JP2011247204A - Fuel supply control apparatus for internal combustion engine - Google Patents

Fuel supply control apparatus for internal combustion engine Download PDF

Info

Publication number
JP2011247204A
JP2011247204A JP2010122667A JP2010122667A JP2011247204A JP 2011247204 A JP2011247204 A JP 2011247204A JP 2010122667 A JP2010122667 A JP 2010122667A JP 2010122667 A JP2010122667 A JP 2010122667A JP 2011247204 A JP2011247204 A JP 2011247204A
Authority
JP
Japan
Prior art keywords
fuel
raw material
oxygen
content
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010122667A
Other languages
Japanese (ja)
Inventor
Takanobu Ueda
貴宣 植田
Yoshihiro Iwashita
義博 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010122667A priority Critical patent/JP2011247204A/en
Publication of JP2011247204A publication Critical patent/JP2011247204A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a technique for accurately calculating a content rate of an oxygen-containing fuel in a fuel supply control apparatus for an internal combustion engine when the oxygen-containing fuel is included in a higher octane fuel.SOLUTION: Based on the fact that a temperature rise rate in a constant flow rate is different in whether a material fuel is a normal one or a mixed one, the technique calculates the difference of the temperature rise rate (S102) by comparing the temperature rise rate of the material fuel when the material fuel is heated in a heat pipe in the constant flow rate, with the predetermined temperature rise rate of the material fuel under the same condition, and calculates the content rate of the oxygen-containing fuel (S103) by obtaining the difference in the determined temperature rise rate and the difference in the temperature rise rate calculated in a map of the relation with the content rate of the oxygen-containing fuel.

Description

本発明は、内燃機関の燃料供給制御装置に関する。   The present invention relates to a fuel supply control device for an internal combustion engine.

原料燃料を分離装置で、高オクタン価成分の含有率が原料燃料より多い高オクタン価燃料と、高オクタン価成分の含有率が原料燃料より少ない低オクタン価燃料と、に分離し、内燃機関の運転状態に応じて高オクタン価燃料と低オクタン価燃料との割合を変更して燃料を供給する技術が開示されている(例えば、特許文献1参照)。これにより、内燃機関に供給する燃料のオクタン価を内燃機関の運転状態に応じて調節することができる。よって、高負荷領域では、高オクタン価燃料を使用してトルクを上昇させたり、低負荷領域では、低オクタン価燃料を使用してノッキングを抑制したりしている。   Separating raw material fuel into high octane fuel with higher content of high octane component than raw fuel and low octane fuel with lower content of high octane component than raw fuel, depending on the operating condition of the internal combustion engine A technique for supplying fuel by changing the ratio of a high-octane fuel and a low-octane fuel is disclosed (for example, see Patent Document 1). Thereby, the octane number of the fuel supplied to the internal combustion engine can be adjusted according to the operating state of the internal combustion engine. Therefore, in the high load region, the torque is increased using a high octane fuel, and in the low load region, knocking is suppressed using a low octane fuel.

特表2004−522039号公報Japanese translation of PCT publication No. 2004-522039 特開2009−024551号公報JP 2009-024551 A 特開2009−047008号公報JP 2009-04-7008 A

ところで、原料燃料にエタノール、メタノール等のアルコールやMTBE等の含酸素燃料をガソリン等の石油系燃料に混合した混合燃料を用いることが検討されている。原料燃料に混合燃料を用いた場合には、石油系燃料だけの通常燃料を用いた場合とは、分離後の燃料のオクタン価、発熱量等の燃料性状が異なってくる。これは、含酸素燃料は、含酸素燃料の有する極性によりアロマ成分と同様に分離膜を透過し易いので、混合燃料に含まれる含酸素燃料は、高オクタン価燃料に分離されるためである。このため、生成された高オクタン価燃料は、分離後の含酸素燃料を含み、燃料性状が大きく変化してしまう。よって、この高オクタン価燃料を用いると、含酸素燃料を多く含むため、通常燃料から分離した場合と等量だけ供給しても、排気空燃比がリーン空燃比側へシフトしてしまう。これに対し、空燃比センサでフィードバック制御して排気空燃比を調整することが考えられる。しかし、内燃機関の運転状態に応じて高オクタン価燃料の供給割合は変更されるので、全供給量に対する含酸素燃料量の割合は逐次変化することになる。よって、空燃比センサでフィードバック制御して排気空燃比を調整しても後追いの調整となり、排気空燃比を目標空燃比に調整することが困難である。排気空燃比を目標空燃比に調整するためには、高オクタン価燃料に含まれている含酸素燃料含有率を算出し、算出した含酸素燃料含有率に応じて燃料供給量を補正する必要がある。   By the way, the use of a mixed fuel obtained by mixing an alcohol-containing fuel such as ethanol or methanol or an oxygen-containing fuel such as MTBE into a petroleum-based fuel such as gasoline has been studied. When the mixed fuel is used as the raw material fuel, the fuel properties such as the octane number and the calorific value of the separated fuel are different from the case of using the normal fuel only of the petroleum-based fuel. This is because the oxygen-containing fuel is easy to permeate the separation membrane in the same manner as the aroma component due to the polarity of the oxygen-containing fuel, so that the oxygen-containing fuel contained in the mixed fuel is separated into the high-octane fuel. For this reason, the produced | generated high octane fuel contains the oxygen-containing fuel after isolation | separation, and a fuel property will change a lot. Therefore, when this high octane fuel is used, it contains a large amount of oxygen-containing fuel, so even if it is supplied in the same amount as when separated from normal fuel, the exhaust air-fuel ratio shifts to the lean air-fuel ratio side. On the other hand, it is conceivable to adjust the exhaust air-fuel ratio by feedback control with an air-fuel ratio sensor. However, since the supply ratio of the high-octane fuel is changed according to the operating state of the internal combustion engine, the ratio of the oxygen-containing fuel amount to the total supply amount changes sequentially. Therefore, even if the exhaust air-fuel ratio is adjusted by feedback control with the air-fuel ratio sensor, it is a follow-up adjustment, and it is difficult to adjust the exhaust air-fuel ratio to the target air-fuel ratio. In order to adjust the exhaust air-fuel ratio to the target air-fuel ratio, it is necessary to calculate the oxygen-containing fuel content rate contained in the high-octane fuel and correct the fuel supply amount according to the calculated oxygen-containing fuel content rate .

本発明は上記問題点に鑑みたものであり、本発明の目的は、内燃機関の燃料供給制御装置において、高オクタン価燃料に含酸素燃料が含まれている場合に、含酸素燃料含有率を正確に算出する技術を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to accurately determine the oxygen-containing fuel content rate in a fuel supply control device for an internal combustion engine when the oxygen-containing fuel is contained in the high-octane fuel. It is to provide a technique for calculating the above.

本発明にあっては、以下の構成を採用する。すなわち、本発明は、
含酸素燃料を含まない通常燃料と、含酸素燃料と通常燃料とが混合された混合燃料と、のどちらかを用いた原料燃料を、高オクタン価成分の含有率が原料燃料より多く分離後の含酸素燃料を含む高オクタン価燃料と、高オクタン価成分の含有率が原料燃料より少ない低オクタン価燃料と、に分離する燃料分離手段と、
内燃機関の運転状態に応じて、前記内燃機関に供給する高オクタン価燃料と低オクタン価燃料との割合を基本マップに合わせて変更して燃料を供給する燃料供給手段と、
を備えた内燃機関の燃料供給制御装置であって、
前記燃料分離手段で原料燃料を分離する前に、原料燃料を加熱する加熱手段と、
原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、物性が異なることを利用して、前記加熱手段で原料燃料を加熱したときの原料燃料の変化を、同条件での予め定まっている通常燃料の変化と対比して互いの物性が異なることに関連する物理量を算出し、予め定まっている物理量と含酸素燃料含有率との関係のマップに算出した物理量を取り込むことにより、含酸素燃料含有率を算出する含有率算出手段を備えたことを特徴とする内燃機関の燃料供給制御装置である。
In the present invention, the following configuration is adopted. That is, the present invention
A raw material fuel that uses either a normal fuel that does not contain oxygenated fuel or a mixed fuel that is a mixture of oxygenated fuel and normal fuel has a higher octane component content than the raw fuel. A fuel separation means for separating into a high octane fuel containing oxygen fuel and a low octane fuel with a low content of high octane components than the raw fuel,
Fuel supply means for supplying fuel by changing the ratio of the high-octane fuel and the low-octane fuel supplied to the internal combustion engine according to the operating state of the internal combustion engine according to the basic map;
A fuel supply control device for an internal combustion engine comprising:
Heating means for heating the raw fuel before separating the raw fuel by the fuel separation means;
Taking advantage of the difference in physical properties between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel, the change in the raw material fuel when the raw material fuel is heated by the heating means is determined in advance under the same conditions. By calculating the physical quantity related to the difference in physical properties compared to the change in normal fuel, and incorporating the calculated physical quantity into the map of the relationship between the predetermined physical quantity and the oxygen-containing fuel content, A fuel supply control device for an internal combustion engine, comprising content rate calculating means for calculating an oxygen fuel content rate.

原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、物性が異なるため、加熱手段で原料燃料を加熱すると、原料燃料中の含酸素燃料含有率による物性の違いが原料燃料の変化として現れる。そこで、加熱手段で原料燃料を加熱したときの原料燃料の変化を、同条件での予め定まっている通常燃料の変化と対比して互いの物性が異なることに関連する物理量を算出し、予め定まっている物理量と含酸素燃料含有率との関係のマップに算出した物理量を取り込むことにより、含酸素燃料含有率を算出する。これによると、高オクタン価燃料の含酸素燃料含有率を正確に算出することができる。したがって、正確に算出した含酸素燃料含有率に応じて燃料供給量を補正することができるので、内燃機関の運転状態に応じて高オクタン価燃料の供給割合を変更し、燃料の全供給量に対する含酸素燃料量の割合が逐次変化していても、排気空燃比を目標空燃比に調整することができ、排気空燃比がリーン空燃比側へシフトしてしまうことを抑制することができる。   When the raw material fuel is normal fuel and when the raw material fuel is a mixed fuel, the physical properties are different, so when the raw material fuel is heated by the heating means, the difference in physical properties due to the oxygen-containing fuel content in the raw material fuel changes the raw material fuel Appears as Therefore, the physical quantity related to the difference in physical properties is calculated by comparing the change in the raw fuel when the raw fuel is heated by the heating means with the change in the normal fuel determined in advance under the same conditions. The oxygen-containing fuel content is calculated by taking the calculated physical quantity into the map of the relationship between the physical quantity and the oxygen-containing fuel content. According to this, it is possible to accurately calculate the oxygen-containing fuel content of the high-octane fuel. Accordingly, since the fuel supply amount can be corrected according to the oxygen-containing fuel content rate calculated accurately, the supply ratio of the high octane fuel is changed according to the operating state of the internal combustion engine, and the fuel supply amount is included in the total fuel supply amount. Even if the ratio of the amount of oxygen fuel changes sequentially, the exhaust air-fuel ratio can be adjusted to the target air-fuel ratio, and the exhaust air-fuel ratio can be prevented from shifting to the lean air-fuel ratio side.

前記含有率算出手段は、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定流量中での温度上昇量が異なることを利用して、一定流量中での前記加熱手段で原料燃料を加熱したときの原料燃料の温度上昇量を、同条件での予め定まっている通常燃料の温度上昇量と対比して温度上昇量の差を算出し、予め定まっている温度上昇量の差と含酸素燃料含有率との関係のマップに算出した温度上昇量の差を取り込むことにより、含酸素燃料含有率を算出するとよい。   The content rate calculating means uses the heating means at a constant flow rate by utilizing the fact that the amount of temperature rise at a constant flow rate differs between when the raw material fuel is normal fuel and when the raw material fuel is a mixed fuel. The temperature rise amount of the raw material fuel when the raw material fuel is heated is compared with the temperature rise amount of the normal fuel determined in advance under the same condition to calculate the difference in the temperature rise amount. It is preferable to calculate the oxygen-containing fuel content rate by taking in the difference in the temperature increase calculated in the map of the relationship between the difference and the oxygen-containing fuel content rate.

原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定流量中での温度上昇量が異なるため、加熱手段で原料燃料を加熱すると、原料燃料中の含酸素燃料含有率による一定流量中での温度上昇量の違いが温度上昇量に現れる。そこで、一定流量中での加熱手段で原料燃料を加熱したときの原料燃料の温度上昇量を、同条件での予め定まっている通常燃料の温度上昇量と対比して温度上昇量の差を算出し、予め定まっている温度上昇量の差と含酸素燃料含有率との関係のマップに算出した温度上昇量の差を取り込むことにより、含酸素燃料含有率を算出する。これによると、高オクタン価燃料の含酸素燃料含有率を正確に算出することができる。   When the raw material fuel is normal fuel and when the raw material fuel is a mixed fuel, the amount of increase in temperature at a constant flow rate is different. Therefore, when the raw material fuel is heated by the heating means, it is constant depending on the oxygen-containing fuel content in the raw material fuel. The difference in the temperature rise amount in the flow rate appears in the temperature rise amount. Therefore, the difference in temperature rise is calculated by comparing the temperature rise of the raw material fuel when the raw fuel is heated with heating means at a constant flow rate with the temperature rise amount of the normal fuel determined in advance under the same conditions. Then, the oxygen-containing fuel content rate is calculated by taking the difference in the calculated temperature increase amount into the map of the relationship between the predetermined temperature increase amount and the oxygen-containing fuel content rate. According to this, it is possible to accurately calculate the oxygen-containing fuel content of the high-octane fuel.

前記含有率算出手段は、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定温度中での流量が異なることを利用して、目標温度に前記加熱手段で原料燃料を加熱したときの原料燃料の流量を、同条件での予め定まっている通常燃料の流量と対比して流量の差を算出し、予め定まっている流量の差と含酸素燃料含有率との関係のマップに算出した流量の差を取り込むことにより、含酸素燃料含有率を算出するとよい。   The content rate calculation means heats the raw material fuel to the target temperature with the heating means by utilizing the fact that the flow rate at a constant temperature differs between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel. The flow rate of the raw material fuel is compared with the predetermined normal fuel flow rate under the same conditions to calculate the flow rate difference, and the map of the relationship between the predetermined flow rate difference and the oxygen-containing fuel content rate It is preferable to calculate the oxygen-containing fuel content by taking in the difference between the calculated flow rates.

原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定温度中での流量が異なるため、加熱手段で原料燃料を加熱すると、原料燃料中の含酸素燃料含有率による一定温度中での流量の違いが流量に現れる。そこで、一定温度中での加熱手段で原料燃料を加熱したときの原料燃料の流量を、同条件での予め定まっている通常燃料の流量と対比して流量の差を算出し、予め定まっている流量の差と含酸素燃料含有率との関係のマップに
算出した流量の差を取り込むことにより、含酸素燃料含有率を算出する。これによると、高オクタン価燃料の含酸素燃料含有率を正確に算出することができる。
Since the flow rate at a constant temperature is different between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel, when the raw material fuel is heated by the heating means, the flow rate is constant due to the oxygen-containing fuel content in the raw material fuel. The difference in flow rate appears in the flow rate. Therefore, the flow rate of the raw material fuel when the raw material fuel is heated by the heating means at a constant temperature is calculated in advance by comparing the flow rate of the raw material fuel with the predetermined normal fuel flow rate under the same conditions. The oxygen-containing fuel content is calculated by taking the calculated flow-rate difference into the map of the relationship between the flow rate difference and the oxygen-containing fuel content. According to this, it is possible to accurately calculate the oxygen-containing fuel content of the high-octane fuel.

前記含有率算出手段は、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、前記加熱手段から原料燃料に供給された伝熱量に対する熱伝達率が異なることを利用して、前記加熱手段で原料燃料を加熱したときの原料燃料の温度上昇量と流量と熱伝達率とを掛けて算出する伝熱量と、同条件での予め定まっている通常燃料の伝熱量とが略同じになることから、原料燃料の熱伝達率を算出し、予め定まっている熱伝達率と含酸素燃料含有率との関係のマップに原料燃料の熱伝達率を取り込むことにより、含酸素燃料含有率を算出するとよい。   The content rate calculating means uses the fact that the heat transfer rate with respect to the heat transfer amount supplied from the heating means to the raw material fuel is different between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel, The amount of heat transfer calculated by multiplying the temperature rise of the raw material fuel when the raw material fuel is heated by the heating means, the flow rate, and the heat transfer coefficient is approximately the same as the heat transfer amount of normal fuel determined in advance under the same conditions. Therefore, by calculating the heat transfer rate of the raw material fuel and incorporating the heat transfer rate of the raw material fuel into the map of the relationship between the predetermined heat transfer rate and the oxygenated fuel content rate, the oxygen-containing fuel content rate is calculated. It is good to calculate.

原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、加熱手段から原料燃料に供給された伝熱量に対する熱伝達率が異なるため、加熱手段で原料燃料を加熱すると、原料燃料中の含酸素燃料含有率による伝熱量に対する熱伝達率の違いが熱伝達率に現れる。そこで、加熱手段で原料燃料を加熱したときの原料燃料の温度上昇量と流量と熱伝達率とを掛けて算出する伝熱量と、同条件での予め定まっている通常燃料の伝熱量とが略同じになることから、原料燃料の熱伝達率を算出し、予め定まっている熱伝達率と含酸素燃料含有率との関係のマップに原料燃料の熱伝達率を取り込むことにより、含酸素燃料含有率を算出する。これによると、高オクタン価燃料の含酸素燃料含有率を正確に算出することができる。   When the raw material fuel is a normal fuel and when the raw material fuel is a mixed fuel, the heat transfer rate for the amount of heat transferred from the heating means to the raw fuel is different. The difference in the heat transfer rate with respect to the heat transfer amount due to the oxygen-containing fuel content rate appears in the heat transfer rate. Therefore, the amount of heat transfer calculated by multiplying the temperature rise of the raw material fuel when the raw material fuel is heated by the heating means, the flow rate, and the heat transfer coefficient, and the heat transfer amount of the normal fuel determined in advance under the same conditions are approximately. Therefore, by calculating the heat transfer rate of the raw material fuel and incorporating the heat transfer rate of the raw material fuel into the predetermined relationship between the heat transfer rate and the oxygenated fuel content rate, Calculate the rate. According to this, it is possible to accurately calculate the oxygen-containing fuel content of the high-octane fuel.

前記燃料分離手段で分離した高オクタン価燃料を貯留する高オクタン価燃料タンクと、
前記高オクタン価燃料タンク内の高オクタン価燃料の残量を検知する残量検知手段と、
前記高オクタン価燃料タンク内に残っている高オクタン価燃料中の含酸素燃料含有率と、前記残量検知手段が検知する前記高オクタン価燃料タンク内に残っている高オクタン価燃料の残量と、前記高オクタン価燃料タンクに流入する高オクタン価燃料の流入量と、前記高オクタン価燃料タンクに流入する高オクタン価燃料の含酸素燃料含有率であって前記含有率算出手段で算出された含酸素燃料含有率と、に基づいて算出される前記高オクタン価燃料タンク内の高オクタン価燃料中の含酸素燃料含有率に応じて、前記基本マップに対して燃料の供給量を増量する燃料増量手段と、
を更に備えるとよい。これによると、高オクタン価燃料タンク内の高オクタン価燃料中の正確に算出した含酸素燃料含有率に応じて燃料供給量を増量補正することができるので、内燃機関の運転状態に応じて高オクタン価燃料の供給割合を変更し、全供給量に対する含酸素燃料量の割合が逐次変化していても、排気空燃比を目標空燃比に調整することができ、排気空燃比がリーン空燃比側へシフトしてしまうことを抑制することができる。
A high-octane fuel tank for storing the high-octane fuel separated by the fuel separation means;
A remaining amount detecting means for detecting the remaining amount of the high octane fuel in the high octane fuel tank;
The oxygen-containing fuel content in the high-octane fuel remaining in the high-octane fuel tank, the residual amount of the high-octane fuel remaining in the high-octane fuel tank detected by the remaining amount detection means, An inflow amount of high octane fuel flowing into the octane fuel tank, an oxygen content fuel content of the high octane fuel flowing into the high octane fuel tank, and the oxygen content content calculated by the content calculator; Fuel increasing means for increasing the amount of fuel supplied to the basic map according to the oxygen-containing fuel content in the high-octane fuel in the high-octane fuel tank calculated based on
May be further provided. According to this, the fuel supply amount can be increased and corrected according to the accurately calculated oxygen-containing fuel content in the high-octane fuel in the high-octane fuel tank, so that the high-octane fuel can be adjusted according to the operating state of the internal combustion engine. Even if the ratio of the oxygen-containing fuel amount to the total supply amount changes sequentially, the exhaust air-fuel ratio can be adjusted to the target air-fuel ratio, and the exhaust air-fuel ratio shifts to the lean air-fuel ratio side. Can be suppressed.

前記燃料増量手段は、前記含有率算出手段で算出された含酸素燃料含有率に応じて、前記基本マップに対して前記基本マップの高オクタン価燃料と低オクタン価燃料との割合と同じ割合で燃料の供給量を増量するとよい。これによると、補正により増量される燃料の供給量も基本マップの高オクタン価燃料と低オクタン価燃料との割合と同じ割合であるので、補正後に供給される燃料のオクタン価を、内燃機関の運転状態に最適なオクタン価に維持することができる。   According to the oxygen-containing fuel content rate calculated by the content rate calculating means, the fuel increasing means has the same ratio as the ratio of the high octane fuel and the low octane fuel of the basic map to the basic map. The supply amount should be increased. According to this, the amount of fuel supplied by the correction is the same as the ratio of the high octane number fuel and the low octane number fuel in the basic map, so the octane number of the fuel supplied after the correction is changed to the operating state of the internal combustion engine. The optimum octane number can be maintained.

本発明によると、内燃機関の燃料供給制御装置において、高オクタン価燃料に含酸素燃料が含まれている場合に、含酸素燃料含有率を正確に算出することができる。   According to the present invention, in the fuel supply control device for an internal combustion engine, when the high-octane fuel contains oxygen-containing fuel, the oxygen-containing fuel content can be accurately calculated.

本発明の実施例1に係る内燃機関の概略構成を示す図である。1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. 実施例1に係る基本マップの内燃機関の運転状態と要求オクタン価との関係を示す図である。It is a figure which shows the relationship between the driving | running state of the internal combustion engine of a basic map which concerns on Example 1, and a request | requirement octane number. 実施例1に係る基本マップの内燃機関の機関負荷と燃料噴射量との関係を示す図である。It is a figure which shows the relationship between the engine load of the internal combustion engine of the basic map which concerns on Example 1, and fuel injection quantity. 実施例1に係る内燃機関の運転状態と通常燃料の温度上昇量との関係を示す図である。It is a figure which shows the relationship between the driving | running state of the internal combustion engine which concerns on Example 1, and the temperature rise amount of a normal fuel. 実施例1に係る温度上昇量の差と含酸素燃料含有率との関係を示す図である。It is a figure which shows the relationship between the difference of the temperature rise which concerns on Example 1, and oxygen-containing fuel content rate. 実施例1に係る燃料供給制御ルーチンを示すフローチャートである。3 is a flowchart illustrating a fuel supply control routine according to the first embodiment. 実施例1に係る高RON燃料の含酸素燃料含有率と増量補正分の燃料との関係を示す図である。It is a figure which shows the relationship between the oxygen-containing fuel content rate of the high RON fuel which concerns on Example 1, and the fuel for an increase correction. 実施例1に係る内燃機関の機関負荷と増量補正された燃料噴射量との関係を示す図である。It is a figure which shows the relationship between the engine load of the internal combustion engine which concerns on Example 1, and the fuel injection quantity by which increase correction was carried out.

以下に本発明の具体的な実施例を説明する。   Specific examples of the present invention will be described below.

<実施例1>
図1は、本発明の実施例1に係る内燃機関の燃料供給制御装置を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1には、内燃機関1を作動させる燃料を貯留する燃料タンク2が配置されている。燃料タンク2には、給油された原料燃料が貯留される。ここで、原料燃料とは、例えば90RONの通常のガソリン等の石油系燃料(通常燃料)や、エタノール、メタノール等のアルコールやMTBE等の含酸素燃料をガソリン等の石油系燃料に混合した混合燃料である。燃料タンク2の原料燃料は、燃料タンク2内の燃料ポンプPによって原料燃料配管に送り出される。原料燃料配管の途中には、流量制御弁3が設けられている。流量制御弁3は、原料燃料配管を流通する原料燃料の流量を調節する。原料燃料は、燃料ポンプP及び流量制御弁3によって、所定の圧力まで昇圧される。流量制御弁3よりも下流の原料燃料配管には、ヒートパイプ4が設けられている。ヒートパイプ4は、内燃機関1の排気通路5内を流通する排気の熱を受けた媒体で原料燃料を加熱する。昇圧された原料燃料は、ヒートパイプ4によって、所定の温度まで昇温される。ヒートパイプ4が、本発明の加熱手段に対応する。ヒートパイプ4よりも下流の原料燃料配管には、温度センサ6が設けられている。温度センサ6は、ヒートパイプ4によって加熱された原料燃料の温度を検知する。
<Example 1>
FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which a fuel supply control device for an internal combustion engine according to a first embodiment of the present invention is applied. The internal combustion engine 1 shown in FIG. 1 is provided with a fuel tank 2 that stores fuel for operating the internal combustion engine 1. The fuel tank 2 stores the refueled raw material fuel. Here, the raw material fuel is, for example, a petroleum fuel (ordinary fuel) such as 90 RON normal gasoline or the like, or a mixed fuel obtained by mixing an oxygen-containing fuel such as ethanol or alcohol such as ethanol or methanol or MTBE into a petroleum fuel such as gasoline. It is. The raw material fuel in the fuel tank 2 is sent to the raw material fuel pipe by the fuel pump P in the fuel tank 2. A flow control valve 3 is provided in the middle of the raw material fuel pipe. The flow rate control valve 3 adjusts the flow rate of the raw material fuel flowing through the raw material fuel pipe. The raw material fuel is boosted to a predetermined pressure by the fuel pump P and the flow rate control valve 3. A heat pipe 4 is provided in the raw material fuel pipe downstream of the flow rate control valve 3. The heat pipe 4 heats the raw material fuel with a medium that has received the heat of the exhaust gas flowing through the exhaust passage 5 of the internal combustion engine 1. The pressurized raw material fuel is heated to a predetermined temperature by the heat pipe 4. The heat pipe 4 corresponds to the heating means of the present invention. A temperature sensor 6 is provided in the raw material fuel pipe downstream of the heat pipe 4. The temperature sensor 6 detects the temperature of the raw material fuel heated by the heat pipe 4.

温度センサ6よりも下流側で原料燃料配管は、分離器7に接続されている。分離器7は、加熱された原料燃料を、高オクタン価成分が原料燃料より多い例えば103RONの高RON燃料(高オクタン価燃料)と、高オクタン価成分が原料燃料より少ない例えば88RONの低RON燃料(低オクタン価燃料)と、に分離する。分離器7は、容器内をアロマ分離膜8で仕切って2つの区画9,10を形成している。アロマ分離膜8は、原料燃料中の芳香族成分を選択的に透過させる性質を有している。分離器7に流入した高温高圧の原料燃料は、イダクタ11の作用により負圧となった区画10側へアロマ分離膜8を透過すると、芳香族成分量が多くなり、高RON燃料となる。一方、アロマ分離膜8を透過しない場合には、芳香族成分量が少なく、低RON燃料となる。分離器7における燃料がアロマ分離膜8を透過していない区画9は、低RON燃料配管に接続されている。分離器7における燃料がアロマ分離膜8を透過した区画10は、高RON燃料配管に接続されている。本実施例における分離器7が、本発明の燃料分離手段に対応する。   The raw material fuel pipe is connected to the separator 7 on the downstream side of the temperature sensor 6. The separator 7 divides the heated raw material fuel into a high RON fuel having a high octane number component (for example, 103 RON) higher than that of the raw material fuel, and a low RON fuel having a high octane number component (for example, 88 RON) (low octane number) Fuel). The separator 7 divides the container with an aroma separation membrane 8 to form two compartments 9 and 10. The aroma separation membrane 8 has a property of selectively permeating aromatic components in the raw material fuel. When the high-temperature and high-pressure raw material fuel that has flowed into the separator 7 permeates the aroma separation membrane 8 toward the compartment 10 that has become negative due to the action of the inductor 11, the amount of aromatic components increases and becomes high RON fuel. On the other hand, when it does not permeate the aroma separation membrane 8, the amount of aromatic components is small and the fuel is low RON. The section 9 in which the fuel in the separator 7 does not permeate the aroma separation membrane 8 is connected to a low RON fuel pipe. The section 10 through which the fuel in the separator 7 permeates the aroma separation membrane 8 is connected to a high RON fuel pipe. The separator 7 in this embodiment corresponds to the fuel separation means of the present invention.

低RON燃料配管及び高RON燃料配管の途中には、各燃料を冷却する燃料クーラ12,13が配置されている。燃料クーラ12,13は、各燃料を外気と熱交換して冷却する。燃料クーラ12よりも下流側の低RON燃料配管は、内燃機関1内のインジェクタ14に接続されている。燃料クーラ13よりも下流の高RON燃料配管には、高RON燃料配
管に接続された区画10内に負圧を発生させるイダクタ11が設けられている。イダクタ11よりも下流側の高RON燃料配管は、高RON燃料タンク15に接続されている。高RON燃料タンク15が、本発明の高オクタン価燃料タンクに対応する。高RON燃料タンク15内には、貯留されている高RON燃料の残量を検知する残量センサ16が配置されている。残量センサ16が、本発明の残量検知手段に対応する。高RON燃料タンク15内の高RON燃料は、燃料ポンプPで汲み上げられて内燃機関1内のインジェクタ17に供給される。
In the middle of the low RON fuel pipe and the high RON fuel pipe, fuel coolers 12 and 13 for cooling each fuel are arranged. The fuel coolers 12 and 13 cool each fuel by exchanging heat with the outside air. A low RON fuel pipe downstream of the fuel cooler 12 is connected to an injector 14 in the internal combustion engine 1. The high RON fuel pipe downstream of the fuel cooler 13 is provided with an inductor 11 that generates a negative pressure in the section 10 connected to the high RON fuel pipe. The high RON fuel pipe downstream of the inductor 11 is connected to the high RON fuel tank 15. The high RON fuel tank 15 corresponds to the high octane fuel tank of the present invention. In the high RON fuel tank 15, a remaining amount sensor 16 for detecting the remaining amount of the stored high RON fuel is disposed. The remaining amount sensor 16 corresponds to the remaining amount detecting means of the present invention. The high RON fuel in the high RON fuel tank 15 is pumped up by the fuel pump P and supplied to the injector 17 in the internal combustion engine 1.

以上述べたように構成された内燃機関1には、内燃機関1を制御するための電子制御ユニット(Electronic Control Unit:以下、ECUという)18が併設されている。EC
U18は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。ECU18には、上記した温度センサ6及び残量センサ16の他、クランクポジションセンサ20、アクセルポジションセンサ21等の各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU18に入力されるようになっている。一方、ECU18には、流量制御弁3、イダクタ11、及びインジェクタ14,17が電気配線を介して接続されており、ECU18によりこれらの機器が制御される。
The internal combustion engine 1 configured as described above is provided with an electronic control unit (hereinafter referred to as ECU) 18 for controlling the internal combustion engine 1. EC
U18 is a unit that controls the operating state of the internal combustion engine 1 in accordance with the operating conditions of the internal combustion engine 1 and the demands of the driver. In addition to the temperature sensor 6 and the remaining amount sensor 16 described above, various sensors such as a crank position sensor 20 and an accelerator position sensor 21 are connected to the ECU 18 through electric wiring, and output signals of these various sensors are input to the ECU 18. It has become so. On the other hand, the ECU 18 is connected with the flow control valve 3, the inductor 11, and the injectors 14 and 17 through electric wiring, and these devices are controlled by the ECU 18.

ECU18は、内燃機関1内の夫々のインジェクタ14,17から吸気ポートへ噴射される高RON燃料及び低RON燃料の割合を、運転状態に応じて変更する。図2は、基本マップの内燃機関1の運転状態と要求オクタン価との関係を示す図である。図2中の実線Lは、内燃機関のロード線Lを示している。このロード線Lに示すように内燃機関1の運転状態が変化すると、内燃機関1の要求オクタン価が変化する。このため、要求オクタン価が実現されるように、高RON燃料及び低RON燃料の噴射量の割合を決定する。図3は、基本マップの内燃機関1の機関負荷と燃料噴射量との関係を示す図である。図3に示すように、機関負荷が上昇する程、燃料噴射量が多くなると共に高RON燃料割合も増加する。このような図2や図3に示す関係は、予め実験や検証等で導出されて基本マップとしてECU18に記憶されている。そして、クランクポジションセンサ20で検出する機関回転速度や、アクセルポジションセンサ21で検出する機関負荷を、図2や図3の基本マップに取り込み、内燃機関1の運転状態に応じて、高RON燃料及び低RON燃料の噴射量の割合や、燃料噴射量を決定し、各インジェクタ14,17から各燃料を噴射する。このような制御を行うECU18が、本発明の燃料供給手段に対応する。   The ECU 18 changes the ratio of the high RON fuel and the low RON fuel injected from the respective injectors 14 and 17 in the internal combustion engine 1 to the intake port according to the operating state. FIG. 2 is a diagram showing the relationship between the operating state of the internal combustion engine 1 and the required octane number of the basic map. A solid line L in FIG. 2 indicates a load line L of the internal combustion engine. When the operating state of the internal combustion engine 1 changes as indicated by the load line L, the required octane number of the internal combustion engine 1 changes. For this reason, the ratio of the injection amount of the high RON fuel and the low RON fuel is determined so that the required octane number is realized. FIG. 3 is a diagram showing the relationship between the engine load of the internal combustion engine 1 and the fuel injection amount in the basic map. As shown in FIG. 3, as the engine load increases, the fuel injection amount increases and the high RON fuel ratio also increases. The relationships shown in FIGS. 2 and 3 are derived in advance through experiments and verifications and stored in the ECU 18 as a basic map. Then, the engine rotation speed detected by the crank position sensor 20 and the engine load detected by the accelerator position sensor 21 are taken into the basic maps of FIGS. 2 and 3, and depending on the operating state of the internal combustion engine 1, high RON fuel and The ratio of the low RON fuel injection amount and the fuel injection amount are determined, and each fuel is injected from each injector 14, 17. The ECU 18 that performs such control corresponds to the fuel supply means of the present invention.

ところで、上記の基本マップに採用されている高RON燃料や低RON燃料は、原料燃料として石油系燃料の通常燃料を用いる場合を想定している。しかし、近年では、原料燃料として、混合燃料を用いる場合がある。原料燃料に混合燃料を用いた場合には、混合燃料に含まれる含酸素燃料がその極性によりアロマ成分と同様にアロマ分離膜8を透過し易いので、混合燃料を分離した高RON燃料には、分離後の含酸素燃料が多く含まれることになる。特に、含酸素燃料が混合燃料よりも量の少ない高RON燃料中に含有されるようになるので、高RON燃料中の含酸素燃料含有率も高くなる。このような混合燃料から分離された高RON燃料を用いて、基本マップに従い燃料供給制御を行うと、高RON燃料が含酸素燃料を多く含むため、高RON燃料を用いる運転状態で、内燃機関の排気通路に配置される空燃比センサが検知する排気空燃比がリーン空燃比側へシフトしてしまう。特に、高RON燃料をより多く用いる高負荷領域になる程、排気空燃比はよりリーン空燃比側へシフトすることになる。排気空燃比は、三元触媒等を用いた排気浄化のためにストイキ等の目標空燃比に調整されることが望まれる。これに対し、空燃比センサやOセンサ等でフィードバック制御して排気空燃比を調整することが考えられる。しかし、上記したように内燃機関1の運転状態に応じて高RON燃料の供給割合は変更されるので、燃料の全供給量に対する含酸素燃料量の割合は逐次変化することになる。よって、空燃比センサでフィードバック制御して排気空燃比を調整しようとすると、フィードバックに用いる含酸素燃料量の割合は、過去のものであり、今現在の含酸素燃料量の割合は、その過去の割
合とは異なるおそれがある。そうすると、空燃比センサでフィードバック制御しても、後追いの調整となり、排気空燃比は目標空燃比からずれてしまい、排気空燃比を目標空燃比に調整することが困難である。排気空燃比を目標空燃比に調整するためには、予め高RON燃料に含まれている含酸素燃料含有率を算出し、算出した含酸素燃料含有率が大きい程、燃料供給量を増量補正する必要がある。
By the way, the high RON fuel and the low RON fuel employed in the above basic map are assumed to use a normal petroleum-based fuel as a raw material fuel. However, in recent years, a mixed fuel may be used as a raw material fuel. When a mixed fuel is used as the raw material fuel, the oxygen-containing fuel contained in the mixed fuel is likely to permeate the aroma separation membrane 8 in the same manner as the aroma component due to its polarity. A large amount of oxygen-containing fuel after separation is contained. Particularly, since the oxygen-containing fuel is contained in the high RON fuel having a smaller amount than the mixed fuel, the oxygen-containing fuel content in the high RON fuel is also increased. When the fuel supply control is performed according to the basic map using the high RON fuel separated from such a mixed fuel, the high RON fuel contains a large amount of oxygen-containing fuel. The exhaust air-fuel ratio detected by the air-fuel ratio sensor disposed in the exhaust passage will shift to the lean air-fuel ratio side. In particular, the exhaust air-fuel ratio shifts to a leaner air-fuel ratio side as it becomes a higher load region where more high RON fuel is used. It is desirable that the exhaust air / fuel ratio be adjusted to a target air / fuel ratio such as stoichiometric for exhaust purification using a three-way catalyst or the like. On the other hand, it is conceivable to adjust the exhaust air-fuel ratio by feedback control using an air-fuel ratio sensor, an O 2 sensor, or the like. However, as described above, since the supply ratio of the high RON fuel is changed according to the operating state of the internal combustion engine 1, the ratio of the oxygen-containing fuel amount with respect to the total supply amount of the fuel changes sequentially. Therefore, when trying to adjust the exhaust air-fuel ratio by feedback control with the air-fuel ratio sensor, the ratio of the oxygen-containing fuel amount used for feedback is the past, and the current ratio of the oxygen-containing fuel amount is the past May be different from proportion. In this case, even if feedback control is performed by the air-fuel ratio sensor, the adjustment becomes a follow-up adjustment, the exhaust air-fuel ratio deviates from the target air-fuel ratio, and it is difficult to adjust the exhaust air-fuel ratio to the target air-fuel ratio. In order to adjust the exhaust air-fuel ratio to the target air-fuel ratio, the oxygen-containing fuel content rate included in the high RON fuel is calculated in advance, and the fuel supply amount is increased and corrected as the calculated oxygen-containing fuel content rate increases. There is a need.

そこで、本実施例では、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定流量中での温度上昇量が異なることを利用して、一定流量中でのヒートパイプ4で原料燃料を加熱したときの原料燃料の温度上昇量を、同条件での予め定まっている通常燃料の温度上昇量と対比して温度上昇量の差を算出し、予め定まっている温度上昇量の差と含酸素燃料含有率との関係のマップに原料燃料の温度上昇量の差を取り込むことにより、含酸素燃料含有率を算出するようにした。このような制御を行うECU18が、本発明の含有率算出手段に対応する。   Therefore, in the present embodiment, the heat pipe 4 at a constant flow rate is used by utilizing the fact that the temperature rise amount at a constant flow rate is different between when the raw material fuel is a normal fuel and when the raw material fuel is a mixed fuel. The temperature rise amount of the raw material fuel when the raw material fuel is heated is compared with the temperature rise amount of the normal fuel determined in advance under the same condition to calculate the difference in the temperature rise amount. The oxygen-containing fuel content is calculated by incorporating the difference in the temperature rise of the raw material fuel into the map of the relationship between the difference and the oxygen-containing fuel content. The ECU 18 that performs such control corresponds to the content rate calculating means of the present invention.

原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定流量中での温度上昇量が異なるため、ヒートパイプ4で原料燃料を加熱すると、原料燃料中の含酸素燃料含有率による一定流量中での温度上昇量の違いが温度上昇量に現れる。そこで、一定流量中でのヒートパイプ4で原料燃料を加熱したときの原料燃料の温度上昇量を、同条件での予め定まっている通常燃料の温度上昇量と対比して温度上昇量の差を算出し、予め定まっている温度上昇量の差と含酸素燃料含有率との関係のマップに算出した温度上昇量の差を取り込むことにより、含酸素燃料含有率を算出する。これによると、高RON燃料の含酸素燃料含有率を正確に算出することができる。したがって、正確に算出した含酸素燃料含有率に応じて燃料供給量を補正することができるので、内燃機関1の運転状態に応じて高RON燃料の供給割合を変更し、燃料の全供給量に対する含酸素燃料量の割合が逐次変化していても、排気空燃比を目標空燃比に調整することができ、排気空燃比がリーン空燃比側へシフトしてしまうことを抑制することができる。   When the raw material fuel is a normal fuel and when the raw material fuel is a mixed fuel, the amount of temperature rise at a constant flow rate is different. Therefore, when the raw material fuel is heated by the heat pipe 4, it depends on the oxygen-containing fuel content in the raw material fuel. The difference in temperature rise at a constant flow rate appears in the temperature rise. Therefore, the temperature rise amount of the raw material fuel when the raw material fuel is heated by the heat pipe 4 at a constant flow rate is compared with the temperature rise amount of the normal fuel determined in advance under the same condition as the difference in temperature rise amount. The oxygen-containing fuel content rate is calculated by taking the difference in the calculated temperature rise amount into the map of the relationship between the temperature increase amount and the oxygen-containing fuel content rate that has been calculated in advance. According to this, the oxygen-containing fuel content rate of the high RON fuel can be accurately calculated. Accordingly, since the fuel supply amount can be corrected according to the oxygen-containing fuel content rate calculated accurately, the supply ratio of the high RON fuel is changed according to the operation state of the internal combustion engine 1, and the total fuel supply amount is changed. Even if the ratio of the oxygen-containing fuel amount is sequentially changed, the exhaust air-fuel ratio can be adjusted to the target air-fuel ratio, and the exhaust air-fuel ratio can be prevented from shifting to the lean air-fuel ratio side.

含有率算出手段は、具体的には、流量制御弁3で原料燃料の流量を一定流量に設定する。そのときに、ヒートパイプ4で加熱後の原料燃料の温度を温度センサ6によって検知する。加熱前の原料燃料の温度は、吸気温度と同一と判断して内燃機関1の吸気温度センサから取得するものでもよいし、燃料タンク2に温度センサを設置しておき、当該温度センサから取得するものでもよい。加熱後の原料燃料の温度と、加熱前の原料燃料の温度と、から原料燃料の温度上昇量が算出できる。図4は、内燃機関1の運転状態と通常燃料の温度上昇量との関係を示す図である。また、上記と同条件、例えば、同じ機関負荷及び同じ機関回転速度のときの通常燃料の温度上昇量を、予め求められている図4に示すマップから導出する。そして、原料燃料の温度上昇量と通常燃料の温度上昇量とを対比して、温度上昇量の差を算出する。図5は、温度上昇量の差と含酸素燃料含有率との関係を示す図である。この温度上昇量の差を、図5に示す予め定まっている温度上昇量の差と含酸素燃料含有率との関係のマップに取り込むことで、高RON燃料の含酸素燃料含有率を算出することができる。   Specifically, the content rate calculating means sets the flow rate of the raw material fuel to a constant flow rate by the flow rate control valve 3. At that time, the temperature of the raw material fuel heated by the heat pipe 4 is detected by the temperature sensor 6. The temperature of the raw material fuel before heating is determined to be the same as the intake air temperature and may be acquired from the intake air temperature sensor of the internal combustion engine 1. Alternatively, a temperature sensor is installed in the fuel tank 2 and acquired from the temperature sensor. It may be a thing. The amount of temperature increase of the raw material fuel can be calculated from the temperature of the raw material fuel after heating and the temperature of the raw material fuel before heating. FIG. 4 is a diagram showing the relationship between the operating state of the internal combustion engine 1 and the amount of temperature increase of normal fuel. Further, the temperature increase amount of the normal fuel under the same conditions as described above, for example, at the same engine load and the same engine speed, is derived from the map shown in FIG. Then, the difference in temperature increase is calculated by comparing the temperature increase of the raw material fuel with the temperature increase of the normal fuel. FIG. 5 is a graph showing the relationship between the difference in temperature rise and the oxygen-containing fuel content. By calculating this difference in temperature rise in the map of the relationship between the predetermined difference in temperature rise shown in FIG. 5 and the oxygen-containing fuel content, the oxygen-containing fuel content of the high RON fuel is calculated. Can do.

ここで、本実施例では、高RON燃料は、分離器7で分離後に高RON燃料タンク15に貯留される。上記のようにして今現在分離器7で分離される高RON燃料の含酸素燃料含有率は判明する。しかし、高RON燃料タンク15内には、以前に分離されて既に貯留されている含酸素燃料含有率が同じではない可能性のある高RON燃料の残量が存在する可能性がある。高RON燃料タンク15内に以前の高RON燃料の残量が存在する場合に、高RON燃料タンク15内に新たな高RON燃料を流入させると、上記のようにして含酸素含有率を算出しても、高RON燃料タンク15内の高RON燃料は、以前の残量と新たな流入量とが混ざり合い、含酸素含有率が変化してしまうおそれがある。   Here, in this embodiment, the high RON fuel is stored in the high RON fuel tank 15 after being separated by the separator 7. As described above, the oxygen-containing fuel content of the high RON fuel that is currently separated by the separator 7 is found. However, there is a possibility that the high RON fuel tank 15 has a remaining amount of high RON fuel that may not have the same oxygen-containing fuel content that has been previously separated and stored. When the remaining amount of the previous high RON fuel is present in the high RON fuel tank 15 and a new high RON fuel is introduced into the high RON fuel tank 15, the oxygen content is calculated as described above. However, the high RON fuel in the high RON fuel tank 15 may be mixed with the previous remaining amount and the new inflow amount, and the oxygen content may change.

そこで、本実施例では、高RON燃料タンク15内に残っている高RON燃料中の含酸素燃料含有率と、残量センサ16が検知する高RON燃料タンク15内に残っている高RON燃料の残量と、高RON燃料タンク15に流入する高RON燃料の流入量と、高RON燃料タンク15に流入する高RON燃料の含酸素燃料含有率であって上記の含有率算出手段で算出された含酸素燃料含有率と、に基づいて算出される高RON燃料タンク15内の高RON燃料中の含酸素燃料含有率に応じて、基本マップに対して基本マップの高RON燃料と低RON燃料との割合と同じ割合で燃料の供給量を増量する。このような制御を行うECU18が、本発明の燃料増量手段に対応する。   Therefore, in this embodiment, the oxygen-containing fuel content in the high RON fuel remaining in the high RON fuel tank 15 and the high RON fuel remaining in the high RON fuel tank 15 detected by the remaining amount sensor 16 are detected. The remaining amount, the inflow amount of the high RON fuel flowing into the high RON fuel tank 15, and the oxygen-containing fuel content rate of the high RON fuel flowing into the high RON fuel tank 15 were calculated by the above content rate calculating means. The high RON fuel and the low RON fuel of the basic map with respect to the basic map according to the oxygen content of the high RON fuel in the high RON fuel tank 15 calculated based on the oxygen-containing fuel content Increase the amount of fuel supplied at the same rate. The ECU 18 that performs such control corresponds to the fuel increasing means of the present invention.

高RON燃料タンク15内の高RON燃料中の含酸素燃料含有率は、高RON燃料タンク15内に残っている高RON燃料中の含酸素燃料含有率と残量センサ16が検知する高RON燃料タンク15内の残量と掛けて残量含酸素燃料量を算出し、流入する高RON燃料の流入量と含有率算出手段で算出された含酸素燃料含有率とを掛けて流入含酸素燃料量を算出し、残量含酸素燃料量と流入含酸素燃料量とを足したものを高RON燃料の残量と流入量とを足したもので割ると算出できる。   The oxygen-containing fuel content in the high RON fuel in the high RON fuel tank 15 is the high RON fuel detected by the oxygen content in the high RON fuel remaining in the high RON fuel tank 15 and the remaining amount sensor 16. The remaining oxygen-containing fuel amount is calculated by multiplying the remaining amount in the tank 15, and the inflowing oxygen-containing fuel amount is calculated by multiplying the inflow amount of the inflowing high RON fuel by the oxygen-containing fuel content rate calculated by the content rate calculating means. And the sum of the remaining oxygen-containing fuel amount and the inflowing oxygen-containing fuel amount is divided by the sum of the remaining amount of the high RON fuel and the inflow amount.

これによると、正確に算出した含酸素燃料含有率に応じて燃料供給量を増量補正することができるので、内燃機関1の運転状態に応じて高RON燃料の供給割合を変更し、燃料の全供給量に対する含酸素燃料量の割合が逐次変化していても、排気空燃比を目標空燃比に調整することができ、排気空燃比がリーン空燃比側へシフトしてしまうことを抑制することができる。また、補正により増量される燃料の供給量も基本マップの高RON燃料と低RON燃料との割合と同じ割合であるので、補正後に供給される燃料のオクタン価を、内燃機関1の運転状態に最適なオクタン価に維持することができる。なお、燃料増量手段としては、上記の制御だけでなく、算出された含酸素燃料含有率に応じて、基本マップに対して燃料の供給量を増量し、排気空燃比を目標空燃比に追従させるものであればよい。また、高RON燃料タンク15が無い場合や残量が0とみなせる場合等では、含有率算出手段で算出された含酸素燃料含有率に応じて、基本マップに対して燃料の供給量を増量し、排気空燃比を目標空燃比に追従させるものでもよい。   According to this, since the fuel supply amount can be increased and corrected according to the accurately calculated oxygen-containing fuel content rate, the supply ratio of the high RON fuel is changed according to the operating state of the internal combustion engine 1, and the total amount of fuel is Even if the ratio of the oxygen-containing fuel amount to the supply amount is sequentially changed, the exhaust air-fuel ratio can be adjusted to the target air-fuel ratio, and the exhaust air-fuel ratio can be prevented from shifting to the lean air-fuel ratio side. it can. Further, since the amount of fuel supplied by the correction is the same as the ratio of the high RON fuel and the low RON fuel in the basic map, the octane number of the fuel supplied after the correction is optimal for the operating state of the internal combustion engine 1. The octane number can be maintained. As the fuel increasing means, not only the above control but also the fuel supply amount is increased with respect to the basic map according to the calculated oxygen-containing fuel content rate, and the exhaust air-fuel ratio is made to follow the target air-fuel ratio. Anything is acceptable. Further, when there is no high RON fuel tank 15 or when the remaining amount can be regarded as 0, the fuel supply amount is increased with respect to the basic map in accordance with the oxygen-containing fuel content rate calculated by the content rate calculating means. The exhaust air-fuel ratio may be made to follow the target air-fuel ratio.

次に、本実施例による燃料供給制御のフローについて説明する。図6は、本実施例に係る燃料供給制御ルーチンを示したフローチャートである。本ルーチンは、特に、内燃機関1が機関始動して、ヒートパイプ4で原料燃料を加熱し、一定流量中で加熱された原料燃料が加熱安定域に到達した場合に実行される。   Next, the flow of fuel supply control according to this embodiment will be described. FIG. 6 is a flowchart showing a fuel supply control routine according to this embodiment. This routine is executed particularly when the internal combustion engine 1 is started, the raw material fuel is heated by the heat pipe 4, and the raw material fuel heated at a constant flow rate reaches the stable heating range.

本ルーチンの処理が開始されると、まず、S101では、一定流量中の原料燃料の温度上昇量を算出する。加熱後の原料燃料の温度は、温度センサ6で検知する。加熱前の原料燃料の温度は、吸気温度センサや燃料タンク2内の温度センサ等で検知する。そして、加熱後の原料燃料の温度から加熱前の原料燃料の温度を差し引くことで、原料燃料の温度上昇量を算出する。   When the processing of this routine is started, first, in S101, the temperature rise amount of the raw material fuel at a constant flow rate is calculated. The temperature of the raw material fuel after heating is detected by a temperature sensor 6. The temperature of the raw material fuel before heating is detected by an intake air temperature sensor, a temperature sensor in the fuel tank 2, or the like. Then, the temperature increase amount of the raw material fuel is calculated by subtracting the temperature of the raw material fuel before heating from the temperature of the heated raw material fuel.

S102では、原料燃料と通常燃料との温度上昇量の差を算出する。原料燃料の温度上昇量は、S101で算出されている。通常燃料の温度上昇量は、図4に示すマップに、S101で原料燃料の温度上昇量を算出したときと同条件、例えば、同じ機関負荷及び同じ機関回転速度を取り込むことで導出できる。そして、原料燃料の温度上昇量と、通常燃料の温度上昇量と、を対比し、通常燃料の温度上昇量から原料燃料の温度上昇量を差し引くことで、原料燃料と通常燃料との温度上昇量の差を算出する。ここで、温度上昇量の差を算出する際には、通常燃料の温度上昇量から原料燃料の温度上昇量を差し引くようにしている。これは、含酸素燃料を有する原料燃料が、通常燃料に比して、温度上昇が鈍化するからである。つまり、含酸素燃料を有する原料燃料の温度上昇量が通常燃料の温度上昇量に比して小さくなるからである。含酸素燃料を有する原料燃料、ここでは10%のエタノ
ールを含有するものを例に挙げると、沸点低下の影響すなわち液相比率の低下(気相比率の増加)により熱伝達性能が通常燃料に比して約10%低下し、気化潜熱の影響により通常燃料に比して約7%の吸熱量が増加し、比熱増加の影響により約2%の温度上昇が鈍化し、10℃前後温度上昇量が鈍化する。このため、通常燃料の温度上昇量から原料燃料の温度上昇量を差し引くことで、温度上昇量の差を正値として算出するようにしている。
In S102, the difference in temperature rise between the raw material fuel and the normal fuel is calculated. The temperature rise amount of the raw material fuel is calculated in S101. The temperature increase amount of the normal fuel can be derived by incorporating the same conditions as when the temperature increase amount of the raw material fuel is calculated in S101, for example, the same engine load and the same engine rotation speed, into the map shown in FIG. Then, the temperature rise amount of the raw material fuel is compared with the temperature rise amount of the normal fuel, and the temperature rise amount of the raw material fuel and the normal fuel is subtracted from the temperature rise amount of the normal fuel. Calculate the difference. Here, when calculating the difference in the temperature rise amount, the temperature rise amount of the raw fuel is subtracted from the temperature rise amount of the normal fuel. This is because the temperature rise of the raw material fuel having the oxygen-containing fuel becomes slower than that of the normal fuel. That is, the amount of temperature increase of the raw material fuel having oxygen-containing fuel is smaller than that of normal fuel. As an example, a raw material fuel containing oxygen-containing fuel, here containing 10% ethanol, has an effect of lowering the boiling point, that is, lowering the liquid phase ratio (increasing the gas phase ratio), so that the heat transfer performance is higher than that of a normal fuel. About 10% lower than the normal fuel due to the effect of latent heat of vaporization, and about 2% of the temperature rise slowed down due to the increase in specific heat. Will slow down. For this reason, the difference in the temperature rise is calculated as a positive value by subtracting the temperature rise in the raw material fuel from the temperature rise in the normal fuel.

S103では、S102で算出した温度上昇量の差から、分離器7で分離された高RON燃料中の含酸素燃料含有率を算出する。分離器7で分離された高RON燃料中の含酸素燃料含有率の算出は、図5に示す予め定まっている温度上昇量の差と含酸素燃料含有率との関係のマップに、S102で算出した温度上昇量の差を取り込むことで行われる。温度上昇量の差が大きい程、含酸素燃料含有率が多くなる。S101〜S103を実行するECU18が含有率算出手段に対応する。   In S103, the oxygen-containing fuel content in the high RON fuel separated by the separator 7 is calculated from the difference in temperature increase calculated in S102. The calculation of the oxygen-containing fuel content in the high RON fuel separated by the separator 7 is performed in S102 on the map of the relationship between the predetermined temperature rise amount and the oxygen-containing fuel content shown in FIG. This is done by taking in the difference in the temperature rise. The greater the difference in temperature rise, the greater the oxygen-containing fuel content. ECU18 which performs S101-S103 respond | corresponds to a content rate calculation means.

S104では、高RON燃料タンク15内の高RON燃料中の含酸素燃料含有率を算出する。高RON燃料タンク15内の高RON燃料中の含酸素燃料含有率の算出は、高RON燃料タンク15内に残っている高RON燃料中の含酸素燃料含有率と残量センサ16が検知する高RON燃料タンク15内の残量と掛けて残量含酸素燃料量を算出し、分離器7で分離され流入する高RON燃料の流入量とS103で算出された含酸素燃料含有率とを掛けて流入含酸素燃料量を算出し、残量含酸素燃料量と流入含酸素燃料量とを足したものを、高RON燃料の残量と流入量とを足したもので割ることで行われる。   In S104, the oxygen-containing fuel content in the high RON fuel in the high RON fuel tank 15 is calculated. The calculation of the oxygen-containing fuel content in the high RON fuel in the high RON fuel tank 15 is performed by calculating the oxygen-containing fuel content in the high RON fuel remaining in the high RON fuel tank 15 and the high amount sensor 16 detects. The remaining oxygen-containing fuel amount is calculated by multiplying the remaining amount in the RON fuel tank 15, and the inflow amount of the high RON fuel separated and flowing in by the separator 7 is multiplied by the oxygen-containing fuel content rate calculated in S103. The inflowing oxygen-containing fuel amount is calculated, and the sum of the remaining oxygen-containing fuel amount and the inflowing oxygen-containing fuel amount is divided by the sum of the remaining amount of the high RON fuel and the inflowing amount.

S105では、S104で算出した含酸素燃料含有率が、前回本ルーチンを実行したときの高RON燃料タンク15内の高RON燃料中の含酸素燃料含有率(前回値)と等しいか否かを判別する。S105において肯定判定された場合には、S106へ移行する。S105において否定判定された場合には、S107へ移行する。   In S105, it is determined whether or not the oxygen-containing fuel content calculated in S104 is equal to the oxygen-containing fuel content (previous value) in the high RON fuel in the high RON fuel tank 15 when this routine was executed last time. To do. If a positive determination is made in S105, the process proceeds to S106. If a negative determination is made in S105, the process proceeds to S107.

S106では、増量補正する燃料供給量を前回と同様に増量率を維持して、基本マップに対して基本マップの高RON燃料と低RON燃料との割合と同じ割合で燃料供給量を増量補正する。図7は、高RON燃料の含酸素燃料含有率と増量補正分の燃料との関係を示す図である。図7に示すように、高RON燃料の含酸素燃料含有率が多くなると、増量補正分の燃料が多くなる一次関数的な関係を有する。このため、図7の関係のマップを用いて高RON燃料の含酸素燃料含有率から増量補正分の燃料が求まる。図8は、内燃機関1の機関負荷と増量補正された燃料噴射量との関係を示す図である。ここで、図8に示すように、増量補正分の燃料は、そのときの機関負荷の基本マップの高RON燃料と低RON燃料との割合と同じ割合で増量される。このような燃料の増量補正により、排気空燃比をストイキ等の目標空燃比に調整することができ、リーン空燃比側へのシフトを抑制することができる。   In S106, the fuel supply amount to be corrected for increase is maintained at the same rate as the previous time, and the fuel supply amount is increased and corrected at the same rate as the ratio of high RON fuel and low RON fuel in the basic map with respect to the basic map. . FIG. 7 is a diagram showing the relationship between the oxygen-containing fuel content of the high RON fuel and the fuel for the increase correction. As shown in FIG. 7, when the oxygen-containing fuel content of the high RON fuel increases, there is a linear function relationship in which the fuel for the increase correction increases. For this reason, the fuel for the amount of increase correction is obtained from the oxygen-containing fuel content of the high RON fuel using the relationship map of FIG. FIG. 8 is a diagram showing the relationship between the engine load of the internal combustion engine 1 and the fuel injection amount corrected for increase. Here, as shown in FIG. 8, the fuel for the increase correction is increased at the same rate as the ratio of the high RON fuel and the low RON fuel in the basic map of the engine load at that time. By such fuel increase correction, the exhaust air-fuel ratio can be adjusted to a target air-fuel ratio such as stoichiometry, and a shift to the lean air-fuel ratio side can be suppressed.

S107では、増量補正する燃料供給量を今回新たに変更し増量率を更新して、基本マップに対して基本マップの高RON燃料と低RON燃料との割合と同じ割合で燃料供給量を増量補正する。図7の関係のマップを用いて高RON燃料の含酸素燃料含有率から増量補正分の燃料が求まる。図8に示すように、増量補正分の燃料は、そのときの機関負荷の基本マップの高RON燃料と低RON燃料との割合と同じ割合で増量される。このような燃料の増量補正により、排気空燃比をストイキ等の目標空燃比に調整することができ、リーン空燃比側へのシフトを抑制することができる。   In S107, the fuel supply amount to be corrected for the increase is newly changed and the increase rate is updated, and the fuel supply amount is increased and corrected at the same rate as the ratio of the high RON fuel and the low RON fuel in the basic map with respect to the basic map. To do. By using the map of the relationship in FIG. 7, the fuel for the increase correction is obtained from the oxygen-containing fuel content of the high RON fuel. As shown in FIG. 8, the fuel for the increase correction is increased at the same rate as the ratio of the high RON fuel and the low RON fuel in the basic map of the engine load at that time. By such fuel increase correction, the exhaust air-fuel ratio can be adjusted to a target air-fuel ratio such as stoichiometry, and a shift to the lean air-fuel ratio side can be suppressed.

<その他>
本発明に係る内燃機関の燃料供給制御装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。本発明としては、含有率算出手段は、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、物
性が異なることを利用して、ヒートパイプ4で原料燃料を加熱したときの原料燃料の変化を、同条件での予め定まっている通常燃料の変化と対比して互いの物性が異なることに関連する物理量を算出し、予め定まっている物理量と含酸素燃料含有率との関係のマップに算出した物理量を取り込むことにより、含酸素燃料含有率を算出するものであればよい。このような本発明の変形例を以下に説明する。
<Others>
The fuel supply control device for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the scope of the present invention. In the present invention, the content rate calculating means uses the fact that the physical properties differ between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel. The physical quantity related to the difference in physical properties is calculated by comparing the change in fuel with the change in normal fuel determined in advance under the same conditions, and the relationship between the predetermined physical quantity and the oxygen-containing fuel content is calculated. What is necessary is just to calculate an oxygen-containing fuel content rate by taking in the calculated physical quantity into the map. Such modifications of the present invention will be described below.

<変形例1>
変形例1において、上記実施例1と同様な構成については説明を省略する。変形例1では、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定温度中での流量が異なることを利用して、目標温度にヒートパイプ4で原料燃料を加熱したときの原料燃料の流量を、同条件での予め定まっている通常燃料の流量と対比して流量の差を算出し、予め定まっている流量の差と含酸素燃料含有率との関係のマップに算出した流量の差を取り込むことにより、含酸素燃料含有率を算出する。このような制御を行うECU18が、本発明の含有率算出手段に対応する。
<Modification 1>
In the first modification, the description of the same configuration as that in the first embodiment is omitted. In the first modification, when the raw material fuel is heated to the target temperature with the heat pipe 4 by utilizing the fact that the flow rate at a constant temperature is different between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel. The flow rate of the raw material fuel is compared with the flow rate of the normal fuel determined in advance under the same conditions, and the flow rate difference is calculated, and the map of the relationship between the predetermined flow rate difference and the oxygen-containing fuel content is calculated. The oxygen-containing fuel content is calculated by taking in the difference between the flow rates. The ECU 18 that performs such control corresponds to the content rate calculating means of the present invention.

原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定温度中での流量が異なるため、目標温度にヒートパイプ4で原料燃料を加熱すると、原料燃料中の含酸素燃料含有率による流量の違いが流量に現れる。そこで、目標温度にヒートパイプ4で原料燃料を加熱したときの原料燃料の流量を、同条件での予め定まっている通常燃料の流量と対比して流量の差を算出し、予め定まっている流量の差と含酸素燃料含有率との関係のマップに算出した流量の差を取り込むことにより、含酸素燃料含有率を算出する。これによると、高RON燃料の含酸素燃料含有率を正確に算出することができる。   Since the flow rate at a constant temperature differs between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel, if the raw material fuel is heated by the heat pipe 4 to the target temperature, the oxygen-containing fuel content in the raw material fuel The difference in flow rate due to appears in the flow rate. Therefore, the flow rate of the raw material fuel when the raw material fuel is heated to the target temperature with the heat pipe 4 is compared with the predetermined normal fuel flow rate under the same condition to calculate the difference in flow rate, and the predetermined flow rate The oxygen-containing fuel content is calculated by taking the calculated flow rate difference into the map of the relationship between the difference between the two and the oxygen-containing fuel content. According to this, the oxygen-containing fuel content rate of the high RON fuel can be accurately calculated.

含有率算出手段は、具体的には、ヒートパイプ4で加熱後の原料燃料の温度を温度センサ6によって検知し、目標温度に加熱する。加熱前の原料燃料の温度は、吸気温度と同一と判断して内燃機関1の吸気温度センサから取得するものでもよいし、燃料タンク2に温度センサを設置しておき、当該温度センサから取得するものでもよい。このときの原料燃料の流量を原料燃料配管に配置した流量センサで検知したり、流量制御弁3の開度から推定したりする。また、上記と同条件、例えば、同じ機関負荷及び同じ機関回転速度のときの通常燃料の流量を、予め求められているマップから導出する。そして、原料燃料の流量と通常燃料の流量とを対比して、流量の差を算出する。この流量の差を、予め定まっている流量の差と含酸素燃料含有率との関係のマップに取り込むことで、高RON燃料の含酸素燃料含有率を算出することができる。   Specifically, the content rate calculating means detects the temperature of the raw material fuel heated by the heat pipe 4 with the temperature sensor 6 and heats it to the target temperature. The temperature of the raw material fuel before heating is determined to be the same as the intake air temperature and may be acquired from the intake air temperature sensor of the internal combustion engine 1. Alternatively, a temperature sensor is installed in the fuel tank 2 and acquired from the temperature sensor. It may be a thing. The flow rate of the raw material fuel at this time is detected by a flow sensor arranged in the raw material fuel pipe, or is estimated from the opening degree of the flow control valve 3. Further, the normal fuel flow rate under the same conditions as described above, for example, at the same engine load and the same engine speed, is derived from a map obtained in advance. Then, the flow rate difference is calculated by comparing the flow rate of the raw material fuel with the flow rate of the normal fuel. By incorporating this difference in flow rate into a map of the relationship between the predetermined flow rate difference and the oxygen-containing fuel content rate, the oxygen-containing fuel content rate of the high RON fuel can be calculated.

<変形例2>
変形例2において、上記実施例1と同様な構成については説明を省略する。変形例2では、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、ヒートパイプ4から原料燃料に供給された伝熱量に対する熱伝達率が異なることを利用して、ヒートパイプ4で原料燃料を加熱したときの原料燃料の温度上昇量△T1と流量m1と熱伝達率K1とを掛けて算出する伝熱量Q1(=△T1×m1×K1:Q1は未知)と、同条件での予め定まっている通常燃料の伝熱量Q2(≒Q1:Q2は既知)とが略同じになることから、原料燃料の熱伝達率K1(=△T1×m1÷Q2)を算出し、予め定まっている熱伝達率と含酸素燃料含有率との関係のマップに原料燃料の熱伝達率K1を取り込むことにより、含酸素燃料含有率を算出する。このような制御を行うECU18が、本発明の含有率算出手段に対応する。
<Modification 2>
In the second modification, the description of the same configuration as that in the first embodiment is omitted. In the second modification, the heat pipe 4 is utilized by utilizing the fact that the heat transfer rate with respect to the heat transfer amount supplied from the heat pipe 4 to the raw fuel is different between the case where the raw fuel is the normal fuel and the case where the raw fuel is the mixed fuel. Heat transfer amount Q1 (= ΔT1 × m1 × K1: Q1 is unknown) calculated by multiplying the temperature rise amount ΔT1 of the raw material fuel when the raw material fuel is heated by the flow rate m1 and the heat transfer coefficient K1, and the same conditions Since the heat transfer amount Q2 of normal fuel determined in advance in Q is substantially the same (≈Q1: Q2 is known), the heat transfer coefficient K1 (= ΔT1 × m1 ÷ Q2) of the raw fuel is calculated, The oxygen-containing fuel content is calculated by incorporating the heat transfer coefficient K1 of the raw material fuel into the map of the relationship between the predetermined heat transfer coefficient and the oxygen-containing fuel content. The ECU 18 that performs such control corresponds to the content rate calculating means of the present invention.

原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、ヒートパイプ4から原料燃料に供給された伝熱量に対する熱伝達率が異なるため、例えば100km定常走行して伝熱量Qが略等しい場合に、原料燃料中の含酸素燃料含有率による熱伝達率の違いが熱伝達率に現れる。そこで、例えば100km定常走行して伝熱量Qが略等しい場合の原料
燃料の場合の伝熱量Q1(=△T1×m1×K1=Q)が、同条件での予め定まっている通常燃料の場合の伝熱量Q2(=Q)と略同じになることから、原料燃料の熱伝達率K1(=△T1×m1÷Q2)を算出し、予め定まっている熱伝達率と含酸素燃料含有率との関係のマップに原料燃料の熱伝達率K1を取り込むことにより、含酸素燃料含有率を算出する。これによると、高RON燃料の含酸素燃料含有率を正確に算出することができる。
When the raw material fuel is a normal fuel and when the raw material fuel is a mixed fuel, the heat transfer rate with respect to the heat transfer amount supplied from the heat pipe 4 to the raw fuel is different. In this case, a difference in heat transfer coefficient depending on the oxygen-containing fuel content in the raw material fuel appears in the heat transfer coefficient. Therefore, for example, the heat transfer amount Q1 (= ΔT1 × m1 × K1 = Q) in the case of a raw material fuel in a case where the heat transfer amount Q is substantially equal after 100 km of steady running is the case of the normal fuel that is determined in advance under the same conditions Since it is substantially the same as the heat transfer amount Q2 (= Q), the heat transfer coefficient K1 (= ΔT1 × m1 ÷ Q2) of the raw material fuel is calculated, and the predetermined heat transfer coefficient and the oxygen-containing fuel content ratio are calculated. By incorporating the heat transfer coefficient K1 of the raw material fuel into the relationship map, the oxygen-containing fuel content is calculated. According to this, the oxygen-containing fuel content rate of the high RON fuel can be accurately calculated.

含有率算出手段は、具体的には、例えば100km定常走行を行う。このとき、加熱後の原料燃料の温度を温度センサ6によって検知する。加熱前の原料燃料の温度は、吸気温度と同一と判断して内燃機関1の吸気温度センサから取得するものでもよいし、燃料タンク2に温度センサを設置しておき、当該温度センサから取得するものでもよい。そして、原料燃料の温度上昇量△T1を算出する。また、流量制御弁3の制御値から原料燃料の流量m1を取得する。このとき、すなわち100km定常走行の同条件での通常燃料の場合の伝熱量は、予め伝熱量Q2として定まっている。よって、原料燃料の熱伝達率K1を、K1=△T1×m1÷Q2の式から算出する。この熱伝達率K1を、予め定まっている熱伝達率と含酸素燃料含有率との関係のマップに取り込むことで、高RON燃料の含酸素燃料含有率を算出することができる。   Specifically, the content rate calculation means performs, for example, 100 km steady running. At this time, the temperature of the raw material fuel after heating is detected by the temperature sensor 6. The temperature of the raw material fuel before heating is determined to be the same as the intake air temperature and may be acquired from the intake air temperature sensor of the internal combustion engine 1. Alternatively, a temperature sensor is installed in the fuel tank 2 and acquired from the temperature sensor. It may be a thing. Then, the temperature rise amount ΔT1 of the raw material fuel is calculated. Further, the flow rate m1 of the raw material fuel is acquired from the control value of the flow rate control valve 3. At this time, that is, the amount of heat transfer in the case of normal fuel under the same conditions of 100 km steady running is determined in advance as the amount of heat transfer Q2. Therefore, the heat transfer coefficient K1 of the raw material fuel is calculated from the equation K1 = ΔT1 × m1 ÷ Q2. By incorporating this heat transfer coefficient K1 into a predetermined map of the relationship between the heat transfer coefficient and the oxygen-containing fuel content, the oxygen-containing fuel content of the high RON fuel can be calculated.

1:内燃機関、2:燃料タンク、3:流量制御弁、4:ヒートパイプ、5:排気通路、6:温度センサ、7:分離器、8:アロマ分離膜、9,10:区画、11:イダクタ、12,13:燃料クーラ、14,17:インジェクタ、15:高RON燃料タンク、16:残量センサ、18:ECU、20:クランクポジションセンサ、21:アクセルポジションセンサ 1: internal combustion engine, 2: fuel tank, 3: flow control valve, 4: heat pipe, 5: exhaust passage, 6: temperature sensor, 7: separator, 8: aroma separation membrane, 9, 10: compartment, 11: Eductor, 12, 13: Fuel cooler, 14, 17: Injector, 15: High RON fuel tank, 16: Remaining amount sensor, 18: ECU, 20: Crank position sensor, 21: Accelerator position sensor

Claims (6)

含酸素燃料を含まない通常燃料と、含酸素燃料と通常燃料とが混合された混合燃料と、のどちらかを用いた原料燃料を、高オクタン価成分の含有率が原料燃料より多く分離後の含酸素燃料を含む高オクタン価燃料と、高オクタン価成分の含有率が原料燃料より少ない低オクタン価燃料と、に分離する燃料分離手段と、
内燃機関の運転状態に応じて、前記内燃機関に供給する高オクタン価燃料と低オクタン価燃料との割合を基本マップに合わせて変更して燃料を供給する燃料供給手段と、
を備えた内燃機関の燃料供給制御装置であって、
前記燃料分離手段で原料燃料を分離する前に、原料燃料を加熱する加熱手段と、
原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、物性が異なることを利用して、前記加熱手段で原料燃料を加熱したときの原料燃料の変化を、同条件での予め定まっている通常燃料の変化と対比して互いの物性が異なることに関連する物理量を算出し、予め定まっている物理量と含酸素燃料含有率との関係のマップに算出した物理量を取り込むことにより、含酸素燃料含有率を算出する含有率算出手段を備えたことを特徴とする内燃機関の燃料供給制御装置。
A raw material fuel that uses either a normal fuel that does not contain oxygenated fuel or a mixed fuel that is a mixture of oxygenated fuel and normal fuel has a higher octane component content than the raw fuel. A fuel separation means for separating into a high octane fuel containing oxygen fuel and a low octane fuel with a low content of high octane components than the raw fuel,
Fuel supply means for supplying fuel by changing the ratio of the high-octane fuel and the low-octane fuel supplied to the internal combustion engine according to the operating state of the internal combustion engine according to the basic map;
A fuel supply control device for an internal combustion engine comprising:
Heating means for heating the raw fuel before separating the raw fuel by the fuel separation means;
Taking advantage of the difference in physical properties between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel, the change in the raw material fuel when the raw material fuel is heated by the heating means is determined in advance under the same conditions. By calculating the physical quantity related to the difference in physical properties compared to the change in normal fuel, and incorporating the calculated physical quantity into the map of the relationship between the predetermined physical quantity and the oxygen-containing fuel content, A fuel supply control device for an internal combustion engine, comprising content rate calculating means for calculating an oxygen fuel content rate.
前記含有率算出手段は、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定流量中での温度上昇量が異なることを利用して、一定流量中での前記加熱手段で原料燃料を加熱したときの原料燃料の温度上昇量を、同条件での予め定まっている通常燃料の温度上昇量と対比して温度上昇量の差を算出し、予め定まっている温度上昇量の差と含酸素燃料含有率との関係のマップに算出した温度上昇量の差を取り込むことにより、含酸素燃料含有率を算出することを特徴とする請求項1に記載の内燃機関の燃料供給制御装置。   The content rate calculating means uses the heating means at a constant flow rate by utilizing the fact that the amount of temperature rise at a constant flow rate differs between when the raw material fuel is normal fuel and when the raw material fuel is a mixed fuel. The temperature rise amount of the raw material fuel when the raw material fuel is heated is compared with the temperature rise amount of the normal fuel determined in advance under the same condition to calculate the difference in the temperature rise amount. 2. The fuel supply control for an internal combustion engine according to claim 1, wherein the oxygen-containing fuel content rate is calculated by taking in a difference in the calculated temperature rise amount in a map of the relationship between the difference and the oxygen-containing fuel content rate. apparatus. 前記含有率算出手段は、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、一定温度中での流量が異なることを利用して、目標温度に前記加熱手段で原料燃料を加熱したときの原料燃料の流量を、同条件での予め定まっている通常燃料の流量と対比して流量の差を算出し、予め定まっている流量の差と含酸素燃料含有率との関係のマップに算出した流量の差を取り込むことにより、含酸素燃料含有率を算出することを特徴とする請求項1に記載の内燃機関の燃料供給制御装置。   The content rate calculation means heats the raw material fuel to the target temperature with the heating means by utilizing the fact that the flow rate at a constant temperature differs between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel. The flow rate of the raw material fuel is compared with the predetermined normal fuel flow rate under the same conditions to calculate the flow rate difference, and the map of the relationship between the predetermined flow rate difference and the oxygen-containing fuel content rate The fuel supply control device for an internal combustion engine according to claim 1, wherein the oxygen-containing fuel content rate is calculated by taking in the difference in the calculated flow rate. 前記含有率算出手段は、原料燃料が通常燃料の場合と原料燃料が混合燃料の場合とでは、前記加熱手段から原料燃料に供給された伝熱量に対する熱伝達率が異なることを利用して、前記加熱手段で原料燃料を加熱したときの原料燃料の温度上昇量と流量と熱伝達率とを掛けて算出する伝熱量と、同条件での予め定まっている通常燃料の伝熱量とが略同じになることから、原料燃料の熱伝達率を算出し、予め定まっている熱伝達率と含酸素燃料含有率との関係のマップに原料燃料の熱伝達率を取り込むことにより、含酸素燃料含有率を算出することを特徴とする請求項1に記載の内燃機関の燃料供給制御装置。   The content rate calculating means uses the fact that the heat transfer rate with respect to the heat transfer amount supplied from the heating means to the raw material fuel is different between the case where the raw material fuel is a normal fuel and the case where the raw material fuel is a mixed fuel, The amount of heat transfer calculated by multiplying the temperature rise of the raw material fuel when the raw material fuel is heated by the heating means, the flow rate, and the heat transfer coefficient is approximately the same as the heat transfer amount of normal fuel determined in advance under the same conditions. Therefore, by calculating the heat transfer rate of the raw material fuel and incorporating the heat transfer rate of the raw material fuel into the map of the relationship between the predetermined heat transfer rate and the oxygenated fuel content rate, the oxygen-containing fuel content rate is calculated. The fuel supply control device for an internal combustion engine according to claim 1, wherein the control is performed. 前記燃料分離手段で分離した高オクタン価燃料を貯留する高オクタン価燃料タンクと、
前記高オクタン価燃料タンク内の高オクタン価燃料の残量を検知する残量検知手段と、
前記高オクタン価燃料タンク内に残っている高オクタン価燃料中の含酸素燃料含有率と、前記残量検知手段が検知する前記高オクタン価燃料タンク内に残っている高オクタン価燃料の残量と、前記高オクタン価燃料タンクに流入する高オクタン価燃料の流入量と、前記高オクタン価燃料タンクに流入する高オクタン価燃料の含酸素燃料含有率であって前記含有率算出手段で算出された含酸素燃料含有率と、に基づいて算出される前記高オクタン価燃料タンク内の高オクタン価燃料中の含酸素燃料含有率に応じて、前記基本マップに対して燃料の供給量を増量する燃料増量手段と、
を更に備えたことを特徴とする請求項1〜4のいずれか1項に記載の内燃機関の燃料供給
制御装置。
A high-octane fuel tank for storing the high-octane fuel separated by the fuel separation means;
A remaining amount detecting means for detecting the remaining amount of the high octane fuel in the high octane fuel tank;
The oxygen-containing fuel content in the high-octane fuel remaining in the high-octane fuel tank, the residual amount of the high-octane fuel remaining in the high-octane fuel tank detected by the remaining amount detection means, An inflow amount of high octane fuel flowing into the octane fuel tank, an oxygen content fuel content of the high octane fuel flowing into the high octane fuel tank, and the oxygen content content calculated by the content calculator; Fuel increasing means for increasing the amount of fuel supplied to the basic map according to the oxygen-containing fuel content in the high-octane fuel in the high-octane fuel tank calculated based on
The fuel supply control device for an internal combustion engine according to any one of claims 1 to 4, further comprising:
前記燃料増量手段は、前記含有率算出手段で算出された含酸素燃料含有率に応じて、前記基本マップに対して前記基本マップの高オクタン価燃料と低オクタン価燃料との割合と同じ割合で燃料の供給量を増量することを特徴とする請求項5に記載の内燃機関の燃料供給制御装置。   According to the oxygen-containing fuel content rate calculated by the content rate calculating means, the fuel increasing means has the same ratio as the ratio of the high octane fuel and the low octane fuel of the basic map to the basic map. 6. The fuel supply control device for an internal combustion engine according to claim 5, wherein the supply amount is increased.
JP2010122667A 2010-05-28 2010-05-28 Fuel supply control apparatus for internal combustion engine Withdrawn JP2011247204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010122667A JP2011247204A (en) 2010-05-28 2010-05-28 Fuel supply control apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010122667A JP2011247204A (en) 2010-05-28 2010-05-28 Fuel supply control apparatus for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011247204A true JP2011247204A (en) 2011-12-08

Family

ID=45412758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010122667A Withdrawn JP2011247204A (en) 2010-05-28 2010-05-28 Fuel supply control apparatus for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011247204A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136945A (en) * 2011-12-27 2013-07-11 Honda Motor Co Ltd Fuel supply apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136945A (en) * 2011-12-27 2013-07-11 Honda Motor Co Ltd Fuel supply apparatus

Similar Documents

Publication Publication Date Title
JP4404101B2 (en) Fuel property determination device for internal combustion engine
JP5424857B2 (en) In-vehicle fuel separator
JP4811733B2 (en) Fuel supply control system for bi-fuel vehicles
JP4792441B2 (en) Fuel injection control device for flexible fuel internal combustion engine
RU2656078C2 (en) Method for managing an engine powered by multiple types of fuel (variants)
BRPI0715852A2 (en) internal combustion engine control apparatus
JP5547708B2 (en) Fuel supply device
RU2525368C1 (en) Carrier control device
US9664125B2 (en) Method and system for transient fuel control
JP2010163901A (en) Fuel separating device
JP2011247204A (en) Fuel supply control apparatus for internal combustion engine
JP5557094B2 (en) Fuel supply device for internal combustion engine
JP2011241803A (en) Fuel supply control apparatus of internal combustion engine
JP2016156304A (en) Fuel switching device of internal combustion engine
JP2011185173A (en) Internal combustion engine
JP5593794B2 (en) Control device for internal combustion engine
JP4457803B2 (en) Control device for internal combustion engine
JP2013189913A (en) Fuel supply device for internal combustion engine
JP4265496B2 (en) Multiple fuel supply internal combustion engine
JP2008286097A (en) Ethanol reforming system
JP2007297951A (en) Gas fuel internal combustion engine
JP2015151879A (en) Control device for internal combustion engine
Chishima et al. Onboard Ethanol-Gasoline Separation System for Octane-on-Demand Vehicle
JP2008196382A (en) Fuel separating device for internal combustion engine
JP2014190311A (en) Fuel injection control device for bi-fuel internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806