材層となるシートの製造方法としては、繊維ウェブを形成し、繊維ウェブ内の繊維を接着・融着・絡合させる方法を用いることができる。得られた不織布は、そのまま使用しても良いし、複数枚からなる積層体として使用することもできる。繊維ウェブの製造方法としては、例えば、カード法、エアレイ法等の乾式法、抄紙法等の湿式法、スパンボンド法、メルトブロー法等がある。このうち、湿式法によって得られるウェブは、均一かつ緻密であり、リチウムイオン二次電池用セパレータとして好適に用いることができる。さらに、複数層構造を有する基材層を製造する場合、湿式法による抄き合わせ法を用いることにより、各複数層間での剥離がない一体となった基材層を製造することができる。湿式法による抄き合わせ法とは、繊維を水中に分散して均一な抄紙スラリーとし、この抄紙スラリーを円網、長網、傾斜式等のワイヤーを少なくとも2つ以上を有する抄紙機を用いて、繊維ウェブを得る方法である。   In the separator for a lithium ion secondary battery of the present invention, as a method for producing a sheet serving as a base material layer, a method of forming a fiber web and bonding, fusing, and entanglement of fibers in the fiber web can be used. . The obtained nonwoven fabric may be used as it is or may be used as a laminate comprising a plurality of sheets. Examples of the method for producing the fiber web include a dry method such as a card method and an air array method, a wet method such as a papermaking method, a spunbond method, and a melt blow method. Among these, the web obtained by a wet method is uniform and dense, and can be suitably used as a separator for a lithium ion secondary battery. Furthermore, when manufacturing a base material layer having a multi-layer structure, an integrated base material layer without peeling between each of the plurality of layers can be manufactured by using a wet-making method. Wet-making method is a papermaking slurry in which fibers are dispersed in water to form a uniform papermaking slurry, and this papermaking slurry is made using a papermaking machine having at least two wires such as a circular net, a long net, and an inclined type. This is a method for obtaining a fibrous web.

本発明のリチウムイオン二次電池用セパレータには更なる複合化を行っても良く、この複合化としては、特に限定されるものではないが、多孔質フィルムとの積層、フィラー粒子の含浸または表面塗工、ポリマー樹脂の含浸または表面塗工等が挙げられる。   The lithium ion secondary battery separator of the present invention may be further combined, and the combination is not particularly limited, but is laminated with a porous film, impregnated with filler particles, or surface. Examples thereof include coating, impregnation with a polymer resin, and surface coating.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は、断りのない限り、すべて質量によるものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example. All parts and percentages in the examples are based on mass unless otherwise specified.

〔フィブリル化リヨセル繊維の作製〕
ダブルディスクリファイナーを用いて、フィブリル化していないリヨセル単繊維(繊維径15μm、繊維長4mm、コートルズ社製)を50回繰り返し処理して、フィブリル化リヨセル繊維を得た。フィブリル化リヨセル繊維の変法濾水度は100ml、長さ加重平均繊維長は0.78mmであった。なお、変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1%にした以外はJIS P8121に準拠して測定した変法濾水度を意味する。また、本発明におけるフィブリル化リヨセル繊維の長さ加重平均繊維長は、繊維にレーザー光を当てて得られる偏向特性を利用して求めた数値であり、市販の繊維長測定器を用いて測定することができる。
[Production of fibrillated lyocell fiber]
Using a double disc refiner, fibrillated lyocell fibers (fiber diameter 15 μm, fiber length 4 mm, manufactured by Cauters) were repeatedly treated 50 times to obtain fibrillated lyocell fibers. The modified freeness of the fibrillated lyocell fiber was 100 ml, and the length weighted average fiber length was 0.78 mm. The modified freeness is a variable measured in accordance with JIS P8121, except that an 80-mesh wire mesh having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as the sieve plate, and the sample concentration is 0.1%. It means the freeness of the law. Further, the length-weighted average fiber length of the fibrillated lyocell fiber in the present invention is a numerical value obtained by utilizing a deflection characteristic obtained by applying a laser beam to the fiber, and is measured using a commercially available fiber length measuring instrument. be able to.

〔ポリマー原液Aの調製〕
ポリビニルアルコール(重合度1,900、ケン化度94.0〜96.0モル%)を純水に溶かして濃度10質量%の静電紡糸用ポリマー原液Bを調製した。
〔ポリマー原液Bの調製〕
ポリフッ化ビニリデン(質量平均分子量300,000)をN,N−ジメチルホルムアルデヒドに溶かして、濃度10質量%の静電紡糸用ポリマー原液Aを調製した。
〔ポリマー原液Cの調製〕
ホモポリアクリルニトリル(質量平均分子量350,000)をジメチルホルムアルデヒドに溶かして、濃度10質量%の静電紡糸用ポリマー原液Cを調製した。
[Preparation of polymer stock solution A]
Polyvinyl alcohol (polymerization degree 1,900, saponification degree 94.0-96.0 mol%) was dissolved in pure water to prepare a polymer stock solution B for electrospinning having a concentration of 10% by mass.
[Preparation of polymer stock solution B]
Polyvinylidene fluoride (mass average molecular weight 300,000) was dissolved in N, N-dimethylformaldehyde to prepare a polymer stock solution A for electrospinning having a concentration of 10% by mass.
[Preparation of polymer stock solution C]
Homopolyacrylonitrile (mass average molecular weight 350,000) was dissolved in dimethylformaldehyde to prepare a polymer stock solution C for electrospinning having a concentration of 10% by mass.

(実施例1)
基材層(1)用として、繊度0.1dtex、繊維長3mmの配向結晶化させたポリエチレンテレフタレート(PET)系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.1g/m、厚さ25μmの不織布を製造し、基材層(1)とした。次に、基材層(1)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(1)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが約4μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行い、さらにスーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付13.2g/m、厚さ21μm)とした。
Example 1
For the base material layer (1), 20 parts of oriented and crystallized polyethylene terephthalate (PET) short fibers with a fineness of 0.1 dtex and fiber length of 3 mm, unstretched PET heat fusion with a fineness of 0.2 dtex and fiber length of 3 mm 40 parts of woven short fiber and 40 parts of fibrillated lyocell fiber prepared by the above method are mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) is prepared under stirring by an agitator did. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 25 μm was produced and used as a base material layer (1). Next, the polymer stock solution A is sprayed on one side of the base material layer (1) using an electrostatic spinning method (applied voltage: 12 kV, distance of 15 cm between the spinneret and the base material layer (1)), and the thickness is about 4 μm. The ultrafine fiber layer of was formed. In this state, since the crystallinity is low and soluble in water, heat treatment (150 ° C., 3 min) is then performed, supercalender treatment is further performed, and a lithium ion secondary battery separator (weight is 13.2 g / m). 2 and a thickness of 21 μm).

(実施例2)
基材層(1)用として、繊度0.1dtex、繊維長3mmの配向結晶化させたポリエチレンテレフタレート(PET)系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.1g/m、厚さ25μmの不織布を製造し、基材層(1)とした。次に、基材層(1)の片面に、静電紡糸法(印加電圧15kV、紡糸口と基材層(1)間の距離15cm)を用いてポリマー原液Bを噴霧し、厚みが約3μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.5g/m、厚さ20μm)とした。
(Example 2)
For the base material layer (1), 20 parts of oriented and crystallized polyethylene terephthalate (PET) short fibers with a fineness of 0.1 dtex and fiber length of 3 mm, unstretched PET heat fusion with a fineness of 0.2 dtex and fiber length of 3 mm 40 parts of woven short fiber and 40 parts of fibrillated lyocell fiber prepared by the above method are mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) is prepared under stirring by an agitator did. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 25 μm was produced and used as a base material layer (1). Next, the polymer stock solution B is sprayed on one side of the base material layer (1) using an electrostatic spinning method (applied voltage: 15 kV, distance of 15 cm between the spinneret and the base material layer (1)), and the thickness is about 3 μm. After forming the ultrafine fiber layer, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit area: 12.5 g / m 2 , thickness: 20 μm).

(実施例3)
基材層(1)用として、繊度0.1dtex、繊維長3mmの配向結晶化させたポリエチレンテレフタレート(PET)系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.1g/m、厚さ25μmの不織布を製造し、基材層(1)とした。次に、基材層(1)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(1)間の距離10cm)を用いてポリマー原液Cを噴霧し、厚みが約3μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.9g/m、厚さ20μm)とした。
(Example 3)
For the base material layer (1), 20 parts of oriented and crystallized polyethylene terephthalate (PET) short fibers with a fineness of 0.1 dtex and fiber length of 3 mm, unstretched PET heat fusion with a fineness of 0.2 dtex and fiber length of 3 mm 40 parts of woven short fiber and 40 parts of fibrillated lyocell fiber prepared by the above method are mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) is prepared under stirring by an agitator did. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 25 μm was produced and used as a base material layer (1). Next, the polymer stock solution C is sprayed on one side of the base material layer (1) using an electrostatic spinning method (applied voltage: 12 kV, distance of 10 cm between the spinneret and the base material layer (1)), and the thickness is about 3 μm. After forming the ultrafine fiber layer, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit: 12.9 g / m 2 , thickness: 20 μm).

(実施例4)
基材層(2)用として、繊度0.1dtex、繊維長3mmのアクリル系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.3g/m、厚さ26μmの不織布を製造し、基材層(2)とした。次に、基材層(2)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(2)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが約4μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行った後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付13.5g/m、厚さ20μm)とした。
Example 4
For the base material layer (2), 20 parts of acrylic short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, and the above method 40 parts of the fibrillated lyocell fiber produced in the above were mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 26 μm was produced and used as a base material layer (2). Next, the polymer stock solution A is sprayed on one side of the base material layer (2) using an electrostatic spinning method (applied voltage: 12 kV, distance of 15 cm between the spinneret and the base material layer (2)), and the thickness is about 4 μm. The ultrafine fiber layer of was formed. In this state, since the crystallinity is low and soluble in water, a heat treatment (150 ° C., 3 min) is performed, followed by a super calendering process to obtain a separator for a lithium ion secondary battery (weight per unit: 13.5 g / m 2 , thickness 20 μm).

(実施例5)
基材層(2)用として、繊度0.1dtex、繊維長3mmのアクリル系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.3g/m、厚さ26μmの不織布を製造し、基材層(2)とした。次に、基材層(2)の片面に、静電紡糸法(印加電圧15kV、紡糸口と基材層(2)間の距離15cm)を用いてポリマー原液Bを噴霧し、厚みが約3μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.4g/m、厚さ19μm)とした。
(Example 5)
For the base material layer (2), 20 parts of acrylic short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, and the above method 40 parts of the fibrillated lyocell fiber produced in the above were mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 26 μm was produced and used as a base material layer (2). Next, the polymer stock solution B is sprayed on one surface of the base material layer (2) using an electrostatic spinning method (applied voltage: 15 kV, distance of 15 cm between the spinneret and the base material layer (2)), and the thickness is about 3 μm. After forming the ultrafine fiber layer, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit: 12.4 g / m 2 , thickness: 19 μm).

(実施例6)
基材層(2)用として、繊度0.1dtex、繊維長3mmのアクリル系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.3g/m、厚さ26μmの不織布を製造し、基材層(2)とした。次に、基材層(2)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(2)間の距離10cm)を用いてポリマー原液Cを噴霧し、厚みが約3μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.7g/m、厚さ19μm)とした。
(Example 6)
For the base material layer (2), 20 parts of acrylic short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, and the above method 40 parts of the fibrillated lyocell fiber produced in the above were mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 26 μm was produced and used as a base material layer (2). Next, the polymer stock solution C is sprayed on one side of the base material layer (2) using an electrostatic spinning method (applied voltage: 12 kV, distance of 10 cm between the spinneret and the base material layer (2)), and the thickness is about 3 μm. After forming the ultrafine fiber layer, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit: 12.7 g / m 2 , thickness: 19 μm).

(実施例7)
基材層(3)用として、繊度0.1dtex、繊維長3mmのポリプロピレン系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.1g/m、厚さ24μmの不織布を製造し、基材層(3)とした。次に、基材層(3)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(3)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが約4μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行った後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付13.4g/m、厚さ21μm)とした。
(Example 7)
For the base material layer (3), 20 parts of polypropylene short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, the above method 40 parts of the fibrillated lyocell fiber produced in the above were mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 24 μm was produced and used as a base material layer (3). Next, the polymer stock solution A is sprayed on one side of the base material layer (3) using an electrostatic spinning method (applied voltage: 12 kV, distance of 15 cm between the spinneret and the base material layer (3)), and the thickness is about 4 μm. The ultrafine fiber layer of was formed. In this state, since the degree of crystallinity is low and soluble in water, a heat treatment (150 ° C., 3 min) is performed, followed by a supercalendering process to obtain a separator for a lithium ion secondary battery (weight per unit: 13.4 g / m 2 , thickness 21 μm).

(実施例8)
基材層(3)用として、繊度0.1dtex、繊維長3mmのポリプロピレン系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.1g/m、厚さ24μmの不織布を製造し、基材層(3)とした。次に、基材層(3)の片面に、静電紡糸法(印加電圧15kV、紡糸口と基材層(3)間の距離15cm)を用いてポリマー原液Bを噴霧し、厚みが約3μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.6g/m、厚さ20μm)とした。
(Example 8)
For the base material layer (3), 20 parts of polypropylene short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, the above method 40 parts of the fibrillated lyocell fiber produced in the above were mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 24 μm was produced and used as a base material layer (3). Next, the polymer stock solution B is sprayed on one surface of the base material layer (3) using an electrostatic spinning method (applied voltage: 15 kV, distance of 15 cm between the spinneret and the base material layer (3)), and the thickness is about 3 μm. After forming the ultrafine fiber layer, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit area: 12.6 g / m 2 , thickness: 20 μm).

(実施例9)
基材層(3)用として、繊度0.1dtex、繊維長3mmのポリプロピレン系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.1g/m、厚さ24μmの不織布を製造し、基材層(3)とした。次に、基材層(3)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(3)間の距離10cm)を用いてポリマー原液Cを噴霧し、厚みが約3μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.5g/m、厚さ20μm)とした。
Example 9
For the base material layer (3), 20 parts of polypropylene short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, the above method 40 parts of the fibrillated lyocell fiber produced in the above were mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 24 μm was produced and used as a base material layer (3). Next, the polymer stock solution C is sprayed on one side of the base material layer (3) using an electrostatic spinning method (applied voltage: 12 kV, distance of 10 cm between the spinning port and the base material layer (3)), and the thickness is about 3 μm. After forming the ultrafine fiber layer, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit area: 12.5 g / m 2 , thickness: 20 μm).

(実施例10)
基材層(4)用として、繊度0.06dtex、繊維長3mmの配向結晶化させたPET系短繊維10部、繊度0.1dtex、繊維長3mmの配向結晶化させたPET系短繊維を10部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維を40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.1g/m、厚さ24μmの不織布を製造し、基材層(4)とした。次に、基材層(4)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(4)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが約4μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行った後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付13.1g/m、厚さ21μm)とした。
(Example 10)
For the base material layer (4), 10 parts of PET short fibers oriented and crystallized with a fineness of 0.06 dtex and a fiber length of 3 mm, 10 parts of PET short fibers oriented and crystallized with a fineness of 0.1 dtex and a fiber length of 3 mm are used. 40 parts of unstretched PET-based heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, and 40 parts of fibrillated lyocell fibers prepared by the above method are mixed together and disaggregated in water of a pulper. A uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 24 μm was produced and used as a base material layer (4). Next, the polymer stock solution A is sprayed on one side of the base material layer (4) using an electrostatic spinning method (applied voltage: 12 kV, distance of 15 cm between the spinning port and the base material layer (4)), and the thickness is about 4 μm. The ultrafine fiber layer of was formed. In this state, since the degree of crystallinity is low and soluble in water, a heat treatment (150 ° C., 3 min) is performed, followed by a supercalendering process to obtain a lithium ion secondary battery separator (weight: 13.1 g / m 2 , thickness 21 μm).

(比較例1)
繊度0.1dtex、繊維長3mmの配向結晶化させたポリエチレンテレフタレート(PET)系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させた後、スーパーカレンダー処理を行い、目付10.1g/m、厚さ17μmの不織布を製造し、リチウムイオン二次電池用セパレータ(目付12.1g/m、厚さ20μm)とした。
(Comparative Example 1)
20 parts of oriented and crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, the above method 40 parts of the fibrillated lyocell fiber produced in the above were mixed together, disaggregated in pulper water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This slurry for paper making is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop non-woven fabric strength, followed by super calender treatment A nonwoven fabric having a basis weight of 10.1 g / m 2 and a thickness of 17 μm was manufactured, and a separator for a lithium ion secondary battery (a basis weight of 12.1 g / m 2 , a thickness of 20 μm) was obtained.

(比較例2)
繊度0.1dtex、繊維長3mmのアクリル系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させた後、スーパーカレンダー処理を行い、目付10.3g/m、厚さ16μmの不織布を製造し、リチウムイオン二次電池用セパレータ(目付11.8g/m、厚さ21μm)とした。
(Comparative Example 2)
20 parts of acrylic short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, and 40 parts of fibrillated lyocell fibers prepared by the above method. Were mixed together, disaggregated in water of a pulper, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This slurry for paper making is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop non-woven fabric strength, followed by super calender treatment A nonwoven fabric having a basis weight of 10.3 g / m 2 and a thickness of 16 μm was produced, and a separator for a lithium ion secondary battery (a basis weight of 11.8 g / m 2 and a thickness of 21 μm) was obtained.

(比較例3)
繊度0.1dtex、繊維長3mmのポリプロピレン系短繊維20部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部、上記の方法で作製したフィブリル化リヨセル繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させた後、スーパーカレンダー処理を行い、目付10.1g/m、厚さ17μmの不織布を製造し、リチウムイオン二次電池用セパレータ(目付12.0g/m、厚さ20μm)とした。
(Comparative Example 3)
20 parts of polypropylene short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm, and 40 parts of fibrillated lyocell fibers prepared by the above method. Were mixed together, disaggregated in water of a pulper, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This slurry for paper making is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop non-woven fabric strength, followed by super calender treatment A nonwoven fabric having a basis weight of 10.1 g / m 2 and a thickness of 17 μm was produced, and a separator for a lithium ion secondary battery (a basis weight of 12.0 g / m 2 , a thickness of 20 μm) was obtained.

(比較例4)
ステンレス製ドラム式コレクター表面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(3)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが22μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行った後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.2g/m、厚さ18μm)とした。
(Comparative Example 4)
The polymer stock solution A is sprayed onto the surface of the stainless steel drum collector using an electrostatic spinning method (applied voltage 12 kV, distance 15 cm between the spinneret and the base material layer (3)) to form a super fine fiber layer having a thickness of 22 μm. Formed. In this state, the degree of crystallinity is low and soluble in water. Next, after heat treatment (150 ° C., 3 min), supercalender treatment was performed, and a lithium ion secondary battery separator (weight per unit 12.2 g / m 2 , thickness 18 μm).

(比較例5)
ステンレス製ドラム式コレクター表面に、静電紡糸法(印加電圧15kV、紡糸口と基材層(3)間の距離15cm)を用いてポリマー原液Bを噴霧し、厚みが22μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.5g/m、厚さ17μm)とした。
(Comparative Example 5)
The polymer stock solution B is sprayed onto the surface of the stainless steel drum collector using an electrostatic spinning method (applied voltage: 15 kV, distance of 15 cm between the spinneret and the base material layer (3)) to form a superfine fiber layer having a thickness of 22 μm. After the formation, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit area: 12.5 g / m 2 , thickness: 17 μm).

(比較例6)
ステンレス製ドラム式コレクター表面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(3)間の距離10cm)を用いてポリマー原液Cを噴霧し、厚みが24μmの超極細繊維層を形成させた後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付13.2g/m、厚さ19μm)とした。
(Comparative Example 6)
The polymer stock solution C is sprayed onto the surface of the stainless steel drum collector using an electrostatic spinning method (applied voltage: 12 kV, distance of 10 cm between the spinneret and the base material layer (3)) to form a superfine fiber layer having a thickness of 24 μm. After the formation, a super calender treatment was performed to obtain a lithium ion secondary battery separator (weight per unit area: 13.2 g / m 2 , thickness: 19 μm).

(比較例7)
基材層(5)用として、繊度0.1dtex、繊維長3mmの配向結晶化させたポリエチレンテレフタレート(PET)系短繊維60部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付9.9g/m、厚さ25μmの不織布を製造し、基材層(5)とした。次に、基材層(5)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(5)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが約4μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行った後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付12.7g/m、厚さ21μm)とした。
(Comparative Example 7)
For base material layer (5), 60 parts of oriented and crystallized polyethylene terephthalate (PET) short fibers with a fineness of 0.1 dtex and fiber length of 3 mm, unstretched PET heat fusion with a fineness of 0.2 dtex and fiber length of 3 mm 40 parts of the characteristic short fibers were mixed together, disaggregated in water of a pulper, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 25 μm was produced and used as a base material layer (5). Next, the polymer stock solution A is sprayed on one surface of the base material layer (5) using an electrostatic spinning method (applied voltage: 12 kV, distance of 15 cm between the spinneret and the base material layer (5)), and the thickness is about 4 μm. The ultrafine fiber layer of was formed. In this state, since the crystallinity is low and soluble in water, a heat treatment (150 ° C., 3 min) is performed, followed by a super calender treatment to obtain a lithium ion secondary battery separator (weight per unit: 12.7 g / m 2 , thickness 21 μm).

(比較例8)
基材層(6)用として、繊度0.1dtex、繊維長3mmのアクリル系短繊維60部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.2g/m、厚さ26μmの不織布を製造し、基材層(6)とした。次に、基材層(6)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(6)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが約4μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行った後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付13.2g/m、厚さ21μm)とした。
(Comparative Example 8)
For the base material layer (6), 60 parts of acrylic short fibers having a fineness of 0.1 dtex and a fiber length of 3 mm, and 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm are mixed together. Then, the pulper was disaggregated in water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. This papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric having a thickness of m 2 and a thickness of 26 μm was produced and used as a base material layer (6). Next, the polymer stock solution A is sprayed on one surface of the base material layer (6) using an electrostatic spinning method (applied voltage: 12 kV, distance of 15 cm between the spinneret and the base material layer (6)), and the thickness is about 4 μm. The ultrafine fiber layer of was formed. In this state, since the crystallinity is low and soluble in water, a heat treatment (150 ° C., 3 min) is performed, followed by a super calender treatment to obtain a lithium ion secondary battery separator (weight per unit: 13.2 g / m 2 , thickness 21 μm).

(比較例9)
基材層(7)用として、繊度0.08dtex、繊維長3mmのポリプロピレン系短繊維60部、繊度0.2dtex、繊維長3mmの未延伸PET系熱融着性短繊維40部を一緒に混合し、パルパーの水中で離解させ、アジテーターによる撹拌のもと、均一な抄造用スラリー(1%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、120℃のシリンダードライヤーによって、未延伸PET系熱接着性短繊維を接着させて不織布強度を発現させ、目付10.0g/m、厚さ26μmの不織布を製造し、基材層(7)とした。次に、基材層(7)の片面に、静電紡糸法(印加電圧12kV、紡糸口と基材層(7)間の距離15cm)を用いてポリマー原液Aを噴霧し、厚みが約4μmの超極細繊維層を形成させた。この状態では、結晶化度が低く、水に可溶なため、次いで、熱処理(150℃、3min)を行った後、スーパーカレンダー処理を行い、リチウムイオン二次電池用セパレータ(目付13.1g/m、厚さ21μm)とした。
(Comparative Example 9)
For the base material layer (7), 60 parts of polypropylene short fibers having a fineness of 0.08 dtex and a fiber length of 3 mm, and 40 parts of unstretched PET heat-fusible short fibers having a fineness of 0.2 dtex and a fiber length of 3 mm are mixed together. Then, the pulper was disaggregated in water, and a uniform papermaking slurry (1% concentration) was prepared under stirring by an agitator. The papermaking slurry is made up by a wet method using a circular paper machine, and unstretched PET-based heat-adhesive short fibers are adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. A non-woven fabric of m 2 and a thickness of 26 μm was produced and used as a base material layer (7). Next, the polymer stock solution A is sprayed on one side of the base material layer (7) using an electrostatic spinning method (applied voltage: 12 kV, distance of 15 cm between the spinneret and the base material layer (7)), and the thickness is about 4 μm. The ultrafine fiber layer of was formed. In this state, since the degree of crystallinity is low and soluble in water, a heat treatment (150 ° C., 3 min) is performed, followed by a supercalendering process to obtain a lithium ion secondary battery separator (weight: 13.1 g / m 2 , thickness 21 μm).

<評価>
実施例及び比較例で得られたリチウムイオン二次電池用セパレータについて、下記の評価を行い、各評価結果を表1に示した。
<Evaluation>
The lithium ion secondary battery separators obtained in the examples and comparative examples were evaluated as follows, and the evaluation results are shown in Table 1.

[ピンホールの評価]
リチウムイオン二次電池用セパレータから200mm×200mmの試験片を50枚採取し、各試験片の表面を目視で観察し、ピンホールの有無を測定することにより、次の2段階で評価した。
○;全試験片においてピンホールが観察されない。
×;全試験片のうち、2枚以上においてピンホールが観察される。
[Evaluation of pinholes]
Fifty test pieces of 200 mm × 200 mm were collected from the lithium ion secondary battery separator, the surface of each test piece was visually observed, and the presence or absence of pinholes was measured to evaluate in the following two stages.
○: No pinhole is observed in all specimens.
X: Pinholes are observed in two or more of all the test pieces.

[突刺強度の評価]
リチウムイオン二次電池用セパレータから50mm×200mmの試験片を採取し、試験片を卓上型材料試験機(商品名:STA−1150、(株)オリエンテック製)に据え付けた40mmφの固定枠に装着し、先端に丸み(曲率1.6)をつけた直径1.0mmの金属針((株)オリエンテック製)を試料面に対して直角に50mm/分の一定速度で貫通するまで降ろした。この時の最大荷重(g)を計測し、これを突刺強度とした。1試料について5ヶ所以上突刺強度を測定し、全測定値の中で最も小さい突刺強度について、50g以上であれば○、20g以上50g未満であれば△、20g未満であれば×で表した。
[Evaluation of puncture strength]
A 50 mm × 200 mm test piece is taken from a lithium ion secondary battery separator and mounted on a 40 mmφ fixed frame mounted on a desktop material testing machine (trade name: STA-1150, manufactured by Orientec Co., Ltd.). Then, a metal needle having a diameter of 1.0 mm (made by Orientec Co., Ltd.) with a rounded end (curvature 1.6) was lowered at a constant speed of 50 mm / min perpendicular to the sample surface. The maximum load (g) at this time was measured and used as the puncture strength. The puncture strength was measured at five or more locations for one sample, and the smallest puncture strength among all the measured values was indicated as ◯ if it was 50 g or more, Δ if it was 20 g or more and less than 50 g, and × if it was less than 20 g.

[層間剥離性の評価]
基材層と超極細繊維層とを構成している繊維同士がお互いの内層まで十分に入り込んでいるかを目視で観察し、また、超極細繊維層を手で擦ることによって、次の2段階で評価した。
○;お互いの内層まで繊維同士が十分に入り込み、手で擦っても層間剥離が生じない。
×;お互いの内層まで繊維が入り込まず、手で擦ると容易に層間剥離が生じる。
[Evaluation of delamination]
By visually observing whether the fibers constituting the base material layer and the ultrafine fiber layer have sufficiently penetrated into each other's inner layers, and by rubbing the ultrafine fiber layer by hand, in the following two steps evaluated.
○: The fibers sufficiently penetrate into each other's inner layer, and no delamination occurs even when rubbed by hand.
X: Fibers do not enter the inner layers of each other, and delamination easily occurs when rubbing by hand.

[耐熱性の評価]
リチウムイオン二次電池用セパレータを、150℃の恒温槽に入れ、40分間加熱処理を行い、各リチウムイオン二次電池用セパレータの収縮率を測定して耐熱性を評価した。収縮率の測定は、以下のようにして行った。50mm×50mmのシートサンプルを切り出し、サンプルのCD辺をクリップで固定して耐熱ガラス板に挟んで、150℃の恒温槽内に40分間保管した後に取り出し、シートサンプルの長さを測定し、試験前の長さと比較して、長さの減少割合の百分率を収縮率とした。値が5%未満となるものを○、5%以上8%未満となるものを△、8%以上となるものを×として、耐熱性の評価とした。また、従来公知のリチウムイオン二次電池用セパレータである厚さ20μmのポリエチレン製微多孔膜について、耐熱性の評価を行ったところ、ポリエチレン製微多孔膜は溶融収縮し、収縮率は30%以上であった。
[Evaluation of heat resistance]
The separator for lithium ion secondary batteries was placed in a thermostatic bath at 150 ° C., subjected to heat treatment for 40 minutes, and the shrinkage rate of each separator for lithium ion secondary batteries was measured to evaluate the heat resistance. The shrinkage rate was measured as follows. A 50 mm x 50 mm sheet sample is cut out, the CD side of the sample is fixed with a clip, sandwiched between heat resistant glass plates, stored for 40 minutes in a thermostatic bath at 150 ° C, taken out, and the length of the sheet sample is measured and tested. Compared with the previous length, the percentage of the length reduction rate was taken as the shrinkage rate. A value of less than 5% was evaluated as ○, a value of 5% or more and less than 8% was evaluated as Δ, and a value of 8% or more was evaluated as x. In addition, when the heat resistance of a 20 μm thick polyethylene microporous membrane, which is a conventionally known lithium ion secondary battery separator, was evaluated, the polyethylene microporous membrane melted and contracted, and the shrinkage ratio was 30% or more. Met.

実施例及び比較例で得られたリチウムイオン二次電池用セパレータの電気特性を評価するため、以下のような電極及び電池を作製し、測定を行った。   In order to evaluate the electrical characteristics of the separators for lithium ion secondary batteries obtained in the examples and comparative examples, the following electrodes and batteries were prepared and measured.

<正極の作製>
正極活物質であるコバルト酸リチウム75質量部、導電助剤であるアセチレンブラック15質量部、及びバインダーであるポリフッ化ビニリデン(PVdF)5質量部をN−メチル−2−ピロリドン(NMP)中に均一に混合して、正極剤ペーストを作製した。このペーストを厚さ22μmのアルミニウム箔上に塗工し、乾燥、カレンダー処理を行って、厚さ97μmの正極を作製した。
<Preparation of positive electrode>
Uniformly, 75 parts by mass of lithium cobaltate as a positive electrode active material, 15 parts by mass of acetylene black as a conductive additive, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder are uniformly contained in N-methyl-2-pyrrolidone (NMP). To obtain a positive electrode paste. This paste was applied onto an aluminum foil having a thickness of 22 μm, dried and calendered to produce a positive electrode having a thickness of 97 μm.

<負極の作製>
負極活物質である黒鉛95質量部と、バインダーであるPVdF5質量部とを、NMPを溶剤として、均一になるように混合して、負極剤ペーストを作製した。この負極剤ペーストを厚さ24μmの銅箔上に塗工し、乾燥、カレンダー処理を行って厚さ92μmの負極を作製した。
<Production of negative electrode>
A negative electrode agent paste was prepared by uniformly mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVdF as a binder using NMP as a solvent. This negative electrode paste was applied onto a copper foil having a thickness of 24 μm, dried and calendered to produce a negative electrode having a thickness of 92 μm.

<電池の作製>
実施例及び比較例のリチウムイオン二次電池用セパレータを介して、上記のようにして得られた正極と負極とを重ね合わせ、ラミネートフィルム外装材内に装填し、電解質として1mol/LのLiBFを溶解させたエチレンカーボネート/ジエチルカーボネート(体積比1/1)溶液を注入し、真空封止を行ってリチウムイオン二次電池を作製した。
<Production of battery>
The positive electrode and the negative electrode obtained as described above are overlapped with each other through the separators for lithium ion secondary batteries of Examples and Comparative Examples, and loaded into a laminate film outer packaging material, and 1 mol / L LiBF 4 as an electrolyte. A lithium ion secondary battery was manufactured by injecting an ethylene carbonate / diethyl carbonate (volume ratio: 1/1) solution in which the solution was dissolved and vacuum-sealing.

[内部抵抗の評価]
作製したリチウムイオン二次電池の内部抵抗を交流インピーダンス法により、振幅10mV、周波数10kHzの条件で測定した。内部抵抗値が1.35Ω未満であれば○、1.35Ω以上1.55Ω未満であれば△、1.55Ω以上であれば×で表した。
[Evaluation of internal resistance]
The internal resistance of the manufactured lithium ion secondary battery was measured by the AC impedance method under the conditions of an amplitude of 10 mV and a frequency of 10 kHz. When the internal resistance value is less than 1.35Ω, it is indicated by “◯”, when it is 1.35Ω or more and less than 1.55Ω, Δ is indicated, and when it is 1.55Ω or more, × is indicated.

[放電容量維持率の評価]
作製したリチウムイオン二次電池について、1Cでの定電流充電(4.1Vまで)と4.1Vでの定電圧充電を行い、1Cで3.0Vまでの定電流放電を繰り返し実施し、1回目に対する100回目の放電容量の比を百分率(%)で求め、これを放電容量維持率とした。放電容量維持率が90%以上であれば○、80%以上90%未満であれば△、60%未満であれば×で表した。
[Evaluation of discharge capacity maintenance rate]
The produced lithium ion secondary battery was subjected to constant current charging at 1C (up to 4.1V) and constant voltage charging at 4.1V, and repeated constant current discharging up to 3.0V at 1C. The ratio of the discharge capacity at the 100th time relative to the above was determined as a percentage (%), and this was used as the discharge capacity maintenance ratio. When the discharge capacity retention rate was 90% or more, it was indicated by “◯”, when it was 80% or more and less than 90%, “Δ”, and when it was less than 60%, it was indicated by “X”.

Figure 2011249008
Figure 2011249008

実施例1〜10で得られたリチウムイオン二次電池用セパレータは、合成樹脂短繊維とフィブリル化したリヨセル繊維とを含有する基材層と静電紡糸法により得られた超極細繊維層とを有する不織布からなっており、両層間は容易に剥離せず、また、ピンホール欠点がないと共に、150℃における耐熱性に優れるだけでなく、電池特性が極めて優れるという結果が得られた。   The separator for lithium ion secondary batteries obtained in Examples 1 to 10 includes a base material layer containing synthetic resin short fibers and fibrillated lyocell fibers, and an ultrafine fiber layer obtained by an electrospinning method. The result was that the two layers were not easily peeled off, had no pinhole defects, had not only excellent heat resistance at 150 ° C., but also extremely excellent battery characteristics.

一方、比較例1〜3で得られたリチウムイオン二次電池用セパレータは、基材層からのみ構成されるため、ピンホール欠点が生じており、リチウムイオン二次電池用セパレータとしては不適なものであった。比較例4〜6で得られたリチウムイオン二次電池用セパレータは、静電紡糸法により得られた超極細繊維層のみから構成されるため、突刺強度と共に、電池特性も劣る結果となった。また、比較例7〜9で得られたリチウムイオン二次電池用セパレータは、基材層にフィブリル化したリヨセル繊維を含有していないため、超極細繊維層との繊維間の絡み合いが弱く、剥離性が劣ると共に、電池特性も実施例より大きく劣る結果となった。   On the other hand, since the separator for lithium ion secondary batteries obtained in Comparative Examples 1 to 3 is composed only of the base material layer, it has a pinhole defect and is not suitable as a separator for lithium ion secondary batteries. Met. Since the separators for lithium ion secondary batteries obtained in Comparative Examples 4 to 6 were composed of only the ultrafine fiber layer obtained by the electrostatic spinning method, the results were inferior to the puncture strength and the battery characteristics. Moreover, since the separator for lithium ion secondary batteries obtained in Comparative Examples 7 to 9 does not contain the fibrillated lyocell fiber in the base material layer, the entanglement between the fibers with the ultrafine fiber layer is weak and peeling. As a result, the battery characteristics were greatly inferior to those of the examples.

本発明の活用例としては、リチウムイオン二次電池やリチウムイオンポリマー二次電池等のリチウムイオン二次電池用セパレータに好適に用いられ、その他にはリチウムイオンキャパシタ用セパレータとしても用いることができる。   As an application example of the present invention, it is suitably used for a separator for a lithium ion secondary battery such as a lithium ion secondary battery or a lithium ion polymer secondary battery, and can also be used as a separator for a lithium ion capacitor.

Claims (1)

合成樹脂短繊維とフィブリル化したリヨセル繊維とを必須成分として含有した基材層を有し、静電紡糸法により得た超極細繊維層が直接該基材層上に堆積して積層されてなることを特徴とするリチウムイオン二次電池用セパレータ。   It has a base material layer containing synthetic resin short fibers and fibrillated lyocell fibers as essential components, and an ultrafine fiber layer obtained by an electrospinning method is directly deposited and laminated on the base material layer The separator for lithium ion secondary batteries characterized by the above-mentioned.
JP2010117504A 2010-05-21 2010-05-21 Separator for lithium ion secondary battery Pending JP2011249008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117504A JP2011249008A (en) 2010-05-21 2010-05-21 Separator for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117504A JP2011249008A (en) 2010-05-21 2010-05-21 Separator for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2011249008A true JP2011249008A (en) 2011-12-08

Family

ID=45414056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117504A Pending JP2011249008A (en) 2010-05-21 2010-05-21 Separator for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2011249008A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103085442A (en) * 2012-11-23 2013-05-08 浙江大东南集团有限公司 Method for preparing lithium battery nano fiber diaphragm
JP2013171905A (en) * 2012-02-20 2013-09-02 Mitsubishi Paper Mills Ltd Separator for capacitor, and capacitor including the same
JP2013245428A (en) * 2012-05-29 2013-12-09 Shinshu Univ Separator, method for producing separator and apparatus for producing separator
CN103840111A (en) * 2012-11-27 2014-06-04 比亚迪股份有限公司 Polymer film, gel polymer electrolyte and polymer lithium battery, and preparation method of polymer lithium battery
JP2014186915A (en) * 2013-03-25 2014-10-02 Nippon Kodoshi Corp Separator and nonaqueous battery
JP2016212984A (en) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 Secondary battery
CN107046118A (en) * 2017-04-07 2017-08-15 武汉大学 Secondary cell security barrier film and preparation method thereof
CN107316966A (en) * 2017-06-21 2017-11-03 东莞市沃泰通新能源有限公司 It is a kind of to soak mould for nano electrostatic spinning barrier film of ferric phosphate lithium cell and preparation method thereof and pressure
CN107706340A (en) * 2017-08-31 2018-02-16 东莞市沃泰通新能源有限公司 A kind of nano electrostatic spinning for ferric phosphate lithium cell strengthens barrier film and preparation method thereof
CN108950703A (en) * 2018-09-18 2018-12-07 西安交通大学 The device and method of piezopolymer MEMS structure is prepared based on one step chemical industry skill of near field electrostatic spinning
EP3358585A4 (en) * 2015-09-28 2019-06-12 Nippon Kodoshi Corporation Separator for electrochemical element and electrochemical element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171905A (en) * 2012-02-20 2013-09-02 Mitsubishi Paper Mills Ltd Separator for capacitor, and capacitor including the same
JP2013245428A (en) * 2012-05-29 2013-12-09 Shinshu Univ Separator, method for producing separator and apparatus for producing separator
CN103085442A (en) * 2012-11-23 2013-05-08 浙江大东南集团有限公司 Method for preparing lithium battery nano fiber diaphragm
CN103840111A (en) * 2012-11-27 2014-06-04 比亚迪股份有限公司 Polymer film, gel polymer electrolyte and polymer lithium battery, and preparation method of polymer lithium battery
JP2014186915A (en) * 2013-03-25 2014-10-02 Nippon Kodoshi Corp Separator and nonaqueous battery
JP2016212984A (en) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 Secondary battery
EP3358585A4 (en) * 2015-09-28 2019-06-12 Nippon Kodoshi Corporation Separator for electrochemical element and electrochemical element
US11063319B2 (en) 2015-09-28 2021-07-13 Nippon Kodoshi Corporation Separator for electrochemical element and electrochemical element
CN107046118A (en) * 2017-04-07 2017-08-15 武汉大学 Secondary cell security barrier film and preparation method thereof
CN107046118B (en) * 2017-04-07 2019-09-10 武汉大学 Secondary cell safety diaphragm and preparation method thereof
CN107316966A (en) * 2017-06-21 2017-11-03 东莞市沃泰通新能源有限公司 It is a kind of to soak mould for nano electrostatic spinning barrier film of ferric phosphate lithium cell and preparation method thereof and pressure
CN107706340A (en) * 2017-08-31 2018-02-16 东莞市沃泰通新能源有限公司 A kind of nano electrostatic spinning for ferric phosphate lithium cell strengthens barrier film and preparation method thereof
CN108950703A (en) * 2018-09-18 2018-12-07 西安交通大学 The device and method of piezopolymer MEMS structure is prepared based on one step chemical industry skill of near field electrostatic spinning

Similar Documents

Publication Publication Date Title
JP2011249008A (en) Separator for lithium ion secondary battery
JP5651120B2 (en) Lithium secondary battery substrate and lithium secondary battery separator
KR102112646B1 (en) Separator
CN104885257B (en) The method of single-layer lithium ion battery separator of the manufacture with nanofiber and micrometer fibers composition
JP5552040B2 (en) Separator for lithium secondary battery
JP5613063B2 (en) Separator for lithium secondary battery
CN103329308B (en) There is the lithium battery separator of closing function
CN104871341B (en) General single-layer lithium ion battery separator with nanofiber and micrometer fibers composition
JP6292626B2 (en) Nonwoven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
JP5613069B2 (en) Separator for lithium secondary battery
JP5265636B2 (en) Lithium ion secondary battery separator base material and lithium ion secondary battery separator
WO2001093350A1 (en) Separator for electrochemical device and method for producing the same, and electrochemical device
JPH09213296A (en) Separator for battery and battery
US20220158299A1 (en) Lithium ion battery separator and lithium ion battery
KR20190049859A (en) Separator for electrochemical device and electrochemical device including the same
JP2016001663A (en) Manufacturing method of separator for electrochemical element and separator for electrochemical element
JP2013246926A (en) Separator for electrochemical element and electrochemical element including the same
US9637861B1 (en) Methods of making single-layer lithium ion battery separators having nanofiber and microfiber constituents
JP2011187346A (en) Base material for lithium ion secondary battery
JP4851082B2 (en) Nonwoven fabric and method for producing nonwoven fabric, and separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor or lithium ion secondary battery using nonwoven fabric
JP4584702B2 (en) Nonwoven fabric and method for producing nonwoven fabric, and separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor or lithium ion secondary battery using nonwoven fabric
JP2012195162A (en) Substrate for lithium secondary battery, and separator for lithium secondary battery
JP2016091597A (en) Method for manufacturing electrochemical device separator, and electrochemical device separator
JP4468790B2 (en) Nonwoven fabric, separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor and lithium ion secondary battery
JP2012190622A (en) Separator for electrochemical element, and electrochemical element including the same