JP2011244567A - Fault point locating apparatus and fault point locating method - Google Patents

Fault point locating apparatus and fault point locating method Download PDF

Info

Publication number
JP2011244567A
JP2011244567A JP2010113306A JP2010113306A JP2011244567A JP 2011244567 A JP2011244567 A JP 2011244567A JP 2010113306 A JP2010113306 A JP 2010113306A JP 2010113306 A JP2010113306 A JP 2010113306A JP 2011244567 A JP2011244567 A JP 2011244567A
Authority
JP
Japan
Prior art keywords
pressure
accident
value
gas
gas pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113306A
Other languages
Japanese (ja)
Other versions
JP5388945B2 (en
Inventor
Nobuki Ikura
伸樹 居藏
Chieko Nishida
智恵子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010113306A priority Critical patent/JP5388945B2/en
Publication of JP2011244567A publication Critical patent/JP2011244567A/en
Application granted granted Critical
Publication of JP5388945B2 publication Critical patent/JP5388945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fault point locating apparatus and fault point locating method capable of determining whether an incident is a trouble in a gas zone or a trouble in a system based only on a pressure signal from a gas pressure sensor.SOLUTION: A fault point locating apparatus locates the fault point of a flashover accident occurring in a gas insulated switchgear 10 which has an energized conductor 4 disposed in a metal container 1 thereof and is filled with an insulating gas 5. The fault point locating apparatus comprises gas pressure sensors 11 installed one in each of plural gas zones delimited within the metal container 1 and a signal processing unit 15 which includes a gas pressure measuring unit 13 which measures the pressure within each gas zone based on gas pressure signals 16 from the gas pressure sensors 11 and a determination processing unit 14 which, when a pressure rise value of the pressure measured by the gas pressure measuring unit 13 is larger than a designated set value, determines that a flashover accident has occurred in the gas zone in which the pressure signal was detected.

Description

本発明は、ガス絶縁開閉装置で発生した閃絡事故の部位を標定する事故点標定装置および事故点標定方法に関するものである。   The present invention relates to an accident point locating device and an accident point locating method for locating a portion of a flashover accident occurring in a gas insulated switchgear.

近年、遮断器などの変電機器を密閉容器内に収納し絶縁性ガスを用いて据え付け体積を小型化したガス絶縁開閉装置が広く普及している。このガス絶縁開閉装置は、接地電位にある筒状の金属容器の内部に、中心導体である高電圧の課電導体が1相分または3相分収納され、金属容器と課電導体との間の空間に絶縁ガスが封入されている。そして、課電導体は、金属容器内を複数に仕切る絶縁スペーサによって支持される形で金属容器内に収納されているので、金属容器内には、絶縁スペーサで仕切られた複数のガス区画が画成されている。   2. Description of the Related Art In recent years, gas insulated switchgears in which a transformer device such as a circuit breaker is housed in a hermetically sealed container and the installation volume is reduced using an insulating gas have become widespread. In this gas insulated switchgear, a high-voltage power conductor, which is a central conductor, is housed in one or three phases inside a cylindrical metal container at a ground potential, and between the metal container and the power conductor. Insulating gas is sealed in the space. In addition, since the power conducting conductor is housed in the metal container in a form supported by the insulating spacer that partitions the inside of the metal container, a plurality of gas compartments partitioned by the insulating spacer are defined in the metal container. It is made.

ところで、ガス絶縁開閉装置では、運用時に絶縁ガスの絶縁性能が低下すると、局部的な絶縁破壊によって部分放電(いわゆるアーク)が発生することがある。このアークが発生すると、1相分の課電導体を収納するガス絶縁開閉装置では、課電導体の金属容器への地絡事故が発生することになる。また3相分の課電導体を収納するガス絶縁開閉装置では、課電導体の金属容器への地絡事故の他に、異相の課電導体間での短絡事故も発生することになる。なお、本明細書中においては、ガス区画内で発生した地絡事故および短絡事故をガス区画内事故と称する。   By the way, in the gas insulated switchgear, if the insulation performance of the insulation gas is lowered during operation, partial discharge (so-called arc) may occur due to local dielectric breakdown. When this arc is generated, in the gas insulated switchgear that houses the electrical conductors for one phase, a ground fault to the metallic container of the electrical conductors occurs. In addition, in the gas insulated switchgear that houses the three-phase charging conductors, a short-circuiting accident occurs between the different-phase charging conductors in addition to the ground fault of the charging conductor to the metal container. In the present specification, a ground fault and a short circuit accident occurring in the gas compartment are referred to as a gas compartment accident.

このガス区画内事故が発生した事故部位は、遮断器内のガス圧力を検出してそのガス圧力が上昇したか否かによって特定できるようにも思われるが、ガス圧力の上昇は、ガス区画内事故で発生した事故アークに起因する他に、系統で事故が発生して遮断器が事故電流を遮断した際に発生した遮断アークにも起因する。そのため、ガス圧力の上昇を単に検出するだけでは、ガス区画内の事故であるかガス区画外の事故であるかを判定することが困難である。   It seems that the accident location where this accident occurred in the gas compartment can be identified by detecting the gas pressure in the circuit breaker and whether or not the gas pressure has increased. In addition to the accident arc generated in the accident, it is also caused by the interrupt arc generated when an accident occurs in the system and the circuit breaker interrupts the accident current. Therefore, it is difficult to determine whether the accident is in the gas compartment or outside the gas compartment by simply detecting the increase in gas pressure.

このような課題を解決する手段として、下記特許文献1に開示される事故点標定装置は、遮断電流センサおよび補助接点からの信号に基づいて遮断電流を計測する遮断電流計測部と、ガス圧力センサからの圧力信号を入力としてガス圧力を計測するガス圧力計測部とを有し、遮断器内でのガス圧力上昇が、ガス区画内事故で発生した事故アークに起因するものか、遮断器が事故電流を遮断した際に発生した遮断アークに起因するものかを判定することできるように構成されている。   As means for solving such a problem, an accident point locating device disclosed in Patent Document 1 below includes a cutoff current measuring unit that measures a cutoff current based on signals from a cutoff current sensor and an auxiliary contact, a gas pressure sensor A gas pressure measurement unit that measures the gas pressure with the pressure signal from the input as the input, and whether the gas pressure rise in the circuit breaker is caused by an accident arc that occurred in an accident in the gas compartment, or the circuit breaker has an accident It is configured to be able to determine whether it is caused by a break arc generated when the current is cut off.

特開平5−126896号公報JP-A-5-126896

しかしならが、上記特許文献1に開示される故障点標定システムは、ガス圧力センサ、遮断電流センサ、および補助接点などの多くのセンサを必要とするため、装置全体の構成が大掛かりになるという問題があった。また、検出した遮断電流によりガス圧力上昇分を計算したり、ガス圧力計測部で検出した圧力信号と比較したりする必要があるため、高価格な装置となってしまうという問題があった。また、既設のガス絶縁開閉装置に事故点標定装置を取付ける場合、遮断電流センサや補助接点を設置するために停電が必要となる場合がある問題があった。   However, since the fault location system disclosed in Patent Document 1 requires many sensors such as a gas pressure sensor, a breaking current sensor, and an auxiliary contact, the configuration of the entire apparatus becomes large. was there. In addition, since it is necessary to calculate the amount of increase in gas pressure based on the detected cut-off current or to compare with the pressure signal detected by the gas pressure measuring unit, there is a problem that the apparatus becomes expensive. In addition, when an accident point locating device is attached to an existing gas insulated switchgear, there has been a problem that a power failure may be required to install a breaking current sensor and an auxiliary contact.

本発明は、上記に鑑みてなされたものであって、ガス圧力センサからの圧力信号のみで、ガス区画内の事故であるか系統内の事故であるかを判定することができる事故点標定装置および事故点標定方法を得ることを目的とする。   The present invention has been made in view of the above, and it is possible to determine whether an accident in the gas compartment or an accident in the system can be determined only by a pressure signal from the gas pressure sensor. And to obtain an accident point location method.

上述した課題を解決し、目的を達成するために、本発明は、筒状の金属容器内に通電導体を配置し絶縁ガスを充填したガス絶縁開閉装置内で発生した閃絡事故の事故点を標定する事故点標定装置であって、前記金属容器内に画成されるガス区画に設置された圧力検出器からの圧力信号に基づいて、前記ガス区画内の圧力を計測する圧力計測部と、前記圧力計測部で計測された圧力の圧力上昇値が所定の整定値より大きいとき圧力信号が検出されたガス区画で閃絡事故が発生したと判定する判定部と、を備え、前記整定値は、閃絡事故発生時点から閃絡事故発生に伴うアークが消弧するまでの期間において想定される圧力上昇値の下限値より小さく、かつ、前記ガス区画に設置された遮断器に対する動作開始指令が出力されてから前記遮断器の遮断動作に伴うアークが消弧するまでの期間において想定される圧力上昇値の上限値より大きい値に設定されていること、を特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides an accident point of a flashover accident occurring in a gas-insulated switchgear in which a conductive conductor is disposed in a cylindrical metal container and filled with an insulating gas. An accident point locating device for locating, based on a pressure signal from a pressure detector installed in the gas compartment defined in the metal container, a pressure measuring unit for measuring the pressure in the gas compartment; A determination unit that determines that a flashover accident has occurred in the gas compartment in which the pressure signal is detected when the pressure increase value of the pressure measured by the pressure measurement unit is greater than a predetermined settling value, and the settling value is The operation start command for the circuit breaker installed in the gas compartment is smaller than the lower limit value of the pressure increase value assumed in the period from the occurrence of the flash accident to the extinction of the arc accompanying the occurrence of the flash accident. Of the circuit breaker after being output An arc associated with the cross operation is set to a value greater than the upper pressure increase value assumed in the period until extinguished, characterized.

この発明によれば、各ガス区画内で発生したアークに起因するガス圧力を検出してガス圧力信号として出力するガス圧力センサと、事故アーク時間と遮断アーク時間との時間差に基づく適切な整定値が設定され、ガス圧力センサからのガス圧力信号に基づいてガス区画内事故の有無を判定する判定処理部を有する信号処理部と、を備えるようにしたので、ガス圧力センサからの圧力信号のみでガス区画内の事故であるか系統内の事故であるかを判定することができる、という効果を奏する。   According to the present invention, a gas pressure sensor that detects a gas pressure caused by an arc generated in each gas section and outputs it as a gas pressure signal, and an appropriate set value based on the time difference between the accident arc time and the interruption arc time And a signal processing unit having a determination processing unit for determining the presence or absence of an accident in the gas compartment based on the gas pressure signal from the gas pressure sensor, so that only with the pressure signal from the gas pressure sensor There is an effect that it is possible to determine whether the accident is in the gas compartment or in the system.

図1は、本発明の実施の形態にかかる事故点標定装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an accident point locating apparatus according to an embodiment of the present invention. 図2は、ガス圧力計測部で計測されたガス圧力の推移と、判定処理部で演算されたガス圧力上昇値との関係を示す図である。FIG. 2 is a diagram illustrating a relationship between the transition of the gas pressure measured by the gas pressure measuring unit and the gas pressure increase value calculated by the determination processing unit. 図3は、判定処理部で実施される判定動作を説明するための図である。FIG. 3 is a diagram for explaining a determination operation performed by the determination processing unit.

以下に、本発明にかかる事故点標定装置および事故点標定方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of an accident point locating device and an accident point locating method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明の実施の形態にかかる事故点標定装置の構成を示す図である。筒状の金属容器1は、ガス絶縁開閉装置10のいわゆる筐体であって、接地電位にある外部導体として機能する。この金属容器1には、金属容器1と課電導体4とを絶縁するための絶縁ガス5が封入されると共に、例えば、計器用変成器、変流器などの各種の電気機器が収納されている。図1では、一例として、金属容器1内に配置される中心導体である高電圧の課電導体4と、課電導体4に流れる電流を遮断する遮断器3とが示されている。
Embodiment.
FIG. 1 is a diagram showing a configuration of an accident point locating apparatus according to an embodiment of the present invention. The cylindrical metal container 1 is a so-called casing of the gas insulated switchgear 10 and functions as an external conductor at a ground potential. The metal container 1 is filled with an insulating gas 5 for insulating the metal container 1 and the charging conductor 4 and houses various electric devices such as a meter transformer and a current transformer. Yes. In FIG. 1, as an example, a high-voltage electric conductor 4 that is a central conductor disposed in the metal container 1 and a circuit breaker 3 that interrupts an electric current flowing through the electric conductor 4 are shown.

課電導体4は、金属容器1の長手方向に所定間隔で設置されガス空間を区分する絶縁スペーサ2に支持されている。金属容器1には、絶縁スペーサ2で画設された複数のガス区画が設けられている。なお、課電導体4は、1相分設けられる場合と3相分の設けられる場合とがあるが、図1には、便宜上1相分の課電導体4が示されている。また、図1では、遮断器3を収納したガス区画が1箇所のみ示されているが、他のガス区画にも遮断器3が設置されているものとする。   The electric conductor 4 is supported by an insulating spacer 2 that is installed at predetermined intervals in the longitudinal direction of the metal container 1 and divides the gas space. The metal container 1 is provided with a plurality of gas compartments provided with insulating spacers 2. The electric conductor 4 may be provided for one phase and may be provided for three phases, but FIG. 1 shows the electric conductor 4 for one phase for convenience. Moreover, in FIG. 1, although the gas division which accommodated the circuit breaker 3 is shown only in one place, the circuit breaker 3 shall be installed also in another gas division.

さらに図1には、ガス区画内で発生した事故アーク6と、遮断器3の遮断動作時に発生した遮断アーク7と、各ガス区画内で発生したアークに起因するガス圧力を検出してガス圧力信号16として出力するガス圧力センサ(圧力検出器)11と、信号処理部15とが示されている。   Further, FIG. 1 shows the gas pressure by detecting the fault arc 6 generated in the gas section, the interrupting arc 7 generated during the interrupting operation of the circuit breaker 3, and the gas pressure caused by the arc generated in each gas section. A gas pressure sensor (pressure detector) 11 that outputs as a signal 16 and a signal processing unit 15 are shown.

本実施の形態にかかる事故点標定装置は、このガス圧力センサ11と信号処理部15で構成され、信号処理部15は、主たる構成として、1または複数のガス圧力センサ11からのガス圧力信号16を集約しアナログ信号をデジタル信号に変換するA/D変換器12と、A/D変換器12でデジタル信号に変換されたガス圧力信号に基づき各ガス区画のガス圧力値を計測するガス圧力計測部13と、ガス圧力計測部13からのガス圧力値に基づいてガス区画内における事故の有無を判定する判定処理部(判定部)14と、を有して構成されている。   The accident point locating device according to the present embodiment includes the gas pressure sensor 11 and a signal processing unit 15. The signal processing unit 15 mainly includes gas pressure signals 16 from one or a plurality of gas pressure sensors 11. Pressure measurement for measuring the gas pressure value of each gas compartment based on the gas pressure signal converted to the digital signal by the A / D converter 12 And a determination processing unit (determination unit) 14 that determines the presence or absence of an accident in the gas compartment based on the gas pressure value from the gas pressure measurement unit 13.

次に、図2および図3を用いて、ガス圧力計測部13で計測されるガス圧力値と、判定処理部14の判定動作を詳細に説明する。   Next, the gas pressure value measured by the gas pressure measurement unit 13 and the determination operation of the determination processing unit 14 will be described in detail with reference to FIGS. 2 and 3.

図2は、ガス圧力計測部13で計測されたガス圧力の推移と、判定処理部14で演算されたガス圧力上昇値との関係を示す図である。図3は、判定処理部14で実施される判定動作を説明するための図であり、図3(a)には事故電流Iと遮断電流Iとガス圧力上昇値ΔPとの関係が示され、図3(b)にはガス圧力上昇値の具体例が示されている。 FIG. 2 is a diagram illustrating the relationship between the transition of the gas pressure measured by the gas pressure measuring unit 13 and the gas pressure increase value calculated by the determination processing unit 14. Figure 3 is a diagram for explaining a determination operation performed by the processing unit 14, the relationship between the cutoff and the fault current I G current I S and the gas pressure increase value ΔP in FIGS. 3 (a) shows FIG. 3B shows a specific example of the gas pressure increase value.

以下の説明では、図2を用いて判定処理部14で算出されるガス圧力上昇値ΔPを説明した上で、図3を用いてガス区画内事故に起因する第1のガス圧力上昇値ΔPと遮断動作に起因する第2のガス圧力上昇値ΔPとを説明する。 In the following description, the gas pressure increase value ΔP calculated by the determination processing unit 14 is described with reference to FIG. 2, and then the first gas pressure increase value ΔP 1 caused by the accident in the gas compartment is used with reference to FIG. 3. And the second gas pressure increase value ΔP 2 resulting from the shut-off operation will be described.

図2には、ガス圧力計測部13で連続的に計測されたガス圧力値が示され、一方のガス圧力値は、事故が発生したガス区画のガス圧力、すなわちガス区画内事故に起因するガス圧力の推移である。他方のガス圧力値は、事故が発生していない区画のガス圧力、すなわち遮断器3が設置されていないガス区画内のガス圧力の推移である。   FIG. 2 shows the gas pressure value continuously measured by the gas pressure measuring unit 13, and one gas pressure value is the gas pressure of the gas section where the accident occurred, that is, the gas resulting from the accident in the gas section. It is the transition of pressure. The other gas pressure value is the transition of the gas pressure in the section where no accident has occurred, that is, the gas pressure in the gas section where the circuit breaker 3 is not installed.

さらに、図2には、判定処理部14におけるガス圧力値算出インターバルとガス圧力値計測タイミングとが示されている。判定処理部14は、一定の時間インターバルでガス圧力値をサンプリングしており、そのインターバルは例えば1秒間隔である。図2には、そのインターバルで計測されたガス圧力値が8つ示されている。なお、本実施の形態では、判定処理部14の圧力値算出インターバルを1秒としているが、これに限定されるものではない。   Further, FIG. 2 shows a gas pressure value calculation interval and a gas pressure value measurement timing in the determination processing unit 14. The determination processing unit 14 samples the gas pressure value at a constant time interval, and the interval is, for example, 1 second. FIG. 2 shows eight gas pressure values measured in the interval. In the present embodiment, the pressure value calculation interval of the determination processing unit 14 is 1 second, but is not limited to this.

以下、事故が発生した区画のガス圧力の推移と、判定処理部14によって求められるガス圧力上昇値ΔPを説明する。まず、事故発生前は、ガス圧力計測部13では一定のガス圧力値が計測される。これは、ガス区画内に絶縁ガス5が充填されているためである。次に、事故が発生した場合、ガス圧力計測部13では事故に起因して上昇するガス圧力値が計測される。このときのガス圧力上昇値ΔPは、事故アーク6に起因するものであり、判定処理部14によって求められ、以下の計算式で表すことができる。
ガス圧力上昇値ΔP=P−P
ただし、Pはガス区画内事故発生後のガス圧力を示し、Pはガス区画内事故発生前のガス圧力を示す。なお、図2では、ガス圧力Pとガス圧力Pとの時間差を例えば約7秒としている。
Hereinafter, the transition of the gas pressure in the section where the accident has occurred and the gas pressure increase value ΔP obtained by the determination processing unit 14 will be described. First, before the accident occurs, the gas pressure measurement unit 13 measures a constant gas pressure value. This is because the insulating gas 5 is filled in the gas compartment. Next, when an accident occurs, the gas pressure measuring unit 13 measures a gas pressure value that rises due to the accident. The gas pressure increase value ΔP at this time is caused by the accident arc 6 and is obtained by the determination processing unit 14 and can be expressed by the following calculation formula.
Gas pressure increase value ΔP = P k −P m
However, P k denotes the gas pressure after the occurrence accident within the gas compartment, P m denotes the gas pressure before the accident in the gas compartment. In FIG. 2, the time difference between the gas pressure Pk and the gas pressure Pm is set to, for example, about 7 seconds.

ここで、ガス区画内で発生するアークは、上述したように事故アーク6と遮断アーク7とに分類することができる。   Here, the arc generated in the gas compartment can be classified into the accident arc 6 and the interruption arc 7 as described above.

事故アーク6の熱に起因するガス圧力上昇値をΔPと定義すると、一般に、ガス圧力上昇値ΔPは、(1)式で表される。
ΔP=C・Varc・I・t/V×0.098・・・(1)
ΔP:圧力上昇値(kPa)
C:係数(=0.6)
arc:アーク電圧(V)
:事故電流(A)
:事故アーク時間(sec)
V:タンク容量(リットル)
アーク電圧Varcは、事故アーク6の地絡電圧である。
事故電流Iは、ガス絶縁開閉装置が設置される変電所の電力系統上の位置により、ほぼ決定され、非有効接地系の一線地絡事故の場合、その最小値はI=数百A程度である。
When the gas pressure rise value due to the heat of the accident arc 6 is defined as [Delta] P G, generally, the gas pressure increase value [Delta] P G is expressed by equation (1).
ΔP G = C · V arc · I G · t G /V×0.098 (1)
ΔP G : Pressure increase value (kPa)
C: Coefficient (= 0.6)
V arc : Arc voltage (V)
I G : Accident current (A)
t G : Accident arc time (sec)
V: Tank capacity (liter)
The arc voltage V arc is a ground fault voltage of the accident arc 6.
The fault current I G is almost determined by the position on the power system of the substation where the gas-insulated switchgear is installed, and in the case of a one-line ground fault with an ineffective grounding system, the minimum value is I G = several hundred A Degree.

事故アーク時間tは、保護リレーの動作時間と遮断器3の電流遮断時間とにより、ほぼ決定される。具体的に説明すると、例えば、ガス絶縁開閉装置が運用中にガス区画内事故が発生した場合、図1に示すような事故アーク6が発生する。このときの課電導体4に流れる電流は変流器でモニタされ、その電流値が所定の値を超えたとき図示しない保護リレーが動作する。そして、保護リレーから遮断器3に対してCB動作指令が出力され、遮断器3はCB動作指令によって開放され、事故アーク6が消弧される。なお、保護リレーが動作してからCB動作指令が出力されるまでの時間は、数百ms程度であり、CB動作指令が出力されてから事故アーク6が消弧されるまでの時間は、数十ms程度である。従って、事故アーク時間tは、保護リレーが動作してから事故アーク6が消弧されるまでの時間(数百ms)となる。 Accident arcing time t G is the operating time of the protection relay and the current interruption time of the circuit breaker 3, it is substantially determined. More specifically, for example, when an accident in the gas compartment occurs during operation of the gas insulated switchgear, an accident arc 6 as shown in FIG. 1 occurs. At this time, the current flowing through the current conductor 4 is monitored by a current transformer. When the current value exceeds a predetermined value, a protection relay (not shown) is activated. Then, a CB operation command is output from the protection relay to the circuit breaker 3, the circuit breaker 3 is opened by the CB operation command, and the accident arc 6 is extinguished. The time from when the protection relay operates until the CB operation command is output is about several hundred ms, and the time from when the CB operation command is output until the accident arc 6 is extinguished is several times. It is about 10 ms. Therefore, the accident arcing time t G is the accident arc 6 from the protective relay is operated is time (hundreds ms) until it is extinguished.

このため、各ガス区画のタンク容量Vが決まれば、ガス圧力上昇値ΔPを求めることができる。非有効接地系の一線地絡事故の場合、例えば、I=数百A、t=数百ms、Varc=数千V(距離d=数cm、電界強度E=数百V/cm)と設定することができる。 Thus, once the tank volume V of the gas compartment, may be obtained gas pressure increase value [Delta] P G. In the case of a one-line ground fault of an ineffective grounding system, for example, I G = several hundred A, t G = several hundred ms, V arc = several thousand V (distance d = several cm, electric field strength E = several hundreds V / cm ) Can be set.

遮断アーク7の熱に起因するガス圧力上昇値をΔPARCと定義すると、ガス圧力上昇値 ΔPARCは、(2)式で表される。
ΔPARC=C・Varc・I・t/V×0.098・・・(2)
C:係数(=0.6)
arc:アーク電圧(V)
:遮断電流(A)
:遮断アーク時間(sec)
V:タンク容量(リットル)
アーク電圧Varcは、遮断器3の遮断動作時の電圧である。
遮断電流Iは、遮断器3が遮断動作をする際に課電導体4に流れる電流である。
遮断アーク時間tは、CB動作指令が出力されてから遮断アーク7が消えるまでの時間(数十ms)である。
If the gas pressure increase value resulting from the heat of the breaking arc 7 is defined as ΔP ARC , the gas pressure increase value ΔP ARC is expressed by the following equation (2).
ΔP ARC = C · V arc · I S · t S /V×0.098 (2)
C: Coefficient (= 0.6)
V arc : Arc voltage (V)
IS : Breaking current (A)
t S : Breaking arc time (sec)
V: Tank capacity (liter)
The arc voltage V arc is a voltage during the breaking operation of the circuit breaker 3.
The breaking current IS is a current that flows through the current conductor 4 when the breaker 3 performs a breaking operation.
The interruption arc time t S is a time (tens of ms) from when the CB operation command is output until the interruption arc 7 disappears.

このため、各ガス区画のタンク容量Vが決まれば、ガス圧力上昇値をΔPと同様に、ガス圧力上昇値ΔPARCを求めることができる。非有効接地系の一線地絡事故の場合、例えば、I=0〜数千A、t=数十ms、Varc=数百V(距離d=数cm、電界強度E=数十V/cm)と設定することができる。 Thus, once the tank volume V of the gas compartment, as with [Delta] P G the gas pressure increase value, it is possible to determine the gas pressure increase value [Delta] P ARC. In the case of a one-line ground fault of an ineffective grounding system, for example, I S = 0 to several thousand A, t S = several tens ms, V arc = several hundreds V (distance d = several cm, electric field strength E = several tens V) / Cm).

ここで、ガス区画内事故が発生した場合、ガス圧力センサ11によって検出されるガス圧力は、事故アーク6に起因するガス圧力だけでなく、遮断器3の遮断動作によって発生する遮断アーク7に起因するガス圧力も含まれる。この遮断器3の遮断動作は、事故アーク6の発生に伴うものである。すなわち、ガス区画内事故が発生した場合、ガス圧力計測部13では、P事故アーク6に起因するガス圧力上昇値ΔPだけでなく、遮断アーク7に起因するガス圧力上昇値ΔPARCも計測される。 Here, when an accident in the gas compartment occurs, the gas pressure detected by the gas pressure sensor 11 is caused not only by the gas pressure caused by the accident arc 6 but also by the breaking arc 7 generated by the breaking operation of the circuit breaker 3. Gas pressure is also included. This breaking operation of the circuit breaker 3 is accompanied by the occurrence of the accident arc 6. That is, when the gas compartment accident occurs, the gas pressure measuring unit 13, not only the gas pressure increase value [Delta] P G due to P accident arc 6, the gas pressure increase value [Delta] P ARC resulting from blocking arc 7 is also measured The

以下、このことを図3と関連付けて説明する。
まず、ガス区画内事故が発生した場合、そのガス区画の第1のガス圧力上昇値ΔPは、(3)式で表される。
ΔP=ΔP+ΔPARC・・・(3)
一方、ガス区画外で事故が発生した場合、遮断アーク7が発生したガス区画の第2のガス圧力上昇値ΔPは、(4)式で表される。
ΔP=ΔPARC・・・(4)
This will be described below in association with FIG.
First, when an accident in a gas compartment occurs, the first gas pressure increase value ΔP 1 in the gas compartment is expressed by the equation (3).
ΔP 1 = ΔP G + ΔP ARC (3)
On the other hand, if an accident occurs outside gas compartment, a second gas pressure increase value [Delta] P 2 of the gas compartment cutoff arc 7 is generated is expressed by equation (4).
ΔP 2 = ΔP ARC (4)

(3)式に含まれるガス圧力上昇値ΔPは、前述した(1)式によって得られる値であり、(3)式および(4)式に含まれるガス圧力上昇値ΔPARCは、(2)式によって得られる値である。ただし、ガス圧力上昇値ΔPARCの上限値は、図3(a)に示すようにガス圧力上昇値ΔPの下限値よりも低い値となる傾向がある。これは、事故アーク時間tと遮断アーク時間tとの差が約20倍であることによる。すなわち、ガス圧力上昇値ΔPARCとガス圧力上昇値ΔPを求める各パラメータの中で、アーク時間(t、t)の差分が他のパラメータ差分よりも支配的となるためである。 (3) Gas pressure increase value [Delta] P G contained in the equation is a value obtained by the above-mentioned (1), (3) and (4) Gas pressure increase value [Delta] P ARC included in expression (2 ) Value obtained by the formula. However, the upper limit value of the gas pressure increase value [Delta] P ARC tend to be lower than the lower limit value of the gas pressure increase value [Delta] P G as shown in FIG. 3 (a). This is because the difference between the accident arcing time t G and blocking arcing time t s is approximately 20-fold. That is, among the parameters for determining the gas pressure increase value [Delta] P ARC and the gas pressure increase value [Delta] P G, because the arcing time (t G, t s) the difference is more dominant than the other parameter difference.

なお、図3(a)に示すガス圧力上昇値ΔPの下限値は、非有効接地系の一線地絡事故の場合において、各パラメータを例えばt=数百ms、Varc=数千Vとしたときのガス圧力上昇値を、概念的に表したものであり、事故電流Iが例えばX(A)からY(A)まで増加したときの値となる。また、図3(a)に示すガス圧力上昇値ΔPARCの上限値は、上述同様に、各パラメータを例えばt=数十ms、Varc=数百Vとしたときのガス圧力上昇値を、概念的に表したものであり、遮断電流Iが例えば0から数千(A)まで増加したときの値となる。ただし、これらの数値は一例であり、これらに限定されるものではない。 The lower limit of the gas pressure increase value [Delta] P G shown in FIG. 3 (a), in the case of clear distinction ground fault ineffective grounding system, the parameters eg t G = several hundred ms, V arc = several thousand V Is a conceptual representation of the gas pressure increase value when the accident current IG is increased from X (A) to Y (A), for example. Further, the upper limit value of the gas pressure increase value ΔP ARC shown in FIG. 3A is the same as described above, and the gas pressure increase value when each parameter is set to, for example, t S = several tens of ms and V arc = several hundreds V. , which conceptually shows the cutoff current I s is a value when the increase, for example, from 0 to thousands (a). However, these numerical values are examples, and are not limited to these.

次に、図3(a)の上側に示される斜線部分は、(3)式で得られる第1のガス圧力上昇値ΔPの値である。ガス圧力上昇値ΔPの下限値より上側全体が斜線で示されている理由は以下の通りである。すなわち、(3)式で得られる第1のガス圧力上昇値ΔPは、ガス圧力上昇値ΔPおよびガス圧力上昇値ΔPARCが上述した各パラメータにより変わりうるため、必ずしも一意に決まるものではないからである。 Next, the hatched portion shown on the upper side of FIG. 3A is the value of the first gas pressure increase value ΔP 1 obtained by the equation (3). Why the entire upper than the lower limit value of the gas pressure increase value [Delta] P G is shown by oblique lines is as follows. That is, (3) a first gas pressure increase value [Delta] P 1 obtained by the equation, since the gas pressure increase value [Delta] P G and the gas pressure increase value [Delta] P ARC may change the respective parameters described above are not necessarily uniquely determined Because.

また、図3(a)の下側に示される斜線部分は、(4)式で得られる第2のガス圧力上昇値ΔPの値である。ガス圧力上昇値ΔPARCの上限値より下側全体が斜線で示されている理由は以下の通りである。遮断器3の遮断タイミングは、課電導体4に流れる交流電流の零点周期に応じて変動するため、ガス圧力上昇値ΔPARCの上限値が、例えば遮断アーク時間t=数十msのときの値である場合、遮断アーク時間t=数msのときのガス圧力上昇値ΔPARCは、図3(a)に示されるガス圧力上昇値ΔPARCの上限値よりも低い値となる。 Further, the hatched portion shown on the lower side of FIG. 3 (a) is a second value of the gas pressure increase value [Delta] P 2 obtained in (4) below. The reason why the entirety below the upper limit value of the gas pressure increase value ΔP ARC is indicated by hatching is as follows. Since the breaking timing of the circuit breaker 3 varies according to the zero point cycle of the alternating current flowing through the charging conductor 4, the upper limit value of the gas pressure increase value ΔP ARC is, for example, when the breaking arc time t S = several tens of ms. In the case of a value, the gas pressure increase value ΔP ARC when the break arc time t S = several ms is a value lower than the upper limit value of the gas pressure increase value ΔP ARC shown in FIG.

図3(b)は、図3(a)に示されるガス圧力上昇値ΔPARCとガス圧力上昇値ΔPとの関係を具体的に説明するための図である。2点鎖線は、遮断アーク時間t=数十msのときのガス圧力上昇値ΔPARCを示し、実線は、事故アーク時間t=数百msのときのガス圧力上昇値ΔPを示す。1点鎖線は、これらのガス圧力上昇値ΔPARCとガス圧力上昇値ΔPとを加算した値であり、ガス圧力上昇値ΔPARCをガス圧力上昇値ΔPに上乗したような値となる。 Figure 3 (b) is a diagram for specifically explaining the relationship between the gas pressure increase value [Delta] P ARC and the gas pressure increase value [Delta] P G shown in FIG. 3 (a). A two-dot chain line indicates a gas pressure increase value [Delta] P ARC when the shut-off arcing time t S = several tens ms, a solid line indicates the gas pressure increase value [Delta] P G when the accident arcing time t G = several hundred ms. The dashed line is a value obtained by adding the these gas pressure increase value [Delta] P ARC and the gas pressure increase value [Delta] P G, a value that the gas pressure increase value [Delta] P ARC was Jojo the gas pressure increase value [Delta] P G .

このように、ガス圧力上昇値ΔPの下限値は、ガス圧力上昇値ΔPARCの上限値よりも高くなる傾向があるため、ガス圧力上昇値ΔPの下限値とガス圧力上昇値ΔPARCの上限値との間には、図3(a)に示すように、何れの領域(斜線部分)に属さない領域が存在し、その領域のガス圧力上昇値ΔPは一意に決まる値となることがわかる。 Thus, the lower limit value of the gas pressure increase value [Delta] P G, since there is a tendency to be higher than the upper limit value of the gas pressure increase value [Delta] P ARC, the lower limit value and the gas pressure increase value [Delta] P ARC gas pressure increase value [Delta] P G As shown in FIG. 3A, there is a region that does not belong to any region (shaded area) between the upper limit value and the gas pressure increase value ΔP in that region may be a uniquely determined value. Recognize.

換言すれば、その領域のガス圧力上昇値ΔPは、閃絡事故発生時点から閃絡事故発生に伴うアークが消弧するまでの期間(事故アーク時間t)と、閃絡事故発生時に通電導体に印加されるアーク電圧Varcと、閃絡事故発生時に通電導体に流れる事故電流Iとに基づいて算出される圧力上昇値ΔPの下限値より小さく、かつ、ガス区画に設置された遮断器3に対する動作開始指令が出力されてから遮断器3の遮断動作に伴うアークが消弧するまでの期間(遮断アーク時間t)と、遮断器3の遮断動作時のアーク電圧Varcと、遮断器3が遮断動作をする際の遮断電流(アーク電流)Iとに基づいて算出されるガス圧力上昇値ΔPARCの上限値より大きい値となる。 In other words, the gas pressure increase value ΔP in that region is determined by the period from the time of the flash accident to the extinction of the arc associated with the occurrence of the flash accident (accident arc time t G ) and the conducting conductor when the flash accident occurs. in the arc voltage V arc applied, smaller than the lower limit of the pressure increase value [Delta] P G is calculated based on the fault current I G flowing through the current conductor during flashover accident, and blocked installed in the gas compartment A period from when an operation start command to the circuit breaker 3 is output until the arc associated with the circuit breaker 3 is extinguished (breaking arc time t s ), an arc voltage V arc during the circuit breaker 3 breaking operation, breaker 3 is the upper limit value greater than the gas pressure increase value [Delta] P aRC which is calculated based on the breaking current (arc current) I s when the cutoff operation.

本実施の形態にかかる事故点標定装置は、この圧力上昇値ΔPの下限値より小さく、かつ、ガス圧力上昇値ΔPARCの上限値より大きいガス圧力上昇値ΔP(整定値ΔP)を用いて、ガス区画内事故であるかガス区画外事故であるかを判定するように構成されている。例えば、判定処理部14には、図3に示すように適切な整定値ΔPが設定される。 Fault point locating system according to the present embodiment is smaller than the lower limit value of the pressure increase value [Delta] P G, and, using a large gas pressure increase value [Delta] P than the upper limit value of the gas pressure increase value [Delta] P ARC (set value [Delta] P 0) Thus, it is configured to determine whether the gas compartment accident or the gas compartment accident. For example, an appropriate settling value ΔP 0 is set in the determination processing unit 14 as shown in FIG.

遮断電流Iが所定の電流値I(例えば数千A)以下の場合、この整定値ΔPと第1のガス圧力上昇値ΔPと第2のガス圧力上昇値ΔPとの間には、以下の関係が成り立つ。
ΔP>ΔP>ΔP
従って、判定処理部14は、整定値ΔPよりも高いガス圧力上昇値ΔPが検出されたガス区画ではガス区画内事故が発生した、と判定することが可能である。
When the cut-off current IS is a predetermined current value I 0 (for example, several thousand A) or less, between the set value ΔP 0 , the first gas pressure increase value ΔP 1, and the second gas pressure increase value ΔP 2 Has the following relationship.
ΔP 1 > ΔP 0 > ΔP 2
Therefore, the determination processing unit 14 can determine that an accident in the gas compartment has occurred in the gas compartment where the gas pressure increase value ΔP higher than the set value ΔP 0 is detected.

なお、一般的に、非有効接地系(系統の中性点を、抵抗器等を通して接地する方式で事故電流を抑制)の低い電圧階級(例えば定格電圧22kV〜154kV)のガス絶縁開閉装置の場合、遮断電流Iが所定の電流値I(例えば数千A)以上になることはほとんどないものの、遮断電流Iが所定の電流値I以上となった場合には、整定値ΔPと第2のガス圧力上昇値ΔPとの間には、以下の関係が成り立つ。
ΔP>ΔP
このように、極まれにガス圧力上昇値ΔPが整定値ΔPを上回ることがある。従って、判定処理部14は、ガス区画内事故が発生していない正常な区画を含む複数の区画でガス区画内事故が発生した、と判定する蓋然性はある。ただし、判定処理部14がこのように判定した場合でも、このように判定される区画数は、全体の区画数と比較して十分小数であるので、ガス区画内事故が発生した区画を絞り込むことは容易であり、このような判定が迅速な事故復旧の妨げとなることはない。
In general, in the case of a gas insulated switchgear of a low voltage class (for example, rated voltage 22 kV to 154 kV) in a non-effective grounding system (the fault current is suppressed by grounding the neutral point of the system through a resistor or the like). Although the cut-off current I S rarely exceeds a predetermined current value I 0 (for example, several thousand A), when the cut-off current I S exceeds the predetermined current value I 0 , the set value ΔP 0 And the second gas pressure increase value ΔP 2 have the following relationship.
ΔP 2 > ΔP 0
Thus, in rare cases, the gas pressure increase value ΔP 2 may exceed the settling value ΔP 0 . Therefore, there is a probability that the determination processing unit 14 determines that an accident in the gas compartment has occurred in a plurality of compartments including normal compartments in which no accident in the gas compartment has occurred. However, even when the determination processing unit 14 makes the determination as described above, the number of compartments thus judged is sufficiently small compared to the total number of compartments, and therefore the compartments where the gas compartment accident has occurred are narrowed down. Is easy, and such a determination does not prevent quick accident recovery.

次に動作を説明する。
ガス圧力センサ11は、スペーサ2で区切られた各ガス区画内のガス圧力をモニタしており、ガス圧力センサ11によって検出されたガス圧力は、ガス圧力信号16(アナログ)としてA/D変換器12に取り込まれる。A/D変換器12に取り込まれたガス圧力信号16は、A/D変換器12によってデジタル信号に変換されガス圧力計測部13に出力される。ガス圧力計測部13は、A/D変換器12からのガス圧力信号に基づいて、各ガス区画のガス圧力値を常時計測しており、ガス圧力計測部13で計測されたガス圧力値は、判定処理部14に取り込まれる。判定処理部14では、図2に示す通り、ある一定の時間インターバルで圧力のサンプリングを行い、ある時刻で計測された圧力Pと圧力Pのm秒前に計測された圧力Pとに基づいてガス圧力上昇値ΔPを算出する。
Next, the operation will be described.
The gas pressure sensor 11 monitors the gas pressure in each gas section divided by the spacer 2, and the gas pressure detected by the gas pressure sensor 11 is converted into an A / D converter as a gas pressure signal 16 (analog). 12 is taken in. The gas pressure signal 16 taken into the A / D converter 12 is converted into a digital signal by the A / D converter 12 and output to the gas pressure measuring unit 13. The gas pressure measurement unit 13 constantly measures the gas pressure value of each gas section based on the gas pressure signal from the A / D converter 12, and the gas pressure value measured by the gas pressure measurement unit 13 is: It is taken into the determination processing unit 14. In the determination processing unit 14, as shown in FIG. 2, there samples the pressure at a predetermined time interval, the pressure P m to m seconds has been measured before the pressure P k and the pressure P k which is measured at a certain time Based on this, a gas pressure increase value ΔP is calculated.

ここで、ガス区画内事故が発生したガス区画では、事故アーク6のエネルギーによって、図2に示すようにガス圧力が上昇するため、判定処理部14では(1)式のガス圧力上昇値ΔPに相当するガス圧力上昇値ΔPが算出される。この算出されたガス圧力上昇値ΔPは、図3で説明したように整定値ΔPより高い値となるので、判定処理部14は、このガス圧力上昇値ΔPが検出されたガス区画ではガス区画内事故が発生した、と判定することができる。 Here, in the gas compartment of an accident in the gas compartment is generated, by the energy of incident arc 6, since the gas pressure as shown in FIG. 2 rises, the determination processing section 14 (1) of the gas pressure increase value [Delta] P G A gas pressure increase value ΔP corresponding to is calculated. Since the calculated gas pressure increase value ΔP is higher than the set value ΔP 0 as described with reference to FIG. 3, the determination processing unit 14 uses the gas section in the gas section where the gas pressure increase value ΔP is detected. It can be determined that an internal accident has occurred.

他方、ガス区画外で事故が発生した場合、遮断アーク7が発生したガス区画では、遮断アーク7のエネルギーによりガス圧力が上昇する。判定処理部14では(2)式のガス圧力上昇値ΔPARCに相当するガス圧力上昇値ΔPが算出される。このガス圧力上昇値ΔPは、図3で説明したように整定値ΔPより低い値となるので、判定処理部14は、このガス圧力上昇値ΔPが検出されたガス区画ではガス区画内事故が発生していない、と判定することができる。 On the other hand, when an accident occurs outside the gas compartment, the gas pressure increases due to the energy of the break arc 7 in the gas compartment where the break arc 7 is generated. The determination processing unit 14 calculates a gas pressure increase value ΔP corresponding to the gas pressure increase value ΔP ARC in equation (2). Since the gas pressure increase value ΔP is lower than the set value ΔP 0 as described with reference to FIG. 3, the determination processing unit 14 causes the gas compartment where the gas pressure increase value ΔP is detected to have an accident in the gas compartment. It can be determined that it has not occurred.

以上に説明したように、本実施の形態にかかる事故点標定装置は、各ガス区画内で発生したアークに起因するガス圧力を検出してガス圧力信号16として出力するガス圧力センサ11と、事故アーク時間tと遮断アーク時間tとの時間差に基づく適切な整定値ΔPが設定されガス圧力センサ11からのガス圧力信号16に基づいてガス区画内事故の有無を判定する判定処理部14を有する信号処理部15とを備えるようにしたので、電流センサなどの複数種類のセンサを用いることなく、ガス圧力センサ11のみでガス区画内の事故であるかガス区画外の事故であるかを判定することが可能となる。従来の技術では、複数種類のセンサの設置および改修に伴うコストが必要となるだけでなく、センサの種類が多いためガス圧力を適切に計測するためにはソフトウェアの改修が大がかりになるという問題があった。本実施の形態にかかる事故点標定装置によれば、ガス圧力センサ11のみ用いればよいため、センサの設置が容易でありソフトウェアの改修規模が最小限で済むため、ガス区画内事故の有無を簡易な装置構成で判定する事が可能である。 As described above, the accident point locating device according to the present embodiment includes the gas pressure sensor 11 that detects the gas pressure caused by the arc generated in each gas section and outputs it as the gas pressure signal 16, and the accident. A determination processing unit 14 that sets an appropriate set value ΔP 0 based on the time difference between the arc time t G and the interruption arc time t S and determines whether there is an accident in the gas compartment based on the gas pressure signal 16 from the gas pressure sensor 11. Therefore, it is possible to determine whether the accident is inside the gas compartment or outside the gas compartment by using only the gas pressure sensor 11 without using a plurality of types of sensors such as a current sensor. It becomes possible to judge. The conventional technology not only requires the costs associated with the installation and renovation of multiple types of sensors, but also has the problem that the refurbishment of software becomes large in order to properly measure gas pressure due to the large number of types of sensors. there were. According to the accident point locating apparatus according to the present embodiment, only the gas pressure sensor 11 needs to be used, so that the installation of the sensor is easy and the scale of software modification is minimized. It is possible to determine with a simple device configuration.

以上のように、本発明は、ガス絶縁開閉装置で発生した閃絡事故の事故部位を特定する事故点標定装置および事故点標定方法に適用可能であり、特に、ガス圧力センサからの圧力信号のみでガス区画内の事故であるか系統内の事故であるかを判定することができる発明として有用である。   As described above, the present invention can be applied to an accident point locating device and an accident point locating method for identifying an accident site of a flashover accident occurring in a gas insulated switchgear, and in particular, only a pressure signal from a gas pressure sensor. Therefore, it is useful as an invention that can determine whether the accident is in the gas compartment or the system.

1 金属容器
2 絶縁スペーサ
3 遮断器
4 課電導体
5 絶縁ガス
6 事故アーク
7 遮断アーク
10 ガス絶縁開閉装置
11 ガス圧力センサ(圧力検出器)
12 A/D変換器
13 ガス圧力計測部
14 判定処理部(判定部)
15 信号処理部
16 ガス圧力信号
事故電流
遮断電流
ΔP ガス圧力上昇値
ΔP 整定値
ΔP 第1のガス圧力上昇値
ΔP 第2のガス圧力上昇値
ガス区画内事故発生後のガス圧力
ガス区画内事故発生前のガス圧力
ΔPARC 遮断アークのエネルギーによるガス圧力上昇値
ΔP 事故アークのエネルギーによるガス圧力上昇値
DESCRIPTION OF SYMBOLS 1 Metal container 2 Insulating spacer 3 Circuit breaker 4 Electrical conductor 5 Insulating gas 6 Accident arc 7 Breaking arc 10 Gas insulated switchgear 11 Gas pressure sensor (pressure detector)
12 A / D converter 13 Gas pressure measurement unit 14 Determination processing unit (determination unit)
15 signal processor 16 the gas pressure signal I G fault current I S breaking current [Delta] P gas pressure increase value [Delta] P 0 set value [Delta] P 1 a first gas pressure increase value [Delta] P 2 second gas pressure increase value P k gas compartment accident after the gas pressure P m gas compartment accident before the gas pressure [Delta] P aRC cutoff arc energy by gas pressure increase value [Delta] P G accidents arc energy by gas pressure rise value of

Claims (6)

筒状の金属容器内に通電導体を配置し絶縁ガスを充填したガス絶縁開閉装置内で発生した閃絡事故の事故点を標定する事故点標定装置であって、
前記金属容器内に画成されるガス区画に設置された圧力検出器からの圧力信号に基づいて、前記ガス区画内の圧力を計測する圧力計測部と、
前記圧力計測部で計測された圧力の圧力上昇値が所定の整定値より大きいとき圧力信号が検出されたガス区画で閃絡事故が発生したと判定する判定部と、
を備え、
前記整定値は、閃絡事故発生時点から閃絡事故発生に伴うアークが消弧するまでの期間において想定される圧力上昇値の下限値より小さく、かつ、前記ガス区画に設置された遮断器に対する動作開始指令が出力されてから前記遮断器の遮断動作に伴うアークが消弧するまでの期間において想定される圧力上昇値の上限値より大きい値に設定されていること、を特徴とする事故点標定装置。
An accident point locating device for locating an accident point of a flashover accident occurring in a gas insulated switchgear in which a conducting conductor is arranged in a cylindrical metal container and filled with an insulating gas,
A pressure measurement unit that measures the pressure in the gas compartment based on a pressure signal from a pressure detector installed in the gas compartment defined in the metal container;
A determination unit that determines that a flashover accident has occurred in the gas section in which the pressure signal is detected when the pressure increase value of the pressure measured by the pressure measurement unit is greater than a predetermined settling value;
With
The set value is smaller than a lower limit value of a pressure increase value assumed in a period from the occurrence of a flashover accident to the extinction of an arc accompanying the occurrence of a flashover accident, and for the breaker installed in the gas compartment Accident point characterized in that it is set to a value larger than the upper limit value of the pressure increase value assumed in the period from the output of the operation start command to the extinction of the arc associated with the circuit breaker operation. Orientation device.
前記整定値は、閃絡事故発生時点から閃絡事故発生に伴うアークが消弧するまでの期間と、閃絡事故発生時に通電導体に印加される電圧と、閃絡事故発生時に通電導体に流れる電流とに基づいて算出される圧力上昇値の下限値より小さく、かつ、前記ガス区画に設置された遮断器に対する動作開始指令が出力されてから前記遮断器の遮断動作に伴うアークが消弧するまでの期間と、遮断動作時のアーク電圧と、遮断動作時のアーク電流とに基づいて算出される圧力上昇値の上限値より大きい値に設定されていること、を特徴とする請求項1に記載の事故点標定装置。   The set value flows from the time of the flash accident until the arc associated with the occurrence of the flash accident extinguishes, the voltage applied to the conducting conductor at the time of the flash accident, and the flowing conductor at the time of the flash accident. The arc associated with the breaking operation of the circuit breaker is extinguished after the operation start command for the circuit breaker installed in the gas compartment is output, which is smaller than the lower limit value of the pressure increase value calculated based on the current. The pressure is set to a value greater than the upper limit value of the pressure increase value calculated based on the period up to, the arc voltage during the breaking operation, and the arc current during the breaking operation. The accident location system described. 前記判定部は、前記圧力上昇値が前記整定値より小さいとき圧力信号が検出されたガス区画で閃絡事故が発生していないと判定すること、を特徴とする請求項1または2に記載の事故点標定装置。   3. The determination unit according to claim 1, wherein when the pressure increase value is smaller than the set value, the determination unit determines that a flashover accident has not occurred in the gas section in which the pressure signal is detected. Accident point locator. 筒状の金属容器内に通電導体を配置し絶縁ガスを充填したガス絶縁開閉装置内で発生した閃絡事故の事故点を標定する事故点標定装置に適用可能な事故点標定方法であって、
前記金属容器内に画成されるガス区画に設置された圧力検出器からの圧力信号を受信する圧力信号受信ステップと、
前記圧力信号に基づき、ガス区画内の圧力を計測する圧力計測ステップと、
前記圧力計測ステップにて計測された圧力の圧力値を所定のタイミングで算出する圧力値算出ステップと、
前記圧力値算出ステップにて算出された圧力値に基づいて圧力上昇値を演算する圧力上昇値演算ステップと、
閃絡事故発生時点から閃絡事故発生に伴うアークが消弧するまでの期間において想定される圧力上昇値の下限値より小さく、かつ、前記ガス区画に設置された遮断器に対する動作開始指令が出力されてから前記遮断器の遮断動作に伴うアークが消弧するまでの期間において想定される圧力上昇値の上限値より大きい整定値と、前記圧力上昇値演算ステップにて演算された圧力上昇値と、を比較する比較ステップと、
を含むことを特徴とする事故点標定方法。
An accident point locating method applicable to an accident point locating device for locating an accident point of a flashover accident occurring in a gas insulated switchgear in which a conducting conductor is arranged in a cylindrical metal container and filled with an insulating gas,
A pressure signal receiving step of receiving a pressure signal from a pressure detector installed in a gas compartment defined in the metal container;
A pressure measuring step for measuring the pressure in the gas compartment based on the pressure signal;
A pressure value calculating step for calculating the pressure value of the pressure measured in the pressure measuring step at a predetermined timing;
A pressure increase value calculating step for calculating a pressure increase value based on the pressure value calculated in the pressure value calculating step;
An operation start command is output for the circuit breaker installed in the gas compartment that is smaller than the lower limit of the assumed pressure rise value during the period from the time of the flash accident to the extinction of the arc associated with the occurrence of the flash accident. A settling value larger than the upper limit value of the pressure rise value assumed in the period from when the arc accompanying the breaking operation of the breaker is extinguished, and the pressure rise value calculated in the pressure rise value calculation step Comparing steps,
Accident point location method characterized by including.
筒状の金属容器内に通電導体を配置し絶縁ガスを充填したガス絶縁開閉装置内で発生した閃絡事故の事故点を標定する事故点標定装置に適用可能な事故点標定方法であって、
前記金属容器内に画成されるガス区画に設置された圧力検出器からの圧力信号を受信する圧力信号受信ステップと、
前記圧力信号に基づき、ガス区画内の圧力を計測する圧力計測ステップと、
前記圧力計測ステップにて計測された圧力の圧力値を所定のタイミングで算出する圧力値算出ステップと、
前記圧力値算出ステップにて算出された圧力値に基づいて圧力上昇値を演算する圧力上昇値演算ステップと、
閃絡事故発生時点から閃絡事故発生に伴うアークが消弧するまでの期間と、閃絡事故発生時に通電導体に印加される電圧と、閃絡事故発生時に通電導体に流れる電流とに基づいて算出される圧力上昇値の下限値より小さく、かつ、前記ガス区画に設置された遮断器に対する動作開始指令が出力されてから前記遮断器の遮断動作に伴うアークが消弧するまでの期間と、遮断動作時のアーク電圧と、遮断動作時のアーク電流とに基づいて算出される圧力上昇値の上限値より大きい整定値と、前記圧力上昇値演算ステップにて演算された圧力上昇値と、を比較する比較ステップと、
を含むことを特徴とする事故点標定方法。
An accident point locating method applicable to an accident point locating device for locating an accident point of a flashover accident occurring in a gas insulated switchgear in which a conducting conductor is arranged in a cylindrical metal container and filled with an insulating gas,
A pressure signal receiving step of receiving a pressure signal from a pressure detector installed in a gas compartment defined in the metal container;
A pressure measuring step for measuring the pressure in the gas compartment based on the pressure signal;
A pressure value calculating step for calculating the pressure value of the pressure measured in the pressure measuring step at a predetermined timing;
A pressure increase value calculating step for calculating a pressure increase value based on the pressure value calculated in the pressure value calculating step;
Based on the period from the time of the flash accident to the extinction of the arc associated with the occurrence of the flash accident, the voltage applied to the conducting conductor at the time of the flash accident, and the current flowing through the conducting conductor at the time of the flash accident A period from the time when the operation start command for the circuit breaker installed in the gas section is output to the time when the arc associated with the circuit breaker is extinguished is smaller than the lower limit value of the calculated pressure increase value; A settling value larger than the upper limit value of the pressure increase value calculated based on the arc voltage during the interruption operation and the arc current during the interruption operation, and the pressure increase value calculated in the pressure increase value calculation step. A comparison step to compare;
Accident point location method characterized by including.
前記比較ステップは、前記圧力上昇値演算ステップにて演算された圧力上昇値が前記整定値より大きいとき圧力信号が検出されたガス区画で閃絡事故が発生したと判定し、前記圧力上昇値演算ステップにて演算された圧力上昇値が前記整定値より小さいとき圧力信号が検出されたガス区画で閃絡事故が発生していないと判定する判定ステップを含むこと、を特徴とする請求項4または5に記載の事故点標定方法。   The comparison step determines that a flashing accident has occurred in the gas section where the pressure signal is detected when the pressure increase value calculated in the pressure increase value calculation step is greater than the set value, and calculates the pressure increase value 5. The method according to claim 4, further comprising a determination step of determining that a flashover accident has not occurred in the gas section where the pressure signal is detected when the pressure increase value calculated in the step is smaller than the set value. 5. Accident point location method described in 5.
JP2010113306A 2010-05-17 2010-05-17 Accident point location device and accident point location method Active JP5388945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113306A JP5388945B2 (en) 2010-05-17 2010-05-17 Accident point location device and accident point location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113306A JP5388945B2 (en) 2010-05-17 2010-05-17 Accident point location device and accident point location method

Publications (2)

Publication Number Publication Date
JP2011244567A true JP2011244567A (en) 2011-12-01
JP5388945B2 JP5388945B2 (en) 2014-01-15

Family

ID=45410643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113306A Active JP5388945B2 (en) 2010-05-17 2010-05-17 Accident point location device and accident point location method

Country Status (1)

Country Link
JP (1) JP5388945B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415958A (en) * 2014-06-06 2017-02-15 三菱电机株式会社 Switchgear
CN106771927A (en) * 2017-01-04 2017-05-31 山东送变电工程公司 A kind of pressure-resistant Fault Locating Methods of GIS and failure cause determination methods, the positioner using the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294838A (en) * 1993-04-09 1994-10-21 Mitsubishi Electric Corp Fault section spotting method for gas insulation switching apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294838A (en) * 1993-04-09 1994-10-21 Mitsubishi Electric Corp Fault section spotting method for gas insulation switching apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415958A (en) * 2014-06-06 2017-02-15 三菱电机株式会社 Switchgear
CN106771927A (en) * 2017-01-04 2017-05-31 山东送变电工程公司 A kind of pressure-resistant Fault Locating Methods of GIS and failure cause determination methods, the positioner using the method
CN106771927B (en) * 2017-01-04 2023-10-17 山东送变电工程有限公司 GIS voltage withstand fault positioning method, fault cause judging method using same and positioning device

Also Published As

Publication number Publication date
JP5388945B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
KR100883266B1 (en) SWNT-UHF Combined Sensor and Gas Insulated Switchgear Using the same
CA2772219C (en) Method and apparatus for protecting power systems from extraordinary electromagnetic pulses
CN85107983A (en) The device of detecting position of internal fault of gas insulated bus
KR101849407B1 (en) Method, system, and apparatus for detecting an arc event using breaker status
US20100045301A1 (en) Apparatus and method for monitoring high voltage capacitors
CN107449998B (en) Interference arc identification unit
KR102117938B1 (en) Partial discharge monitoring system of power device
KR102104835B1 (en) Gis for 29kv with prevention apparatus for secondary circuit opening of current transformer
KR20110108550A (en) Gas leakage measurement apparatus in the gas insulated transmission line
CN107450000B (en) Interference arc identification unit
JP5388945B2 (en) Accident point location device and accident point location method
KR20110045854A (en) Apparatus and method for detecting arc fault in power supply networks
US20200328584A1 (en) Arcing fault recognition unit
JP4255105B2 (en) Electricity detection and deterioration diagnosis device
JP6118627B2 (en) Vacuum leak monitoring device for vacuum valve
JP2012075233A (en) Fault point locating device and fault point locating method
US20200194200A1 (en) Vacuum interrupter leak detection using local current and voltage measurements
Schellekens Continuous vacuum monitoring in vacuum circuit breakers
JP4641262B2 (en) Fault location device and method for gas insulated switchgear
KR101602060B1 (en) Apparatus and method for detecting fault point using protection relay
JP2016129458A (en) Momentary voltage drop avoidance system
JP7480445B1 (en) Insulation monitoring device
JP7480444B1 (en) Insulation monitoring system and insulation monitoring method
JPH08241654A (en) Failure detecting device for gas-blast circuit-breaker
JPH01213926A (en) Over-voltage preventive device for vacuum opening/ closing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250