JP2011246737A - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
JP2011246737A
JP2011246737A JP2010118076A JP2010118076A JP2011246737A JP 2011246737 A JP2011246737 A JP 2011246737A JP 2010118076 A JP2010118076 A JP 2010118076A JP 2010118076 A JP2010118076 A JP 2010118076A JP 2011246737 A JP2011246737 A JP 2011246737A
Authority
JP
Japan
Prior art keywords
hydrogen
steel
metal
steel material
plating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010118076A
Other languages
Japanese (ja)
Inventor
Norihiro Fujimoto
憲宏 藤本
Hiroyuki Saito
博之 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010118076A priority Critical patent/JP2011246737A/en
Publication of JP2011246737A publication Critical patent/JP2011246737A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress hydrogen embrittlement in a member composed of steel.SOLUTION: A composite material includes a steel material 101 and a metal plating film 102 formed on the surface of the steel material 101. The metal plating film 102 is composed of a metal which, compared to iron, shows a lower bonding energy to hydrogen and a smaller exchange current density of a chemical reaction through which hydrogen ions at the surface are converted into hydrogen molecules. The steel material 101 is e.g. well-known carbon steel.

Description

本発明は、鉄筋コンクリートの鉄筋などに用いられる、鋼を用いた複合材料に関するものである。   The present invention relates to a composite material using steel, which is used for a reinforced concrete reinforcing bar or the like.

建造物などの構造物では、遅れ破壊が問題となる。遅れ破壊とは、静的な付加を受けているある条件下で使用している鋼材などが、ある時間の経過後、外見上ではほぼ塑性変形を伴うことなく、突然脆性的に破壊する現象である。この遅れ破壊のメカニズムは十分に解明されていないが、環境中に存在している水素が金属に侵入して延性が失われることによる水素脆性によるものと考えられている(非特許文献1参照)。   In structures such as buildings, delayed fracture becomes a problem. Delayed fracture is a phenomenon in which steel materials used under certain conditions that are subjected to static addition suddenly break brittlely with no apparent plastic deformation after a certain period of time. is there. Although the mechanism of this delayed fracture has not been fully elucidated, it is considered to be due to hydrogen embrittlement due to the hydrogen existing in the environment entering the metal and losing its ductility (see Non-Patent Document 1). .

この水素脆化に関しては、水素脆化に強い鋼の開発(非特許文献2,非特許文献3参照)、および、水素脆化を引き起こす水素量を測定するための表面処理技術の開発(非特許文献4参照)など、多くの研究・開発がなされている。また、水素と金属との間の結合力(M−H)についても調査されている(非特許文献5参照)。   Regarding this hydrogen embrittlement, the development of steel that is resistant to hydrogen embrittlement (see Non-Patent Document 2 and Non-Patent Document 3) and the development of surface treatment technology for measuring the amount of hydrogen that causes hydrogen embrittlement (Non-patent) Many researches and developments have been made, such as Reference 4). In addition, the bonding force (MH) between hydrogen and metal has also been investigated (see Non-Patent Document 5).

水素脆化のもととなる水素の金属への侵入の過程には、複数の種類があるものとされている。例えば、図3に示すように、気体の水素分子301は、金属302の表面への水素303の吸着過程を経て、金属の内部に侵入すると報告されている(非特許文献6参照)。また、非特許文献6では、図3に示すように、溶液中の水素イオン304、もしくは水分が金属302の表面で還元されて生成した水素イオン304がもととなり、金属302の表面に水素303が吸着し、この吸着した水素303が、金属302の内部に侵入するという過程についても報告されている。水素は、空気中にはほとんど存在していないので、水素脆化は、付着している水の還元などにより鋼の表面で発生した水素が吸着する過程から始まるものと考えられる。   There are a plurality of types of processes for intrusion of hydrogen into metal, which causes hydrogen embrittlement. For example, as shown in FIG. 3, it is reported that gaseous hydrogen molecules 301 enter the metal through a process of adsorbing hydrogen 303 onto the surface of the metal 302 (see Non-Patent Document 6). Further, in Non-Patent Document 6, as shown in FIG. 3, hydrogen ions 304 in a solution or hydrogen ions 304 generated by reducing moisture on the surface of the metal 302 are used as a base, and hydrogen 303 is formed on the surface of the metal 302. It has also been reported that the adsorbed hydrogen 303 penetrates into the metal 302. Since hydrogen hardly exists in the air, hydrogen embrittlement is thought to start from the process of adsorbing hydrogen generated on the steel surface due to reduction of adhering water.

南雲道彦、「鋼の力学的挙動に及ぼす水素の影響」、鉄と鋼、Vol.0、No.10、pp.766−775、2004年。Nagumo Michihiko, “Effect of Hydrogen on Mechanical Behavior of Steel”, Iron and Steel, Vol. 0, No. 10, pp. 766-775, 2004. 並村 裕一、他、「耐遅れ破壊特性に優れた高強度ボルト用鋼」、神戸製鋼技報、Vol.50、No.1、pp.41−44,2000年4月。Yuichi Namimura, et al., “High-strength bolt steel with excellent delayed fracture resistance”, Kobe Steel Technical Report, Vol. 50, no. 1, pp. 41-44, April 2000. 高橋 稔彦、他、「耐水素脆化特性に優れた高強度鋼」、物質材料研究アウトルック、第3部 物質・材料研究における今後の研究動向、第5章 環境・エネルギー材料、pp.351−355,2006年。Yasuhiko Takahashi, et al., “High-strength steel with excellent hydrogen embrittlement resistance”, Material and Material Research Outlook, Part 3 Future Research Trends in Material and Material Research, Chapter 5, Environment and Energy Materials, pp. 351-355, 2006. 中山 武典、他、「カドミウム代替水素逃散防止めっきの開発」、材料とプロセス、第13巻、第6号、p.1376、2000年。Takenori Nakayama, et al., “Development of cadmium substitute hydrogen escape prevention plating”, Materials and Processes, Vol. 13, No. 6, p. 1376, 2000. 大堺利行、加納健司、桑畑進 著、「ベーシック電気化学」、株式会社化学同人発行、pp.153,153、2,007年。Toshiyuki Ohtsuki, Kenji Kano, Susumu Kuwabata, “Basic Electrochemistry”, published by Kagaku Doujin, pp. 153, 153, 2,007. 南雲道彦 著、「水素脆性の基礎 水素の振るまいと脆化機構」、株式会社 内田老鶴圃 発行、pp.107〜109,117〜119、2008年。Michihiko Nagumo, “Basics of Hydrogen Embrittlement: Behavior of Hydrogen and Embrittlement Mechanism”, published by Uchida Otsukuru, pp. 107-109, 117-119, 2008. 浅原 照三、 他著、「金属表面技術講座6 電気メッキ技術」、金属表面技術協会編、株式会社朝倉書店 発行、 pp.150−171、昭和47年。Shozo Asahara, et al., “Metal Surface Technology Lecture 6 Electroplating Technology”, edited by Metal Surface Technology Association, Asakura Shoten Co., Ltd., pp. 150-171, 1972.

上述した水素脆性を抑制するために、水素が侵入しても金属組織内に強く束縛されて金属組織に影響しない材料の検討、また、鉄鋼の合金組成を検討するなど、種々の水素脆性対策技術が模索されている。しかしながら、いずれにしても鋼を用いている場合、環境によっては、鋼の表面で水素が発生し、これが鋼に吸着し、水素脆性を引き起こす発端となり得る。このように、鉄鋼自体の組成の検討では、鋼表面での水素の発生や鋼に対する水素の吸着が抑制できないため、水素脆性が引き起こされてしまうという問題がある。   In order to suppress the hydrogen embrittlement mentioned above, various hydrogen embrittlement countermeasure technologies such as examination of materials that are strongly constrained in the metal structure even if hydrogen invades and do not affect the metal structure, and examination of the alloy composition of steel Is being sought. In any case, however, when steel is used, depending on the environment, hydrogen is generated on the surface of the steel, which can be adsorbed on the steel and cause hydrogen embrittlement. Thus, in the examination of the composition of steel itself, there is a problem that hydrogen embrittlement is caused because generation of hydrogen on the steel surface and adsorption of hydrogen to the steel cannot be suppressed.

本発明は、以上のような問題点を解消するためになされたものであり、鋼から構成された部材における水素脆化を抑制することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to suppress hydrogen embrittlement in a member made of steel.

本発明に係る複合材料は、鋼材と、この鋼材の表面に形成された金属めっき膜とから構成され、金属めっき膜は、鉄よりも水素との結合エネルギーが小さく、表面における水素イオンが水素分子になる化学反応の交換電流密度が鉄より小さい金属から構成されているようにしたものである。   The composite material according to the present invention is composed of a steel material and a metal plating film formed on the surface of the steel material. The metal plating film has a smaller binding energy to hydrogen than iron, and hydrogen ions on the surface are hydrogen molecules. The exchange current density of the chemical reaction is such that it is made of a metal smaller than iron.

上記複合材料において、複合材料は、コンクリートの中に配設されて用いられるものであり、例えば、鋼材は、鉄筋コンクリートの鉄筋である。   In the composite material, the composite material is used by being disposed in concrete. For example, the steel material is a reinforced concrete rebar.

以上説明したように、本発明によれば、鋼材の表面に形成する金属めっき膜を、鉄よりも水素との結合エネルギーが小さく、表面における水素イオンが水素分子になる化学反応の交換電流密度が鉄より小さい金属から構成したので、鋼から構成された部材における水素脆化が抑制できるようになるという優れた効果が得られる。   As described above, according to the present invention, the metal plating film formed on the surface of the steel material has a smaller binding energy with hydrogen than iron, and the exchange current density of a chemical reaction in which hydrogen ions on the surface become hydrogen molecules. Since it comprised from the metal smaller than iron, the outstanding effect that the hydrogen embrittlement in the member comprised from steel can be suppressed is acquired.

図1は、本発明の実施の形態における複合材料の一部構成を示す断面図である。FIG. 1 is a cross-sectional view showing a partial configuration of a composite material according to an embodiment of the present invention. 図2は、「2H++2e-→H2の化学反応の交換電流密度」および「水素との結合エネルギー」の関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between “exchange current density of chemical reaction of 2H + + 2e → H 2 ” and “binding energy with hydrogen”. 図3は、水素の金属への侵入の過程を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a process of penetration of hydrogen into a metal.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態における複合材料の一部構成を示す断面図である。この複合材料は、鋼材101と、鋼材101の表面に形成された金属めっき膜102とから構成されている。ここで、金属めっき膜102は、鉄よりも水素との結合エネルギーが小さく、表面における水素イオンが水素分子になる化学反応の交換電流密度が鉄より小さい金属から構成されている。なお、鋼材101は、例えば、よく知られた炭素鋼である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a partial configuration of a composite material according to an embodiment of the present invention. The composite material includes a steel material 101 and a metal plating film 102 formed on the surface of the steel material 101. Here, the metal plating film 102 is made of a metal that has a smaller binding energy with hydrogen than iron and has a smaller exchange current density of chemical reaction in which hydrogen ions on the surface become hydrogen molecules than iron. Note that the steel material 101 is, for example, well-known carbon steel.

上述した構成とした本実施の形態における複合材料によれば、複合材料の表面は、金属めっき膜102で覆われているため、この表面における水素ガスの発生および水素の吸着が、鋼材101の表面より抑制できるようになるので、鋼材101における水素脆化が抑制できるようになる。   According to the composite material in the present embodiment having the above-described configuration, the surface of the composite material is covered with the metal plating film 102. Therefore, the generation of hydrogen gas and the adsorption of hydrogen on the surface are the surfaces of the steel material 101. Since it becomes possible to suppress more, hydrogen embrittlement in the steel material 101 can be suppressed.

以下、より詳細に説明する。鋼材101における水素脆化は、水素が金属表面で発生し、発生した水素が金属に吸着する過程から始まるものと考えられる。   This will be described in more detail below. It is considered that hydrogen embrittlement in the steel material 101 starts from a process in which hydrogen is generated on the metal surface and the generated hydrogen is adsorbed to the metal.

従って、第1に「水素ガス(H2)を発生させる2H++2e-→H2の化学反応の交換電流密度が小さい金属」の表面では、水素ガスの発生がおきにくいので、気相からの水素侵入が抑制できるものと考えられる。また、第2に「水素との結合エネルギーが小さい金属」の表面では、表面における水素(例えば水素イオン)の吸着がおきにくいので、液相からの水素侵入が抑制できるものと考えられる。 Therefore, firstly, the generation of hydrogen gas is difficult to occur on the surface of “a metal with a small exchange current density of chemical reaction of 2H + + 2e → H 2 that generates hydrogen gas (H 2 )”. It is considered that hydrogen intrusion can be suppressed. Second, on the surface of “metal having low binding energy with hydrogen”, it is considered that hydrogen (for example, hydrogen ions) is hardly adsorbed on the surface, so that hydrogen intrusion from the liquid phase can be suppressed.

上述した「2H++2e-→H2の化学反応の交換電流密度」および「水素との結合エネルギー」の関係は、図2に示すようになる。図2において、横軸が、「水素との結合エネルギー」を示し、縦軸が「2H++2e-→H2の化学反応の交換電流密度」を示している。図2から明らかなように、鉄(Fe)よりも「2H++2e-→H2の化学反応の交換電流密度」が小さく、「水素との結合エネルギー」が小さい金属は、例えば、インジウム(In)およびスズ(Sn)などの、Feを通る直交する2つの直線で区画される4つの象限の左下の象限の金属となる。これらの金属の金属めっき膜102を鋼材101の表面に形成することで、鋼から構成された鋼材101における水素脆化が抑制できるようになる。上述した2つの上面を満たす金属としては、図2から明らかなように、Inが最適である。また、Snであっても、上記2条件が満たされるため、同様の効果が期待できる。 The relationship between the above-mentioned “exchange current density of chemical reaction of 2H + + 2e → H 2 ” and “binding energy with hydrogen” is as shown in FIG. In FIG. 2, the horizontal axis represents “binding energy with hydrogen”, and the vertical axis represents “exchange current density of chemical reaction of 2H + + 2e → H 2 ”. As is clear from FIG. 2, a metal having a smaller “2H + + 2e → H 2 chemical reaction exchange current density” and a smaller “hydrogen binding energy” than iron (Fe) is, for example, indium (In ) And tin (Sn) and the like in the lower left quadrant of the four quadrants defined by two orthogonal straight lines through Fe. By forming the metal plating film 102 of these metals on the surface of the steel material 101, hydrogen embrittlement in the steel material 101 composed of steel can be suppressed. As is clear from FIG. 2, In is optimal as the metal that satisfies the two upper surfaces described above. Moreover, even if Sn, since the above two conditions are satisfied, the same effect can be expected.

例えば、Snの金属めっき膜102を形成する場合、鈴酸カリウム80〜320g/l、水酸化カリウム15〜45g/lとしためっき液を用意し、これを65〜90°の温度としためっき浴中に、陰極とした鋼材101を浸漬する。この状態で、3〜10A/dm2の電流を流す。この電解めっきにより、陰極とされている鋼材101の表面にSnが析出し、鋼材101の表面にSnからなる金属めっき膜102が形成できる(非特許文献7参照)。 For example, in the case of forming the Sn metal plating film 102, a plating bath prepared by preparing a plating solution having 80 to 320 g / l of potassium oxalate and 15 to 45 g / l of potassium hydroxide, and setting this to a temperature of 65 to 90 °. The steel material 101 used as a cathode is immersed in the inside. In this state, a current of 3 to 10 A / dm 2 is passed. By this electrolytic plating, Sn is deposited on the surface of the steel material 101 which is a cathode, and a metal plating film 102 made of Sn can be formed on the surface of the steel material 101 (see Non-Patent Document 7).

また、硫酸亜鉛360g/l、塩化アンモニウム30g/l、グルコース120g/lとしためっき液を用意し、これを30℃としためっき浴中に、陰極とした鋼材101を浸漬する。この状態で、電流密度2〜4A/dm2の電流を流す。この電解めっきにより、鋼材101の表面にZnからなる金属めっき膜102が形成できる。 Further, a plating solution having zinc sulfate 360 g / l, ammonium chloride 30 g / l, and glucose 120 g / l is prepared, and the steel material 101 serving as the cathode is immersed in a plating bath at 30 ° C. In this state, a current having a current density of 2 to 4 A / dm 2 is passed. By this electrolytic plating, a metal plating film 102 made of Zn can be formed on the surface of the steel material 101.

上述した2つの条件を満たす金属であれば、水素発生反応が起きにくく、かつ水素が表面に吸着しにくいので、水素脆化をより起こしにくいものとなる。しかしながら、このような金属には鋼材のような強度がなく、鉄の代替として用いるのは非常に困難である。ここで、高い強度の鋼材101の表面に、上述した2つの条件を満たす金属めっき膜102を形成した複合材料にすることで、鋼材101中への水素の侵入を抑え、さらに強度も得られるようにしたところに、本発明の特徴がある。   If the metal satisfies the two conditions described above, the hydrogen generation reaction is unlikely to occur and hydrogen is not easily adsorbed on the surface, so that hydrogen embrittlement is less likely to occur. However, such metals are not as strong as steel and are very difficult to use as an alternative to iron. Here, by using a composite material in which the metal plating film 102 satisfying the above-described two conditions is formed on the surface of the high strength steel material 101, hydrogen can be prevented from entering the steel material 101, and further strength can be obtained. There is a feature of the present invention.

以上のように、本発明によれば、鋼材の表面を、鉄よりも水素との結合エネルギーが小さく、表面における水素イオンが水素分子になる化学反応の交換電流密度が鉄より小さい金属でめっきしたので、表面で発生する水素や表面に吸着する水素を減らすことができ、鋼材中に水素が侵入する量(速度)を抑制することができる。この結果、本発明によれば、鋼材が遅れ破壊に至る時間を大幅に延長することができると期待でき、本発明による複合材料は、建造物の建築要素(固定構造体)の部材として好適である。   As described above, according to the present invention, the surface of a steel material is plated with a metal that has a smaller binding energy with hydrogen than iron, and the exchange current density of a chemical reaction in which hydrogen ions on the surface become hydrogen molecules is smaller than iron. Therefore, hydrogen generated on the surface and hydrogen adsorbed on the surface can be reduced, and the amount (rate) of hydrogen entering the steel material can be suppressed. As a result, according to the present invention, it can be expected that the time until the steel material reaches the delayed fracture can be greatly extended, and the composite material according to the present invention is suitable as a member of a building element (fixed structure) of a building. is there.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形が実施可能であることは明白である。例えば、金属めっき膜は、SnおよびZnに限らず、ビスマス(Bi)から構成してもよい。また、Sn−Biの合金から金属めっき膜を構成してもよい。また、上述した複合材料は、鉄筋コンクリートの鉄筋など、コンクリートの中に配設されて用いる場合に有用である。コンクリート内部に配設される鉄筋は、交換することが困難であり、場合によっては、鉄筋が破断した時点が、鉄筋コンクリートによる建造物の寿命となる。これに対し、本発明によれば、脆性破壊が抑制でき、鉄筋の破断が防止できるので、例えば、鉄筋コンクリートによる建造物などの寿命を延ばすことが可能となる。   It should be noted that the present invention is not limited to the embodiment described above, and that many modifications can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. For example, the metal plating film is not limited to Sn and Zn, but may be composed of bismuth (Bi). Further, the metal plating film may be made of an Sn—Bi alloy. Moreover, the composite material mentioned above is useful when arrange | positioning and using in concrete, such as the reinforcement of a reinforced concrete. It is difficult to replace the reinforcing bars disposed inside the concrete, and in some cases, the life of the building made of reinforced concrete is the time when the reinforcing bars are broken. On the other hand, according to the present invention, since brittle fracture can be suppressed and breakage of a reinforcing bar can be prevented, for example, the life of a building made of reinforced concrete can be extended.

101…鋼材、102…金属めっき膜。   101 ... steel material, 102 ... metal plating film.

Claims (3)

鋼材と、この鋼材の表面に形成された金属めっき膜とから構成され、
前記金属めっき膜は、鉄よりも水素との結合エネルギーが小さく、表面における水素イオンが水素分子になる化学反応の交換電流密度が鉄より小さい金属から構成されている
ことを特徴とする複合材料。
It consists of a steel material and a metal plating film formed on the surface of this steel material,
The metal plating film is composed of a metal having a smaller binding energy with hydrogen than iron and a smaller exchange current density of a chemical reaction in which hydrogen ions on the surface become hydrogen molecules than iron.
請求項1記載の複合材料において、
前記複合材料は、コンクリートの中に配設されて用いられることを特徴とする複合材料。
The composite material according to claim 1, wherein
The composite material is used by being disposed in concrete.
請求項2記載の複合材料において、
前記鋼材は、鉄筋コンクリートの鉄筋であることを特徴とする複合材料。
The composite material according to claim 2, wherein
The steel material is a reinforced concrete rebar.
JP2010118076A 2010-05-24 2010-05-24 Composite material Pending JP2011246737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118076A JP2011246737A (en) 2010-05-24 2010-05-24 Composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118076A JP2011246737A (en) 2010-05-24 2010-05-24 Composite material

Publications (1)

Publication Number Publication Date
JP2011246737A true JP2011246737A (en) 2011-12-08

Family

ID=45412368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118076A Pending JP2011246737A (en) 2010-05-24 2010-05-24 Composite material

Country Status (1)

Country Link
JP (1) JP2011246737A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144048A (en) * 1989-10-31 1991-06-19 Nippon Telegr & Teleph Corp <Ntt> Reinforcing bar for prestressed concrete
JPH03505358A (en) * 1989-04-10 1991-11-21 ソラック Method for producing reinforcement for reinforced concrete structures and reinforcement obtained by the method
JPH0578805A (en) * 1991-09-24 1993-03-30 Kiyoshi Suzuki Hot dip lead coating method for steel products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505358A (en) * 1989-04-10 1991-11-21 ソラック Method for producing reinforcement for reinforced concrete structures and reinforcement obtained by the method
JPH03144048A (en) * 1989-10-31 1991-06-19 Nippon Telegr & Teleph Corp <Ntt> Reinforcing bar for prestressed concrete
JPH0578805A (en) * 1991-09-24 1993-03-30 Kiyoshi Suzuki Hot dip lead coating method for steel products

Similar Documents

Publication Publication Date Title
US9976223B2 (en) Nickel and/or chromium plated member and method for manufacturing the same
US20120175534A1 (en) Metal foams
Kim et al. Comparison of corrosion-resistance and hydrogen permeation properties of Zn–Ni, Zn–Ni–Cd and Cd coatings on low-carbon steel
Tsuru et al. Effects of chloride, bromide and iodide ions on internal stress in films deposited during high speed nickel electroplating from a nickel sulfamate bath
Balasubramanian et al. Effect of pulse parameter on pulsed electrodeposition of copper on stainless steel
JP6487258B2 (en) Method for forming a porous layer on the surface of a metal substrate
JP4986267B2 (en) Electrode manufacturing method
CN105112958A (en) Method for obtaining nano-porous silver in base-material-loaded dealloying mode
CN107119296A (en) A kind of method of anode activation titanium alloy electro-coppering
JP2011246737A (en) Composite material
US3301777A (en) Anode for the electrowinning of manganese
CN103320822A (en) Method for electroplating titanium on surface of metal
JPS5941492A (en) Method of forming anti-wear and corrosion resistant coating layer on piston rod of working cylinder used in underground mining work and working cylinder equipped with the coating layer
Yogesha et al. Optimization of bright zinc-nickel alloy bath for better corrosion resistance
CN108505024B (en) electroless nickel-tin-aluminum-phosphorus amorphous multifunctional alloy plating solution and plating layer thereof
CN103088362B (en) A kind of Tubular titanium anode
JP2006274346A (en) Plating film, and plating solution and plating method for forming the plating film
US10287694B2 (en) Amalgam electrode, method for manufacturing the same, and method for electrochemical reduction of carbon dioxide using the same
CN103911650A (en) Anode used for electroplating of alkaline zinc-nickel alloy
JP4632966B2 (en) Method for producing electrolytic metal powder
Lee et al. Ag displacement on Cu foam with additives for electrochemical reduction of carbon dioxide to carbon monoxide
CN107267985B (en) A kind of preparation method of the copper magnesium alloy surface corrosion-resistant erosion layer based on twin cathode plasma sputter deposition technology
CN103103561B (en) Tubular titanium anode
Chen et al. Electrochemical deposition of magnesium on SiC fibers from the LiCl-KCl-MgCl2 molten salt
US4483752A (en) Valve metal electrodeposition onto graphite

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111028

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140902