JP2007297951A - Gas fuel internal combustion engine - Google Patents

Gas fuel internal combustion engine Download PDF

Info

Publication number
JP2007297951A
JP2007297951A JP2006125592A JP2006125592A JP2007297951A JP 2007297951 A JP2007297951 A JP 2007297951A JP 2006125592 A JP2006125592 A JP 2006125592A JP 2006125592 A JP2006125592 A JP 2006125592A JP 2007297951 A JP2007297951 A JP 2007297951A
Authority
JP
Japan
Prior art keywords
gas
fuel
flow rate
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125592A
Other languages
Japanese (ja)
Inventor
Yuichi Oteru
祐一 大輝
Susumu Nagano
進 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006125592A priority Critical patent/JP2007297951A/en
Publication of JP2007297951A publication Critical patent/JP2007297951A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve thermal efficiency of an internal combustion engine using reformed gas fuel as main fuel. <P>SOLUTION: This engine is provided with at least reforming catalyst 230 reforming liquid fuel to gas fuel containing a plurality of gas components, an evaporator 220 for supplying gasified fuel to the reforming catalyst 230, a flow rate sensor 140 detecting flow rate of liquid fuel to the evaporator 220, and a catalyst temperature sensor 146 detecting reformed catalyst temperature. When liquid fuel is reformed by steam, water flow rate detection is also executed. An ECU 100 estimates reformed gas composition by using at least detection values of a flow rate sensor and a catalyst temperature sensor and referring a corresponding map of gas composition and a detection value stored inside. An estimated value is corrected according to measured specific gas composition concentration in the reformed gas and a detection value of temperature of input and output gas to and from the catalyst. The ECU 100 operates lean combustion limit concentration of air fuel mixture in a cylinder based on the estimated vale, and always materializes operation in a vicinity of lean combustion limit by controlling gas fuel supply quantity and air flow rate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

改質によって得たガス燃料を主燃料とする内燃機関に関する。   The present invention relates to an internal combustion engine using gas fuel obtained by reforming as a main fuel.

ガソリンなどの炭化水素系(Cmn)の液体燃料を改質することにより、発熱量の大きなガス燃料を得て、これを内燃機関の燃料として用いることでエンジンの熱効率の向上を図ることが従来より提案されている。また、内燃機関では、筒内への燃料と空気の供給量を理論空燃比に近づけることが燃焼効率の良いエンジンを実現する上で必要であり、用いる燃料に応じた最適な空気量を筒内に供給するように制御を行う。 By reforming hydrocarbon-based (C m H n ) liquid fuel such as gasoline, gas fuel with a large calorific value is obtained and used as fuel for internal combustion engines to improve engine thermal efficiency. Has been proposed. In addition, in an internal combustion engine, it is necessary to bring the supply amount of fuel and air into the cylinder close to the stoichiometric air-fuel ratio in order to realize an engine with good combustion efficiency, and an optimum air amount corresponding to the fuel to be used is set in the cylinder. Control to supply to

したがって、上記ガス燃料内燃機関においても、ガス燃料に応じた最適な空気量となるよう制御が行われることが求められる。そこで、従来知られた改質ガスエンジンでは、炭化水素系燃料を改質して得られる改質ガス燃料中に含まれる水素について着目し、この水素濃度を測定して、測定濃度に基づいて筒内に供給する空気量とガス燃料量の制御を行っている(下記特許文献1参照)。   Therefore, even in the gas fuel internal combustion engine, it is required to perform control so as to obtain an optimum air amount corresponding to the gas fuel. Therefore, in a conventionally known reformed gas engine, attention is paid to hydrogen contained in the reformed gas fuel obtained by reforming hydrocarbon-based fuel, and the hydrogen concentration is measured, and the cylinder is determined based on the measured concentration. The amount of air supplied to the inside and the amount of gas fuel are controlled (see Patent Document 1 below).

特開2002−221098号JP 2002-221098 A 特開2004−251273号JP 2004-251273 A

上記特許文献1では、改質ガス燃料中の水素濃度の測定から内燃機関の安定燃焼範囲を推測し、エンジン筒内に供給する空気量と燃料量を制御している。例えば上記特許文献1では、ノッキング発生状況では供給ガス燃料中のメタン価が小さくなりすぎていると推定し、改質器から別途分離器で得ている水素の供給量を低下させるなどの制御が実行されている。   In Patent Document 1, the stable combustion range of the internal combustion engine is estimated from the measurement of the hydrogen concentration in the reformed gas fuel, and the amount of air and the amount of fuel supplied to the engine cylinder are controlled. For example, in Patent Document 1, it is estimated that the methane number in the supply gas fuel is too small in the occurrence of knocking, and control such as reducing the supply amount of hydrogen separately obtained from the reformer by the separator is performed. It is running.

しかし、液体燃料を改質して得たガス燃料は、水素のみから構成されるのではなく、主成分として、水素、一酸化炭素、二酸化炭素、メタンを含む。さらに、各成分の希薄限界当量比は異なっており、水素は、希薄限界当量比(φlimit)=0.1、一酸化炭素は、φlimit=0.34、二酸化炭素(燃料としては機能しない)、メタンは、φlimit=0.5と、それぞれ燃焼するために必要な当量比が異なる。したがって、水素濃度のみから内燃機関の希薄燃焼限界を把握することは難しい。   However, the gas fuel obtained by reforming the liquid fuel is not composed of only hydrogen, but contains hydrogen, carbon monoxide, carbon dioxide, and methane as main components. Further, the lean limit equivalent ratio of each component is different, hydrogen is diluted limit equivalent ratio (φlimit) = 0.1, carbon monoxide is φlimit = 0.34, carbon dioxide (does not function as fuel), Methane has an equivalent ratio of φlimit = 0.5, which is necessary for combustion. Therefore, it is difficult to grasp the lean combustion limit of an internal combustion engine only from the hydrogen concentration.

また、改質ガス燃料は、改質条件によってその組成が異なり、条件によっては水素生成量が少なく、メタンは大量に生成されるなどという場合もある。このため、ガス燃料中の水素濃度の測定のみから希薄燃焼限界を見積もることが困難な場合もあり、常に、最少量のガス燃料を使用して、ドライバからの要求トルクを満たすことは難しく、熱効率、燃費の向上に制約がある。   Further, the composition of the reformed gas fuel varies depending on the reforming conditions, and depending on the conditions, there are cases where the amount of hydrogen produced is small and methane is produced in large quantities. For this reason, it may be difficult to estimate the lean combustion limit only from the measurement of the hydrogen concentration in the gas fuel, and it is difficult to always satisfy the torque required by the driver using the minimum amount of gas fuel. There are restrictions on improving fuel efficiency.

さらに、上記特許文献2には、炭化水素燃料と空気とを改質器で改質して一酸化炭素と、水素を含む改質ガスを生成するが、改質器の改質触媒の温度によって改質条件が変化するので、改質効率が所定範囲内になるように、改質器への炭化水素燃料と空気の供給量を制御することが記載されている。しかし、生成された改質ガスの組成が実際にどのようになるかについては全く考慮がない。つまり、常時、改質効率が所定範囲内になるように改質するので、筒内に供給されるガス燃料の組成は、常に一定範囲内であることを前提としており、実際に生成される改質ガスの組成が実際にどうなるかを考慮する必要がないのである。ところが、多様な環境下では、常に最適な改質条件を満たすことは困難であり、実際には改質ガスの組成が変化してしまう。そして、実際にそのような状況であっても、熱効率及び燃費の良い内燃機関であることが望まれている。   Further, in Patent Document 2 above, hydrocarbon fuel and air are reformed by a reformer to generate a reformed gas containing carbon monoxide and hydrogen, but depending on the temperature of the reforming catalyst of the reformer. Since the reforming conditions change, it is described that the supply amounts of hydrocarbon fuel and air to the reformer are controlled so that the reforming efficiency is within a predetermined range. However, there is no consideration at all about the composition of the reformed gas produced. In other words, since reforming is always performed so that the reforming efficiency is within a predetermined range, it is assumed that the composition of the gas fuel supplied into the cylinder is always within a certain range, and the actually generated reformation is performed. There is no need to consider what the quality gas composition actually will be. However, in various environments, it is difficult to always satisfy the optimum reforming conditions, and the reformed gas composition actually changes. And even in such a situation, it is desired to be an internal combustion engine with good thermal efficiency and fuel efficiency.

本発明は、改質によって得たガス燃料を主燃料とした内燃機関での熱効率の向上を図る。   The present invention aims to improve thermal efficiency in an internal combustion engine that uses gas fuel obtained by reforming as a main fuel.

本発明は、燃料としてガス燃料を用いる内燃機関であって、液体燃料を水と反応させて複数のガス成分を含むガス燃料に改質する改質触媒と、前記液体燃料を前記改質触媒に供給する前に前記液体燃料及び前記水を蒸気とするための蒸発器と、前記蒸発器に供給する液体燃料流量及び水流量を検出する流量センサと、前記改質触媒におけるガス温度を検出するガス温度センサと、前記改質触媒の温度を検出する触媒温度センサと、前記改質後のガス燃料の前記複数のガス成分の内、少なくとも1種類のガス成分濃度を検出する検出器と、を備える。エンジン制御部は、前記流量センサ及び前記触媒温度センサでの検出値を利用して、予め内部に格納した検出値とガス組成との対応マップを参照し、改質によって得られるガス燃料のガス組成を予測し、さらに、前記検出したガス成分の濃度に基づいて、前記ガス組成の予測値を補正する。   The present invention relates to an internal combustion engine that uses gas fuel as fuel, a reforming catalyst that reacts liquid fuel with water to reform the gas fuel containing a plurality of gas components, and uses the liquid fuel as the reforming catalyst. An evaporator for turning the liquid fuel and water into steam before supply, a flow sensor for detecting the flow rate of liquid fuel and water supplied to the evaporator, and a gas for detecting gas temperature in the reforming catalyst A temperature sensor; a catalyst temperature sensor that detects a temperature of the reforming catalyst; and a detector that detects a concentration of at least one gas component of the plurality of gas components of the reformed gas fuel. . The engine control unit uses the detection values of the flow rate sensor and the catalyst temperature sensor to refer to the correspondence map between the detection value stored in advance and the gas composition, and the gas composition of the gas fuel obtained by reforming Further, the predicted value of the gas composition is corrected based on the detected concentration of the gas component.

本発明の他の態様では、上記内燃機関において、さらに前記改質触媒の入力ガス又は出力ガスのガス温度を検出するガス温度センサを備え、前記エンジン制御部は、前記ガス組成の予測に際し、さらに、検出した前記ガス温度を用いる。   In another aspect of the present invention, the internal combustion engine further includes a gas temperature sensor that detects a gas temperature of an input gas or an output gas of the reforming catalyst, and the engine control unit is further configured to predict the gas composition, The detected gas temperature is used.

本発明の他の態様では、上記内燃機関において、前記ガス組成の予測値の補正では、検出したガス成分の濃度を前記予測値における対応ガス成分の濃度とし、前記検出したガス成分の濃度を全体濃度から除いた値に基づいて、予測値の残りのガス成分濃度を算出する。   In another aspect of the present invention, in the internal combustion engine, in the correction of the predicted value of the gas composition, the concentration of the detected gas component is set to the concentration of the corresponding gas component in the predicted value, and the detected concentration of the gas component is entirely set. Based on the value removed from the concentration, the remaining gas component concentration of the predicted value is calculated.

本発明の他の態様では、主燃料としてガス燃料を用いる内燃機関であって、液体燃料を水と反応させて複数のガス成分を含むガス燃料に改質する改質触媒と、前記液体燃料を前記改質触媒に供給する前に前記液体燃料及び前記水を蒸気とするための蒸発器と、前記蒸発器に供給する液体燃料流量及び水流量を検出する流量センサと、前記改質触媒の入力ガス又は出力ガスのガス温度を検出するガス温度センサと、前記改質触媒の温度を検出する触媒温度センサと、を備える。エンジン制御部は、前記流量センサ及び前記触媒温度センサでの検出値に基づいて、予め内部に格納した検出値とガス組成との対応マップを参照し、改質によって得られるガス燃料のガス組成の予測値を求め、さらに、前記ガス温度センサでの検出結果に基づいて予測値の補正を行う。   In another aspect of the present invention, there is provided an internal combustion engine that uses a gas fuel as a main fuel, the reforming catalyst that reacts the liquid fuel with water to reform the gas fuel containing a plurality of gas components, and the liquid fuel. An evaporator for converting the liquid fuel and the water into steam before being supplied to the reforming catalyst, a flow sensor for detecting a flow rate of liquid fuel and water supplied to the evaporator, and an input of the reforming catalyst A gas temperature sensor for detecting a gas temperature of the gas or the output gas; and a catalyst temperature sensor for detecting a temperature of the reforming catalyst. The engine control unit refers to a correspondence map between the detection value stored in advance and the gas composition based on the detection values of the flow rate sensor and the catalyst temperature sensor, and determines the gas composition of the gas fuel obtained by reforming. A predicted value is obtained, and further, the predicted value is corrected based on the detection result of the gas temperature sensor.

この予測値の補正は、前記流量センサ及び前記触媒温度センサでの検出値に基づいて求めた第1の予測値と、前記流量センサ及び前記検出したガス温度に基づき、予め内部に格納した検出値とガス組成との対応マップを参照して求めた第2の予測値と、を利用して行うことができる。   The correction of the predicted value is based on the first predicted value obtained based on the detected value at the flow rate sensor and the catalyst temperature sensor, and the detected value stored in advance based on the flow rate sensor and the detected gas temperature. And the second predicted value obtained by referring to the correspondence map between the gas composition and the gas composition.

本発明の他の態様では、主燃料としてガス燃料を用いる内燃機関であって、液体燃料を反応により複数のガス成分を含むガス燃料に改質する改質触媒と、前記液体燃料を前記改質触媒に供給する前に前記液体燃料を蒸気とするための蒸発器と、前記蒸発器に供給する液体燃料流量を検出する流量センサと、前記改質触媒の温度を検出する触媒温度センサと、を備える。エンジン制御部は、少なくとも前記流量センサ及び前記触媒温度センサでの検出値を利用して、予め内部に格納した検出値とガス組成との対応マップを参照し、改質によって得られるガス燃料のガス組成を予測し、前記予測されたガス組成の内の燃焼性ガス組成の各希薄燃焼限界濃度に基づいて、筒内における混合気の希薄燃焼限界濃度を演算し、該希薄燃焼限界濃度及び要求トルクに応じて、前記筒内へのガス燃料供給量及び空気流量を制御する。   In another aspect of the present invention, there is provided an internal combustion engine that uses gas fuel as a main fuel, a reforming catalyst that reforms liquid fuel into gas fuel containing a plurality of gas components by reaction, and the liquid fuel is reformed. An evaporator for converting the liquid fuel into vapor before being supplied to the catalyst, a flow sensor for detecting a flow rate of the liquid fuel supplied to the evaporator, and a catalyst temperature sensor for detecting the temperature of the reforming catalyst, Prepare. The engine control unit uses at least the detection values of the flow rate sensor and the catalyst temperature sensor to refer to the correspondence map between the detection value stored in advance and the gas composition, and the gas fuel gas obtained by reforming The composition is predicted, the lean combustion limit concentration of the mixture in the cylinder is calculated based on each lean combustion limit concentration of the combustible gas composition of the predicted gas composition, and the lean combustion limit concentration and the required torque are calculated. Accordingly, the amount of gas fuel supplied to the cylinder and the air flow rate are controlled.

また、本発明の他の態様において、前記液体燃料は、炭化水素系液体燃料であり、前記改質して得られるガス燃料は、水素、一酸化炭素、二酸化炭素及びメタンを含有する。   In another aspect of the present invention, the liquid fuel is a hydrocarbon-based liquid fuel, and the gas fuel obtained by the reforming contains hydrogen, carbon monoxide, carbon dioxide, and methane.

液体燃料を改質触媒を用いて改質ガスを得る場合、改質条件に応じて改質ガスの組成が変化し、これによって気筒内の混合気の希薄燃焼限界も変化する。本発明では、このように改質ガスの組成が変化しても、液体燃料流量や改質触媒の壁温等を測定し、それらの測定結果に基づいて改質ガスの組成を予測する。したがって、改質条件が変化しても、常時、実際に得られる組成に近い組成を予測し、これに応じた制御をすることができる。   When a reformed gas is obtained using a reforming catalyst for liquid fuel, the composition of the reformed gas changes according to the reforming conditions, thereby changing the lean combustion limit of the air-fuel mixture in the cylinder. In the present invention, even if the composition of the reformed gas changes in this way, the liquid fuel flow rate, the wall temperature of the reforming catalyst, and the like are measured, and the composition of the reformed gas is predicted based on the measurement results. Therefore, even if the reforming conditions change, it is possible to always predict a composition close to the actually obtained composition and perform control according to this.

本発明では、さらに、この予測値について、得られた改質ガスの少なくとも1つのガス成分濃度を検出し、その検出値に基づいて予測値を補正し、或いは、改質触媒への入力ガス又は出力ガスの温度を検出し、その検出値を考慮して予測値を補正することで、より高い予測精度を可能としている。   In the present invention, for the predicted value, the concentration of at least one gas component of the obtained reformed gas is detected, and the predicted value is corrected based on the detected value, or the input gas to the reforming catalyst or By detecting the temperature of the output gas and correcting the predicted value in consideration of the detected value, higher prediction accuracy is possible.

このように、高い精度でガス組成を予測するので、ガス組成に応じて決まる希薄燃焼限界をより正確に算出することが可能となり、その希薄燃焼限界になるようにエンジン気筒への供給空気量、改質ガスの噴射量を適切に制御でき、常時、希薄限界付近で運転することが可能となる。   Thus, since the gas composition is predicted with high accuracy, it becomes possible to more accurately calculate the lean combustion limit determined according to the gas composition, and the amount of air supplied to the engine cylinder so as to be the lean combustion limit, The injection amount of the reformed gas can be appropriately controlled, and it is possible to always operate near the lean limit.

ここで、内燃機関の熱効率ηは、
η=1−(1/ε(κ-1)) ・・・(i)
で表すことができる(ε:圧縮比、κ:作動ガスの比熱比)。同一圧縮比であれば、希薄条件で燃焼させるほど作動ガス(燃焼ガス)の比熱比κが増加するため、熱効率が向上する。つまり、本発明では、常時、希薄限界付近で燃焼させることが可能であるため、非常に熱効率の良い内燃機関を提供することができる。
Here, the thermal efficiency η of the internal combustion engine is
η = 1− (1 / ε ( κ −1) ) (i)
(Ε: compression ratio, κ: specific heat ratio of working gas). If the compression ratio is the same, the specific heat ratio κ of the working gas (combustion gas) increases as it is burned under a lean condition, so that the thermal efficiency is improved. That is, in the present invention, since it is possible to always burn near the lean limit, it is possible to provide an internal combustion engine with very high thermal efficiency.

以下、図面を参照して本発明の実施の形態(以下、実施形態)について説明する。   Embodiments (hereinafter, embodiments) of the present invention will be described below with reference to the drawings.

[実施形態の概略]   [Outline of Embodiment]

本実施形態に係る内燃機関は、主燃料としてガス燃料を用いる内燃機関であり、ガス燃料は、液体燃料を改質触媒によって改質して得た複数のガス成分を含む改質ガス燃料である。液体燃料としては、炭化水素系液体燃料が採用でき、ガソリン、メタノール、エタノール、或いは軽油、重油などが挙げられる。このような炭化水素系液体燃料を改質して得られるガス成分は、例えば、液体燃料としてガソリン等を採用し、これを水によって改質した場合(水蒸気改質方法)、水素、一酸化炭素、二酸化炭素、メタンを主成分とする改質ガスが得られる。または、液体有機化合物燃料(上記のような炭化水素系液体燃料)と、水と、空気と、を改質器に供給して、水素、一酸化炭素、二酸化炭素、メタン、窒素を主成分とする改質ガスを得ることもできる。   The internal combustion engine according to the present embodiment is an internal combustion engine that uses gas fuel as a main fuel, and the gas fuel is a reformed gas fuel containing a plurality of gas components obtained by reforming liquid fuel with a reforming catalyst. . As the liquid fuel, a hydrocarbon-based liquid fuel can be employed, and examples thereof include gasoline, methanol, ethanol, light oil, and heavy oil. The gas component obtained by reforming such hydrocarbon liquid fuel is, for example, when gasoline or the like is adopted as the liquid fuel and reformed with water (steam reforming method), hydrogen, carbon monoxide A reformed gas mainly composed of carbon dioxide and methane is obtained. Alternatively, liquid organic compound fuel (hydrocarbon liquid fuel as described above), water, and air are supplied to the reformer, and hydrogen, carbon monoxide, carbon dioxide, methane, and nitrogen are the main components. It is also possible to obtain a reformed gas.

このような内燃機関では、上記液体燃料を改質する改質触媒の他に、液体燃料をこの改質触媒に供給する前に液体燃料及び水を蒸気とするための蒸発器を備える。さらに、この蒸発器に供給する液体燃料流量及び水流量を検出する流量センサと、改質触媒の温度(特に改質触媒の壁温)を検出する触媒温度センサを備える。   In such an internal combustion engine, in addition to the reforming catalyst for reforming the liquid fuel, an evaporator is provided for converting the liquid fuel and water into steam before supplying the liquid fuel to the reforming catalyst. Furthermore, a flow rate sensor for detecting the flow rate of liquid fuel and water supplied to the evaporator and a catalyst temperature sensor for detecting the temperature of the reforming catalyst (particularly the wall temperature of the reforming catalyst) are provided.

エンジン制御部(ECU:電子制御ユニット)は、少なくとも、上記流量センサと触媒温度センサでの検出値を利用し、予め内部に格納した検出値とガス組成との対応マップを参照し、改質によって得られるガス燃料のガス組成を予測する。なお、この予測値は、後述の具体例にて説明するように、さらに他の検出値を用いて補正することがより好適である。   The engine control unit (ECU: electronic control unit) uses at least the detection values of the flow rate sensor and the catalyst temperature sensor, refers to the correspondence map between the detection value and the gas composition stored in advance, and performs reforming. Predict the gas composition of the resulting gas fuel. In addition, it is more preferable to correct this predicted value by using another detected value, as will be described in a specific example described later.

次に、ECUは、ガス組成のうち燃料となるガス成分(燃焼性ガス成分)の濃度と、空気との混合気の燃焼限界から下記式(1)
L=100/(Σ(Mi/Ni))・・・(1)
L(vol%):混合改質ガス−空気の混合気の燃焼限界濃度
i(vol%):各燃料ガス成分−空気の混合気の燃焼限界濃度
i(vol%):混合改質ガス中の各燃料ガス成分の濃度
を演算し、混合改質ガスと空気との混合気の燃焼限界Lを求める。
Next, the ECU calculates the following formula (1) from the concentration of the gas component (combustible gas component) serving as fuel in the gas composition and the combustion limit of the air-fuel mixture.
L = 100 / (Σ (M i / N i )) (1)
L (vol%): mixed reformed gas - air mixture in the combustion limit concentration N i (vol%) of the air: the fuel gas component - mixture in the combustion limit concentration M i (vol%) of the air: mixed reformed gas The concentration of each fuel gas component is calculated, and the combustion limit L of the mixture of mixed reformed gas and air is obtained.

このように、本実施形態では、流量や触媒温度などの実測値に基づいてガス組成を予測し、ガス組成によって変化する改質ガス全体の希薄燃焼限界濃度Lを求める。さらに、ECUは、求めた希薄燃焼限界濃度Lと、ドライバによる要求トルクに応じて、エンジン筒内への改質ガス供給量及び空気流量を制御する。   As described above, in the present embodiment, the gas composition is predicted based on the actually measured values such as the flow rate and the catalyst temperature, and the lean combustion limit concentration L of the entire reformed gas that changes depending on the gas composition is obtained. Further, the ECU controls the reformed gas supply amount and the air flow rate into the engine cylinder according to the obtained lean combustion limit concentration L and the torque required by the driver.

図1は、改質触媒の壁温(℃)を変化させ、液体燃料としてガソリンを用い、これを水蒸気改質した時に得られる改質ガス組成の一例である。改質ガスの主成分は上述の通り水素、一酸化炭素、二酸化炭素、メタンと、さらに水(凝集器で後に除去される)であるが、図1から理解できるように、壁温により生成ガスの組成が大きく異なる。これらの生成ガスの内、燃焼性のガスは、水素、一酸化炭素、メタンであるが、上述のように、水素の希薄限界当量比(φlimit)=0.1、一酸化炭素はφlimit=0.34、メタンは、φlimit=0.5と、それぞれの希薄限界が大きく異なる。したがって、例えば、図1において、改質触媒壁温が高く、水素、一酸化炭素の組成比が非常に大きい状況下では、水素が非常に希薄な状況でも燃焼可能であるから、筒内の混合気の希薄燃焼限界当量比は非常に小さい値(薄い)となる。逆に、壁温が低く、水素、一酸化炭素は少なく、メタンが多い場合、メタンの希薄限界当量比は大きいため、筒内の混合気の希薄燃焼限界当量比は、壁温の高温時と比較すると非常に大きく(濃い)なる。このため、希薄燃焼限界付近での運転を実行するために筒内に供給すべきガス燃料供給量、空気量は異なるはずである。   FIG. 1 shows an example of a reformed gas composition obtained when the wall temperature (° C.) of the reforming catalyst is changed, gasoline is used as the liquid fuel, and this is steam reformed. As described above, the main components of the reformed gas are hydrogen, carbon monoxide, carbon dioxide, methane, and water (which is later removed by the aggregator). As can be understood from FIG. The composition differs greatly. Among these generated gases, the combustible gases are hydrogen, carbon monoxide, and methane. As described above, the hydrogen lean limit equivalent ratio (φlimit) = 0.1, and carbon monoxide is φlimit = 0. .34, methane, φlimit = 0.5, and the respective dilution limits are greatly different. Therefore, for example, in FIG. 1, under a situation where the reforming catalyst wall temperature is high and the composition ratio of hydrogen and carbon monoxide is very large, combustion is possible even in a situation where hydrogen is very lean. The lean burn limit equivalent ratio is very small (thin). Conversely, when the wall temperature is low, the amount of hydrogen and carbon monoxide is small, and the amount of methane is large, the lean limit equivalent ratio of methane is large, so the lean combustion limit equivalent ratio of the mixture in the cylinder is the same as when the wall temperature is high. When compared, it becomes very large (dark). For this reason, the gas fuel supply amount and the air amount to be supplied into the cylinder in order to execute the operation near the lean combustion limit should be different.

本実施形態では、少なくとも液体燃料流量及び水流量及び改質触媒温度を検出してこれを用いてガス組成を予測することで、正確な組成予測が可能であり、ECUは、その組成に応じた希薄燃焼限界濃度を演算し、その濃度になるように筒内への改質ガス噴射量及び空気流量を制御する。もちろん、後述するように、さらに、改質触媒への入力ガス温度、出力ガス温度などについても測定し、その測定値を考慮してガス組成を予測することでより正確に希薄燃焼限界を予測できる。したがって、本実施形態の内燃機関では、常時、筒内では希薄限界付近で混合気を燃焼させることができ、高い熱効率を達成でき、また、燃費の向上も実現する。   In the present embodiment, at least the liquid fuel flow rate, the water flow rate, and the reforming catalyst temperature are detected, and the gas composition is predicted using the detected flow rate, whereby accurate composition prediction is possible, and the ECU responds to the composition. The lean combustion limit concentration is calculated, and the amount of reformed gas injected into the cylinder and the air flow rate are controlled so as to obtain the concentration. Of course, as will be described later, the lean combustion limit can be predicted more accurately by measuring the input gas temperature and the output gas temperature to the reforming catalyst and predicting the gas composition in consideration of the measured values. . Therefore, in the internal combustion engine of the present embodiment, the air-fuel mixture can always be burned in the vicinity of the lean limit in the cylinder, high thermal efficiency can be achieved, and fuel consumption can be improved.

なお、上述のように、有機化合物燃料を、水及び空気を用いて改質する場合には、空気は該有機化合物燃料又は生成ガスと燃焼反応し、主反応である改質反応(吸熱反応)の吸熱量を低減する。このような燃焼反応により、空気中の酸素は全て消失し、残った窒素が筒内に供給される改質ガス(生成ガス)中に残留する。   As described above, when an organic compound fuel is reformed using water and air, the air undergoes a combustion reaction with the organic compound fuel or product gas, and a reforming reaction (endothermic reaction) which is a main reaction. Reduce the amount of heat absorbed. By such a combustion reaction, all the oxygen in the air disappears, and the remaining nitrogen remains in the reformed gas (product gas) supplied into the cylinder.

[具体例1]
図2は、本実施形態の具体例1に係る内燃機関10の概略構成を示している。気筒110の上部付近には、点火プラグ60、吸気弁24、排気弁26がそれぞれ設けられ、気筒110内には、気筒軸線に沿って上下し、コネクティングロッドによりクランク軸に連結されたピストンが設けられている。吸気管20には、スロットルバルブ22が設けられ、気筒110の空気の吸気量を制御している。また、このスロットルバルブ22付近には、このバルブ付近を通過する空気の流量を測定してエアーフローメータ信号を出力するエアーフローセンサ132が設けられている。さらに吸気管20の吸気ポート付近には、改質ガス燃料を噴射するガス燃料噴射弁130が設けられている。気筒110の排気ポートは、排気管30につながっており、その先には三元触媒などからなる排気触媒28が設置されている。
[Specific Example 1]
FIG. 2 shows a schematic configuration of the internal combustion engine 10 according to the first specific example of the present embodiment. An ignition plug 60, an intake valve 24, and an exhaust valve 26 are provided in the vicinity of the upper portion of the cylinder 110, and a piston that moves up and down along the cylinder axis and is connected to the crankshaft by a connecting rod is provided in the cylinder 110. It has been. The intake pipe 20 is provided with a throttle valve 22 to control the intake air amount of the cylinder 110. Further, an air flow sensor 132 that measures the flow rate of air passing through the vicinity of the valve and outputs an air flow meter signal is provided near the throttle valve 22. Further, a gas fuel injection valve 130 for injecting reformed gas fuel is provided near the intake port of the intake pipe 20. The exhaust port of the cylinder 110 is connected to the exhaust pipe 30, and an exhaust catalyst 28 made of a three-way catalyst or the like is installed at the end.

燃料タンク40に蓄えられた炭化水素液体燃料(例えばガソリン)と、水タンク50に蓄えられた水は、それぞれ、ポンプで汲み上げられて蒸発器220に供給される。蒸発器220で、これらは蒸気となり、それぞれ改質触媒230に送られ、改質触媒230で炭化水素燃料ガスが水蒸気によって改質され、水素、一酸化炭素、二酸化炭素、メタンを主成分とする改質ガスが生成される。なお、蒸発器220及び改質触媒230は、後述するように排気熱又は加熱ヒータ或いはバーナーなどを用いて燃料及び水を加熱することで、気化と、改質処理を実行している。改質触媒230で得られた改質ガスは、次に凝集器240で水分が除かれ、改質ガスタンク250に蓄えられ、ポンプ260で所望の圧力へと加圧してガス燃料噴射弁130より吸気管20に供給される。   The hydrocarbon liquid fuel (for example, gasoline) stored in the fuel tank 40 and the water stored in the water tank 50 are respectively pumped up by a pump and supplied to the evaporator 220. In the evaporator 220, these are converted into steam, which are respectively sent to the reforming catalyst 230, and the hydrocarbon fuel gas is reformed by steam in the reforming catalyst 230, and mainly contains hydrogen, carbon monoxide, carbon dioxide, and methane. A reformed gas is generated. Note that the evaporator 220 and the reforming catalyst 230 perform vaporization and reforming processing by heating fuel and water using exhaust heat, a heater, or a burner, as will be described later. The reformed gas obtained by the reforming catalyst 230 is then dehydrated by the aggregator 240, stored in the reformed gas tank 250, pressurized to a desired pressure by the pump 260, and sucked from the gas fuel injection valve 130. Supplied to the tube 20.

タンク40,50と蒸発器220との間には、燃料タンク40からポンプで汲み上げられて蒸発器220に供給される炭化水素燃料(液体)の流量を検出する液体燃料流量センサ140と、水タンク50から汲み上げられて蒸発器220に供給される水流量を検出する水流量センサ142が設けられている。   Between the tanks 40, 50 and the evaporator 220, a liquid fuel flow sensor 140 that detects the flow rate of hydrocarbon fuel (liquid) pumped from the fuel tank 40 and supplied to the evaporator 220, and a water tank A water flow rate sensor 142 that detects the flow rate of water drawn from 50 and supplied to the evaporator 220 is provided.

蒸発器220と改質触媒230との間には、改質触媒230に入力される燃料ガス温度と、水蒸気温度をそれぞれ検出する入力ガス温度センサ144が設けられ、改質触媒230の出力側(凝集器240との間)には、改質触媒230から出力されるガス(改質ガス)のガス温度を検出する出力ガス温度センサ148が設けられている。なお、このガス温度センサ144,148は、いずれか一方のみ、例えば入力ガス温度を検出するセンサ144のみとすることができる。   Between the evaporator 220 and the reforming catalyst 230, an input gas temperature sensor 144 for detecting the fuel gas temperature input to the reforming catalyst 230 and the water vapor temperature is provided, and the output side ( An output gas temperature sensor 148 that detects the gas temperature of the gas (reformed gas) output from the reforming catalyst 230 is provided between the coagulator 240 and the aggregator 240. The gas temperature sensors 144 and 148 may be only one of them, for example, only the sensor 144 that detects the input gas temperature.

また、改質触媒230には、この触媒の温度(触媒壁温)を測定する触媒温度センサ146が設けられている。さらに、改質触媒230と凝集器240との間には、改質触媒230から出力される改質ガスの特定のガス成分濃度を検出するガス濃度センサ150が設けられている。   The reforming catalyst 230 is provided with a catalyst temperature sensor 146 for measuring the temperature of the catalyst (catalyst wall temperature). Further, a gas concentration sensor 150 that detects a specific gas component concentration of the reformed gas output from the reforming catalyst 230 is provided between the reforming catalyst 230 and the aggregator 240.

改質ガスのガス組成は、蒸発器220に供給する炭化水素流量、水流量と、改質触媒温度によって強い影響を受ける。また、入力ガス温度もガス組成に与える影響が大きい。さらに、出力ガス温度も改質触媒内での改質反応によって変化するため、その値により改質条件を推測することができる。このため、具体例1では、上述のように炭化水素液体燃料流量、水流量、改質触媒温度、入力ガス温度、出力ガス温度をそれぞれセンサ140,142,146,144,148によって検出している。   The gas composition of the reformed gas is strongly influenced by the hydrocarbon flow rate, water flow rate, and reforming catalyst temperature supplied to the evaporator 220. Also, the input gas temperature has a great influence on the gas composition. Furthermore, since the output gas temperature also changes due to the reforming reaction in the reforming catalyst, the reforming condition can be estimated from the value. Therefore, in the specific example 1, as described above, the hydrocarbon liquid fuel flow rate, the water flow rate, the reforming catalyst temperature, the input gas temperature, and the output gas temperature are detected by the sensors 140, 142, 146, 144, and 148, respectively. .

ECU100は、上記各センサで得られた検出値に基づき、気筒内110での希薄燃焼限界の予測演算を実行する。以下、このECU100での演算処理について、図3をさらに参照して説明する。ECU100は、上記のような各センサから、上述のように炭化水素流量、水流量、改質触媒温度、入力ガス温度、出力ガス温度の検出値を受け(S1)、これらの値に基づいて、予め内部に格納してある検出値とガス組成との対応マップを参照して、生成される改質ガスのガス組成とその濃度(vol%)を予測する(M1、M2、M3、M4・・・)(S2)。 The ECU 100 performs a prediction calculation of the lean combustion limit in the cylinder 110 based on the detection values obtained by the respective sensors. Hereinafter, the arithmetic processing in the ECU 100 will be described with further reference to FIG. The ECU 100 receives detection values of the hydrocarbon flow rate, the water flow rate, the reforming catalyst temperature, the input gas temperature, and the output gas temperature from each sensor as described above (S1), and based on these values, With reference to the correspondence map between the detected value and the gas composition stored in advance, the gas composition and its concentration (vol%) of the generated reformed gas are predicted (M 1 , M 2 , M 3 , M 4 ···) (S2).

ガス濃度センサ150は、改質ガスの主成分の内、予め定めた、水素、一酸化炭素、二酸化炭素、メタンの内の1成分についてのガス濃度M1’(vol%)を検出する(S3)。ECU100は、この検出濃度M1’を用い、下記式に基づいて、各ガス成分濃度の補正値M1”M2”、M3”、M4”・・・を求める(S4)。 The gas concentration sensor 150 detects a predetermined gas concentration M 1 ′ (vol%) of one component of hydrogen, carbon monoxide, carbon dioxide, and methane among the main components of the reformed gas (S3). ). The ECU 100 uses the detected concentration M 1 ′ to obtain correction values M 1 ″ M 2 ″, M 3 ″, M 4 ″... For each gas component concentration based on the following formula (S4).

1”=M1
2”=(1−M1’)M2/(M2+M3+M4
3”=(1−M1’)M3/(M2+M3+M4
4”=(1−M1’)M4/(M2+M3+M4
即ち、マップから求めた対応するガス成分の濃度M1を検出濃度M1’で置換して、M1成分についての補正濃度M1”とする。残りの成分M2、M3、M4・・・については、全体濃度(体積)から検出したガス成分の濃度(体積)を差し引いた濃度(体積)内で、マップから求めた各成分濃度の全体濃度(体積)比に応じて算出する。
M 1 ”= M 1 '
M 2 ″ = (1−M 1 ′) M 2 / (M 2 + M 3 + M 4 )
M 3 ″ = (1−M 1 ′) M 3 / (M 2 + M 3 + M 4 )
M 4 ″ = (1−M 1 ′) M 4 / (M 2 + M 3 + M 4 )
That is, the corresponding gas component concentration M 1 obtained from the map is replaced with the detected concentration M 1 ′ to obtain the corrected concentration M 1 ″ for the M 1 component. The remaining components M 2 , M 3 , M 4. ... Is calculated in accordance with the overall concentration (volume) ratio of each component concentration obtained from the map within the concentration (volume) obtained by subtracting the detected gas component concentration (volume) from the overall concentration (volume).

次に、こうして得られた改質ガスの各成分濃度M1”、M2”、M3”、M4”内、燃焼性ガスの希薄燃焼限界濃度Niに基づいて、上述のように
L=100/(Σ(Mi/Ni)) ・・・(1)
式(1)を演算する(S5)。これにより、気筒内110における混合気の希薄燃焼限界濃度L(vol%)を得ることができ、ECU100は、この希薄燃焼限界濃度Lと、この際ドライバから要求されている要求トルクに応じて、気筒内110に供給すべきガス燃料量及び空気流量を決定し、さらに、その量に応じて燃料噴射弁130での燃料噴射期間、スロットルバルブ22の開度を制御する(S6)。なお、スロットルバルブ22の開度は、エアーフローセンサ132からの出力が、要求空気量に近づくように制御する。このように、実際に得られた改質ガスの内の予め定めた1成分のガス濃度を検出し、これによりガス組成の予測値を補正することで正確な組成予測及び希薄燃焼限界濃度の予測が可能となる。
Next, the thus obtained modified each component concentration M 1 of the gas ", M 2", M 3 ", M 4" inside, on the basis of the lean combustion limit concentration N i of the combustion gases, L as described above = 100 / (Σ (M i / N i )) (1)
Formula (1) is calculated (S5). Thereby, the lean combustion limit concentration L (vol%) of the air-fuel mixture in the cylinder 110 can be obtained, and the ECU 100 determines the lean combustion limit concentration L and the required torque requested from the driver at this time. The amount of gas fuel to be supplied to the cylinder 110 and the air flow rate are determined, and the fuel injection period in the fuel injection valve 130 and the opening of the throttle valve 22 are controlled according to the amounts (S6). The opening degree of the throttle valve 22 is controlled so that the output from the air flow sensor 132 approaches the required air amount. In this way, by detecting the gas concentration of one predetermined component of the reformed gas actually obtained, and correcting the predicted value of the gas composition thereby, accurate composition prediction and lean combustion limit concentration prediction Is possible.

ここで、ガス濃度を検出するガス成分については、高精度に濃度を検出することができ、かつ、例えば図1のように改質触媒温度や、入出力ガス温度などへの高い依存性のあるガスを選択することが好適である。一例として、希薄燃焼限界当量比の低い水素や、最も高いメタンなどの燃焼性ガス、或いは、一酸化炭素、二酸化炭素などが挙げられる。   Here, the gas component for detecting the gas concentration can be detected with high accuracy, and has a high dependency on the reforming catalyst temperature, the input / output gas temperature and the like as shown in FIG. 1, for example. It is preferred to select a gas. As an example, hydrogen having a low lean combustion limit equivalent ratio, the highest combustible gas such as methane, carbon monoxide, carbon dioxide, or the like can be given.

なお、濃度を測定する1ガス成分について、改質条件等に応じ、測定するガス成分を変更しても良い。   In addition, about 1 gas component which measures a density | concentration, according to reforming conditions etc., you may change the gas component to measure.

[具体例2]
図4は、具体例2に係るECU100での演算処理を示している。上記具体例1と相違する点は、測定するガス成分が1成分ではなく、2成分であり(S13)、2成分のガス濃度からガス組成の予測値の補正を行う(S14)ことである。他の処理については、上記具体例1と同じである。
[Specific Example 2]
FIG. 4 shows a calculation process in the ECU 100 according to the second specific example. The difference from the first specific example is that the gas component to be measured is not one component but two components (S13), and the predicted value of the gas composition is corrected from the gas concentrations of the two components (S14). Other processes are the same as those in the first specific example.

濃度を測定するガス成分については、精度良く測定可能な2つを選択すればよい。例えば、ガス組成の主成分が、水素、一酸化炭素、二酸化炭素、メタンの場合、メタンと水素、又はメタンと一酸化炭素等を選択することができる。この組み合わせは、改質触媒の温度が改質ガスの組成に対して最も影響が大きい場合、触媒温度に対する依存性の互いに異なるガスを1種類づつ選択することとなり、どの触媒温度に対しても高い検出精度、即ち、高い組成予測が可能となる。もちろん同一の傾向を示す2種類のガス(例えば図1のメタンと水等)であっても良いし、一方は温度依存性が低く他方が温度依存性が高い2種類のガス(例えば図1では、メタンと二酸化炭素)を選択することもできる。いずれの場合においても、ガス濃度を精度良く測定でき、かつ異なる任意の2種を選択することで、予測精度をさらに向上させることが可能となる。なお、ガス濃度センサ150は、検出するガス数とガス種類に応じて任意のセンサを採用する。   About the gas component which measures a density | concentration, what is necessary is just to select two which can be measured accurately. For example, when the main component of the gas composition is hydrogen, carbon monoxide, carbon dioxide, or methane, methane and hydrogen, methane and carbon monoxide, or the like can be selected. In this combination, when the temperature of the reforming catalyst has the greatest influence on the composition of the reformed gas, gases having different dependence on the catalyst temperature are selected one by one, which is high for any catalyst temperature. Detection accuracy, that is, high composition prediction is possible. Of course, there may be two kinds of gases (for example, methane and water in FIG. 1) exhibiting the same tendency, and one of the two kinds of gases (for example, in FIG. 1, the temperature dependence is low and the other is high in temperature dependence). Methane and carbon dioxide) can also be selected. In any case, the gas concentration can be measured with high accuracy, and the prediction accuracy can be further improved by selecting any two different types. The gas concentration sensor 150 employs an arbitrary sensor depending on the number of gases to be detected and the type of gas.

以上のように、改質ガスの内、予め定めた2成分について、ガス濃度センサ150が、それぞれそのガス濃度M1’、M2’(vol%)を検出し(S13)、ECU100は、この検出濃度M1’、M2’を用い、下記式に基づいて、各ガス成分濃度の補正値M1”、M2”、M3”、M4”・・・を求める(S14)。 As described above, the gas concentration sensor 150 detects the gas concentrations M 1 ′ and M 2 ′ (vol%) for two predetermined components of the reformed gas (S13), and the ECU 100 Using the detected concentrations M 1 ′, M 2 ′, correction values M 1 ″, M 2 ″, M 3 ″, M 4 ″... For each gas component concentration are obtained based on the following formula (S14).

1”=M1
2”=M2
3”=(1−M1’−M2’)M3/(M3+M4
4”=(1−M1’−M2’)M4/(M3+M4
以上のようにして得られた補正値M1”、M2”、M3”、M4”を用い、式(1)を演算することで、具体例1と同様、気筒内110における混合気の希薄燃焼限界濃度L(vol%)を得る(S5)。ECU100は、この希薄燃焼限界濃度Lと、この際ドライバから要求されている要求トルクに応じて、気筒内110に供給すべきガス燃料量及び空気流量を決定し、さらに、その量に応じて燃料噴射弁130での燃料噴射期間、スロットルバルブ22の開度を制御する(S6)。
M 1 ”= M 1 '
M 2 ”= M 2 '
M 3 ″ = (1−M 1 ′ −M 2 ′) M 3 / (M 3 + M 4 )
M 4 ″ = (1−M 1 ′ −M 2 ′) M 4 / (M 3 + M 4 )
Using the correction values M 1 ″, M 2 ″, M 3 ″ and M 4 ″ obtained as described above, the air-fuel mixture in the cylinder 110 is calculated in the same manner as in the first specific example by calculating Expression (1). The lean combustion limit concentration L (vol%) is obtained (S5). The ECU 100 determines the amount of gas fuel to be supplied to the cylinder 110 and the air flow rate according to the lean combustion limit concentration L and the required torque requested by the driver at this time, and further determines the fuel according to the amount. During the fuel injection period at the injection valve 130, the opening degree of the throttle valve 22 is controlled (S6).

なお、濃度を測定する2ガス成分について、改質条件等に応じ、測定するガス成分を変更しても良い。   In addition, about the 2 gas component which measures a density | concentration, you may change the gas component to measure according to reforming conditions etc.

[具体例3]
上記具体例1及び2では、改質触媒230で得られる改質ガスから特定のガス成分の濃度を検出して予測値を補正しているが、具体例3に係る内燃機関では、ガス濃度は測定せずに、それ以外の測定値に基づいて予測及び補正を行う。
[Specific Example 3]
In specific examples 1 and 2, the predicted value is corrected by detecting the concentration of a specific gas component from the reformed gas obtained by the reforming catalyst 230. However, in the internal combustion engine according to specific example 3, the gas concentration is Without measurement, prediction and correction are performed based on other measurement values.

以下、図5及び図6を参照して具体例3の内燃機関の構成及び処理を説明する。図5は、具体例3において採用可能な内燃機関の概略システム例であり、図2に示したガス濃度センサ150が省略されている点を除けば図2のシステムと共通する。   Hereinafter, the configuration and processing of the internal combustion engine of the specific example 3 will be described with reference to FIGS. 5 and 6. FIG. 5 is a schematic system example of an internal combustion engine that can be adopted in the third specific example, and is common to the system of FIG. 2 except that the gas concentration sensor 150 shown in FIG. 2 is omitted.

ECU100は、センサ140,142から得られる炭化水素燃料流量及び水流量と、センサ146から得られる触媒壁温に基づいて、予めこれら流量と触媒壁温との対応に基づいて作成された対応マップを参酌し、予測値1を求める(図6(a))。   Based on the hydrocarbon fuel flow rate and water flow rate obtained from the sensors 140 and 142 and the catalyst wall temperature obtained from the sensor 146, the ECU 100 creates a correspondence map created in advance based on the correspondence between these flow rates and the catalyst wall temperature. In consideration, the predicted value 1 is obtained (FIG. 6A).

また、ECU100は、温度センサ144,148から得られる入力ガス温度及び出力ガス温度とに基づいて、上記予測値1を補正する。   Further, the ECU 100 corrects the predicted value 1 based on the input gas temperature and the output gas temperature obtained from the temperature sensors 144 and 148.

より具体的には、まず、上記炭化水素燃料流量及び水流量と、温度センサ144,148から得られる入力ガス温度及び出力ガス温度とに基づき、予め流量と、入出力ガス温度との対応に基づいて作成された対応マップを参酌し、別途、予測値2を求める(図6(b)参照)。次に、この予測値2によって予測値1を補正し、改質ガス組成の予測値を求める(図6(c))。なお、予測値2を予測値1で補正することも同義である。得られた補正値に対しては、上記具体例1及び2と同様に、式(1)を演算して混合気の希薄燃焼限界濃度Lを演算し、その希薄燃焼限界濃度Lと、要求トルクに応じて、気筒内110に供給すべきガス燃料量及び空気流量を制御する。   More specifically, first, based on the correspondence between the flow rate and the input / output gas temperature based on the hydrocarbon fuel flow rate and water flow rate, and the input gas temperature and output gas temperature obtained from the temperature sensors 144 and 148. Then, the predicted value 2 is obtained separately by referring to the correspondence map created in this way (see FIG. 6B). Next, the predicted value 1 is corrected by the predicted value 2, and a predicted value of the reformed gas composition is obtained (FIG. 6C). It is also synonymous to correct the predicted value 2 by the predicted value 1. For the obtained correction value, the lean combustion limit concentration L of the air-fuel mixture is calculated by calculating the equation (1) in the same manner as in the specific examples 1 and 2, and the lean combustion limit concentration L and the required torque are calculated. Accordingly, the amount of gas fuel to be supplied to the cylinder 110 and the air flow rate are controlled.

ここで、ガス組成についての予測値の補正に際し、予測値1と、予測値2とは、例えば、触媒壁温と、触媒への入出力ガス温度について、これらが改質条件(ガス組成)に及ぼす影響度に応じて重み付けして用いる。具体例3のように、ガソリン燃料を水蒸気で改質する場合には、少なくとも、触媒壁温が改質条件に及ぼす影響は、入出力ガス温度よりも大きい。したがって、予測値1の方により高い重み付けをし(例えば0.8)、予測値2は影響度に応じた重みとし(例えば0.2)、この2つの予測値を加算することで得ることができる。この重み付けは、もちろん、炭化水素系液体燃料の種類、改質反応、改質触媒などによって最適な値とする。また、重み付けは、常に一定でなく、改質条件に応じて変更しても良い。例えば、触媒壁温が非常に高く、入力ガス温度の影響を受け難いような条件下では、予測値1の重み付けを通常よりも高く設定し、逆に触媒壁温が低く、入力ガス温度の影響が考慮すべき程度であれば、通常の重み付けとするなどとすることができる。なお、予測値2を流量と入力ガス温度との対応から求め、さらに流量と出力ガス温度との対応から予測値3を求め、予測値1を予測値2及び予測値3によって補正することも可能である。   Here, when correcting the predicted value for the gas composition, the predicted value 1 and the predicted value 2 are, for example, the catalyst wall temperature and the input / output gas temperature to the catalyst, which are the reforming conditions (gas composition). Weighted according to the degree of influence. When the gasoline fuel is reformed with steam as in the specific example 3, at least the influence of the catalyst wall temperature on the reforming condition is larger than the input / output gas temperature. Therefore, a higher weight is given to the predicted value 1 (for example, 0.8), a predicted value 2 is set to a weight according to the degree of influence (for example, 0.2), and the two predicted values can be added. it can. Of course, this weighting is set to an optimum value depending on the type of hydrocarbon liquid fuel, reforming reaction, reforming catalyst, and the like. Further, the weighting is not always constant and may be changed according to the reforming conditions. For example, under conditions where the catalyst wall temperature is very high and hardly affected by the input gas temperature, the weight of the predicted value 1 is set higher than usual, and conversely, the catalyst wall temperature is low and the influence of the input gas temperature. If it is a grade which should be considered, it can be set as normal weighting. The predicted value 2 can be obtained from the correspondence between the flow rate and the input gas temperature, the predicted value 3 can be obtained from the correspondence between the flow rate and the output gas temperature, and the predicted value 1 can be corrected by the predicted value 2 and the predicted value 3. It is.

[変形例1]
図7及び図8は、上記具体例1〜3の各内燃機関に採用可能なより具体的なシステム例を示している。なお、具体例3に適用する場合、図7及び図8に示したガス濃度センサ150は不要である。
[Modification 1]
7 and 8 show more specific system examples that can be employed in the internal combustion engines of the first to third specific examples. When applied to the third specific example, the gas concentration sensor 150 shown in FIGS. 7 and 8 is not necessary.

いずれのシステムでも、燃料タンク40から炭化水素系液体燃料を、水タンク50から水を、それぞれポンプで汲み上げ、各流量制御弁を介して蒸発器220に送る。この蒸発器220は、図7では加熱ヒータによって、図8では排気熱の熱交換器によって加熱されており、液体燃料と水をそれぞれ蒸発させる。   In any system, the hydrocarbon-based liquid fuel is pumped from the fuel tank 40 and the water is pumped from the water tank 50, and is sent to the evaporator 220 via each flow control valve. The evaporator 220 is heated by a heater in FIG. 7 and by an exhaust heat heat exchanger in FIG. 8, and evaporates liquid fuel and water, respectively.

同様に、改質触媒230は、図7では加熱ヒータによって、図8では排気熱の熱交換器によって加熱されている。ガソリン等の炭化水素系液体燃料と、水とから、上述のような水素、一酸化炭素、二酸化炭素、メタンなどを主成分とする改質ガスを生成する改質反応は吸熱反応であり、改質触媒230を加熱ヒータや熱交換器などによって加熱することによって、触媒での改質反応を進めている。   Similarly, the reforming catalyst 230 is heated by a heater in FIG. 7 and by a heat exchanger for exhaust heat in FIG. The reforming reaction that generates reformed gas mainly composed of hydrogen, carbon monoxide, carbon dioxide, methane, etc. from hydrocarbon liquid fuel such as gasoline and water is an endothermic reaction. The quality catalyst 230 is heated by a heater, a heat exchanger, or the like, thereby proceeding with a reforming reaction using the catalyst.

また、図7及び図8では、いずれも、気筒110の排気側(排気触媒28のさらに下流)に、排気ガス中に含まれる酸素濃度を測定するO2センサ134を設けている。ECU100は、O2センサ134で得られた酸素濃度に基づいて、気筒内の混合気濃度が、上式(1)より求めた希薄燃焼限界濃度Lに一致するように、燃料噴射弁130を制御してガス燃料供給量(燃料噴射期間)を制御し、スロットルバルブ22の開度を制御して空気流量を制御する。 7 and 8, an O 2 sensor 134 for measuring the oxygen concentration contained in the exhaust gas is provided on the exhaust side of the cylinder 110 (further downstream of the exhaust catalyst 28). Based on the oxygen concentration obtained by the O 2 sensor 134, the ECU 100 controls the fuel injection valve 130 so that the air-fuel mixture concentration in the cylinder matches the lean combustion limit concentration L obtained from the above equation (1). Thus, the gas fuel supply amount (fuel injection period) is controlled, and the opening of the throttle valve 22 is controlled to control the air flow rate.

[変形例2]
改質条件の変化に応じて、上記具体例1、具体例2、具体例3のような補正方法を切り替えることも可能である。
[Modification 2]
It is also possible to switch the correction method as in specific example 1, specific example 2, and specific example 3 in accordance with the change in the reforming conditions.

例えば、改質ガスの成分の内、着目するガス(濃度測定対象のガス)の濃度が、触媒温度の上昇又は下降につれて検出できない程度に減少するというような特性であったり、触媒特性が経時変化するというような場合、或いは、燃料流量や水流量が予め定めた条件となったら、ガス成分の測定対象数、測定対象を変更しても良い。つまり、改質条件の変化に応じて、上記具体例1と具体例2の方法を切り替えたり、さらに具体例3とに切り替えたりすることも可能である。   For example, among the components of the reformed gas, the concentration of the gas of interest (the gas whose concentration is to be measured) decreases such that it cannot be detected as the catalyst temperature increases or decreases, or the catalyst characteristics change over time. In such a case, or when the fuel flow rate or the water flow rate is a predetermined condition, the number of measurement targets and measurement targets of the gas component may be changed. That is, according to the change of the reforming conditions, it is possible to switch the method of the specific example 1 and the specific example 2 or further to the specific example 3.

また、例えば、ガス濃度センサの検出精度自体が変化する場合や、改質触媒の特性の変化した結果ガス濃度が著しく変化して検出精度が変化するというような場合、精度が低い条件では、具体例3のようにガス濃度の測定値を用いない予測及び補正方法を採用し、精度が高い条件下ではガス濃度を補正に利用するというような切り替えを実行することも可能である。   Also, for example, when the detection accuracy of the gas concentration sensor itself changes, or when the gas concentration changes significantly as a result of changes in the characteristics of the reforming catalyst, the detection accuracy changes. It is also possible to employ a prediction and correction method that does not use the measured value of the gas concentration as in Example 3 and to perform switching such that the gas concentration is used for correction under high-accuracy conditions.

改質触媒温度と得られる改質ガスの組成との関係を示す図である。It is a figure which shows the relationship between the reforming catalyst temperature and the composition of the reformed gas obtained. 本実施形態の具体例1に係る内燃機関の概略システム図である。1 is a schematic system diagram of an internal combustion engine according to a specific example 1 of the present embodiment. 本実施形態の具体例1に係るガス組成の予測及び補正処理方法を説明する図である。It is a figure explaining the prediction and the correction | amendment processing method of the gas composition which concerns on the specific example 1 of this embodiment. 本実施形態の具体例2に係るガス組成の予測及び補正処理方法を説明する図である。It is a figure explaining the prediction and correction | amendment processing method of the gas composition which concerns on the specific example 2 of this embodiment. 本実施形態の具体例3に係る内燃機関の概略システム図である。It is a schematic system diagram of an internal combustion engine according to Specific Example 3 of the present embodiment. 本実施形態の具体例3に係るガス組成の予測及び補正方法を説明する図である。It is a figure explaining the prediction and correction | amendment method of the gas composition which concerns on the specific example 3 of this embodiment. 本実施形態に係る内燃機関に適用可能な具体的構成の例を示す図である。It is a figure which shows the example of the specific structure applicable to the internal combustion engine which concerns on this embodiment. 本実施形態に係る内燃機関に適用可能な具体的構成の他の例を示す図である。It is a figure which shows the other example of the specific structure applicable to the internal combustion engine which concerns on this embodiment.

符号の説明Explanation of symbols

10 内燃機関、20 吸気管、22 スロットルバルブ、24 吸気弁、26 排気弁、28 排気触媒、30 排気管、40 (炭化水素系)液体燃料タンク、50 水タンク、60 点火プラグ、100 ECU(エンジン制御部)、110 気筒、130 ガス燃料噴射弁、132 エアーフローセンサ、134 O2センサ、140 液体燃料流量センサ、142 水流量センサ、144 入力ガス温度センサ、146 触媒温度センサ、148 出力ガス温度センサ、150 ガス濃度センサ、220 蒸発器、230 改質触媒、240 凝集器、250 改質ガスタンク,260 ポンプ。 DESCRIPTION OF SYMBOLS 10 Internal combustion engine, 20 Intake pipe, 22 Throttle valve, 24 Intake valve, 26 Exhaust valve, 28 Exhaust catalyst, 30 Exhaust pipe, 40 (hydrocarbon type) liquid fuel tank, 50 Water tank, 60 Spark plug, 100 ECU (engine) Controller), 110 cylinder, 130 gas fuel injection valve, 132 air flow sensor, 134 O 2 sensor, 140 liquid fuel flow sensor, 142 water flow sensor, 144 input gas temperature sensor, 146 catalyst temperature sensor, 148 output gas temperature sensor , 150 gas concentration sensor, 220 evaporator, 230 reforming catalyst, 240 aggregator, 250 reformed gas tank, 260 pump.

Claims (9)

主燃料としてガス燃料を用いる内燃機関であって、
液体燃料を水と反応させて複数のガス成分を含むガス燃料に改質する改質触媒と、
前記液体燃料を前記改質触媒に供給する前に前記液体燃料及び前記水を蒸気とするための蒸発器と、
前記蒸発器に供給する液体燃料流量及び水流量を検出する流量センサと、
前記改質触媒におけるガス温度を検出するガス温度センサと、
前記改質触媒の温度を検出する触媒温度センサと、
前記改質後のガス燃料の前記複数のガス成分の内、少なくとも1種類のガス成分濃度を検出する検出器と、
を備え、
エンジン制御部が、
前記流量センサ及び前記触媒温度センサでの検出値を利用して、予め内部に格納した検出値とガス組成との対応マップを参照し、改質によって得られるガス燃料のガス組成を予測し、
さらに、前記検出したガス成分の濃度に基づいて、前記ガス組成の予測値を補正することを特徴とする内燃機関。
An internal combustion engine using gas fuel as the main fuel,
A reforming catalyst for reacting liquid fuel with water to reform the gas fuel containing a plurality of gas components;
An evaporator for converting the liquid fuel and the water into steam before supplying the liquid fuel to the reforming catalyst;
A flow rate sensor for detecting a flow rate of liquid fuel and a flow rate of water supplied to the evaporator;
A gas temperature sensor for detecting a gas temperature in the reforming catalyst;
A catalyst temperature sensor for detecting the temperature of the reforming catalyst;
A detector for detecting a concentration of at least one gas component among the plurality of gas components of the reformed gas fuel;
With
The engine controller
Utilizing the detection values at the flow rate sensor and the catalyst temperature sensor, referring to a correspondence map between the detection values stored in advance and the gas composition, predicting the gas composition of the gas fuel obtained by reforming,
Further, the internal combustion engine, wherein the predicted value of the gas composition is corrected based on the detected concentration of the gas component.
請求項1に記載の内燃機関において、
さらに前記改質触媒の入力ガス又は出力ガスのガス温度を検出するガス温度センサを備え、
前記エンジン制御部は、前記ガス組成の予測に際し、さらに、検出した前記ガス温度を用いることを特徴とする内燃機関。
The internal combustion engine according to claim 1,
Furthermore, a gas temperature sensor for detecting the gas temperature of the input gas or output gas of the reforming catalyst is provided,
The internal combustion engine, wherein the engine control unit further uses the detected gas temperature when predicting the gas composition.
請求項1又は請求項2に記載の内燃機関において、
前記ガス組成の予測値の補正では、検出したガス成分の濃度を前記予測値における対応ガス成分の濃度とし、前記検出したガス成分の濃度を全体濃度から除いた値に基づいて、予測値の残りのガス成分濃度を算出することを特徴とする内燃機関。
The internal combustion engine according to claim 1 or 2,
In the correction of the predicted value of the gas composition, the concentration of the detected gas component is set as the concentration of the corresponding gas component in the predicted value, and the remaining of the predicted value is based on the value obtained by removing the detected concentration of the gas component from the overall concentration. An internal combustion engine that calculates a gas component concentration of the engine.
主燃料としてガス燃料を用いる内燃機関であって、
液体燃料を水と反応させて複数のガス成分を含むガス燃料に改質する改質触媒と、
前記液体燃料を前記改質触媒に供給する前に前記液体燃料及び前記水を蒸気とするための蒸発器と、
前記蒸発器に供給する液体燃料流量及び水流量を検出する流量センサと、
前記改質触媒の入力ガス又は出力ガスのガス温度を検出するガス温度センサと、
前記改質触媒の温度を検出する触媒温度センサと、
を備え、
エンジン制御部は、
前記流量センサ及び前記触媒温度センサでの検出値に基づいて、予め内部に格納した検出値とガス組成との対応マップを参照し、改質によって得られるガス燃料のガス組成の予測値を求め、さらに、前記ガス温度センサでの検出結果に基づいて予測値の補正を行うことを特徴とする内燃機関。
An internal combustion engine using gas fuel as the main fuel,
A reforming catalyst for reacting liquid fuel with water to reform the gas fuel containing a plurality of gas components;
An evaporator for converting the liquid fuel and the water into steam before supplying the liquid fuel to the reforming catalyst;
A flow rate sensor for detecting a flow rate of liquid fuel and a flow rate of water supplied to the evaporator;
A gas temperature sensor for detecting a gas temperature of an input gas or an output gas of the reforming catalyst;
A catalyst temperature sensor for detecting the temperature of the reforming catalyst;
With
The engine control unit
Based on the detection values at the flow rate sensor and the catalyst temperature sensor, refer to a correspondence map between the detection values stored in advance and the gas composition, and obtain a predicted value of the gas composition of the gas fuel obtained by reforming, Further, the internal combustion engine, wherein the predicted value is corrected based on the detection result of the gas temperature sensor.
請求項4に記載の内燃機関において、
前記予測値の補正は、
前記流量センサ及び前記触媒温度センサでの検出値に基づいて求めた第1の予測値と、
前記流量センサ及び前記検出したガス温度に基づき、予め内部に格納した検出値とガス組成との対応マップを参照して求めた第2の予測値と、を利用して行うことを特徴とする内燃機関。
The internal combustion engine according to claim 4,
The correction of the predicted value is
A first predicted value obtained based on the detection values of the flow rate sensor and the catalyst temperature sensor;
The internal combustion is performed by using a second predicted value obtained by referring to a correspondence map between a detected value stored in advance and a gas composition based on the flow rate sensor and the detected gas temperature. organ.
請求項1〜請求項5のいずれか一項に記載の内燃機関において、
前記液体燃料は、炭化水素系液体燃料であり、
前記改質して得られるガス燃料は、水素、一酸化炭素、二酸化炭素及びメタンを含有することを特徴とする内燃機関。
The internal combustion engine according to any one of claims 1 to 5,
The liquid fuel is a hydrocarbon liquid fuel,
The internal combustion engine, wherein the gas fuel obtained by the reforming contains hydrogen, carbon monoxide, carbon dioxide and methane.
請求項1〜請求項6のいずれか一項に記載の内燃機関において、
前記エンジン制御部は、前記補正された予測値に基づいて筒内での前記ガス燃料と空気との混合気の希薄燃焼限界濃度を算出し、該希薄燃焼限界濃度及び要求トルクに応じて、前記筒内へのガス燃料供給量及び空気流量を制御することを特徴とする内燃機関。
The internal combustion engine according to any one of claims 1 to 6,
The engine control unit calculates a lean combustion limit concentration of a mixture of the gas fuel and air in the cylinder based on the corrected predicted value, and according to the lean combustion limit concentration and the required torque, An internal combustion engine characterized by controlling an amount of gas fuel supplied into a cylinder and an air flow rate.
請求項7に記載の内燃機関において、
さらに、気筒の排気側に、酸素センサを備え、
前記酸素センサからの酸素検出値に基づいて、気筒内の混合気濃度が前記求めた希薄燃焼限界濃度に一致するように、前記筒内へのガス燃料供給量及び空気流量を制御することを特徴とする内燃機関。
The internal combustion engine according to claim 7,
Furthermore, an oxygen sensor is provided on the exhaust side of the cylinder,
Based on the oxygen detection value from the oxygen sensor, the gas fuel supply amount and the air flow rate in the cylinder are controlled so that the mixture concentration in the cylinder matches the obtained lean combustion limit concentration. An internal combustion engine.
主燃料としてガス燃料を用いる内燃機関であって、
液体燃料を反応により複数のガス成分を含むガス燃料に改質する改質触媒と、
前記液体燃料を前記改質触媒に供給する前に前記液体燃料を蒸気とするための蒸発器と、
前記蒸発器に供給する液体燃料流量を検出する流量センサと、
前記改質触媒の温度を検出する触媒温度センサと、
を備え、
エンジン制御部は、少なくとも前記流量センサ及び前記触媒温度センサでの検出値を利用して、予め内部に格納した検出値とガス組成との対応マップを参照し、改質によって得られるガス燃料のガス組成を予測し、
前記予測されたガス組成の内の燃焼性ガス組成の各希薄燃焼限界濃度に基づいて、筒内における混合気の希薄燃焼限界濃度を演算し、該希薄燃焼限界濃度及び要求トルクに応じて、前記筒内へのガス燃料供給量及び空気流量を制御することを特徴とする内燃機関。
An internal combustion engine using gas fuel as the main fuel,
A reforming catalyst for reforming liquid fuel into a gas fuel containing a plurality of gas components by reaction;
An evaporator for converting the liquid fuel into vapor before supplying the liquid fuel to the reforming catalyst;
A flow sensor for detecting a flow rate of liquid fuel supplied to the evaporator;
A catalyst temperature sensor for detecting the temperature of the reforming catalyst;
With
The engine control unit uses at least the detection values of the flow rate sensor and the catalyst temperature sensor to refer to the correspondence map between the detection value stored in advance and the gas composition, and the gas fuel gas obtained by reforming Predict composition,
Based on each lean combustion limit concentration of the combustible gas composition of the predicted gas composition, the lean burn limit concentration of the air-fuel mixture in the cylinder is calculated, and according to the lean burn limit concentration and the required torque, An internal combustion engine characterized by controlling an amount of gas fuel supplied into a cylinder and an air flow rate.
JP2006125592A 2006-04-28 2006-04-28 Gas fuel internal combustion engine Pending JP2007297951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125592A JP2007297951A (en) 2006-04-28 2006-04-28 Gas fuel internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125592A JP2007297951A (en) 2006-04-28 2006-04-28 Gas fuel internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007297951A true JP2007297951A (en) 2007-11-15

Family

ID=38767654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125592A Pending JP2007297951A (en) 2006-04-28 2006-04-28 Gas fuel internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007297951A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255267A1 (en) 2016-06-09 2017-12-13 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
CN108010282A (en) * 2017-11-30 2018-05-08 中冶南方工程技术有限公司 The method for drafting of figure and the rescue skills in toxic gas place when toxic gas is distributed
CN109139274A (en) * 2017-06-16 2019-01-04 东莞传动电喷科技有限公司 A kind of engine and its control method of methanol and gaseous fuel energy supply

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3255267A1 (en) 2016-06-09 2017-12-13 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
US10221793B2 (en) 2016-06-09 2019-03-05 Toyota Jidosha Kabushiki Kaisha Controller for internal combustion engine
CN109139274A (en) * 2017-06-16 2019-01-04 东莞传动电喷科技有限公司 A kind of engine and its control method of methanol and gaseous fuel energy supply
CN109139274B (en) * 2017-06-16 2023-10-03 东莞传动电喷科技有限公司 Methanol and gas fuel powered engine and control method thereof
CN108010282A (en) * 2017-11-30 2018-05-08 中冶南方工程技术有限公司 The method for drafting of figure and the rescue skills in toxic gas place when toxic gas is distributed

Similar Documents

Publication Publication Date Title
JP4449956B2 (en) Internal combustion engine
JP4274279B2 (en) Internal combustion engine
Wu et al. Optimal performance and emissions of diesel/hydrogen-rich gas engine varying intake air temperature and EGR ratio
IL262865B (en) Apparatus for operating an engine
Toulson et al. Gas assisted jet ignition of ultra-lean LPG in a spark ignition engine
JP6332335B2 (en) Control device for internal combustion engine
CN102418616B (en) Flexible fuel engine and controlling method thereof
JP4392750B2 (en) Gas engine and control method thereof
JP2007297951A (en) Gas fuel internal combustion engine
RU2717188C2 (en) Method (embodiments) and system for estimating pressure of exhaust gases using oxygen sensor with alternating voltage
JP6481567B2 (en) Fuel reforming method and fuel reforming apparatus
US8789357B2 (en) Catalyst deterioration detection apparatus and method
JP6394365B2 (en) Fuel reformer for internal combustion engine
JP5593794B2 (en) Control device for internal combustion engine
JP4788615B2 (en) Fuel property determination device for internal combustion engine
JP2008215219A (en) Gas engine system
RU2691275C2 (en) Method of determining content of ethanol in fuel using an oxygen sensor (embodiments)
JP4867886B2 (en) Exhaust gas reformer
JP2009121296A (en) Control device for internal combustion engine
JP2004162649A (en) Method and device for detecting flammability of fuel gas, and gas fuel internal combustion engine
JP2008286097A (en) Ethanol reforming system
JPH02181047A (en) Operation control device for internal combustion engine
Coppin et al. Control-Oriented Mean-Value Model of a Fuel-Flexible Turbocharged Spark Ignition Engine
US20160305359A1 (en) Fuel injection control device
JP2007270750A (en) Gaseous fuel internal combustion engine