JP2011246584A - Simple method for measuring metallization rate of ferrocoke - Google Patents

Simple method for measuring metallization rate of ferrocoke Download PDF

Info

Publication number
JP2011246584A
JP2011246584A JP2010120460A JP2010120460A JP2011246584A JP 2011246584 A JP2011246584 A JP 2011246584A JP 2010120460 A JP2010120460 A JP 2010120460A JP 2010120460 A JP2010120460 A JP 2010120460A JP 2011246584 A JP2011246584 A JP 2011246584A
Authority
JP
Japan
Prior art keywords
ferrocoke
coke
ferro
electrical resistivity
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010120460A
Other languages
Japanese (ja)
Inventor
Hidekazu Fujimoto
英和 藤本
Yukinori Hiromori
幸徳 廣森
Yuji Yokota
雄司 横田
Soichi Matsuda
荘市 松田
Akishige Oushin
明繁 奥信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010120460A priority Critical patent/JP2011246584A/en
Publication of JP2011246584A publication Critical patent/JP2011246584A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method for measuring the metallization rate of ferrocoke by which the metallization rate of iron in the ferrocoke is easily and quickly measured, and thereby, the metallization rate of product ferrocoke is adjusted by adjusting the operation conditions of a carbonization furnace in the production of the ferrocoke.SOLUTION: The simple method for measuring the metallization rate of ferrocoke includes: measuring the electrical resistivity of the ferrocoke produced by the carbonization of a molded article obtained by mixing coal and iron ore and molding the resultant mixture; and estimating the metallization rate of the above ferrocoke by using the measured electrical resistivity. It is preferable that electrodes are arranged at both end portions of a compaction molded article obtained by compaction molding a powder of the ferrocoke, a current is applied between the electrodes, the electric potential difference generated between the electrodes is measured and the electrical resistivity is calculated by using the distance between the electrodes and the cross-sectional area vertical to the current direction of the compaction molded article, and it is preferable that a calibration curve related to the metallization rate and the electrical resistivity of the ferrocoke is prepared to estimate the metallization rate.

Description

本発明は、石炭と鉄鉱石を混合した成型物を乾留して製造されたフェロコークス中の全鉄量に対する金属鉄量の割合を迅速かつ簡便に評価するフェロコークス金属化率の簡易測定方法に関する。   The present invention relates to a simple method for measuring the ferro-coke metalization rate, which quickly and easily evaluates the ratio of the amount of metallic iron to the total amount of iron in ferro-coke produced by dry distillation of a molded product in which coal and iron ore are mixed. .

高炉の操業を効率よく行うために、石炭をコークス炉で乾留して製造したコークスの高炉への装入が行われている。高炉内でのコークスには、高炉内の通気をよくするためのスペーサーの役割、還元材としての役割、熱源としての役割などがある。近年、コークスの反応性を向上させるという観点から、石炭に鉄鉱石を混合して乾留し、冶金用のフェロコークスを得る技術が検討されている(例えば、非特許文献1参照。)。鉄鉱石中の鉄によりコークスの反応性を高めると、コークスと炭酸ガスとの反応開始温度を低下させることが可能であり(例えば、非特許文献2参照。)、低温から反応を活発化させることにより、現状約1000℃の熱保存帯温度を低下させ、還元平衡ガス組成における炭酸ガス濃度が高まる。これにより実ガス中の炭酸ガス濃度と還元平衡ガス組成での炭酸ガス濃度との差を大きくしてFeOから鉄への還元を促進させることを狙いとしている。   In order to efficiently operate the blast furnace, charging of the coke produced by dry distillation of coal in the coke oven is performed in the blast furnace. Coke in the blast furnace has a role of a spacer for improving ventilation in the blast furnace, a role as a reducing material, a role as a heat source, and the like. In recent years, a technique for obtaining ferro-coke for metallurgy by mixing iron ore with coal and dry distillation from the viewpoint of improving the coke reactivity has been studied (for example, see Non-Patent Document 1). When the reactivity of coke is increased by iron in iron ore, the reaction start temperature of coke and carbon dioxide can be lowered (for example, see Non-Patent Document 2), and the reaction is activated from a low temperature. As a result, the heat storage zone temperature of about 1000 ° C. is lowered, and the carbon dioxide concentration in the reducing equilibrium gas composition is increased. This aims to increase the difference between the carbon dioxide concentration in the actual gas and the carbon dioxide concentration in the reducing equilibrium gas composition to promote the reduction of FeO to iron.

一方で、炭材(コークス)に触媒として添加される鉄含有物質(鉄鉱石)が全量金属鉄ではなく、ウスタイトやマグネタイトのような酸化状態の鉄含有物質であっても、炭材の反応性が向上することが明らかにされている(例えば、非特許文献3参照。)。ただし、鉄の酸化状態によって炭材のガス化による重量減少率が異なっており、炭材反応性に対する最適な鉄含有物質の金属化率が存在する可能性がある。また、炭材と鉄鉱石との混合物の成型物を乾留した場合、すべての鉄鉱石を金属鉄に還元すると吸熱反応である固体カーボンにより還元される割合が上昇し、熱的に不利となる。このため、目標となる金属化率には上下限が存在すると考えられ、例えば非特許文献4では、目標の還元率は80%(金属化率;約75%)とされている。   On the other hand, even if the iron-containing material (iron ore) added to the carbonaceous material (coke) as a catalyst is not all metallic iron but an oxidized iron-containing material such as wustite and magnetite, the reactivity of the carbonaceous material (See, for example, Non-Patent Document 3). However, the weight reduction rate due to the gasification of the carbonaceous material varies depending on the oxidation state of iron, and there may be an optimum metalization rate of the iron-containing material for the carbonaceous material reactivity. Further, when a molded product of a mixture of carbonaceous material and iron ore is dry-distilled, if all iron ore is reduced to metallic iron, the rate of reduction by solid carbon that is an endothermic reaction increases, which is thermally disadvantageous. For this reason, it is considered that there are upper and lower limits for the target metallization rate. For example, in Non-Patent Document 4, the target reduction rate is set to 80% (metallization rate; approximately 75%).

野村誠治、樋口謙一、国友和也、内藤誠章著 「鉄と鋼」95、2009年、p.12Seiji Nomura, Kenichi Higuchi, Kazuya Kunitomo, Makoto Naito “Iron and Steel” 95, 2009, p. 12 内藤誠章著 「鉄と鋼」87、2001年、p.5Naito Masaaki “Iron and Steel” 87, 2001, p. 5 Y.Ohtsuka他著、「Fuel」65、1986年、p.1478Y. Ohtsuka et al., “Fuel” 65, 1986, p. 1478 NEDOホームページ 「エネルギー使用合理化技術戦略的開発プロジェクト、革新的製銑プロセスの先導的研究」http://www.nedo.go.jp/activities/portal/gaiyou/p09016/h21jisshi.pdfNEDO homepage "Strategic development project for energy use rationalization technology, leading research on innovative iron making process" http://www.nedo.go.jp/activities/portal/gaiyou/p09016/h21jisshi.pdf 燃料協会 「コークス技術年報」1958年、p.38 尚、非特許文献5は、下記の発明が解決しようとする課題で参照する。Fuel Association "Coke Technology Annual Report" 1958, p. 38 Note that Non-Patent Document 5 is referred to in a problem to be solved by the following invention.

フェロコークスを製造するには、室炉式のコークス炉を用いる方法と、石炭と鉄鉱石とを成型した成型物を乾留する方法とが考えられる(例えば、非特許文献5参照。)。成型物を乾留してフェロコークスを製造するには室炉式とは異なる、例えば、竪型乾留炉を用いることが望ましい。竪型乾留炉は室炉式コークス炉と異なり、固体とガスとの向流移動層において加熱・乾留が行われる。フェロコークス中の鉄鉱石の金属化率は乾留炉内のフェロコークスの最高到達温度に大きく依存するが、目標とする生産量(すなわち固体の降下速度)や、原料条件の変更に伴う固体比熱の変化等によって固体とガスの熱交換条件が変化することが想定される。このため、目標の金属化率となるように加熱条件を調整するのは困難な場合が多いと考えられる。竪型乾留炉は、室炉式のコークス炉のようなバッチ式では無く連続して運転される炉であるため、操業変化に応じて直ちに製品フェロコークスの金属化率を把握し、必要に応じて炉の操業条件の最適化を図ることが望ましい。   In order to manufacture ferro-coke, a method using a chamber-type coke oven and a method of carbonizing a molded product of coal and iron ore are conceivable (for example, see Non-Patent Document 5). In order to produce ferro-coke by dry distillation of the molded product, it is desirable to use, for example, a vertical dry distillation furnace different from the chamber furnace type. Unlike vertical furnace coke ovens, vertical vertical distillation furnaces are heated and dry-distilled in a countercurrent moving bed of solid and gas. The metallization rate of iron ore in ferro-coke depends largely on the maximum temperature of ferro-coke in the dry distillation furnace, but the target production volume (that is, the solid descent rate) and the specific heat of the solid due to changes in raw material conditions It is assumed that the heat exchange conditions between the solid and the gas change due to changes or the like. For this reason, it is considered that it is often difficult to adjust the heating conditions so as to achieve the target metallization rate. The vertical carbonization furnace is not a batch type furnace like a chamber furnace type coke oven, but is operated continuously. Therefore, as soon as the operation changes, the metalization rate of the product ferro-coke is ascertained. It is desirable to optimize the operating conditions of the furnace.

金属化率の評価は、全鉄量および金属鉄量を測定すれば可能であり、JISに従って測定されることが多い。全鉄量はJIS M8212(鉄鉱石―全鉄定量方法)、金属鉄量はJIS M8213(鉄鉱石―酸可溶性鉄(II)定量方法)中のV.によるものであり、試料を酸と塩化スズに溶解して鉄を還元し、滴定により定量する必要がある。還元と滴定には多くの作業手順と溶液調整が発生し、JIS法に従うと正確に金属化率の測定が可能であるが、分析の結果が出るまでに、1週間を要する場合もある。このため、乾留炉の運転に際し適時金属化率の測定を行って炉の操業に反映させるためには、より簡便で迅速な方法で金属化率を測定できることが望ましい。   The metallization rate can be evaluated by measuring the total iron amount and the metal iron amount, and is often measured according to JIS. The total iron amount is according to JIS M8212 (Iron Ore-Total Iron Determination Method) and the metallic iron amount is according to V. in JIS M8213 (Iron Ore-acid soluble iron (II) determination method). It is necessary to reduce the iron by dissolving it in the solution and quantitatively determine it by titration. Reduction and titration require many working procedures and solution adjustments. According to the JIS method, it is possible to accurately measure the metallization rate, but it may take a week for the analysis results to be obtained. For this reason, it is desirable that the metallization rate can be measured by a simpler and quicker method in order to measure the metallization rate in a timely manner during the operation of the carbonization furnace and reflect it in the operation of the furnace.

したがって本発明の目的は、このような従来技術の課題を解決し、フェロコークス中の鉄の金属化率を簡便で迅速に測定可能であり、これによりフェロコークス製造の際の乾留炉の操業条件を調整して、製品フェロコークスの金属化率を調整できる、フェロコークス金属化率の簡易測定方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and to measure the metallization rate of iron in ferrocoke simply and quickly, and thereby the operating conditions of the dry distillation furnace during ferrocoke production. Is to provide a simple method for measuring the ferro-coke metallization rate, which can adjust the metallization rate of the product ferro-coke.

このような課題を解決するための本発明の特徴は以下の通りである。
(a)石炭と鉄鉱石とを混合し成型して成型物を製造し、該成型物を乾留して製造されるフェロコークス中の全鉄量に対する金属鉄量の割合(金属鉄質量/全鉄質量)である金属化率を、
前記フェロコークスの電気抵抗率を測定し、該測定で得られた電気抵抗率を用いて推算することを特徴とする、フェロコークス金属化率の簡易測定方法。
(b)フェロコークスの粉末を圧縮成型した圧縮成型物の両端部に電極を設置し、該電極間に電流を印加し、該電極間に発生する電位差を測定し、前記電極間距離と前記圧縮成型物の電流方向に対する垂直断面積を用いて下記(1)式より電気抵抗率を求めることを特徴とする(a)に記載のフェロコークス金属化率の簡易測定方法。
電気抵抗率(Ω・cm) = (V/I)×(S/L) ・・・(1)
但し、V:電位差(V)、I:印加電流(A)、S:圧縮成型物の電流方向に対する垂直断面積(cm2)、L:電極間距離(cm)である。
(c)フェロコークスの金属化率と電気抵抗率との関係の検量線を作成し、該検量線を用いて金属化率を推算することを特徴とする(a)または(b)に記載のフェロコークス金属化率の簡易測定方法。
The features of the present invention for solving such problems are as follows.
(A) Coal and iron ore are mixed and molded to produce a molded product, and the ratio of the amount of metallic iron to the total amount of iron in ferrocoke produced by dry distillation of the molded product (metal iron mass / total iron Mass) metallization rate,
A simple method for measuring the ferro-coke metalization rate, wherein the electrical resistivity of the ferro-coke is measured and estimated using the electrical resistivity obtained by the measurement.
(B) Electrodes are installed at both ends of a compression molded product obtained by compression molding ferro-coke powder, current is applied between the electrodes, a potential difference generated between the electrodes is measured, and the distance between the electrodes and the compression are measured. The method for easily measuring the ferro-coke metallization rate according to (a), wherein the electrical resistivity is obtained from the following equation (1) using a vertical cross-sectional area with respect to the current direction of the molded product.
Electrical resistivity (Ω · cm) = (V / I) × (S / L) (1)
Where V: potential difference (V), I: applied current (A), S: vertical cross-sectional area (cm 2 ) with respect to the current direction of the compression molded product, and L: distance between electrodes (cm).
(C) A calibration curve of the relationship between the metallization rate of ferrocoke and the electrical resistivity is created, and the metallization rate is estimated using the calibration curve, as described in (a) or (b) Simple measurement method of ferro-coke metalization rate.

本発明によれば、フェロコークスを製造する際に、迅速かつ簡便に金属化率を測定することができるので、測定値を操業にフィードバックして、製品フェロコークスの目標金属化率を維持することができる。   According to the present invention, when producing ferro-coke, the metallization rate can be measured quickly and easily, so the measured value is fed back to the operation to maintain the target metallization rate of the product ferro-coke. Can do.

電気抵抗率の測定装置の概略図。Schematic of the electrical resistivity measuring device. フェロコークスの電気抵抗率と乾留時最高到達温度との関係を示すグラフ。The graph which shows the relationship between the electrical resistivity of ferro-coke, and the highest ultimate temperature at the time of dry distillation. 電気抵抗率と金属化率との関係を示すグラフ。The graph which shows the relationship between an electrical resistivity and a metallization rate.

本発明では、石炭と鉄鉱石とを混合し、成型して成型物を製造し、該成型物を乾留して製造されるフェロコークス中の全鉄量に対する金属鉄量の割合(金属鉄質量/全鉄質量)である金属化率を、フェロコークスの電気抵抗率を測定して推算することで、簡易に測定可能とした。   In the present invention, coal and iron ore are mixed, molded to produce a molded product, and the ratio of the amount of metallic iron to the total iron content in ferrocoke produced by dry distillation of the molded product (metal iron mass / The metallization rate (total iron mass) can be easily measured by measuring the electrical resistivity of ferrocoke and estimating it.

フェロコークスは石炭と鉄鉱石との混合物を乾留して製造されるため、その内部がコークス部、鉄鉱石(還元された金属鉄も含む)および気孔から構成される。局所的な不均一性が大きく、均質化する処理を行なわないと電気抵抗の測定誤差が大きくなる可能性がある。そこで、フェロコークスを粉砕処理して粉末とし、該粉末を圧密したものの電気抵抗を測定することが好ましい。フェロコークスは粒径0.1mm以下程度の微粉末に粉砕することが好ましい。粉砕したフェロコークスは、圧縮成型して圧縮成型物とすることが好ましい。圧縮成型は錠剤成型器等を用いると容易に行なうことができる。   Ferro-coke is produced by dry distillation of a mixture of coal and iron ore, and therefore the interior is composed of a coke part, iron ore (including reduced metallic iron) and pores. The local non-uniformity is large, and the measurement error of electric resistance may be increased unless a homogenization process is performed. Therefore, it is preferable to measure the electrical resistance of the ferrocoke which is pulverized to form a powder and the powder is consolidated. Ferro-coke is preferably pulverized into a fine powder having a particle size of about 0.1 mm or less. The pulverized ferrocoke is preferably compression molded to form a compression molded product. Compression molding can be easily performed using a tablet molding machine or the like.

粉砕して圧縮成型した圧縮成型物の両端部に電極を設置し、電極間に電流を流し(印加電流)、電極間に発生する電位差を測定し、電極間距離と圧縮成型物の電流方向に対する垂直断面積を用いて下記(1)式より電気抵抗率を求めることができる。
電気抵抗率(Ω・cm) = (V/I)×(S/L) ・・・ (1)
但し、V:電位差(V)、I:印加電流(A)、S:圧縮成型物の電流方向に対する垂直断面積(圧密した面の面積)(cm2)、L:電極間距離(圧密方向高さ)(cm)である。圧縮成型物は、下記例では円柱形であり、円柱の平面状の円形部である上下面に電極を設置することで、円柱の円形部の面積がSに、円柱の高さがLに相当することになる。
Electrodes are installed at both ends of the compression molded product that has been crushed and compression molded, current is applied between the electrodes (applied current), the potential difference generated between the electrodes is measured, and the distance between the electrodes and the current direction of the compression molded product are measured. The electrical resistivity can be obtained from the following formula (1) using the vertical sectional area.
Electrical resistivity (Ω · cm) = (V / I) × (S / L) (1)
Where V: potential difference (V), I: applied current (A), S: vertical cross-sectional area with respect to the current direction of the compression molded product (area of the compacted surface) (cm 2 ), L: distance between electrodes (high in the compaction direction) (Cm). In the following example, the compression molded product has a cylindrical shape, and by installing electrodes on the upper and lower surfaces, which are planar circular portions of the column, the area of the circular portion of the column corresponds to S and the height of the column corresponds to L. Will do.

フェロコークスの金属化率が、フェロコークスの電気抵抗率の測定で求められるのは、フェロコークスの乾留過程においては、石炭の構造変化および鉄鉱石の還元に伴う金属鉄の生成により、電気抵抗が変化すると考えられるためである。従って、製品フェロコークスの電気抵抗はフェロコークスの乾留時最高到達温度を介して金属化率と相関することが予測される。そこで以下の実験を行なった。   The metallization rate of ferrocoke is determined by measuring the electrical resistivity of ferrocoke. In the ferrocoke carbonization process, the electrical resistance is due to the structural change of coal and the production of metallic iron accompanying the reduction of iron ore. This is because it is considered to change. Therefore, the electrical resistance of the product ferrocoke is predicted to correlate with the metallization rate via the highest temperature reached during dry distillation of the ferrocoke. Therefore, the following experiment was performed.

小型の乾留炉を用いて3kgの石炭と鉄鉱石との混合物の成型物(質量比で石炭:鉄鉱石=0.7:0.3)を800〜950℃の設定温度で乾留し、各々の温度で製造したフェロコークスについて電気抵抗を測定した。成型物は固定層の状態で加熱され、成型物中に熱電対を埋め込んで測定した温度と炉の設定温度とが一致することを確認した。   Using a small carbonization furnace, 3 kg of a mixture of coal and iron ore (mass ratio coal: iron ore = 0.7: 0.3) was carbonized at a set temperature of 800 to 950 ° C., Electrical resistance was measured for ferro-coke produced at temperature. The molded product was heated in a fixed layer state, and it was confirmed that the temperature measured by embedding a thermocouple in the molded product coincided with the set temperature of the furnace.

フェロコークスは石炭と鉄鉱石との混合物を乾留して製造されるため、その内部がコークス部、鉄鉱石(還元された金属鉄も含む)および気孔から構成される。局所的な不均一性が大きく、均質化する処理を行なわないと電気抵抗の測定誤差が大きくなる可能性がある。そこで、フェロコークスを粉砕処理し、圧密したもの(圧縮成型物)の電気抵抗を測定した。   Ferro-coke is produced by dry distillation of a mixture of coal and iron ore, and therefore the interior is composed of a coke part, iron ore (including reduced metallic iron) and pores. The local non-uniformity is large, and the measurement error of electric resistance may be increased unless a homogenization process is performed. Therefore, ferrocoke was pulverized and the electrical resistance of the compacted product (compression molded product) was measured.

図1に、測定に用いた電気抵抗率の測定装置の概略図を示す。図1に示すように内径15mmのテフロン(登録商標)製の円筒容器1に粒径100μm以下に粉砕したフェロコークスを充填し、電極端子を兼ねたSUS製の押し具2、3を介して700Nで圧密し、圧密体となった粉砕試料4の層高(圧密体高さ)を測定した。圧密体面積は直径15mmの円の面積である。その後、直流電流発生器5を用いて粉砕試料4(圧密体)の上下の電極端子兼押し具2、3を介して粉砕試料4に5mAの定電流を印加し(印加電流)、電位測定器6で電圧(電位差)を測定した。電気抵抗率は上記(1)式により算出した。   FIG. 1 shows a schematic diagram of an electrical resistivity measuring apparatus used for measurement. As shown in FIG. 1, a Teflon (registered trademark) cylindrical container 1 having an inner diameter of 15 mm is filled with ferrocoke pulverized to a particle size of 100 μm or less, and 700 N through SUS pressing tools 2 and 3 that also serve as electrode terminals. The layer height (consolidated body height) of the pulverized sample 4 that was consolidated by the above method was measured. The compacted body area is an area of a circle having a diameter of 15 mm. Thereafter, a constant current of 5 mA is applied to the pulverized sample 4 through the upper and lower electrode terminals 2 and 3 of the pulverized sample 4 (consolidated body) using the direct current generator 5 (applied current), and the potential measuring device The voltage (potential difference) was measured at 6. The electrical resistivity was calculated by the above equation (1).

上記の方法で測定したフェロコークスの電気抵抗率と乾留時最高到達温度との関係を図2に示す。フェロコークスの乾留時の最高到達温度に応じて電気抵抗率が変化し、乾留が高温条件では電気抵抗率が低位となることが分かる。これは、高温ほどコークス部における結晶子が拡大する効果、並びに鉄鉱石が還元されて金属鉄の割合が増加した効果であると考えられる。   FIG. 2 shows the relationship between the electrical resistivity of ferrocoke measured by the above method and the maximum temperature reached during dry distillation. It can be seen that the electrical resistivity changes in accordance with the highest temperature achieved during the dry distillation of ferro-coke, and the electrical resistivity is low when the dry distillation is at a high temperature. This is considered to be the effect that the crystallite in the coke part expands as the temperature increases, and the effect that the iron ore is reduced and the ratio of metallic iron increases.

したがって、フェロコークスの電気抵抗率と金属鉄の割合には相関があり、フェロコークスの金属化率と電気抵抗率との関係を測定し、検量線を予め作成しておくことで、検量線作成の際と同じ条件で作成した圧密体でフェロコークスの電気抵抗率を測定することにより、金属化率(金属鉄質量/全鉄質量)の値を推算することが可能となる。   Therefore, there is a correlation between the electrical resistivity of ferro-coke and the ratio of metallic iron, and the calibration curve is created by measuring the relationship between the metalization rate of ferro-coke and the electrical resistivity and preparing a calibration curve in advance. By measuring the electrical resistivity of ferro-coke with a compacted body prepared under the same conditions as in the above, it is possible to estimate the value of metallization rate (metal iron mass / total iron mass).

なお、上記においてはフェロコークスを充填するのは円筒容器1としているが、電流通過方向の垂直面が同じ面積・形状であれば良く、円柱の他、四角柱、六角柱など多角柱でも構わないため、角柱容器であっても実施可能である。   In the above, the ferro-coke is filled in the cylindrical container 1, but the vertical plane in the current passing direction may have the same area and shape, and may be a polygonal column such as a square column or a hexagonal column in addition to a column. Therefore, even a prismatic container can be implemented.

石炭と鉄鉱石との混合物(質量比で石炭:鉄鉱石=0.7:0.3)の成型物を小型乾留炉により800、820、850、870、900、950℃の各条件で乾留してフェロコークスを製造した。各フェロコークスの全鉄量および金属鉄量をJIS法に従って測定した。また、各フェロコークスを粒径100μm以下に粉砕し、錠剤成型器を用いて圧縮して直径1.5cm、厚さ1cmの円柱形の錠剤型の圧縮成型物として、両端部に電極を設置し、電極間に10mAの電流を流し、電極間に発生する電位差を測定し、電極間距離(1cm)と圧縮成型物の面積(1.767cm2)を用いて上記(1)式より電気抵抗率を求めた。 A molded product of a mixture of coal and iron ore (mass ratio of coal: iron ore = 0.7: 0.3) was carbonized in a small dry distillation furnace at 800, 820, 850, 870, 900, and 950 ° C. Ferro-coke was manufactured. The total iron content and metallic iron content of each ferrocoke were measured according to the JIS method. In addition, each ferrocoke is pulverized to a particle size of 100 μm or less, and compressed using a tablet molding machine to form a cylindrical tablet-shaped compression molded product having a diameter of 1.5 cm and a thickness of 1 cm, and electrodes are installed at both ends. Then, a current of 10 mA is passed between the electrodes, the potential difference generated between the electrodes is measured, and the electrical resistivity is calculated from the above equation (1) using the distance between the electrodes (1 cm) and the area of the compression molded product (1.767 cm 2 ). Asked.

図3に測定した金属化率と電気抵抗率との関係を示す。図3中に示した数値はフェロコークスの乾留温度である。電気抵抗率が上昇するに従い金属化率が低下することが明らかとなっている。   FIG. 3 shows the relationship between the measured metallization rate and electrical resistivity. The numerical value shown in FIG. 3 is the dry distillation temperature of ferro-coke. It has been shown that the metallization rate decreases as the electrical resistivity increases.

このようにして作成した金属化率と電気抵抗率との関係の検量線を用いることで、フェロコークスの電気抵抗率を測定して、迅速かつ簡便に金属化率を推定することが可能となる。   By using the calibration curve of the relationship between the metallization rate and the electrical resistivity thus created, it is possible to measure the electrical resistivity of ferrocoke and to estimate the metallization rate quickly and easily. .

1 円筒容器
2 上電極端子兼押し具
3 下電極端子兼押し具
4 粉砕試料(圧密体)
5 直流電流発生器
6 電位測定器
DESCRIPTION OF SYMBOLS 1 Cylindrical container 2 Upper electrode terminal and pressing tool 3 Lower electrode terminal and pressing tool 4 Ground sample (consolidated body)
5 DC current generator 6 Potential measuring device

Claims (3)

石炭と鉄鉱石とを混合し成型して成型物を製造し、該成型物を乾留して製造されるフェロコークス中の全鉄量に対する金属鉄量の割合(金属鉄質量/全鉄質量)である金属化率を、
前記フェロコークスの電気抵抗率を測定し、該測定で得られた電気抵抗率を用いて推算することを特徴とする、フェロコークス金属化率の簡易測定方法。
Coal and iron ore are mixed and molded to produce a molded product, and the ratio of the amount of metallic iron to the total iron content in the ferro-coke produced by dry distillation of the molded product (metal iron mass / total iron mass) A certain metallization rate,
A simple method for measuring the ferro-coke metalization rate, wherein the electrical resistivity of the ferro-coke is measured and estimated using the electrical resistivity obtained by the measurement.
フェロコークスの粉末を圧縮成型した圧縮成型物の両端部に電極を設置し、該電極間に電流を印加し、該電極間に発生する電位差を測定し、前記電極間距離と前記圧縮成型物の電流方向に対する垂直断面積を用いて下記(1)式より電気抵抗率を求めることを特徴とする請求項1に記載のフェロコークス金属化率の簡易測定方法。
電気抵抗率(Ω・cm) = (V/I)×(S/L) ・・・(1)
但し、V:電位差(V)、I:印加電流(A)、S:圧縮成型物の電流方向に対する垂直断面積(cm2)、L:電極間距離(cm)である。
Electrodes are installed at both ends of a compression molded product obtained by compression molding ferro-coke powder, an electric current is applied between the electrodes, a potential difference generated between the electrodes is measured, and the distance between the electrodes and the compression molded product The simple method for measuring the ferro-coke metalization rate according to claim 1, wherein the electrical resistivity is obtained from the following formula (1) using a vertical cross-sectional area with respect to a current direction.
Electrical resistivity (Ω · cm) = (V / I) × (S / L) (1)
Where V: potential difference (V), I: applied current (A), S: vertical cross-sectional area (cm 2 ) with respect to the current direction of the compression molded product, and L: distance between electrodes (cm).
フェロコークスの金属化率と電気抵抗率との関係の検量線を作成し、該検量線を用いて金属化率を推算することを特徴とする請求項1または請求項2に記載のフェロコークス金属化率の簡易測定方法。   3. A ferro-coke metal according to claim 1 or 2, wherein a calibration curve of the relationship between the metallization rate of ferro-coke and the electrical resistivity is prepared, and the metallization rate is estimated using the calibration curve. Simple measurement method of conversion rate.
JP2010120460A 2010-05-26 2010-05-26 Simple method for measuring metallization rate of ferrocoke Withdrawn JP2011246584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120460A JP2011246584A (en) 2010-05-26 2010-05-26 Simple method for measuring metallization rate of ferrocoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120460A JP2011246584A (en) 2010-05-26 2010-05-26 Simple method for measuring metallization rate of ferrocoke

Publications (1)

Publication Number Publication Date
JP2011246584A true JP2011246584A (en) 2011-12-08

Family

ID=45412261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120460A Withdrawn JP2011246584A (en) 2010-05-26 2010-05-26 Simple method for measuring metallization rate of ferrocoke

Country Status (1)

Country Link
JP (1) JP2011246584A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240759A (en) * 2013-06-11 2014-12-25 Jfeスチール株式会社 Reduction iron metallizing ratio quick measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240759A (en) * 2013-06-11 2014-12-25 Jfeスチール株式会社 Reduction iron metallizing ratio quick measurement method

Similar Documents

Publication Publication Date Title
Li et al. Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore
Zhang et al. Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content
EP2543716B1 (en) Process for producing ferro coke for metallurgy
Turkova et al. CO reactivity and porosity of manganese materials
JP5059379B2 (en) Hot briquette iron for blast furnace charging raw material and method for producing the same
Park et al. Effect of alumina and silica on the reaction kinetics of carbon composite pellets at 1473 K
El-Hussiny et al. Studying the pelletization of rosseta ilmenite concentrate with coke breeze using molasses and reduction kinetics of produced pellets at 800-1150ºC
US20180185805A1 (en) Heat treatment apparatus for carbonaceous grains and method therefor
Park et al. Reduction behavior of carbon composite pellets including alumina and silica at 1273 K and 1373 K
JP2020041222A (en) Magnetite-based sintered ore and method for producing the same
Sohn et al. The reduction of iron oxides by volatiles in a rotary hearth furnace process: Part II. The reduction of iron oxide/carbon composites
Mao et al. Kinetic analysis of iron ore powder reaction with hydrogen—Carbon monoxide
JP2011246584A (en) Simple method for measuring metallization rate of ferrocoke
JP5487790B2 (en) Ferro-coke manufacturing method
Hu et al. Isothermal reduction of titanomagnetite concentrates containing coal
JP2013116964A (en) Method for producing metallurgical coke
JP5811017B2 (en) Method for producing reduced iron
Kashlev et al. Optimization of anthracite calcination in electric furnaces
JP2011252036A (en) Manufacturing method for ferro-coke
JP5817156B2 (en) Method for agglomerating powdery material containing iron and moisture
JP2020158833A (en) Method for manufacturing raw material for iron manufacture, and method for manufacturing pig iron
Kumar et al. Rapid carbon-free iron ore reduction using an atmospheric pressure hydrogen microwave plasma
Biswas et al. Kinetic studies on the reduction of iron ore nuggets by devolatilization of lean-grade coal
RU2476374C2 (en) Method of producing graphite
JP6287021B2 (en) Blast furnace operation method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806