JP2011247538A - Multi-can installed boiler - Google Patents

Multi-can installed boiler Download PDF

Info

Publication number
JP2011247538A
JP2011247538A JP2010122873A JP2010122873A JP2011247538A JP 2011247538 A JP2011247538 A JP 2011247538A JP 2010122873 A JP2010122873 A JP 2010122873A JP 2010122873 A JP2010122873 A JP 2010122873A JP 2011247538 A JP2011247538 A JP 2011247538A
Authority
JP
Japan
Prior art keywords
boiler
amount
medium
pressure
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010122873A
Other languages
Japanese (ja)
Inventor
Toshikuni Ohashi
俊邦 大橋
Koji Tatsuta
孝司 竜田
Shin Konishi
慎 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAO TEKKOSHO KK
Osaka Gas Co Ltd
Creative Techno Solution Co Ltd
Original Assignee
TAKAO TEKKOSHO KK
Osaka Gas Co Ltd
Creative Techno Solution Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAO TEKKOSHO KK, Osaka Gas Co Ltd, Creative Techno Solution Co Ltd filed Critical TAKAO TEKKOSHO KK
Priority to JP2010122873A priority Critical patent/JP2011247538A/en
Publication of JP2011247538A publication Critical patent/JP2011247538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To certainly consume gas fuel supplied from biogas manufacturing facilities and secure an amount of steam quantity that meets the demand of users under a stable operation.SOLUTION: A multi-can installed boiler includes a plurality of first boilers 1a that have no limit in an amount of supply of a fuel needed for steam generation as a boiler and a second boiler 1b whose amount of supply of the gas fuel needed for steam generation varies and is limited by the amount of supply from a fuel supplier. The first boiler 1a is configured to have capability to cover a shortage of the generated steam amount by the second boiler 1b. A first boiler quantity controller 4 is provided that outputs drive directions to the plurality of first boilers 1a based on the steam pressure of a steam aggregation section 8. Further, a second boiler controller 5 is provided that makes the amount of medium generated in the second boiler 1b equivalent to the pressure of the gas fuel based on the pressure of the gas fuel supplied to the second boiler 1b.

Description

本発明は、産業用、業務用の多缶設置ボイラに関し、更に詳細には、複数台並列に設置したボイラを備え、ボイラから発生される温水、蒸気或いは油等の熱媒体である媒体を媒体集合部で集合して媒体需要先に供給する多缶設置ボイラに関する。   The present invention relates to a multi-can boiler for industrial use and business use, and more specifically, includes a plurality of boilers installed in parallel, and a medium which is a heat medium such as hot water, steam or oil generated from the boiler. The present invention relates to a multi-can installation boiler that gathers at a gathering section and supplies it to a medium demand destination.

このような多缶設置ボイラは、媒体需要先の用途に応じて、必要とされる温度の媒体(温水、蒸気或いは熱媒体)を媒体需要先に媒体集合部から供給する。ここで、理解を容易とするため、以下の説明では、媒体が蒸気である場合に関して、主に説明する。   Such a multi-can installation boiler supplies a medium (hot water, steam, or heat medium) having a required temperature from the medium collecting unit to the medium demand destination according to the use of the medium demand destination. Here, for easy understanding, in the following description, the case where the medium is steam is mainly described.

多缶設置ボイラにおける各ボイラの運転制御形態としては、図2に示すような「個別蒸気圧台数制御」、図3に示すような「集中蒸気圧台数制御」が知られている。   As an operation control form of each boiler in a multi-can installation boiler, “individual steam pressure number control” as shown in FIG. 2 and “centralized steam pressure number control” as shown in FIG. 3 are known.

「個別蒸気圧台数制御」は、各ボイラBに圧力検出器PIと当該圧力検出器PIの検出結果に基づいて、そのボイラの発停を制御するボイラ運転制御器PS1を設け、各ボイラを制御するものであり、例えば、ボイラから発生する蒸気の圧力が設定された圧力を上回った場合には運転を停止し、設定された圧力より低下した場合に運転を再開する。具体的な制御は、設定された圧力に対応して、ボイラの運転−停止を繰り返す(ON−OFF制御する)2位置制御が良く知られている。さらに、設定圧力として、高燃焼用の高い側の圧力(高設定圧力)及び低燃焼用の低い側の圧力(低設定圧力)が設けられ、ボイラから発生する蒸気の圧力が高設定圧力を上回った場合には運転を停止し(OFF)、高設定圧力と低設定圧力との間にある場合は低燃焼状態を維持し(LOW)、低設定圧力より低下した場合に運転を高燃焼状態とする(HI)ものもあり、この形態は、燃焼状態が、高燃焼状態(HI)−低燃焼状態(LOW)−停止(OFF)間で制御されるため3位置制御と呼ばれている。
この「個別蒸気圧台数制御」において、優先的に使用したいボイラがある場合は、そのボイラの停止に係る設定圧力を他のボイラより高く設定し、当該ボイラが他のボイラより長く運転されるようにして、当該ボイラを優先的に使用する。
“Individual steam pressure unit control” provides each boiler B with a pressure detector PI and a boiler operation controller PS1 that controls the start and stop of the boiler based on the detection result of the pressure detector PI, and controls each boiler. For example, the operation is stopped when the pressure of the steam generated from the boiler exceeds the set pressure, and the operation is restarted when the pressure falls below the set pressure. As specific control, two-position control that repeats boiler operation-stop (ON-OFF control) corresponding to a set pressure is well known. Furthermore, as the set pressure, a high pressure for high combustion (high set pressure) and a low pressure for low combustion (low set pressure) are provided, and the pressure of steam generated from the boiler exceeds the high set pressure. If it is between the high set pressure and the low set pressure, the low combustion state is maintained (LOW), and if the pressure falls below the low set pressure, the operation is changed to the high combustion state. (HI), and this form is called three-position control because the combustion state is controlled between the high combustion state (HI), the low combustion state (LOW), and the stop (OFF).
In this "individual steam pressure unit control", if there is a boiler that you want to use preferentially, set the set pressure for stopping that boiler higher than other boilers so that the boiler will be operated longer than other boilers. Thus, the boiler is used preferentially.

「集中蒸気圧台数制御」は、各ボイラBから発生される蒸気の集合部である蒸気集合部M(媒体集合部の一例)に圧力検出器PIを設けるとともに、この圧力検出器PIの検出結果に基づいて各ボイラの発停を制御する台数制御器PS2を設け、この台数制御器PS2で運転するボイラを決定し、そのボイラに対して運転指令を出力することにより、需要先での蒸気需要量に見合った蒸気量を発生する。
この「集中蒸気圧台数制御」で優先的に使用したいボイラがある場合は、台数制御器において、優先すべきボイラ情報を記憶しておき、当該ボイラを優先的に始動するようにする。この種の台数制御は、蒸気の集合部である蒸気集合部Mに於ける蒸気圧力の他、蒸気温度に従って、複数台のボイラの台数制御が行われる場合もある。
特許文献1には、上述の台数制御と集中制御とを選択的に実行する多缶設置ボイラが示されている。
In the “centralized steam pressure unit control”, a pressure detector PI is provided in a steam collecting portion M (an example of a medium collecting portion) that is a collecting portion of steam generated from each boiler B, and the detection result of the pressure detector PI. Based on the above, the number controller PS2 for controlling the start and stop of each boiler is provided, the boiler to be operated by this number controller PS2 is determined, and the operation command is output to the boiler. Generates a vapor amount commensurate with the amount.
When there is a boiler to be preferentially used in this “centralized steam pressure unit control”, the unit controller stores the boiler information to be prioritized and starts the boiler preferentially. In this type of number control, the number of boilers may be controlled according to the steam temperature in addition to the steam pressure at the steam collecting part M, which is a steam collecting part.
Patent Document 1 discloses a multi-can installation boiler that selectively executes the above-described number control and centralized control.

特開2009−281708号公報JP 2009-281708 A

近来、地球温暖化阻止等の目的から化石燃料の消費をできるだけ減少させ、例えば、生物由来の産業残渣を利用してバイオガスを発生させ、その保有するエネルギーを燃料とすることが試みられている。この種の生物由来のガスとしては、代表的には有機成分を嫌気性発酵槽でメタンまで分解して得られるガスが知られており、このようにして得られるバイオガスは、脱硫、昇圧、貯留した後、ガス燃料としてボイラ設備に供給され、蒸気発生に利用される。この種のバイオガスは、発生に使用する産業残渣の生成状態が様々であるため、例えば、日日で、バイオガスの発生量が、定格発生量の20〜100%程度まで大きく変動する。   Recently, it has been attempted to reduce the consumption of fossil fuels as much as possible for the purpose of preventing global warming, for example, to generate biogas by using bio-derived industrial residues and to use the stored energy as fuel. . As this type of biological gas, gas obtained by decomposing organic components into methane in an anaerobic fermenter is typically known, and biogas obtained in this way is desulfurized, pressurized, After storage, it is supplied as gas fuel to boiler equipment and used for steam generation. Since this type of biogas has various production states of industrial residues used for generation, for example, the amount of biogas generated varies greatly from day to day to about 20 to 100% of the rated generation amount.

この種の発生量が変動することがあるガス燃料を使用するボイラでは、蒸気発生に必要となるガス燃料の供給量が変動するとともに、当該供給量が燃料供給側からの供給量により制限を受ける。また、ガス燃料の供給量が規定の量を下回った場合、当該ボイラを停止させることとなる。   In boilers that use gas fuel that may vary in this type of generation, the amount of gas fuel required to generate steam varies, and the amount of supply is limited by the amount supplied from the fuel supply side. . Moreover, when the supply amount of gas fuel falls below a prescribed amount, the boiler is stopped.

一方、このようなボイラの停止状態において、ガス燃料供給側からの供給が継続されると、供給側のガス燃料の圧力が上昇し過ぎるため、ガス燃料を外気に放散することとなるが、この外気放散は、環境に与える影響が大きく好ましくない。   On the other hand, if the supply from the gas fuel supply side is continued in such a stopped state of the boiler, the pressure of the gas fuel on the supply side will increase too much, and the gas fuel will be diffused to the outside air. Dissipation of the outside air is not preferable because it has a large influence on the environment.

「個別蒸気圧台数制御」の問題点
この制御形態を採用する場合、一般的には、バイオガスを可能な限り利用するため、ボイラの運転蒸気設定圧力を高めにする(蒸気圧が高い圧力になるまで運転を継続する)ことで、当該ボイラを、充分な燃料供給を受けられる他の標準ボイラよりも優先的に稼動する台数制御手法を採用することとなる。一般にバイオガスは昇圧されてボイラへ送られるが、バイオガスの発生量がボイラでの消費量より少ない状態が続いて、バイオガスの供給圧力が、ある圧力以下になるとボイラは停止する。すなわち、このようなバイオガスおよび燃料供給を必要量だけ受けることができる標準ボイラを個別蒸気圧台数制御方式で運転するとバイオガスを使用するボイラが頻繁に発停することとなり、さらに、当該ボイラが停止すると同時に、バイオガス供給圧力が上昇し、ある程度の圧力になれば、当該ボイラに運転信号が入るが、このときに、当該バイオガスを使用するボイラの再稼動のタイミングが遅れて、供給圧力が限界値まで達すると、安全弁からバイオガスが大気中に放散してしまう。
Problems of “Individual Steam Pressure Unit Control” When this control mode is adopted, in general, in order to use biogas as much as possible, the operating steam set pressure of the boiler is increased (in order to increase the steam pressure). By continuing the operation until it becomes, the number control method of operating the boiler with priority over other standard boilers that can receive sufficient fuel supply is adopted. In general, biogas is boosted and sent to the boiler. When the amount of biogas generated is less than the amount consumed by the boiler, and the biogas supply pressure falls below a certain pressure, the boiler stops. That is, when a standard boiler capable of receiving only a necessary amount of biogas and fuel is operated by the individual vapor pressure unit control method, boilers using biogas frequently start and stop, At the same time as stopping, the biogas supply pressure rises to a certain level, and an operation signal is input to the boiler. At this time, the timing of restarting the boiler using the biogas is delayed, and the supply pressure When reaches the limit value, biogas is released from the safety valve into the atmosphere.

「集中蒸気圧台数制御」の問題点
この制御形態を採用する場合、全ボイラからの蒸気が集中する蒸気集合部Mの情報により運転する台数を制御することとなり、基本的にボイラ間で、その能力に大きな差がないことが、この制御形態の基本となる。この様な状況下で、バイオガスの供給を受けるボイラを優先して使用しようとすると、最優先で運転するボイラを当該ボイラとすることとなるが、このように優先順位を設定すると、最も、優先されるボイラへ供給されるガス燃料量の変動の可能性が最も高く、供給されるガス燃料の量の規制を最優先のボイラが受けることとなり、他の通常ボイラの運転が最優先されるボイラの運転状態の影響を大きく受ける。結果、設備自体の安定した運転状態を図れない。
Problems of “Centralized Steam Pressure Unit Control” When this control mode is adopted, the number of units to be operated is controlled based on the information of the steam collecting part M where the steam from all the boilers is concentrated. It is the basis of this control form that there is no big difference in capability. Under these circumstances, if the boiler that receives the supply of biogas is used preferentially, the boiler that operates with the highest priority will be the boiler. The possibility of fluctuation in the amount of gas fuel supplied to the priority boiler is the highest, and the highest priority boiler will be subject to the regulation of the amount of gas fuel supplied, and the operation of other normal boilers will have the highest priority It is greatly affected by the operating condition of the boiler. As a result, a stable operation state of the equipment itself cannot be achieved.

本発明の目的は、ガス燃料の供給量が変動するとともに、そのガス燃料の供給量により媒体発生量が規制されるボイラを備えた多缶設置ボイラにおいて、供給されるガス燃料の確実な消費を図るとともに、需要先の需要に見合った媒体の供給を安定した運転状態で行える多缶設置ボイラを得ることにある。   An object of the present invention is to ensure reliable consumption of gas fuel supplied in a multi-can boiler having a boiler in which the amount of gas fuel supplied varies and the amount of generated medium is regulated by the amount of gas fuel supplied. The aim is to obtain a multi-can installation boiler that can supply a medium that meets the demand of the customer in a stable operating state.

上記目的を達成するための、複数台並列に設置したボイラを備え、ボイラから発生される媒体を媒体集合部で集合して媒体需要先に供給する多缶設置ボイラの特徴構成は、
前記ボイラとして、媒体発生に必要となる燃料の供給量に制限がない第1ボイラと、媒体発生に必要となるガス燃料の供給量が変動するとともに、当該供給量が燃料供給側からの供給量により制限を受ける第2ボイラを備え、
前記第2ボイラの発生媒体量の不足分を前記第1ボイラで賄える能力を前記第1ボイラが備えて構成され、
前記媒体集合部の媒体温度又は媒体圧力に基づいて、前記第1ボイラに対して運転指令を出力する第1ボイラ制御装置と備えるとともに、
前記第2ボイラに供給されるガス燃料の量又は圧力に基づいて、前記第2ボイラで発生する媒体量を前記ガス燃料の量又は圧力に対応した量とする第2ボイラ制御装置を備えたことにある。
In order to achieve the above-mentioned object, the characteristic configuration of the multi-can installation boiler that includes a plurality of boilers installed in parallel, collects the medium generated from the boiler at the medium collecting unit, and supplies the medium to the customer.
As the boiler, there is a first boiler with no restriction on the supply amount of fuel necessary for generating the medium, and the supply amount of gas fuel required for generating the medium varies, and the supply amount is the supply amount from the fuel supply side. With a second boiler limited by
The first boiler is configured to have an ability to cover the shortage of the generated medium amount of the second boiler with the first boiler,
With a first boiler control device that outputs an operation command to the first boiler based on the medium temperature or the medium pressure of the medium assembly unit,
A second boiler control device is provided that sets the amount of medium generated in the second boiler to an amount corresponding to the amount or pressure of the gas fuel based on the amount or pressure of gas fuel supplied to the second boiler. It is in.

この多缶設置ボイラにあっては、媒体発生に必要となる燃料の供給量に制限がない第1ボイラと、媒体発生に必要となるガス燃料の供給量が変動するとともに、当該供給量が燃料供給側からの供給量により制限を受ける第2ボイラが備えられる。
そして、第1ボイラに対しては第1ボイラ制御装置が働き、第2ボイラに対しては第2ボイラ制御装置が働く。ここで、第2ボイラ制御装置は、前記第2ボイラに供給されるガス燃料の量又は圧力に基づいて、前記第2ボイラで発生する媒体量を前記ガス燃料の量又は圧力に対応した量とすることで、第2ボイラで消費されるガス燃料量を、供給されるガス燃料の量に見合った量とする。結果、第2ボイラは、供給されるガス燃料の量が極度に低下しない限り、その運転を継続し、また、供給されるガス燃料の量に見合っただけ媒体を生成する。
In this multi-can boiler, the supply amount of the fuel required for generating the medium is not limited, the supply amount of the gas fuel required for generating the medium fluctuates, and the supply amount is the fuel. A second boiler is provided which is limited by the supply amount from the supply side.
And a 1st boiler control apparatus works with respect to a 1st boiler, and a 2nd boiler control apparatus works with respect to a 2nd boiler. Here, the second boiler control device determines the amount of medium generated in the second boiler based on the amount or pressure of the gas fuel supplied to the second boiler and the amount corresponding to the amount or pressure of the gas fuel. Thus, the amount of gas fuel consumed in the second boiler is set to an amount commensurate with the amount of gas fuel supplied. As a result, the second boiler continues its operation as long as the amount of gas fuel to be supplied is not extremely reduced, and generates a medium corresponding to the amount of gas fuel to be supplied.

一方、第1ボイラは、媒体集合部の媒体温度又は媒体圧力に基づいて、第1ボイラに対して運転指令を出力する第1ボイラ制御装置により制御を受け、需要先の媒体要求に見合うだけの媒体を、需要先に供給するように、第2ボイラから発生される媒体量では不足する分を発生する。
結果、ガス燃料の供給量が変動するとともに、そのガス燃料の供給量により蒸気発生量が規制されるボイラ(第2ボイラ)を備えた多缶設置ボイラにおいて、供給されるガス燃料の確実な消費を図るとともに、需要先の需要に見合った媒体の供給を安定した運転状態で行える。
On the other hand, the first boiler is controlled by the first boiler control device that outputs an operation command to the first boiler based on the medium temperature or the medium pressure of the medium collecting unit, and only meets the medium requirement of the demand destination. In order to supply the medium to the customer, the amount of medium generated from the second boiler is insufficient.
As a result, in a multi-can boiler equipped with a boiler (second boiler) in which the amount of gas fuel varies and the amount of steam generated is regulated by the amount of gas fuel supplied, reliable consumption of the gas fuel supplied In addition, it is possible to supply a medium that meets the demand of the customer in a stable operating state.

上記の特徴構成を備えた多缶設置ボイラにおいて、
前記第1ボイラ制御装置による前記第1ボイラに対する運転制御形態が、前記媒体集合部の媒体温度又は媒体圧力に基づいて、第1ボイラをON−OFF制御する2位置制御形態、若しくはHI−LOW−OFF制御する3位置制御形態であり、
前記第2ボイラ制御装置による前記第2ボイラに対する運転制御形態が、前記第2ボイラに供給されるガス燃料の量又は圧力に基づいて、前記ガス燃料の量又は圧力の上昇に伴って媒体発生量を増加させる比例制御形態であることが好ましい。
In the multi-can installation boiler having the above-described characteristic configuration,
The operation control mode for the first boiler by the first boiler control device is a two-position control mode in which the first boiler is ON-OFF controlled based on the medium temperature or the medium pressure of the medium collecting unit, or HI-LOW- It is a three-position control mode that performs OFF control,
The operation control mode for the second boiler by the second boiler control device is based on the amount or pressure of the gas fuel supplied to the second boiler, and the amount of generated medium as the amount or pressure of the gas fuel increases. It is preferable to use a proportional control mode that increases.

この構成を採用することにより、第1ボイラに対しては、従来どおりの、例えば「集中台数制御」を採用し、第1ボイラの運転停止を、2位置制御又は3位置制御する比較的簡易な制御で、需要先の需要に対して第2ボイラの運転だけでは不足する不足分を補える。
一方、第2ボイラでは、供給されるガス燃料の量に見合った分を媒体発生に使用・消費して、過不足なく、安定してガス燃料を消費しながら、媒体を生成できる。
By adopting this configuration, for the first boiler, for example, “concentrated number control” as in the past is adopted, and the operation stop of the first boiler is controlled in two or three positions. The control can compensate for the shortage that is insufficient with only the operation of the second boiler with respect to the demand of the customer.
On the other hand, in the second boiler, the medium corresponding to the amount of gas fuel to be supplied can be used and consumed for generating the medium, and the medium can be generated while consuming the gas fuel stably without excess or deficiency.

さらに、第2ボイラに供給されるガス燃料が生物由来のメタンを主成分とするバイオガス燃料であることが好ましい。
エネルギー問題及び環境問題の両観点から、メタンを主成分とするバイオガス燃料を生産して有効利用することが好ましいが、これまで説明してきた多缶設置ボイラを使用することで、生産されるバイオガス燃料をガス燃料として消費することで、上記目的を達成することができる。
また、この種のバイオガスは、その生産量が変動しやすく、生産量が通常生産量の半分以下に低下する場合もあるが、本発明の多缶設置ボイラでは、需要先の供給を満たした状態で、バイオガスの有効利用を図れる。
Furthermore, it is preferable that the gas fuel supplied to the second boiler is a biogas fuel mainly composed of biologically derived methane.
From the viewpoint of both energy problems and environmental problems, it is preferable to produce and effectively use biogas fuel mainly composed of methane. However, the biofuel produced by using the multi-can installed boiler described so far The above object can be achieved by consuming the gas fuel as the gas fuel.
In addition, the production amount of this type of biogas tends to fluctuate, and the production amount may decrease to less than half of the normal production amount. However, the multi-can boiler of the present invention satisfies the supply of the customer. In this state, the biogas can be used effectively.

これまで説明してきた多缶設置ボイラに関して、複数の前記第1ボイラを備え、前記第1ボイラ制御装置を、前記複数の第1ボイラに関して、前記媒体集合部の媒体温度又は媒体圧力に基づいて、運転する第1ボイラの台数を制御する構成とすると、第1ボイラに関して、従来型の「集中台数制御」を採用し、適切に台数制御を実行して、需要先の需要に対して第2ボイラの運転だけでは不足する不足分を補える。
一方、第2ボイラでは、供給されるガス燃料の量に見合った分を媒体発生に使用・消費して、過不足なく、安定してガス燃料を消費しながら媒体を生成できる。
Regarding the multi-can installation boiler that has been described so far, a plurality of the first boilers are provided, and the first boiler control device is related to the plurality of first boilers based on the medium temperature or the medium pressure of the medium assembly unit, If it is set as the structure which controls the number of the 1st boilers which operate | move, about the 1st boiler, the conventional "centralized number control" will be adopted, number control will be performed appropriately, and the 2nd boiler with respect to the demand of a customer It is possible to make up for the shortage that is lacking by driving alone.
On the other hand, in the second boiler, a medium corresponding to the amount of gas fuel supplied can be used and consumed for generating the medium, and the medium can be generated while consuming gas fuel stably without excess or deficiency.

また、これまで説明してきた多缶設置ボイラに関して、前記第1ボイラ制御装置が、前記媒体集合部の媒体温度又は媒体圧力に基づいて、当該第1ボイラから発生する蒸気量を制御する構成とすることもできる。この場合は、第1ボイラにより、需要先の需要に対して第2ボイラの運転だけでは不足する不足分を補える。
第2ボイラに関しては、先と同様に、供給されるガス燃料の量に見合った分を媒体発生に使用・消費して、過不足なく、安定してガス燃料を消費しながら媒体を生成できる。
Moreover, regarding the multi-can installation boiler described so far, the first boiler control device controls the amount of steam generated from the first boiler based on the medium temperature or the medium pressure of the medium collecting unit. You can also. In this case, the first boiler can make up for a shortage that is insufficient with only the operation of the second boiler with respect to the demand of the customer.
As for the second boiler, the medium corresponding to the amount of gas fuel to be supplied can be used and consumed for generating the medium, and the medium can be generated while consuming gas fuel stably without excess or deficiency.

従って、第2ボイラに供給されるバイオガスの供給圧力が安定して、圧力異常による外気放散や圧力低下による第2ボイラの停止頻度が軽減できる。さらに、通常、バイオガス発生プラントには、このような第2ボイラ側の流量変動の影響を吸収するために、小型のクッションタンク(ホルダー)を設ける場合が多いが、この制御システムの採用により、タンクの容量をさらに小さくするとか、省略でき、システム全体のコストダウンが図れる。
又、第2ボイラの発停頻度も少なくなり、運転効率(バイオガス消費量に対する蒸気発生量の割合)も上昇し、省エネルギーになる。
Therefore, the supply pressure of the biogas supplied to the second boiler is stabilized, and the frequency of stopping the second boiler due to the diffusion of the outside air due to the pressure abnormality or the pressure drop can be reduced. Furthermore, usually, a biogas generation plant is often provided with a small cushion tank (holder) in order to absorb the influence of the flow rate fluctuation on the second boiler side. By adopting this control system, The tank capacity can be further reduced or omitted, and the overall system cost can be reduced.
In addition, the frequency of starting and stopping the second boiler is reduced, the operating efficiency (ratio of the amount of steam generated with respect to the biogas consumption) is also increased, and energy is saved.

本願に係る多缶設置ボイラの構成を示す図The figure which shows the structure of the multi-can installation boiler which concerns on this application 「個別蒸気圧台数制御」の多缶設置ボイラの構成を示す図Diagram showing the configuration of a multi-can installation boiler for "Individual Steam Pressure Unit Control" 「集中蒸気圧台数制御」の多缶設置ボイラの構成を示す図Diagram showing the configuration of a multi-can installation boiler for “Centralized Vapor Pressure Unit Control”

本発明に係る多缶設置ボイラ100について、図1に基づいて説明する。
この多缶設置ボイラ100は、複数台並列に設置したボイラ1を備え、ボイラ1から発生される蒸気を蒸気集合部2(媒体集合部の一例)で集合して、同図の右側に示す蒸気需要先3(媒体需要先の一例)に供給する設備である。
A multi-can installation boiler 100 according to the present invention will be described with reference to FIG.
The multi-can installation boiler 100 includes a plurality of boilers 1 installed in parallel, and collects steam generated from the boiler 1 at a steam collecting unit 2 (an example of a medium collecting unit), and the steam shown on the right side of FIG. This is a facility that supplies the customer 3 (an example of a medium customer).

多缶設置ボイラ100では、天然ガス、LPG或いは重油等の、実質的に燃料の供給量に制限がない燃料(第1燃料)と、バイオガス等の、ガス燃料の供給量が変動するとともに、当該供給量が燃料供給側からの供給量により制限を受けるガス燃料(第2燃料)とを燃料として、蒸気を発生する。   In the multi-can boiler 100, the supply amount of gas fuel such as natural gas, LPG or heavy oil, which has substantially no limit on the supply amount of fuel (first fuel), and biogas, etc. Steam is generated using gas fuel (second fuel) whose supply amount is limited by the supply amount from the fuel supply side as fuel.

以下、第1ボイラ1aを複数備え、第1ボイラ1aを台数制御する例をまず説明する。
多缶設置ボイラ100には、ボイラ1として、蒸気発生に必要となる燃料(例えば天然ガス、重油)の供給量に制限がない複数(図示する例では4台)の第1ボイラ1aと、蒸気発生に必要となるガス燃料の供給量が変動するとともに、当該供給量が燃料供給側からの供給量により制限を受ける第2ボイラ1bを第1ボイラ1aの総蒸気発生量より少ない総蒸気発生量又は1台当りの蒸気発生量が同等の場合は少ない台数(図示する例では1台)備えて構成されている。
Hereinafter, an example of providing a plurality of first boilers 1a and controlling the number of first boilers 1a will be described first.
In the multi-can installation boiler 100, as the boiler 1, a plurality of (four in the illustrated example) first boilers 1a that have no limitation on the supply amount of fuel (for example, natural gas, heavy oil) necessary for generating steam, and steam The amount of gas fuel required for generation fluctuates, and the total amount of steam generated in the second boiler 1b, which is limited by the amount of supply from the fuel supply side, is less than the total amount of steam generated in the first boiler 1a. Alternatively, when the amount of generated steam per unit is the same, a small number (one in the illustrated example) is provided.

そして、この多缶設置ボイラ100では、蒸気需要先3における蒸気需要が増大し、多缶設置ボイラ100での蒸気発生量を増大する必要が発生した状態で、上述の第2ボイラ1bの蒸気発生量が当該第2ボイラ1bへのガス燃料の供給量の制限から限界がある場合にも、第2ボイラ1bの発生蒸気量の不足分を第1ボイラ1aで賄える能力を第1ボイラ1aが備える構成とされている。具体的には、第2ボイラ1bの全蒸気発生能力が、設備全体の全蒸気発生能力の30%以下と設定されており、この30%の能力の過半を、全第1ボイラ1aを最大の能力で運転した場合に賄えるように設備が構成されている。   And in this multi-can installation boiler 100, the vapor | steam generation | occurrence | production of the above-mentioned 2nd boiler 1b in the state where the vapor | steam demand in the vapor | steam demand destination 3 increased and the necessity for increasing the amount of steam generation in the multi-can installation boiler 100 generate | occur | produced. Even when the amount is limited due to the limitation of the amount of gas fuel supplied to the second boiler 1b, the first boiler 1a has the ability to cover the shortage of the generated steam amount of the second boiler 1b with the first boiler 1a. It is configured. Specifically, the total steam generation capacity of the second boiler 1b is set to 30% or less of the total steam generation capacity of the entire facility, and the majority of all the first boiler 1a is the largest of the 30% capacity. The equipment is configured to cover for the ability to drive.

図1に示すように、先に説明した蒸気集合部2の蒸気圧力に基づいて、複数の第1ボイラ1aに対して運転指令を出力する第1ボイラ台数制御装置4(第1ボイラ制御装置の一例)と備えるとともに、第2ボイラ1bに供給されるガス燃料の圧力に基づいて、第2ボイラ1bで発生する蒸気量をガス燃料の圧力に対応した量とする第2ボイラ制御装置5が備えられている。   As shown in FIG. 1, based on the steam pressure of the steam gathering part 2 demonstrated previously, the 1st boiler number control apparatus 4 (output of a 1st boiler control apparatus) which outputs a driving | operation command with respect to several 1st boiler 1a. And a second boiler control device 5 that sets the amount of steam generated in the second boiler 1b to an amount corresponding to the pressure of the gas fuel based on the pressure of the gas fuel supplied to the second boiler 1b. It has been.

さらに具体的には、前記第1ボイラ台数制御装置4による第1ボイラ1aに対する運転制御形態が、蒸気集合部2の蒸気圧力に基づいて、第1ボイラ1aをON−OFF制御する2位置制御とされている。一方、第2ボイラ制御装置5による第2ボイラ1bに対する運転制御形態が、第2ボイラ1bに供給されるガス燃料の圧力に基づいて、圧力の上昇に伴って蒸気発生量を増加させる比例制御形態とされている。そして、第2ボイラ1bにおいて供給されるバイオガス燃料の全量を実質的に消費するように構成されている。   More specifically, the operation control mode for the first boiler 1a by the first boiler number control device 4 is a two-position control in which the first boiler 1a is ON-OFF controlled based on the steam pressure of the steam collecting section 2. Has been. On the other hand, the operation control mode for the second boiler 1b by the second boiler control device 5 is a proportional control mode for increasing the amount of steam generated as the pressure rises based on the pressure of the gas fuel supplied to the second boiler 1b. It is said that. And it is comprised so that the whole quantity of the biogas fuel supplied in the 2nd boiler 1b may be consumed substantially.

以上が、本発明に係る多缶設置ボイラ100の概略構成であるが、以下、第2ボイラ1bのガス燃料の生成、多缶設置ボイラ100の構成及び運転について説明する。   The above is the schematic configuration of the multi-can installation boiler 100 according to the present invention. Hereinafter, the generation of gas fuel in the second boiler 1b, the configuration and operation of the multi-can installation boiler 100 will be described.

〔ガス燃料の生成〕
図1の上段に示すように、第2ボイラ1bで使用するガス燃料は、原料受入槽10、嫌気性発酵槽11、脱硫槽12、圧縮機13、小型ガスタンク14を経て第2ボイラ1bに供給される。
原料受入槽10は、食品残渣、家畜の糞尿、人のし尿、稲わら、間伐材等を原料として受け入れる。
嫌気性発酵槽11は、これら原料を嫌気性雰囲気下で、公知の嫌気性菌により発酵処理される。嫌気性発酵槽11における嫌気性発酵処理により、原料はメタンを概略60%、炭酸ガスを概略40%含むガスとなる。
このようにして生成されるガス燃料は、脱硫槽12で、ガス燃料に含まれるイオウ成分が除去され、圧縮機13で1kPa〜100kPa程度まで圧縮される。圧縮後の加圧状態にあるガス燃料が小型ガスタンク14に貯留され、逐次、第2ボイラ1bの運転に従って供給される。
[Generation of gas fuel]
As shown in the upper part of FIG. 1, the gas fuel used in the second boiler 1 b is supplied to the second boiler 1 b through the raw material receiving tank 10, the anaerobic fermentation tank 11, the desulfurization tank 12, the compressor 13, and the small gas tank 14. Is done.
The raw material receiving tank 10 receives food residues, livestock manure, human waste, rice straw, thinned wood, and the like as raw materials.
The anaerobic fermenter 11 is fermented with known anaerobic bacteria in an anaerobic atmosphere. By the anaerobic fermentation treatment in the anaerobic fermenter 11, the raw material becomes a gas containing approximately 60% of methane and approximately 40% of carbon dioxide.
The gas fuel produced in this manner is desulfurized in the desulfurization tank 12 and the sulfur component contained in the gas fuel is removed, and compressed by the compressor 13 to about 1 kPa to 100 kPa. The gas fuel in a compressed state after compression is stored in the small gas tank 14 and is sequentially supplied according to the operation of the second boiler 1b.

〔多缶設置ボイラの構成及び運転〕
これまでも説明してきたように、多缶設置ボイラ100は、4台の第1ボイラ1aと1台の第2ボイラ1bとを並列に設置しており、各ボイラ1a,1bで発生させた蒸気を集合させて蒸気需要先3へ送るスチームヘッダ6を備えて構成されている。各ボイラ1a,1bとスチームヘッダ6の間は蒸気配管7によって接続され、各ボイラ1a,1bで発生させた蒸気は蒸気配管7を通してスチームヘッダ6へ送られる。各ボイラ1a,1bにはそれぞれにボイラ運転制御部8が設けられており、個々のボイラにおける燃焼制御(ボイラの運転・停止を含む)はボイラ運転制御部8によって行われる。
ここで、第1ボイラ1aに関しては、前記第1ボイラ台数制御装置4からの運転指令をボイラ運転制御部8が受けて、燃焼制御を実行する。第2ボイラ1bに関しては、前記第2ボイラ制御装置5からの運転指令をボイラ運転制御部8が受けて、燃焼制御を実行する。
[Configuration and operation of multi-can boiler]
As described above, the multi-can boiler 100 has four first boilers 1a and one second boiler 1b installed in parallel, and steam generated in each boiler 1a, 1b. Are provided with a steam header 6 that is sent to the steam demand 3. Each boiler 1a, 1b and the steam header 6 are connected by a steam pipe 7, and steam generated in each boiler 1a, 1b is sent to the steam header 6 through the steam pipe 7. Each boiler 1a, 1b is provided with a boiler operation control unit 8, and combustion control (including operation / stop of the boiler) in each boiler is performed by the boiler operation control unit 8.
Here, regarding the 1st boiler 1a, the boiler operation control part 8 receives the operation command from the said 1st boiler number control apparatus 4, and performs combustion control. With respect to the second boiler 1b, the boiler operation control unit 8 receives an operation command from the second boiler control device 5 and executes combustion control.

第1ボイラ台数制御
スチームヘッダ6の需要先接続端(全ボイラ1からの蒸気が集合する蒸気需要先端側)の蒸気集合部2には、この蒸気集合部2における蒸気圧力を検出する蒸気集合部圧力検出器2aが設けられており、蒸気集合部圧力検出器2aは、その検出結果を、第1ボイラ台数制御装置4に送る構成が採用されている。第1ボイラ台数制御装置4は、蒸気集合部圧力検出器2aで検出する蒸気集合部2の蒸気圧力値と第1ボイラ台数制御装置4に設定している設定圧力値との比較に基づいて、各第1ボイラ1aへの運転指令を生成し、送信する。第1ボイラ台数制御装置4では、蒸気集合部圧力検出器2aで検出した蒸気圧力値が高くなるほど第1ボイラ1aの燃焼台数を少なくし、蒸気圧力値が低下するほど第1ボイラ1aの燃焼台数を多くするように台数設定が決定する。第1ボイラ台数制御装置4は、各ボイラ1aに稼働優先順位を設定しておき、稼働優先順位の上位のものから順に、決定した台数分のボイラに対して、燃焼要求信号を通信にて出力する。ここでのボイラの稼働優先順位は、例えば、第1ボイラ1・第1ボイラ2・第1ボイラ3、第1ボイラ4の順に、第1位・第2位・第3位・第4位としておく。なお、各ボイラ1aで安全を確保するために蒸気圧力も検出していて、蒸気圧力が異常に高くなった時点でも第1ボイラ1aを停止できるように構成されている。
Number control of the first boiler The steam collecting section 2 at the demand end connecting end of the steam header 6 (the steam demand leading end side where steam from all the boilers 1 collects) has a steam collecting section for detecting the steam pressure in the steam collecting section 2. The pressure detector 2a is provided, and the steam collecting portion pressure detector 2a employs a configuration that sends the detection result to the first boiler number control device 4. The first boiler number control device 4 is based on a comparison between the steam pressure value of the steam collecting portion 2 detected by the steam collecting portion pressure detector 2a and the set pressure value set in the first boiler number control device 4. An operation command to each first boiler 1a is generated and transmitted. In the first boiler number control device 4, the number of combustion of the first boiler 1a is decreased as the steam pressure value detected by the steam collecting portion pressure detector 2a is increased, and the number of combustion of the first boiler 1a is decreased as the steam pressure value is decreased. The number of units is determined so as to increase the number. The first boiler number control device 4 sets an operation priority for each boiler 1a, and outputs a combustion request signal to the determined number of boilers in order from the highest operation priority by communication. To do. The operation priority of the boilers here is, for example, in the order of the first boiler 1, the first boiler 2, the first boiler 3, and the first boiler 4 in the order of first, second, third, and fourth. deep. In addition, in order to ensure safety in each boiler 1a, the steam pressure is also detected, and the first boiler 1a can be stopped even when the steam pressure becomes abnormally high.

第2ボイラ制御
図1に示すように、第2ボイラ1bにより発生される蒸気も蒸気配管7を介してスチームヘッダ6に送られるが、この第2ボイラ1bの運転は、本発明独特の第2ボイラ制御装置5によりその運転が制御される。同図に示すように、第2ボイラ1bにガス燃料を供給するガス燃料供給部9には、このガス燃料供給部9におけるガス燃料圧力を検出するガス燃料供給部圧力検出器9aが設けられている。ガス燃料供給部圧力検出器9aは、その検出結果を、第2ボイラ制御装置5に送る構成が採用され、第2ボイラ制御装置5は、ガス燃料供給部圧力検出器9aで検出するガス燃料圧力値に基づいて、第2ボイラ1bへの運転指令を生成し、送信する。第2ボイラ制御装置5では、ガス燃料供給部圧力検出器9aで検出したガス燃料圧力値が高くなるほど第2ボイラ1bの燃焼量を多くし、ガス燃料圧力値が低下するほど第2ボイラ1bの燃焼量を小さくする。即ち、第2ボイラ1bに供給されるガス燃料の圧力に対して、ボイラの燃焼量(換言すると蒸気発生量)は、圧力検出値の上昇に伴って蒸気発生量を増加させる比例制御形態とされており、その比例係数は、第2ボイラ1bにおいて供給されるバイオガス燃料の全量を消費するように燃焼量を決定する係数とされる。なお、安全を確保するために、蒸気圧力も検出して、蒸気圧力が異常に高くなった時点でも第2ボイラ1bを停止できる。
Second Boiler Control As shown in FIG. 1, the steam generated by the second boiler 1b is also sent to the steam header 6 through the steam pipe 7. The operation of the second boiler 1b is the second characteristic of the present invention. The operation of the boiler control device 5 is controlled. As shown in the figure, the gas fuel supply section 9 for supplying gas fuel to the second boiler 1b is provided with a gas fuel supply section pressure detector 9a for detecting the gas fuel pressure in the gas fuel supply section 9. Yes. The gas fuel supply unit pressure detector 9a adopts a configuration in which the detection result is sent to the second boiler control device 5, and the second boiler control device 5 detects the gas fuel pressure detected by the gas fuel supply unit pressure detector 9a. Based on the value, an operation command to the second boiler 1b is generated and transmitted. In the second boiler control device 5, the combustion amount of the second boiler 1b is increased as the gas fuel pressure value detected by the gas fuel supply pressure detector 9a is increased, and the second boiler 1b is decreased as the gas fuel pressure value is decreased. Reduce the amount of combustion. That is, with respect to the pressure of the gas fuel supplied to the second boiler 1b, the combustion amount of the boiler (in other words, the amount of steam generated) is in a proportional control form in which the amount of steam generated increases as the pressure detection value increases. The proportionality coefficient is a coefficient that determines the combustion amount so as to consume the entire amount of biogas fuel supplied in the second boiler 1b. In order to ensure safety, the steam pressure is also detected, and the second boiler 1b can be stopped even when the steam pressure becomes abnormally high.

従って、本発明に係る多缶設置ボイラ100では、蒸気需要先3への蒸気の供給に関して、第2ボイラ1bでは、その第2ボイラ1bに供給されるガス燃料を消費するだけ蒸気を発生し、発生した蒸気に、複数の第1ボイラ1aで発生した蒸気を追加する。結果、第1ボイラ1aは、蒸気需要先3で必要とされる全体の蒸気負荷から第2ボイラ1bで発生する蒸気量を差し引いた量に追従するように台数制御される。   Therefore, in the multi-can installation boiler 100 according to the present invention, with respect to the supply of steam to the steam customer 3, the second boiler 1b generates steam as much as it consumes the gas fuel supplied to the second boiler 1b, The steam generated in the plurality of first boilers 1a is added to the generated steam. As a result, the number of first boilers 1a is controlled so as to follow the amount obtained by subtracting the amount of steam generated in the second boiler 1b from the total steam load required at the steam demand destination 3.

結果、本発明の多缶設置ボイラ100が設置され、通常の燃料で運転される第1蒸気発生系統101と、バイオガス等の発生量が変動し、且つ、実質的に発生量の制御が困難で、その発生量の規制を受ける第2蒸気発生系統102とを備えた蒸気発生システム(本願にいうところのバイオガスプラントでもある)において、第2ボイラ1bに関しては、その第2ボイラ1bに供給されるガス燃料を過不足なく消費して蒸気を発生しながら、第1ボイラ1aにおいて、蒸気需要先3の要求に見合う不足分を補う運転が行われる。第2ボイラ1bの運転を比較的安定したものとし、さらに、外気側への放散の機会を極力低減することができる。また、第2蒸気発生系統102に備えられるガス燃料用の圧縮機13、タンク14を比較的小型のものにできる。   As a result, the first steam generation system 101 in which the multi-can installation boiler 100 of the present invention is installed and operated with normal fuel, the generation amount of biogas and the like fluctuate, and the generation amount is substantially difficult to control. In the steam generation system (which is also a biogas plant referred to in the present application) including the second steam generation system 102 subject to the regulation of the generation amount, the second boiler 1b is supplied to the second boiler 1b. The first boiler 1a is operated to make up for the shortage that meets the demand of the steam customer 3 while consuming the generated gas fuel without excess and deficiency and generating steam. It is possible to make the operation of the second boiler 1b relatively stable, and to further reduce the chance of diffusion to the outside air as much as possible. Further, the compressor 13 and the tank 14 for gas fuel provided in the second steam generation system 102 can be made relatively small.

従来の設備構成に対して本発明の設備構成を採用することで、約10%の省エネルギー(バイオガスボイラの効率上昇とバイオガスの放散量減少相当分)を得ることができる。   By adopting the equipment configuration of the present invention with respect to the conventional equipment configuration, it is possible to obtain about 10% energy saving (equivalent to an increase in the efficiency of the biogas boiler and a decrease in the amount of biogas diffused).

〔別実施形態〕
(1)
上記の実施形態では、ボイラにより発生される媒体が蒸気である例を示したが、この種の媒体は、温水、油等の熱媒体であってもよい。
(2)
上記の実施形態では、第2ボイラに供給されるガス燃料がバイオガスの例を示したが、供給量に変動があり、その供給量が第2ボイラの運転において規制となるガス燃料としては、バイオガスのみならず、所定のプロセスにおいて副産物として発生する副生ガス、コークスガス等も、本願における第2ボイラに対するガス燃料とすることができる。
(3)
上記の実施形態では、第1ボイラの燃焼形態を2位置制御としたが、媒体圧力に従って、燃焼状態を高出力、低出力、停止との間で切り換える所謂、3位置制御としてもよい。
(4)
上記の実施形態では、第1ボイラ台数制御装置が媒体集合部である蒸気集合部の蒸気圧に基づいて複数ある第1ボイラの運転台数の決定を行う例を示したが、先にも説明したように蒸気集合部の温度に基づいて複数ある第1ボイラの運転台数を決定するものとしてもよい。
一方、第2ボイラ制御装置に関しては、先の実施形態に記載のように、第2ボイラに供給されるガス燃料の圧力に応じてボイラの燃焼量を制御できる他、ガス燃料の量、即ち、第2ボイラに供給されるガス燃料における流量測定部位を流れる単位時間当たりの流量に基づいて第2ボイラの燃焼量を制御してもよい。
(5)
上記の実施形態では、第1ボイラとして複数の第1ボイラが備えられ、それら複数の第1ボイラが、第1ボイラ制御装置である第1ボイラ台数制御装置により台数制御される例を示したが、この第1ボイラ制御装置が、媒体集合部の媒体温度又は媒体圧力に基づいて、第1ボイラに対して運転指令を出力するにおいて、複数の第1ボイラに関して、その台数制御を実行する他、少なくとも1台の第1ボイラに関して、当該媒体集合部から需要側へ供給される蒸気(媒体の一例)の量が所定の需要量条件を満たすように第1ボイラの運転状態を制御してもよい。
例えば、第1ボイラを3位置制御するものとし、需要側への供給量が不足する場合は、第1ボイラからの供給量を増加させ、需要側への供給量が過多となる場合は、第1ボイラからの供給量を減少させる、或は、第1ボイラを停止させればよい。
[Another embodiment]
(1)
In the above embodiment, an example in which the medium generated by the boiler is steam has been described, but this type of medium may be a heat medium such as warm water or oil.
(2)
In the above embodiment, the gas fuel supplied to the second boiler is an example of biogas, but the supply amount varies, and as the gas fuel whose supply amount is regulated in the operation of the second boiler, In addition to biogas, by-product gas, coke gas, and the like generated as by-products in a predetermined process can be used as gas fuel for the second boiler in the present application.
(3)
In the above embodiment, the combustion mode of the first boiler is the two-position control. However, a so-called three-position control may be used in which the combustion state is switched between high output, low output, and stop according to the medium pressure.
(4)
In the above embodiment, an example in which the first boiler number control device determines the number of operating first boilers based on the steam pressure of the steam collecting portion that is the medium collecting portion has been described, but it has also been described above. Thus, the number of operating first boilers may be determined based on the temperature of the steam collecting portion.
On the other hand, regarding the second boiler control device, as described in the previous embodiment, in addition to controlling the combustion amount of the boiler according to the pressure of the gas fuel supplied to the second boiler, the amount of gas fuel, that is, You may control the combustion amount of a 2nd boiler based on the flow volume per unit time which flows through the flow measurement site | part in the gas fuel supplied to a 2nd boiler.
(5)
In the above embodiment, a plurality of first boilers are provided as the first boiler, and the number of the first boilers is controlled by the first boiler number control device which is the first boiler control device. In addition, the first boiler control device outputs an operation command to the first boiler based on the medium temperature or the medium pressure of the medium collecting unit. With respect to at least one first boiler, the operation state of the first boiler may be controlled so that the amount of steam (an example of a medium) supplied from the medium assembly unit to the demand side satisfies a predetermined demand amount condition. .
For example, when the first boiler is controlled at three positions and the supply amount to the demand side is insufficient, the supply amount from the first boiler is increased, and the supply amount to the demand side is excessive, What is necessary is just to reduce the supply amount from 1 boiler, or to stop a 1st boiler.

バイオガスのようなガス燃料を燃料とし、その供給量が変動するとともに、そのガス燃料の供給量により蒸気発生量が規制されるボイラを備えた多缶設置ボイラにおいて、供給されるガス燃料の確実な消費を図るとともに、需要先の需要に見合った媒体の供給を安定した運転状態で行える多缶設置ボイラを得ることができた。   In a multi-can installation boiler equipped with a boiler that uses gas fuel such as biogas as its fuel, the supply amount of which varies, and the amount of steam generated is regulated by the supply amount of the gas fuel. As a result, it was possible to obtain a multi-can installation boiler that can supply a medium that meets the demand of the customer in a stable operating state.

1 :ボイラ
1a :第1ボイラ
1b :第2ボイラ
2 :蒸気集合部
3 :蒸気需要先
4 :第1ボイラ台数制御装置(第1ボイラ制御装置)
5 :第2ボイラ制御装置
8 :ボイラ運転制御装置
9 :ガス燃料供給部
1: Boiler 1a: 1st boiler 1b: 2nd boiler 2: Steam gathering part 3: Steam demand 4: 1st boiler number control device (1st boiler control device)
5: Second boiler control device 8: Boiler operation control device 9: Gas fuel supply unit

Claims (5)

複数台並列に設置したボイラを備え、ボイラから発生される媒体を媒体集合部で集合して媒体需要先に供給する多缶設置ボイラであって、
前記ボイラとして、媒体発生に必要となる燃料の供給量に制限がない第1ボイラと、媒体発生に必要となるガス燃料の供給量が変動するとともに、当該供給量が燃料供給側からの供給量により制限を受ける第2ボイラを備え、
前記第2ボイラの発生媒体量の不足分を前記第1ボイラで賄える能力を前記第1ボイラが備えて構成され、
前記媒体集合部の媒体温度又は媒体圧力に基づいて、前記第1ボイラに対して運転指令を出力する第1ボイラ制御装置と備えるとともに、
前記第2ボイラに供給されるガス燃料の量又は圧力に基づいて、前記第2ボイラで発生する媒体量を前記ガス燃料の量又は圧力に対応した量とする第2ボイラ制御装置を備えた多缶設置ボイラ。
A multi-can installation boiler that includes boilers installed in parallel, collects the medium generated from the boiler at the medium assembly unit, and supplies the medium to customers.
As the boiler, there is a first boiler with no restriction on the supply amount of fuel necessary for generating the medium, and the supply amount of gas fuel required for generating the medium varies, and the supply amount is the supply amount from the fuel supply side. With a second boiler limited by
The first boiler is configured to have an ability to cover the shortage of the generated medium amount of the second boiler with the first boiler,
With a first boiler control device that outputs an operation command to the first boiler based on the medium temperature or the medium pressure of the medium assembly unit,
A second boiler control device comprising a second boiler control device for setting the amount of medium generated in the second boiler to an amount corresponding to the amount or pressure of the gas fuel based on the amount or pressure of gas fuel supplied to the second boiler. Can installation boiler.
前記第1ボイラ制御装置による前記第1ボイラに対する運転制御形態が、前記媒体集合部の媒体温度又は媒体圧力に基づいて、第1ボイラをON−OFF制御する2位置制御形態、若しくはHI−LOW−OFF制御する3位置制御形態であり、
前記第2ボイラ制御装置による前記第2ボイラに対する運転制御形態が、前記第2ボイラに供給されるガス燃料の量又は圧力に基づいて、前記ガス燃料の量又は圧力の上昇に伴って媒体発生量を増加させる比例制御形態である請求項1記載の多缶設置ボイラ。
The operation control mode for the first boiler by the first boiler control device is a two-position control mode in which the first boiler is ON-OFF controlled based on the medium temperature or the medium pressure of the medium collecting unit, or HI-LOW- It is a three-position control mode that performs OFF control,
The operation control mode for the second boiler by the second boiler control device is based on the amount or pressure of the gas fuel supplied to the second boiler, and the amount of generated medium as the amount or pressure of the gas fuel increases. The multi-can installation boiler according to claim 1, which is a proportional control mode for increasing
前記第2ボイラに供給されるガス燃料が生物由来のメタンを主成分とするバイオガス燃料である請求項1又は2記載の多缶設置ボイラ。   The multi-can installation boiler according to claim 1 or 2, wherein the gas fuel supplied to the second boiler is a biogas fuel mainly composed of biologically derived methane. 複数の前記第1ボイラを備え、前記第1ボイラ制御装置が、前記複数の第1ボイラに関して、前記媒体集合部の媒体温度又は媒体圧力に基づいて、運転する第1ボイラの台数を制御する請求項1〜3のいずれか一項記載の多缶設置ボイラ。   A plurality of the first boilers, wherein the first boiler control device controls the number of first boilers to be operated on the plurality of first boilers based on the medium temperature or the medium pressure of the medium collecting unit. The multi-can installation boiler as described in any one of claim | item 1 -3. 前記第1ボイラ制御装置が、前記媒体集合部の媒体温度又は媒体圧力に基づいて、当該第1ボイラから発生する蒸気量を制御する請求項1〜3のいずれか一項記載の多缶設置ボイラ。   The multi-can installation boiler according to any one of claims 1 to 3, wherein the first boiler control device controls the amount of steam generated from the first boiler based on a medium temperature or a medium pressure of the medium collecting unit. .
JP2010122873A 2010-05-28 2010-05-28 Multi-can installed boiler Pending JP2011247538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122873A JP2011247538A (en) 2010-05-28 2010-05-28 Multi-can installed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122873A JP2011247538A (en) 2010-05-28 2010-05-28 Multi-can installed boiler

Publications (1)

Publication Number Publication Date
JP2011247538A true JP2011247538A (en) 2011-12-08

Family

ID=45413009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122873A Pending JP2011247538A (en) 2010-05-28 2010-05-28 Multi-can installed boiler

Country Status (1)

Country Link
JP (1) JP2011247538A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247555A (en) * 2010-05-31 2011-12-08 Miura Co Ltd Combustion device
JP2014211296A (en) * 2013-04-22 2014-11-13 株式会社サムソン Multi-can installation boiler
JP2017040444A (en) * 2015-08-20 2017-02-23 三浦工業株式会社 Boiler system
JP2020020544A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020547A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020546A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020541A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020545A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020548A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020542A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182902A (en) * 1999-12-24 2001-07-06 Miura Co Ltd Multiple can installation system for boiler and method for controlling the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182902A (en) * 1999-12-24 2001-07-06 Miura Co Ltd Multiple can installation system for boiler and method for controlling the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247555A (en) * 2010-05-31 2011-12-08 Miura Co Ltd Combustion device
JP2014211296A (en) * 2013-04-22 2014-11-13 株式会社サムソン Multi-can installation boiler
JP2017040444A (en) * 2015-08-20 2017-02-23 三浦工業株式会社 Boiler system
JP2020020544A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020547A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020546A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020541A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020545A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020548A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP2020020542A (en) * 2018-08-02 2020-02-06 三浦工業株式会社 By-product gas utilization system
JP7067349B2 (en) 2018-08-02 2022-05-16 三浦工業株式会社 By-product gas utilization system
JP7107073B2 (en) 2018-08-02 2022-07-27 三浦工業株式会社 By-product gas utilization system
JP7107072B2 (en) 2018-08-02 2022-07-27 三浦工業株式会社 By-product gas utilization system
JP7110807B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system
JP7110804B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system
JP7110805B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system
JP7110806B2 (en) 2018-08-02 2022-08-02 三浦工業株式会社 By-product gas utilization system

Similar Documents

Publication Publication Date Title
JP2011247538A (en) Multi-can installed boiler
JP5378624B1 (en) High pressure hydrogen production system and method for operating high pressure hydrogen production system
CN106651047B (en) Regional energy Internet dynamic operation optimization method
JP6077482B2 (en) High pressure hydrogen production system and method for operating high pressure hydrogen production system
JP2011208864A (en) Hot water supply system
US9594362B2 (en) Energy management system, energy management apparatus, and power management method
WO2008016257A1 (en) Fuel cell system and operating method
KR101464281B1 (en) Electric power generation system linked to biogas
JP6117838B2 (en) High pressure hydrogen production system and method for operating high pressure hydrogen production system
US20080124594A1 (en) Fuel cell system having reliable air supply line
JP2012242011A (en) Biogas combustion control system, and combustion control method thereof
US20060188764A1 (en) Fuel cell generation system
JP5312693B2 (en) FUEL CELL SYSTEM AND METHOD FOR OPERATING FUEL CELL SYSTEM
JP2014527833A (en) Biogas plant and method of operating biogas plant
JP6727067B2 (en) Hydrogen regeneration system and hydrogen regeneration operation method
JP5190394B2 (en) Off-gas fired boiler system
JP6789180B2 (en) Biogas supply methods, systems, and programs
JP2004156501A (en) Cogeneration apparatus and method for controlling the same
JP5140380B2 (en) Biomass power generation method and biomass power generation equipment
JP2006046826A (en) Pulverized coal thermal power generation system and operation method thereof
RU2728800C2 (en) Method of controlling multivalent energy saving system
JP2019014772A (en) Biogas supply method, biogas supply system, and program
CN113899162A (en) Rapid load-variable air separation device for IGCC power station and control method thereof
WO2020175284A1 (en) Fuel cell apparatus
JP2021155614A (en) Methanation system using biogas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140320