JP2011242414A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2011242414A
JP2011242414A JP2010111596A JP2010111596A JP2011242414A JP 2011242414 A JP2011242414 A JP 2011242414A JP 2010111596 A JP2010111596 A JP 2010111596A JP 2010111596 A JP2010111596 A JP 2010111596A JP 2011242414 A JP2011242414 A JP 2011242414A
Authority
JP
Japan
Prior art keywords
lens
imaging lens
curvature
object side
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010111596A
Other languages
Japanese (ja)
Other versions
JP5548845B2 (en
Inventor
Yoji Kubota
洋治 久保田
Kenichi Kubota
賢一 久保田
Hitoshi Hirano
整 平野
Ichiro Kurihara
一郎 栗原
Yoshio Ise
善男 伊勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Logic Inc
Kantatsu Co Ltd
Original Assignee
Optical Logic Inc
Kantatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Logic Inc, Kantatsu Co Ltd filed Critical Optical Logic Inc
Priority to JP2010111596A priority Critical patent/JP5548845B2/en
Publication of JP2011242414A publication Critical patent/JP2011242414A/en
Application granted granted Critical
Publication of JP5548845B2 publication Critical patent/JP5548845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging lens capable of favorably correcting aberration although the lens is small in size.SOLUTION: The imaging lens is constituted by sequentially arranging, from an object side to an image plane side, a positive first lens L1 having a meniscus shape with a convex face near the optical axis opposing to the object side, a negative second lens L2 having both-side concave faces near the optical axis, and a positive third lens L3 having a meniscus shape with a convex face near the optical axis opposing to the object side. In this configuration, a focal length f of the whole lens system, and focal lengths f1, f2 and f3 of the first to third lenses L1, L2 and L3, respectively, satisfy conditional expressions of f1<|f2|, f1<f3 and 0.5<f1/f<1.0.

Description

本発明は、CCDセンサやCMOSセンサ等の撮像素子上に被写体像を形成する撮像レンズに係り、携帯電話機、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、車載カメラ、ネットワークカメラ等の比較的小型のカメラに搭載されて好適な撮像レンズに関するものである。   The present invention relates to an imaging lens that forms a subject image on an imaging element such as a CCD sensor or a CMOS sensor, and is relatively small such as a mobile phone, a digital still camera, a portable information terminal, a security camera, an in-vehicle camera, and a network camera. The present invention relates to an imaging lens suitable for being mounted on a camera.

上記小型のカメラに搭載される撮像レンズには、小型化はもちろんのこと、近年の高画素化された撮像素子にも対応することのできる解像度の高いレンズ構成が要求される。従来、レンズ構成として様々なものが提案されてきたが、中でも3枚のレンズから構成される撮像レンズは、各種の収差が比較的良好に補正され、小型化にも適していることから多くのカメラに採用されている。   The imaging lens mounted on the above-mentioned small camera is required to have a lens structure with high resolution that can be used not only for downsizing but also for recent imaging elements with high pixels. Conventionally, various lens configurations have been proposed. Among them, an imaging lens composed of three lenses has various aberrations corrected relatively well and is suitable for miniaturization. It is used in cameras.

3枚構成の撮像レンズとしては、例えば特許文献1に記載の撮像レンズが知られている。当該撮像レンズは、物体側から順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズとから構成されており、レンズ系全体の焦点距離に対して第3レンズの焦点距離を短く、すなわち第3レンズの屈折力を比較的強くするとともに、第2レンズの屈折力を第1レンズよりも強くすることによって像面湾曲やコマ収差等の補正を図っている。   For example, an imaging lens described in Patent Document 1 is known as a three-lens imaging lens. The imaging lens includes, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a positive refractive power. When the focal length of the third lens is shortened relative to the entire focal length, that is, the refractive power of the third lens is relatively strong and the refractive power of the second lens is stronger than that of the first lens, We are trying to correct coma and the like.

特開2008−76594号公報JP 2008-76594 A

近年、携帯電話機をはじめ、カメラの小型化および高画素化が急速に進んでおり、撮像レンズに対して要求される性能も従来にも増して厳しいものとなっている。上記特許文献1に記載の撮像レンズによれば、確かに収差は良好に補正できるものの、レンズ系の合成焦点距離が比較的長いことから第1レンズの物体側の面から像面までの光軸上の距離を短縮することは難しい。   In recent years, the downsizing and the increase in the number of pixels of a camera such as a mobile phone are rapidly progressing, and the performance required for the imaging lens is also stricter than before. According to the imaging lens described in Patent Document 1, although aberration can be corrected satisfactorily, the combined focal length of the lens system is relatively long, so that the optical axis from the object-side surface of the first lens to the image plane. It is difficult to shorten the distance above.

本発明は上記のような従来技術の問題点に鑑みてなされたものであり、その目的は、小型でありながらも収差を良好に補正することのできる撮像レンズを提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an imaging lens that can correct aberrations satisfactorily while being small in size.

上記課題を解決するために、本発明では、物体側から像面側に向かって順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズとを配置し、第1レンズを、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成し、第2レンズを、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状に形成し、第3レンズを、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成し、レンズ系全体の焦点距離をf、第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第3レンズの焦点距離をf3としたとき、下記条件式(1)、(2a)、(3)を満足するように構成した。
f1<|f2| (1)
f1<f3 (2a)
0.5<f1/f<1.0 (3)
In order to solve the above problems, in the present invention, in order from the object side to the image plane side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a positive refractive power The first lens is formed into a shape in which the curvature radius of the object side surface and the curvature radius of the image side surface are both positive, and the second lens is formed on the object side surface. A shape in which the radius of curvature is negative and the curvature radius of the image-side surface is positive, and the third lens is shaped so that both the curvature radius of the object-side surface and the curvature radius of the image-side surface are positive. Where the focal length of the entire lens system is f, the focal length of the first lens is f1, the focal length of the second lens is f2, and the focal length of the third lens is f3. It was configured to satisfy (2a) and (3).
f1 <| f2 | (1)
f1 <f3 (2a)
0.5 <f1 / f <1.0 (3)

また、本発明では、物体側から像面側に向かって順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとを配置し、第1レンズを、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成し、第2レンズを、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状に形成し、第3レンズを、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成し、レンズ系全体の焦点距離をf、第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第3レンズの焦点距離をf3としたとき、下記条件式(1)、(2b)、(3)を満足するように構成した。
f1<|f2| (1)
f1<|f3| (2b)
0.5<f1/f<1.0 (3)
In the present invention, in order from the object side to the image plane side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a negative refractive power are provided. The first lens is formed into a shape in which both the radius of curvature of the object side surface and the curvature radius of the image side surface are positive, and the second lens has a negative radius of curvature of the object side surface; A lens system is formed in a shape in which the curvature radius of the image side surface is positive, and the third lens is formed in a shape in which both the curvature radius of the object side surface and the curvature radius of the image side surface are positive. When the entire focal length is f, the focal length of the first lens is f1, the focal length of the second lens is f2, and the focal length of the third lens is f3, the following conditional expressions (1), (2b), (3 ).
f1 <| f2 | (1)
f1 <| f3 | (2b)
0.5 <f1 / f <1.0 (3)

条件式(1)、(2a)および(2b)は、撮像レンズの光軸に沿った長さ(厚さ)を短縮し、撮像レンズの小型化を図るための条件である。これら条件式に示されるように、第1レンズの屈折力を第2レンズおよび第3レンズのそれぞれの屈折力よりも強くすることにより、レンズ系全体の屈折力が主としてこの第1レンズに集中することになる。本発明において第1レンズは、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状、すなわち光軸近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成される。このため、屈折力の強い第1レンズの主点の位置が物体側に移動することになり、その結果、レンズ系全体の主点の位置が物体側に移動するため、撮像レンズの小型化が好適に図られる。   Conditional expressions (1), (2a), and (2b) are conditions for shortening the length (thickness) along the optical axis of the imaging lens and reducing the size of the imaging lens. As shown in these conditional expressions, by making the refractive power of the first lens stronger than that of each of the second lens and the third lens, the refractive power of the entire lens system is mainly concentrated on the first lens. It will be. In the present invention, the first lens is formed into a shape in which the curvature radius of the object side surface and the curvature radius of the image side surface are both positive, that is, a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis. Is done. For this reason, the position of the principal point of the first lens having a strong refractive power moves to the object side, and as a result, the position of the principal point of the entire lens system moves to the object side. Preferably.

また、本発明では、第3レンズの物体側の面の曲率半径が正、すなわち物体側に凸面を向けた形状であることから、第2レンズの像面側の面形状によっては、第2レンズと第3レンズとの間の光軸上の距離が長くなるおそれがある。そこで本発明では、第2レンズの形状を、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状、すなわち光軸近傍において両凹レンズとなる形状にすることで、第2レンズと第3レンズとの間の光軸上の距離の長大化を抑制し、撮像レンズの小型化がより効率的に図られるようにした。   In the present invention, since the radius of curvature of the object side surface of the third lens is positive, that is, a shape in which the convex surface faces the object side, the second lens depends on the surface shape of the second lens on the image surface side. The distance on the optical axis between the lens and the third lens may be long. Therefore, in the present invention, the shape of the second lens is a shape in which the radius of curvature of the object side surface is negative and the radius of curvature of the image side surface is positive, that is, a shape that forms a biconcave lens near the optical axis. Thus, the increase in the distance on the optical axis between the second lens and the third lens is suppressed, and the imaging lens can be more efficiently reduced in size.

条件式(3)は、撮像レンズの小型化を図りつつ、像面湾曲を良好な範囲内に抑制するための条件である。上限値「1.0」を超えると、レンズ系全体の屈折力に比較して第1レンズの屈折力が相対的に弱くなるため、撮像レンズの厚さを短縮することが困難になる。また、第2レンズおよび第3レンズの屈折力が第1レンズに比較して相対的に強くなるため、像面湾曲を良好な範囲内に抑制することが困難になる。一方、下限値「0.5」を下回ると、レンズ系全体の屈折力に比較して第1レンズの屈折力が相対的に強くなるため、撮像レンズの小型化には有利となるものの、バックフォーカスの短縮化を招く。通常、本発明に係る撮像レンズのようなレンズ系と撮像素子の像面との間には、赤外線カットフィルターやカバーガラス等の挿入物が挿入されることが多い。バックフォーカスが短くなると、こうした挿入物を挿入するための空間の確保が困難になる。また、第1レンズの屈折力が相対的に強くなることに伴い像面が物体側に倒れ、良好な結像性能を確保することも困難になる。   Conditional expression (3) is a condition for suppressing the field curvature within a favorable range while reducing the size of the imaging lens. When the upper limit “1.0” is exceeded, the refractive power of the first lens becomes relatively weak compared to the refractive power of the entire lens system, and therefore it is difficult to reduce the thickness of the imaging lens. In addition, since the refractive power of the second lens and the third lens is relatively stronger than that of the first lens, it is difficult to suppress the curvature of field within a favorable range. On the other hand, if the value is below the lower limit “0.5”, the refractive power of the first lens becomes relatively stronger than the refractive power of the entire lens system, which is advantageous for downsizing the imaging lens. The focus is shortened. Usually, an insert such as an infrared cut filter or a cover glass is often inserted between a lens system such as the imaging lens according to the present invention and the image plane of the imaging device. When the back focus is shortened, it is difficult to secure a space for inserting such an insert. Further, as the refractive power of the first lens becomes relatively strong, the image plane falls to the object side, and it becomes difficult to ensure good imaging performance.

上記条件式(1)〜(3)を満足することにより、撮像レンズの小型化と良好な収差補正との両立を図ることができる。   By satisfying the above conditional expressions (1) to (3), it is possible to achieve both the downsizing of the imaging lens and good aberration correction.

また、上記構成の撮像レンズにおいては、第2レンズおよび第3レンズの合成焦点距離をf23としたとき、第3レンズの屈折力が正の場合には下記条件式(4a)を、第3レンズの屈折力が負の場合には下記条件式(4b)をそれぞれ満足することが望ましい。
−1.5<f23/f3<−0.8 (4a)
0.5<f23/f3<1.2 (4b)
In the imaging lens having the above configuration, when the combined focal length of the second lens and the third lens is f23, and the refractive power of the third lens is positive, the following conditional expression (4a) It is desirable that the following conditional expression (4b) is satisfied when the refractive power of is negative.
−1.5 <f23 / f3 <−0.8 (4a)
0.5 <f23 / f3 <1.2 (4b)

上記条件式(4a)および(4b)は、撮像レンズから出射された光線の撮像素子への入射角度を一定の範囲内に抑制しつつ、軸上および軸外の色収差を良好な範囲内に抑制するための条件である。周知のように、撮像素子に取り込むことのできる光線には、撮像素子の構造上、入射角度上の限界として、いわゆる最大入射角度が設けられている。この最大入射角度の範囲外の光線が撮像素子に入射した場合には、シェーディング現象によって周辺部の暗い画像となってしまう。そこで、撮像レンズから出射される光線の撮像素子への入射角度を一定の範囲内に抑制する必要がある。   The above conditional expressions (4a) and (4b) suppress the on-axis and off-axis chromatic aberration within a good range while suppressing the incident angle of the light beam emitted from the imaging lens to the image sensor. It is a condition to do. As is well known, a so-called maximum incident angle is provided as a limit on the incident angle of the light beam that can be taken into the image sensor due to the structure of the image sensor. When light rays outside the range of the maximum incident angle are incident on the image sensor, a dark image in the peripheral portion is generated due to the shading phenomenon. Therefore, it is necessary to suppress the incident angle of the light beam emitted from the imaging lens to the imaging element within a certain range.

上記条件式(4a)の上限値を超える場合、あるいは上記条件式(4b)の下限値を下回る場合には、第3レンズの屈折力が相対的に弱くなり、軸上および軸外の色収差を良好な範囲内に抑制し易くなるものの、撮像レンズから出射される光線の撮像素子への入射角度を一定の範囲内に抑制することが困難となる。一方、上記条件式(4a)の下限値を下回る場合、あるいは上記条件式(4b)の上限値を超える場合には、第3レンズの屈折力が相対的に強くなり、撮像レンズから出射される光線の撮像素子への入射角度を一定の範囲内に抑制し易くなるものの、軸上および軸外の色収差が補正不足(基準波長に対し短波長がマイナス方向に増大)となり、良好な結像性能を得ることが困難になる。   When the upper limit value of the conditional expression (4a) is exceeded, or when the lower limit value of the conditional expression (4b) is exceeded, the refractive power of the third lens becomes relatively weak, and the on-axis and off-axis chromatic aberration is reduced. Although it is easy to suppress within a good range, it is difficult to suppress the incident angle of the light beam emitted from the imaging lens to the imaging element within a certain range. On the other hand, when the lower limit value of the conditional expression (4a) is not reached or when the upper limit value of the conditional expression (4b) is exceeded, the refractive power of the third lens becomes relatively strong and is emitted from the imaging lens. Although it is easy to suppress the incident angle of light rays to the image sensor within a certain range, the on-axis and off-axis chromatic aberration is undercorrected (short wavelength increases in the minus direction with respect to the reference wavelength), and good imaging performance It becomes difficult to get.

上記構成の撮像レンズにおいては、下記条件式(5)をさらに満足することが望ましい。
−1.0<f1/f2<−0.5 (5)
In the imaging lens having the above configuration, it is preferable that the following conditional expression (5) is further satisfied.
−1.0 <f1 / f2 <−0.5 (5)

条件式(5)は、撮像レンズの厚さを短縮しつつ、軸上の色収差、軸外の倍率色収差、および像面湾曲を良好な範囲内に抑制するための条件である。上限値「−0.5」を超えると、撮像レンズの厚さの短縮には有効であるものの、軸上の色収差が補正不足(基準波長に対し短波長がマイナス方向に増大)になるとともに、軸外の倍率色収差が補正不足となる。また、像面は物体側に倒れることになる。このため、良好な結像性能を得ることが困難になる。一方、下限値「−1.0」を下回ると、軸外の倍率色収差が補正過剰(基準波長に対し短波長がプラス方向に増大)となり、また像面が像面側に倒れるため、この場合も良好な結像性能を得ることは困難となる。   Conditional expression (5) is a condition for suppressing on-axis chromatic aberration, off-axis magnification chromatic aberration, and field curvature within a favorable range while reducing the thickness of the imaging lens. Exceeding the upper limit “−0.5” is effective for shortening the thickness of the imaging lens, but the axial chromatic aberration is undercorrected (short wavelength increases in the negative direction with respect to the reference wavelength). Off-axis lateral chromatic aberration is undercorrected. Further, the image plane falls to the object side. This makes it difficult to obtain good imaging performance. On the other hand, when the value is below the lower limit “−1.0”, the off-axis lateral chromatic aberration is overcorrected (the short wavelength increases in the positive direction with respect to the reference wavelength), and the image plane falls to the image plane side. However, it is difficult to obtain good imaging performance.

上記構成の撮像レンズにおいては、第2レンズの物体側の面の曲率半径をRf、像面側の面の曲率半径をRrとしたとき、下記条件式(6)を満足することが望ましい。
−0.30<Rf/Rr<0 (6)
In the imaging lens having the above configuration, it is desirable that the following conditional expression (6) is satisfied, where Rf is the curvature radius of the object side surface of the second lens and Rr is the curvature radius of the image side surface.
−0.30 <Rf / Rr <0 (6)

条件式(6)は、撮像レンズの厚さを短縮しつつ、収差を良好な範囲内に抑制するための条件である。上限値「0」を超えると、レンズ系の主点の位置が像面側に移動するため、撮像レンズの小型化が困難となる。一方、下限値「−0.30」を下回ると、レンズ系の主点の位置が物体側に移動するため、撮像レンズの小型化には有利となるものの、像面が補正過剰(プラス方向に増大)となる。また、外方コマ収差も増大するため、収差の補正された良好な結像性能を得ることが困難となる。   Conditional expression (6) is a condition for suppressing the aberration within a favorable range while reducing the thickness of the imaging lens. If the upper limit value “0” is exceeded, the position of the principal point of the lens system moves to the image plane side, making it difficult to reduce the size of the imaging lens. On the other hand, if the value falls below the lower limit “−0.30”, the position of the principal point of the lens system moves to the object side, which is advantageous for downsizing the imaging lens, but the image plane is overcorrected (in the positive direction). Increase). Further, since outward coma also increases, it becomes difficult to obtain good imaging performance with corrected aberration.

上記構成の撮像レンズにおいては、第1レンズと第2レンズとの間の間隔をdA、第2レンズと第3レンズとの間の間隔をdBとしたとき、下記条件式(7)を満足することが望ましい。
0.25<dA/dB<0.7 (7)
In the imaging lens having the above configuration, when the distance between the first lens and the second lens is dA and the distance between the second lens and the third lens is dB, the following conditional expression (7) is satisfied. It is desirable.
0.25 <dA / dB <0.7 (7)

条件式(7)は、球面収差およびコマ収差を良好な範囲内に抑制するための条件である。第2レンズを、条件式(7)により規定される範囲内に配置することにより、球面収差およびコマ収差を良好な範囲内に抑制することができる。上限値「0.7」を超えると、球面収差が補正過剰となり、軸上の色収差が補正不足となる。また、軸外光線による内方コマ収差が増大し、各収差を良好な範囲内に抑制することが困難となる。一方、下限値「0.25」を下回ると、球面収差が補正不足となり、また軸外光線による外方コマ収差が増大する。よってこの場合も、各収差を良好な範囲内に抑制することが困難となる。   Conditional expression (7) is a condition for suppressing spherical aberration and coma aberration within a favorable range. By disposing the second lens within the range defined by conditional expression (7), spherical aberration and coma aberration can be suppressed within a favorable range. If the upper limit “0.7” is exceeded, spherical aberration will be overcorrected, and axial chromatic aberration will be undercorrected. In addition, inward coma due to off-axis rays increases, making it difficult to suppress each aberration within a favorable range. On the other hand, below the lower limit “0.25”, the spherical aberration is insufficiently corrected, and the outward coma aberration due to off-axis rays increases. Therefore, also in this case, it is difficult to suppress each aberration within a favorable range.

さらに、上記構成の撮像レンズにおいては、球面収差およびコマ収差をより良好な範囲内に抑制するために下記条件式(7A)を満足することが望ましい。
0.3<dA/dB<0.65 (7A)
Furthermore, in the imaging lens having the above-described configuration, it is desirable that the following conditional expression (7A) is satisfied in order to suppress spherical aberration and coma aberration in a better range.
0.3 <dA / dB <0.65 (7A)

本発明の撮像レンズによれば、撮像レンズの小型化と良好な収差補正との両立が図られ、各種の収差が良好に補正された小型の撮像レンズを提供することができる。   According to the imaging lens of the present invention, it is possible to provide both a compact imaging lens in which various types of aberrations are favorably corrected while achieving both a reduction in size of the imaging lens and good aberration correction.

本発明の一実施の形態について、数値実施例1に係る撮像レンズの概略構成を示すレンズ断面図である。1 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 1 according to an embodiment of the present invention. 図1に示す撮像レンズの横収差を示す収差図である。FIG. 3 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 1. 図1に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 2 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 1. 本発明の一実施の形態について、数値実施例2に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 6 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 2 according to an embodiment of the present invention. 図4に示す撮像レンズの横収差を示す収差図である。FIG. 5 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 4. 図4に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 5 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 4. 本発明の一実施の形態について、数値実施例3に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 5 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 3 according to an embodiment of the present invention. 図7に示す撮像レンズの横収差を示す収差図である。FIG. 8 is an aberration diagram showing lateral aberration of the imaging lens shown in FIG. 7. 図7に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 8 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 7. 本発明の一実施の形態について、数値実施例4に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 10 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 4 according to an embodiment of the present invention. 図10に示す撮像レンズの横収差を示す収差図である。FIG. 11 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 10. 図10に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 11 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 10. 本発明の一実施の形態について、数値実施例5に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 10 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 5 according to an embodiment of the present invention. 図13に示す撮像レンズの横収差を示す収差図である。FIG. 14 is an aberration diagram illustrating lateral aberration of the imaging lens illustrated in FIG. 13. 図13に示す撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 14 is an aberration diagram illustrating spherical aberration, astigmatism, and distortion of the imaging lens illustrated in FIG. 13.

(第1の実施の形態)
以下、本発明を具体化した第1の実施の形態について、図面を参照しながら詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1、図4、図7はそれぞれ、本実施の形態の数値実施例1〜3に対応するレンズ断面図を示したものである。いずれの数値実施例も基本的なレンズ構成は同一であるため、ここでは数値実施例1のレンズ断面図を参照しながら、本実施の形態のレンズ構成について説明する。   1, 4, and 7 are lens cross-sectional views corresponding to Numerical Examples 1 to 3 of the present embodiment, respectively. Since any of the numerical examples has the same basic lens configuration, the lens configuration of the present embodiment will be described with reference to the lens cross-sectional view of Numerical Example 1.

図1に示すように、本実施の形態に係る撮像レンズは、物体側から像面側に向かって順に、開口絞りSTと、正の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2と、正の屈折力を有する第3レンズL3とが配列されて構成される。第3レンズL3と撮像素子の像面IMとの間には、カバーガラス10が配置される。なお、このカバーガラス10は割愛することも可能である。   As shown in FIG. 1, the imaging lens according to the present embodiment has an aperture stop ST, a first lens L1 having a positive refractive power, and a negative refractive power in order from the object side to the image plane side. The second lens L2 and the third lens L3 having positive refractive power are arranged. A cover glass 10 is disposed between the third lens L3 and the image plane IM of the image sensor. The cover glass 10 can be omitted.

第1レンズL1は、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状、すなわち光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成されている。第2レンズL2は、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状、すなわち光軸Xの近傍において両凹レンズとなる形状に形成されている。第3レンズL3は、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状、すなわち光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成されている。なお、本実施の形態においてこの第3レンズL3は、物体側の面および像面側の面が共に、光軸Xの近傍において物体側に凸形状で且つ周辺部において物体側に凹形状となる非球面形状に形成されている。   The first lens L1 is formed into a shape in which both the radius of curvature of the object side surface and the curvature radius of the image side surface are positive, that is, a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis X. Has been. The second lens L2 is formed in a shape in which the radius of curvature of the object side surface is negative and the radius of curvature of the image side surface is positive, that is, a shape that becomes a biconcave lens in the vicinity of the optical axis X. The third lens L3 is formed in a shape in which the curvature radius of the object side surface and the curvature radius of the image side surface are both positive, that is, a shape that becomes a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis X. Has been. In the present embodiment, the third lens L3 has both an object-side surface and an image-side surface that are convex toward the object side in the vicinity of the optical axis X and concave toward the object side at the periphery. It is formed in an aspherical shape.

本実施の形態では、第1レンズL1〜第3レンズL3のレンズ面の全てを非球面で形成している。これらレンズ面に採用する非球面形状は、光軸X方向の軸をZ、光軸Xに直交する方向の高さをH、円錐係数をk、非球面係数をA4、A6、A8、A10、A12、A14、A16としたとき、次式により表される(後述する第2の実施の形態においても同じ)。

Figure 2011242414
In the present embodiment, all the lens surfaces of the first lens L1 to the third lens L3 are aspherical. The aspherical shape employed for these lens surfaces is that the axis in the optical axis X direction is Z, the height in the direction orthogonal to the optical axis X is H, the conic coefficient is k, and the aspherical coefficients are A 4 , A 6 , A 8. , A 10 , A 12 , A 14 , and A 16 are expressed by the following formulas (the same applies to the second embodiment described later).
Figure 2011242414

本実施の形態に係る撮像レンズは、レンズ系全体の焦点距離をf、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3、第2レンズL2および第3レンズL3の合成焦点距離をf23、第2レンズL2の物体側の面の曲率半径をRf、第2レンズL2の像面側の面の曲率半径をRr、第1レンズL1と第2レンズL2との間の間隔をdA、第2レンズL2と第3レンズL3との間の間隔をdBとしたとき、次の各条件式を満足する。
f1<|f2| (1)
f1<f3 (2a)
0.5<f1/f<1.0 (3)
−1.5<f23/f3<−0.8 (4a)
−1.0<f1/f2<−0.5 (5)
−0.30<Rf/Rr<0 (6)
0.25<dA/dB<0.7 (7)
0.3<dA/dB<0.65 (7A)
In the imaging lens according to the present embodiment, the focal length of the entire lens system is f, the focal length of the first lens L1 is f1, the focal length of the second lens L2 is f2, the focal length of the third lens L3 is f3, The combined focal length of the second lens L2 and the third lens L3 is f23, the radius of curvature of the object side surface of the second lens L2 is Rf, the radius of curvature of the image side surface of the second lens L2 is Rr, and the first lens L1 When the distance between the second lens L2 and the second lens L2 is dA, and the distance between the second lens L2 and the third lens L3 is dB, the following conditional expressions are satisfied.
f1 <| f2 | (1)
f1 <f3 (2a)
0.5 <f1 / f <1.0 (3)
−1.5 <f23 / f3 <−0.8 (4a)
−1.0 <f1 / f2 <−0.5 (5)
−0.30 <Rf / Rr <0 (6)
0.25 <dA / dB <0.7 (7)
0.3 <dA / dB <0.65 (7A)

なお、上記条件式の全てを満たす必要はなく、上記条件式のそれぞれを単独に満たすことにより、各条件式に対応する作用効果を得ることができ、従来の撮像レンズに比較して良好に収差の補正された小型の撮像レンズを構成することができる。   Note that it is not necessary to satisfy all of the above conditional expressions. By satisfying each of the conditional expressions independently, it is possible to obtain the effects corresponding to each conditional expression, and aberrations are better than those of conventional imaging lenses. Thus, it is possible to construct a small imaging lens that has been corrected.

次に、本実施の形態の数値実施例を示す。各数値実施例において、fはレンズ系全体の焦点距離を、FnoはFナンバーを、ωは半画角をそれぞれ示す。また、iは物体側より数えた面番号を示し、Rは曲率半径を示し、dは光軸Xに沿ったレンズ面間の距離(面間隔)を示し、Ndはd線に対する屈折率を、νdはd線に対するアッベ数をそれぞれ示す。なお、非球面の面には、面番号iの後に*(アスタリスク)の符号を付加して示す(後述する第2の実施の形態においても同じ)。   Next, numerical examples of the present embodiment will be shown. In each numerical example, f represents the focal length of the entire lens system, Fno represents the F number, and ω represents the half angle of view. In addition, i indicates a surface number counted from the object side, R indicates a radius of curvature, d indicates a distance (surface interval) between lens surfaces along the optical axis X, Nd indicates a refractive index with respect to the d line, νd indicates the Abbe number with respect to the d line. An aspheric surface is indicated by adding a symbol of * (asterisk) after the surface number i (the same applies to the second embodiment described later).

数値実施例1
基本的なレンズデータを以下に示す。
f=2.778mm、Fno=2.781、ω=32.21°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
1(絞り) ∞ 0.0101
2* 0.991 0.4377 1.52470 56.2
3* 11.252 0.2000(=dA)
4* -1.888(=Rf) 0.2995 1.61420 26.0
5* 12.583(=Rr) 0.4300(=dB)
6* 1.256 0.6616 1.52470 56.2
7* 2.003 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.5936
(像面IM) ∞

非球面データ
第2面
k=0.000000,A4=7.328630E-02,A6=-2.929952E-01,A8=9.756204E-01
第3面
k=0.000000,A4=-1.402649E-01,A6=8.559119E-01,A8=-1.002302
第4面
k=0.000000,A4=-6.915185E-01,A6=5.621113,A8=-1.574395E+01,A10=1.659025E+01
,A12=-1.707965
第5面
k=0.000000,A4=-6.135715E-01,A6=4.249213,A8=-9.380550,A10=1.078944E+01,
12=-3.227468
第6面
k=-9.002869,A4=-7.304172E-02,A6=-3.563316E-01,A8=1.145037,A10=-1.886568,
12=1.748350,A14=-8.718579E-01,A16=1.812686E-01
第7面
k=-1.563085,A4=-2.460672E-01,A6=9.489244E-02,A8=-1.609943E-02,
10=-3.619836E-02,A12=2.638370E-02,A14=-5.759371E-03,A16=-3.783857E-04
Numerical example 1
Basic lens data is shown below.
f = 2.778mm, Fno = 2.781, ω = 32.21 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
1 (Aperture) ∞ 0.0101
2 * 0.991 0.4377 1.52470 56.2
3 * 11.252 0.2000 (= dA)
4 * -1.888 (= Rf) 0.2995 1.61420 26.0
5 * 12.583 (= Rr) 0.4300 (= dB)
6 * 1.256 0.6616 1.52470 56.2
7 * 2.003 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.5936
(Image plane IM) ∞

Aspheric data 2nd surface k = 0.000000, A 4 = 7.328630E-02, A 6 = -2.929952E-01, A 8 = 9.756204E-01
Third surface k = 0.000000, A 4 = -1.402649E-01, A 6 = 8.559119E-01, A 8 = -1.002302
4th surface k = 0.000000, A 4 = -6.915185E-01, A 6 = 5.621113, A 8 = -1.574395E + 01, A 10 = 1.659025E + 01
, A 12 = -1.707965
5th surface k = 0.000000, A 4 = -6.135715E-01, A 6 = 4.249213, A 8 = -9.380550, A 10 = 1.078944E + 01,
A 12 = -3.227468
6th surface k = -9.002869, A 4 = -7.304172E-02, A 6 = -3.563316E-01, A 8 = 1.145037, A 10 = -1.886568,
A 12 = 1.748350, A 14 = -8.718579E-01, A 16 = 1.812686E-01
7th surface k = -1.563085, A 4 = -2.460672E-01, A 6 = 9.489244E-02, A 8 = -1.609943E-02,
A 10 = -3.619836E-02, A 12 = 2.638370E-02, A 14 = -5.759371E-03, A 16 = -3.783857E-04

各レンズL1〜L3の焦点距離f1〜f3、第2レンズL2および第3レンズL3の合成焦点距離f23を以下に示す。
f1=2.041
f2=−2.652
f3=4.919
f23=−5.834
The focal lengths f1 to f3 of the lenses L1 to L3 and the combined focal length f23 of the second lens L2 and the third lens L3 are shown below.
f1 = 2.041
f2 = −2.652
f3 = 4.919
f23 = −5.834

条件式(3)〜(7)の値を以下に示す。
(3) f1/f=0.735
(4a) f23/f3=−1.186
(5) f1/f2=−0.770
(6) Rf/Rr=−0.150
(7),(7A) dA/dB=0.465
このように、本数値実施例1の撮像レンズは各条件式を満足している。
The values of conditional expressions (3) to (7) are shown below.
(3) f1 / f = 0.735
(4a) f23 / f3 = −1.186
(5) f1 / f2 = −0.770
(6) Rf / Rr = −0.150
(7), (7A) dA / dB = 0.465
As described above, the imaging lens of Numerical Example 1 satisfies the conditional expressions.

図2は、数値実施例1の撮像レンズについて、半画角ωに対応する横収差をタンジェンシャル方向とサジタル方向に分けて示したものである(図5、図8、図11、図14において同じ)。また、図3は、数値実施例1の撮像レンズについて、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら収差図において、球面収差図には、587.56nm、435.84nm、656.27nm、486.13nm、546.07nmの各波長に対する収差量とともに、正弦条件違反量OSCを併せて示し、非点収差図には、サジタル像面Sにおける収差量とタンジェンシャル像面Tにおける収差量とをそれぞれ示す(図6、図9、図12、図15において同じ)。   FIG. 2 shows the lateral aberration corresponding to the half angle of view ω divided into the tangential direction and the sagittal direction for the imaging lens of Numerical Example 1 (in FIGS. 5, 8, 11, and 14). the same). FIG. 3 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion aberration DIST (%) for the imaging lens of Numerical Example 1. In these aberration diagrams, the spherical aberration diagram shows the amount of aberration for each wavelength of 587.56 nm, 435.84 nm, 656.27 nm, 486.13 nm, and 546.07 nm as well as the sine condition violation amount OSC. The aberration diagrams show the aberration amount on the sagittal image surface S and the aberration amount on the tangential image surface T (the same applies to FIGS. 6, 9, 12, and 15).

図2および図3に示されるように、本数値実施例1に係る撮像レンズによれば各種収差が良好に補正される。しかも、第1レンズL1の物体側の面から像面までの空気換算距離は3.170mmと短く、撮像レンズの小型化も好適に図られている。   As shown in FIGS. 2 and 3, according to the imaging lens according to Numerical Example 1, various aberrations are favorably corrected. In addition, the air-converted distance from the object side surface of the first lens L1 to the image surface is as short as 3.170 mm, and the image pickup lens is suitably reduced in size.

数値実施例2
基本的なレンズデータを以下に示す。
f=2.845mm、Fno=2.904、ω=31.60°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
1(絞り) ∞ 0.0000
2* 0.900 0.4300 1.52470 56.2
3* 4.740 0.1850(=dA)
4* -1.780(=Rf) 0.3200 1.61420 26.0
5* 15.960(=Rr) 0.4300(=dB)
6* 1.300 0.6700 1.52470 56.2
7* 2.130 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.6208
(像面IM) ∞

非球面データ
第2面
k=1.013885,A4=-1.331635E-01,A6=7.683254E-02,A8=-1.386429
第3面
k=0.000000,A4=-9.391646E-02,A6=1.435346,A8=-3.848211
第4面
k=1.896196,A4=-5.575749E-01,A6=3.882751,A8=-1.577240E+01,A10=4.975935E+01
,A12=-1.268720E+02
第5面
k=0.000000,A4=-5.792134E-01,A6=3.832462,A8=-1.006235E+01,A10=1.788974E+01
,A12=-1.464777E+01
第6面
k=-2.812535E-01,A4=-4.687720E-01,A6=2.145791E-01,A8=5.335429E-03,
10=-5.103890E-02,A12=-1.924959E-02,A14=1.989603E-02,A16=-2.036795E-03
第7面
k=0.000000,A4=-2.036252E-01,A6=3.404486E-03,A8=1.593126E-02,
10=1.467323E-03,A12=-4.172784E-03
Numerical example 2
Basic lens data is shown below.
f = 2.845mm, Fno = 2.904, ω = 31.60 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
1 (Aperture) ∞ 0.0000
2 * 0.900 0.4300 1.52470 56.2
3 * 4.740 0.1850 (= dA)
4 * -1.780 (= Rf) 0.3200 1.61420 26.0
5 * 15.960 (= Rr) 0.4300 (= dB)
6 * 1.300 0.6700 1.52470 56.2
7 * 2.130 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.6208
(Image plane IM) ∞

Aspherical data second surface k = 1.013885, A 4 = -1.331635E-01, A 6 = 7.683254E-02, A 8 = -1.386429
3rd surface k = 0.000000, A 4 = -9.391646E-02, A 6 = 1.435346, A 8 = -3.848211
4th surface k = 1.896196, A 4 = -5.575749E-01, A 6 = 3.882751, A 8 = -1.577240E + 01, A 10 = 4.975935E + 01
, A 12 = -1.268720E + 02
5th surface k = 0.000000, A 4 = -5.792134E-01, A 6 = 3.832462, A 8 = -1.006235E + 01, A 10 = 1.788974E + 01
, A 12 = -1.464777E + 01
6th surface k = -2.812535E-01, A 4 = -4.687720E-01, A 6 = 2.145791E-01, A 8 = 5.335429E-03,
A 10 = -5.103890E-02, A 12 = -1.924959E-02, A 14 = 1.989603E-02, A 16 = -2.036795E-03
7th surface k = 0.000000, A 4 = -2.036252E-01, A 6 = 3.404486E-03, A 8 = 1.593126E-02,
A 10 = 1.467323E-03, A 12 = -4.172784E-03

各レンズL1〜L3の焦点距離f1〜f3、第2レンズL2および第3レンズL3の合成焦点距離f23を以下に示す。
f1=2.039
f2=−2.590
f3=4.976
f23=−5.559
The focal lengths f1 to f3 of the lenses L1 to L3 and the combined focal length f23 of the second lens L2 and the third lens L3 are shown below.
f1 = 2.039
f2 = −2.590
f3 = 4.976
f23 = −5.559

条件式(3)〜(7)の値を以下に示す。
(3) f1/f=0.717
(4a) f23/f3=−1.117
(5) f1/f2=−0.787
(6) Rf/Rr=−0.112
(7),(7A) dA/dB=0.430
このように、本数値実施例2の撮像レンズは各条件式を満足している。
The values of conditional expressions (3) to (7) are shown below.
(3) f1 / f = 0.717
(4a) f23 / f3 = −1.117
(5) f1 / f2 = −0.787
(6) Rf / Rr = −0.112
(7), (7A) dA / dB = 0.430
Thus, the imaging lens of Numerical Example 2 satisfies the conditional expressions.

図5は、数値実施例2の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図6は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図5および図6に示されるように、本数値実施例2に係る撮像レンズによっても、数値実施例1と同様に、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.204mmであり、撮像レンズの小型化も好適に図られている。   FIG. 5 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 2. FIG. 6 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIG. 5 and FIG. 6, various aberrations are satisfactorily corrected by the imaging lens according to Numerical Example 2 as well as Numerical Example 1. In this numerical example, the air-converted distance from the object-side surface of the first lens L1 to the image plane is 3.204 mm, and the image pickup lens is suitably reduced in size.

数値実施例3
基本的なレンズデータを以下に示す。
f=2.784mm、Fno=2.786、ω=32.15°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
1(絞り) ∞ 0.0000
2* 1.000 0.4250 1.52470 56.2
3* 10.500 0.2250(=dA)
4* -1.950(=Rf) 0.3000 1.61420 26.0
5* 13.000(=Rr) 0.4200(=dB)
6* 1.267 0.6700 1.52470 56.2
7* 1.975 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.5778
(像面IM) ∞

非球面データ
第2面
k=0.000000,A4=-7.576999E-02,A6=8.172900E-01,A8=-1.400075
第3面
k=0.000000,A4=-1.328168E-01,A6=1.622385,A8=-3.233796
第4面
k=0.000000,A4=-5.711823E-01,A6=5.742309,A8=-1.719770E+01,A10=1.750999E+01
,A12=4.502805E-01
第5面
k=0.000000,A4=-6.015480E-01,A6=4.288483,A8=-9.464158,A10=9.509792,
12=-1.288798
第6面
k=-8.025975,A4=-7.341897E-02,A6=-3.577822E-01,A8=1.143415,A10=-1.888013,
12=1.747451,A14=-8.718979E-01,A16=1.823664E-01
第7面
k=-1.243082,A4=-2.450392E-01,A6=9.299420E-02,A8=-1.694575E-02,
10=-3.649049E-02,A12=2.631459E-02,A14=-5.742159E-03,A16=-3.280138E-04
Numerical Example 3
Basic lens data is shown below.
f = 2.784mm, Fno = 2.786, ω = 32.15 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
1 (Aperture) ∞ 0.0000
2 * 1.000 0.4250 1.52470 56.2
3 * 10.500 0.2250 (= dA)
4 * -1.950 (= Rf) 0.3000 1.61420 26.0
5 * 13.000 (= Rr) 0.4200 (= dB)
6 * 1.267 0.6700 1.52470 56.2
7 * 1.975 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.5778
(Image plane IM) ∞

Aspheric data second surface k = 0.000000, A 4 = -7.576999E-02, A 6 = 8.172900E-01, A 8 = -1.400075
3rd surface k = 0.000000, A 4 = -1.328168E-01, A 6 = 1.622385, A 8 = -3.233796
4th surface k = 0.000000, A 4 = -5.711823E-01, A 6 = 5.742309, A 8 = -1.719770E + 01, A 10 = 1.750999E + 01
, A 12 = 4.502805E-01
5th surface k = 0.000000, A 4 = -6.015480E-01, A 6 = 4.288483, A 8 = -9.464158, A 10 = 9.509792,
A 12 = -1.288798
6th surface k = -8.025975, A 4 = -7.341897E-02, A 6 = -3.577822E-01, A 8 = 1.143415, A 10 = -1.888013,
A 12 = 1.747451, A 14 = -8.718979E-01, A 16 = 1.823664E-01
7th surface k = -1.243082, A 4 = -2.450392E-01, A 6 = 9.299420E-02, A 8 = -1.694575E-02,
A 10 = -3.649049E-02, A 12 = 2.631459E-02, A 14 = -5.742159E-03, A 16 = -3.280138E-04

各レンズL1〜L3の焦点距離f1〜f3、第2レンズL2および第3レンズL3の合成焦点距離f23を以下に示す。
f1=2.075
f2=−2.740
f3=5.081
f23=−5.914
The focal lengths f1 to f3 of the lenses L1 to L3 and the combined focal length f23 of the second lens L2 and the third lens L3 are shown below.
f1 = 2.075
f2 = −2.740
f3 = 5.081
f23 = −5.914

条件式(3)〜(7)の値を以下に示す。
(3) f1/f=0.745
(4a) f23/f3=−1.164
(5) f1/f2=−0.757
(6) Rf/Rr=−0.150
(7),(7A) dA/dB=0.536
このように、本数値実施例3の撮像レンズは各条件式を満足している。
The values of conditional expressions (3) to (7) are shown below.
(3) f1 / f = 0.745
(4a) f23 / f3 = −1.164
(5) f1 / f2 = −0.757
(6) Rf / Rr = −0.150
(7), (7A) dA / dB = 0.536
Thus, the imaging lens of Numerical Example 3 satisfies the conditional expressions.

図8は、数値実施例3の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図9は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図8および図9に示されるように、本数値実施例3に係る撮像レンズによっても、数値実施例1と同様に、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.166mmであり、撮像レンズの小型化も好適に図られている。   FIG. 8 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 3, and FIG. 9 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIG. 8 and FIG. 9, various aberrations are satisfactorily corrected by the imaging lens according to Numerical Example 3 as well as Numerical Example 1. In this numerical example, the air-converted distance from the object-side surface of the first lens L1 to the image plane is 3.166 mm, and the image pickup lens is also suitably reduced in size.

(第2の実施の形態)
次に、本発明を具体化した第2の実施の形態について、図面を参照しながら詳細に説明する。本実施の形態に係る撮像レンズでは、前記第1の実施の形態に係る撮像レンズとは異なり、第3レンズL3の屈折力が負となっている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described in detail with reference to the drawings. In the imaging lens according to the present embodiment, unlike the imaging lens according to the first embodiment, the refractive power of the third lens L3 is negative.

図10および図13は、本実施の形態の数値実施例4および5に対応するレンズ断面図をそれぞれ示したものである。いずれの数値実施例も基本的なレンズ構成は同一であるため、ここでは数値実施例4のレンズ断面図を参照しながら、本実施の形態に係る撮像レンズのレンズ構成について説明する。   10 and 13 show lens cross-sectional views corresponding to Numerical Examples 4 and 5 of the present embodiment, respectively. Since all the numerical examples have the same basic lens configuration, the lens configuration of the imaging lens according to the present embodiment will be described here with reference to a lens cross-sectional view of Numerical Example 4.

図10に示すように、本実施の形態に係る撮像レンズは、物体側から像面側に向かって順に、開口絞りSTと、正の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2と、負の屈折力を有する第3レンズL3とが配列されて構成される。第3レンズL3と撮像素子の像面IMとの間には、カバーガラス10が配置される。なお、このカバーガラス10は、割愛することも可能である。   As shown in FIG. 10, the imaging lens according to the present embodiment has an aperture stop ST, a first lens L1 having a positive refractive power, and a negative refractive power in order from the object side to the image plane side. The second lens L2 and the third lens L3 having negative refractive power are arranged. A cover glass 10 is disposed between the third lens L3 and the image plane IM of the image sensor. The cover glass 10 can be omitted.

第1レンズL1は、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状、すなわち光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成されている。第2レンズL2は、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状、すなわち光軸Xの近傍において両凹レンズとなる形状に形成されている。第3レンズL3は、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状、すなわち光軸Xの近傍において物体側に凸面を向けたメニスカスレンズとなる形状に形成されている。なお、この第3レンズL3は、前記第1の実施の形態と同様、物体側の面および像面側の面が共に、光軸Xの近傍において物体側に凸形状で且つ周辺部において物体側に凹形状となる非球面形状に形成されている。   The first lens L1 is formed into a shape in which both the radius of curvature of the object side surface and the curvature radius of the image side surface are positive, that is, a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis X. Has been. The second lens L2 is formed in a shape in which the radius of curvature of the object side surface is negative and the radius of curvature of the image side surface is positive, that is, a shape that becomes a biconcave lens in the vicinity of the optical axis X. The third lens L3 is formed in a shape in which the curvature radius of the object side surface and the curvature radius of the image side surface are both positive, that is, a shape that becomes a meniscus lens having a convex surface facing the object side in the vicinity of the optical axis X. Has been. In the third lens L3, as in the first embodiment, both the object-side surface and the image-side surface are convex on the object side in the vicinity of the optical axis X, and on the object side in the peripheral portion. It is formed in an aspherical shape that becomes a concave shape.

本実施の形態に係る撮像レンズは、レンズ系全体の焦点距離をf、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3、第2レンズL2および第3レンズL3の合成焦点距離をf23、第2レンズL2の物体側の面の曲率半径をRf、第2レンズL2の像面側の面の曲率半径をRr、第1レンズL1と第2レンズL2との間の間隔をdA、第2レンズL2と第3レンズL3との間の間隔をdBとしたとき、次の各条件式を満足する。
f1<|f2| (1)
f1<f3 (2b)
0.5<f1/f<1.0 (3)
0.5<f23/f3<1.2 (4b)
−1.0<f1/f2<−0.5 (5)
−0.30<Rf/Rr<0 (6)
0.25<dA/dB<0.7 (7)
0.3<dA/dB<0.65 (7A)
In the imaging lens according to the present embodiment, the focal length of the entire lens system is f, the focal length of the first lens L1 is f1, the focal length of the second lens L2 is f2, the focal length of the third lens L3 is f3, The combined focal length of the second lens L2 and the third lens L3 is f23, the radius of curvature of the object side surface of the second lens L2 is Rf, the radius of curvature of the image side surface of the second lens L2 is Rr, and the first lens L1 When the distance between the second lens L2 and the second lens L2 is dA, and the distance between the second lens L2 and the third lens L3 is dB, the following conditional expressions are satisfied.
f1 <| f2 | (1)
f1 <f3 (2b)
0.5 <f1 / f <1.0 (3)
0.5 <f23 / f3 <1.2 (4b)
−1.0 <f1 / f2 <−0.5 (5)
−0.30 <Rf / Rr <0 (6)
0.25 <dA / dB <0.7 (7)
0.3 <dA / dB <0.65 (7A)

なお、上記条件式の全てを満たす必要はなく、上記条件式のそれぞれを単独に満たすことにより、各条件式に対応する作用効果を得ることができ、従来の撮像レンズに比較して良好に収差の補正された小型の撮像レンズを構成することができる。   Note that it is not necessary to satisfy all of the above conditional expressions. By satisfying each of the conditional expressions independently, it is possible to obtain the effects corresponding to each conditional expression, and aberrations are better than those of conventional imaging lenses. Thus, it is possible to construct a small imaging lens that has been corrected.

本実施の形態に係る撮像レンズの数値実施例を示す。

数値実施例4
基本的なレンズデータを以下に示す。
f=3.621mm、Fno=3.625、ω=25.79°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
1(絞り) ∞ 0.0000
2* 0.817 0.5000 1.52470 56.2
3* 1.651 0.3694(=dA)
4* -3.006(=Rf) 0.3000 1.61420 26.0
5* 15.697(=Rr) 0.7083(=dB)
6* 1.620 0.6200 1.61420 26.0
7* 1.380 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.4400
(像面IM) ∞

非球面データ
第2面
k=9.156504E-01,A4=-2.001875E-01,A6=1.385200E-01,A8=-4.868637E-01,
10=-7.798491
第3面
k=-3.106284,A4=4.166545E-01,A6=-6.228740E-02,A8=6.554742,
10=-1.423451E+01,A12=5.774142E+01
第4面
k=2.224686E+01,A4=-6.057120E-01,A6=2.680953,A8=-1.045722E+01,
10=2.191227E+01,A12=-1.356551E+01
第5面
k=0.000000,A4=-7.601373E-01,A6=3.334531,A8=-9.723123,A10=1.683559E+01,
12=-1.501090E+01,A14=5.837649
第6面
k=-1.035029E+01,A4=-1.045628E-01,A6=-2.940384E-01,A8=2.507408E-01,
10=1.091151E-01,A12=-1.173489E-01,A14=-1.263306E-01,A16=9.209900E-02
第7面
k=-1.189318E-01,A4=-4.099832E-01,A6=7.581204E-02,A8=-4.964783E-03,
10=5.659021E-03,A12=-1.126572E-02,A14=3.011777E-03,A16=-4.222558E-04
Numerical examples of the imaging lens according to the present embodiment will be described.

Numerical Example 4
Basic lens data is shown below.
f = 3.621mm, Fno = 3.625, ω = 25.79 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
1 (Aperture) ∞ 0.0000
2 * 0.817 0.5000 1.52470 56.2
3 * 1.651 0.3694 (= dA)
4 * -3.006 (= Rf) 0.3000 1.61420 26.0
5 * 15.697 (= Rr) 0.7083 (= dB)
6 * 1.620 0.6200 1.61420 26.0
7 * 1.380 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.4400
(Image plane IM) ∞

Aspheric data second surface k = 9.156504E-01, A 4 = -2.001875E-01, A 6 = 1.385200E-01, A 8 = -4.868637E-01,
A 10 = -7.798491
Third surface k = -3.106284, A 4 = 4.166545E-01, A 6 = -6.228740E-02, A 8 = 6.554742,
A 10 = -1.423451E + 01, A 12 = 5.774142E + 01
4th surface k = 2.224686E + 01, A 4 = -6.057120E-01, A 6 = 2.680953, A 8 = -1.045722E + 01,
A 10 = 2.191227E + 01, A 12 = -1.356551E + 01
Fifth surface k = 0.000000, A 4 = -7.601373E-01, A 6 = 3.334531, A 8 = -9.723123, A 10 = 1.683559E + 01,
A 12 = -1.501090E + 01, A 14 = 5.837649
6th surface k = -1.035029E + 01, A 4 = -1.045628E-01, A 6 = -2.940384E-01, A 8 = 2.507408E-01,
A 10 = 1.091151E-01, A 12 = -1.173489E-01, A 14 = -1.263306E-01, A 16 = 9.209900E-02
7th surface k = -1.189318E-01, A 4 = -4.099832E-01, A 6 = 7.581204E-02, A 8 = -4.964783E-03,
A 10 = 5.659021E-03, A 12 = -1.126572E-02, A 14 = 3.011777E-03, A 16 = -4.222558E-04

各レンズL1〜L3の焦点距離f1〜f3、第2レンズL2および第3レンズL3の合成焦点距離f23を以下に示す。
f1=2.555
f2=−4.083
f3=−889.682
f23=−3.470
The focal lengths f1 to f3 of the lenses L1 to L3 and the combined focal length f23 of the second lens L2 and the third lens L3 are shown below.
f1 = 2.555
f2 = −4.083
f3 = −889.682
f23 = −3.470

条件式(3)〜(7)の値を以下に示す。
(3) f1/f=0.706
(4b) f23/f3=0.850
(5) f1/f2=−0.626
(6) Rf/Rr=−0.192
(7),(7A) dA/dB=0.522
このように、本数値実施例4の撮像レンズは各条件式を満足している。
The values of conditional expressions (3) to (7) are shown below.
(3) f1 / f = 0.706
(4b) f23 / f3 = 0.850
(5) f1 / f2 = −0.626
(6) Rf / Rr = −0.192
(7), (7A) dA / dB = 0.522
Thus, the image pickup lens of Numerical Example 4 satisfies the conditional expressions.

図11は、数値実施例4の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図12は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図11および図12に示されるように、本数値実施例4に係る撮像レンズによれば、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.486mmであり、撮像レンズの小型化も好適に図られている。   FIG. 11 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 4, and FIG. 12 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIGS. 11 and 12, according to the imaging lens according to Numerical Example 4, various aberrations are favorably corrected. In this numerical example, the air conversion distance from the object-side surface of the first lens L1 to the image plane is 3.486 mm, and the image pickup lens is suitably reduced in size.

数値実施例5
基本的なレンズデータを以下に示す。
f=3.628mm、Fno=3.630、ω=25.79°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
1(絞り) ∞ 0.0000
2* 0.822 0.5000 1.52470 56.2
3* 1.689 0.3710(=dA)
4* -3.009(=Rf) 0.3000 1.61420 26.0
5* 15.420(=Rr) 0.7326(=dB)
6* 1.620 0.6000 1.61420 26.0
7* 1.380 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.4390
(像面IM) ∞

非球面データ
第2面
k=9.364151E-01,A4=-1.986518E-01,A6=1.380496E-01,A8=-4.787480E-01,
10=-7.872170
第3面
k=-3.087456,A4=4.160485E-01,A6=-6.131399E-02,A8=6.229271,
10=-1.425891E+01,A12=5.609518E+01
第4面
k=2.222221E+01,A4=-6.004975E-01,A6=2.685851,A8=-1.048226E+01,
10=2.188325E+01,A12=-1.370214E+01
第5面
k=0.000000,A4=-7.592701E-01,A6=3.334627,A8=-9.723934,A10=1.684345E+01,
12=-1.501855E+01,A14=5.845048
第6面
k=-1.035886E+01,A4=-1.046718E-01,A6=-3.007844E-01,A8=2.495829E-01,
10=1.103298E-01,A12=-1.185574E-01,A14=-1.270811E-01,A16=9.251858E-02
第7面
k=-1.182990E-01,A4=-4.108258E-01,A6=7.541289E-02,A8=-4.932627E-03,
10=5.622894E-03,A12=-1.129859E-02,A14=3.010675E-03,A16=-4.223644E-04
Numerical Example 5
Basic lens data is shown below.
f = 3.628mm, Fno = 3.630, ω = 25.79 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
1 (Aperture) ∞ 0.0000
2 * 0.822 0.5000 1.52470 56.2
3 * 1.689 0.3710 (= dA)
4 * -3.009 (= Rf) 0.3000 1.61420 26.0
5 * 15.420 (= Rr) 0.7326 (= dB)
6 * 1.620 0.6000 1.61420 26.0
7 * 1.380 0.3500
8 ∞ 0.3000 1.51633 64.2
9 ∞ 0.4390
(Image plane IM) ∞

Aspherical data second surface k = 9.364151E-01, A 4 = -1.986518E-01, A 6 = 1.380496E-01, A 8 = -4.787480E-01,
A 10 = -7.872170
3rd surface k = -3.087456, A 4 = 4.160485E-01, A 6 = -6.131399E-02, A 8 = 6.229271,
A 10 = -1.425891E + 01, A 12 = 5.609518E + 01
4th surface k = 2.222221E + 01, A 4 = -6.004975E-01, A 6 = 2.685851, A 8 = -1.048226E + 01,
A 10 = 2.188325E + 01, A 12 = -1.370214E + 01
5th surface k = 0.000000, A 4 = -7.592701E-01, A 6 = 3.334627, A 8 = -9.723934, A 10 = 1.684345E + 01,
A 12 = -1.501855E + 01, A 14 = 5.845048
6th surface k = -1.035886E + 01, A 4 = -1.046718E-01, A 6 = -3.007844E-01, A 8 = 2.495829E-01,
A 10 = 1.103298E-01, A 12 = -1.185574E-01, A 14 = -1.270811E-01, A 16 = 9.251858E-02
7th surface k = -1.182990E-01, A 4 = -4.108258E-01, A 6 = 7.541289E-02, A 8 = -4.932627E-03,
A 10 = 5.622894E-03, A 12 = -1.129859E-02, A 14 = 3.010675E-03, A 16 = -4.223644E-04

各レンズL1〜L3の焦点距離f1〜f3、第2レンズL2および第3レンズL3の合成焦点距離f23を以下に示す。
f1=2.547
f2=−4.074
f3=−311.068
f23=−3.448
The focal lengths f1 to f3 of the lenses L1 to L3 and the combined focal length f23 of the second lens L2 and the third lens L3 are shown below.
f1 = 2.547
f2 = −4.074
f3 = −311.068
f23 = −3.4448

条件式(3)〜(7)の値を以下に示す。
(3) f1/f=0.702
(4b) f23/f3=0.846
(5) f1/f2=−0.625
(6) Rf/Rr=−0.195
(7),(7A) dA/dB=0.506
このように、本数値実施例5の撮像レンズは各条件式を満足している。
The values of conditional expressions (3) to (7) are shown below.
(3) f1 / f = 0.702
(4b) f23 / f3 = 0.848
(5) f1 / f2 = −0.625
(6) Rf / Rr = −0.195
(7), (7A) dA / dB = 0.506
Thus, the imaging lens of the present numerical value example 5 satisfies each conditional expression.

図14は、数値実施例5の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図15は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図14および図15に示されるように、本数値実施例5に係る撮像レンズによれば、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.490mmであり、撮像レンズの小型化も好適に図られている。   FIG. 14 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 5, and FIG. 15 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIGS. 14 and 15, according to the imaging lens according to Numerical Example 5, various aberrations are favorably corrected. In this numerical example, the air-converted distance from the object-side surface of the first lens L1 to the image plane is 3.490 mm, and the image pickup lens is suitably reduced in size.

したがって、本実施の形態に係る撮像レンズを、携帯電話機、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、車載カメラ、ネットワークカメラ等の撮像光学系に適用した場合、当該カメラ等の高機能化と小型化の両立を図ることができる。   Therefore, when the imaging lens according to the present embodiment is applied to an imaging optical system such as a mobile phone, a digital still camera, a portable information terminal, a security camera, an in-vehicle camera, and a network camera, the camera and the like have high functionality and small size. Can be achieved simultaneously.

なお、本発明に係る撮像レンズは、上記各実施の形態に限定されるものではない。上記各実施の形態では第1レンズL1〜第3レンズL3の全ての面を非球面としたが、全ての面を必ずしも非球面にする必要はない。例えば、第2レンズL2のいずれか一方の面、あるいは両面を球面で構成するようにしてもよい。   The imaging lens according to the present invention is not limited to the above embodiments. In each of the above embodiments, all the surfaces of the first lens L1 to the third lens L3 are aspherical surfaces, but it is not always necessary to make all the surfaces aspherical. For example, any one surface or both surfaces of the second lens L2 may be configured as a spherical surface.

本発明は、撮像レンズとして小型化とともに良好な収差補正能力が要求される機器、例えば携帯電話機やデジタルスティルカメラ等の機器に搭載される撮像レンズに適用することができる。   The present invention can be applied to an imaging lens mounted on a device that is required to have a small aberration as well as a good aberration correction capability, such as a mobile phone or a digital still camera.

L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
10 カバーガラス
L1 1st lens L2 2nd lens L3 3rd lens 10 Cover glass

Claims (7)

物体側から像面側に向かって順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズとが配置されて構成される撮像レンズであって、
前記第1レンズは、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成されており、
前記第2レンズは、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状に形成されており、
前記第3レンズは、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成されており、
レンズ系全体の焦点距離をf、前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第3レンズの焦点距離をf3としたとき、下記条件式を満足することを特徴とする撮像レンズ。
f1<|f2|
f1<f3
0.5<f1/f<1.0
A first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a positive refractive power are arranged in order from the object side to the image plane side. An imaging lens,
The first lens is formed in a shape in which both the radius of curvature of the object side surface and the radius of curvature of the image side surface are positive,
The second lens is formed in a shape in which the radius of curvature of the object side surface is negative and the radius of curvature of the image side surface is positive.
The third lens is formed in a shape in which both the radius of curvature of the object side surface and the radius of curvature of the image side surface are positive,
When the focal length of the entire lens system is f, the focal length of the first lens is f1, the focal length of the second lens is f2, and the focal length of the third lens is f3, the following conditional expression is satisfied. A characteristic imaging lens.
f1 <| f2 |
f1 <f3
0.5 <f1 / f <1.0
前記第2レンズおよび前記第3レンズの合成焦点距離をf23としたとき、下記条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
−1.5<f23/f3<−0.8
The imaging lens according to claim 1, wherein the following conditional expression is satisfied when a combined focal length of the second lens and the third lens is f23.
−1.5 <f23 / f3 <−0.8
物体側から像面側に向かって順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、負の屈折力を有する第3レンズとが配置されて構成される撮像レンズであって、
前記第1レンズは、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成されており、
前記第2レンズは、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる形状に形成されており、
前記第3レンズは、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる形状に形成されており、
レンズ系全体の焦点距離をf、前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第3レンズの焦点距離をf3としたとき、下記条件式を満足することを特徴とする撮像レンズ。
f1<|f2|
f1<|f3|
0.5<f1/f<1.0
A first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a negative refractive power are arranged in order from the object side to the image plane side. An imaging lens,
The first lens is formed in a shape in which both the radius of curvature of the object side surface and the radius of curvature of the image side surface are positive,
The second lens is formed in a shape in which the radius of curvature of the object side surface is negative and the radius of curvature of the image side surface is positive.
The third lens is formed in a shape in which both the radius of curvature of the object side surface and the radius of curvature of the image side surface are positive,
When the focal length of the entire lens system is f, the focal length of the first lens is f1, the focal length of the second lens is f2, and the focal length of the third lens is f3, the following conditional expression is satisfied. A characteristic imaging lens.
f1 <| f2 |
f1 <| f3 |
0.5 <f1 / f <1.0
前記第2レンズおよび前記第3レンズの合成焦点距離をf23としたとき、下記条件式を満足することを特徴とする請求項3に記載の撮像レンズ。
0.5<f23/f3<1.2
The imaging lens according to claim 3, wherein the following conditional expression is satisfied when a combined focal length of the second lens and the third lens is f23.
0.5 <f23 / f3 <1.2
下記条件式を満足することを特徴とする請求項1〜4のいずれか一項に記載の撮像レンズ。
−1.0<f1/f2<−0.5
The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
−1.0 <f1 / f2 <−0.5
前記第2レンズの物体側の面の曲率半径をRf、像面側の面の曲率半径をRrとしたとき、下記条件式を満足することを特徴とする請求項1〜5のいずれか一項に記載の撮像レンズ。
−0.30<Rf/Rr<0
6. The following conditional expression is satisfied, where Rf is a radius of curvature of the object side surface of the second lens and Rr is a radius of curvature of the image side surface. The imaging lens described in 1.
−0.30 <Rf / Rr <0
前記第1レンズと前記第2レンズとの間の間隔をdA、前記第2レンズと前記第3レンズとの間の間隔をdBとしたとき、下記条件式を満足することを特徴とする請求項1〜6のいずれか一項に記載の撮像レンズ。
0.25<dA/dB<0.7
The following conditional expression is satisfied, where a distance between the first lens and the second lens is dA, and a distance between the second lens and the third lens is dB. The imaging lens according to any one of 1 to 6.
0.25 <dA / dB <0.7
JP2010111596A 2010-05-14 2010-05-14 Imaging lens Active JP5548845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010111596A JP5548845B2 (en) 2010-05-14 2010-05-14 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010111596A JP5548845B2 (en) 2010-05-14 2010-05-14 Imaging lens

Publications (2)

Publication Number Publication Date
JP2011242414A true JP2011242414A (en) 2011-12-01
JP5548845B2 JP5548845B2 (en) 2014-07-16

Family

ID=45409176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010111596A Active JP5548845B2 (en) 2010-05-14 2010-05-14 Imaging lens

Country Status (1)

Country Link
JP (1) JP5548845B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146042A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Image pickup lens
CN105242379A (en) * 2014-06-25 2016-01-13 Kolen株式会社 Imaging lens system
CN112666687A (en) * 2021-03-17 2021-04-16 江西联益光学有限公司 Optical lens and imaging apparatus
CN115390220A (en) * 2022-08-25 2022-11-25 嘉兴中润光学科技股份有限公司 Vehicle-mounted lens and vehicle-mounted system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185687A (en) * 2007-01-29 2008-08-14 Konica Minolta Opto Inc Imaging lens, imaging apparatus and personal digital assistant
JP2008233221A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Photographic lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185687A (en) * 2007-01-29 2008-08-14 Konica Minolta Opto Inc Imaging lens, imaging apparatus and personal digital assistant
JP2008233221A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Photographic lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146042A1 (en) * 2012-03-28 2013-10-03 富士フイルム株式会社 Image pickup lens
CN105242379A (en) * 2014-06-25 2016-01-13 Kolen株式会社 Imaging lens system
CN105242379B (en) * 2014-06-25 2018-04-10 Kolen株式会社 Imaging lens system
CN112666687A (en) * 2021-03-17 2021-04-16 江西联益光学有限公司 Optical lens and imaging apparatus
CN115390220A (en) * 2022-08-25 2022-11-25 嘉兴中润光学科技股份有限公司 Vehicle-mounted lens and vehicle-mounted system

Also Published As

Publication number Publication date
JP5548845B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5201679B2 (en) Imaging lens
JP5371148B2 (en) Imaging lens
JP5201690B2 (en) Imaging lens
JP5754670B2 (en) Imaging lens
JP5750698B2 (en) Imaging lens
JP5975386B2 (en) Imaging lens
JP5804474B2 (en) Imaging lens
JP5577531B2 (en) Imaging lens
JP5467342B2 (en) Imaging lens
JP5280326B2 (en) Imaging lens
JP5761602B2 (en) Imaging lens
JP5613962B2 (en) Imaging lens
JP5526303B2 (en) Imaging lens
JP5568732B2 (en) Imaging lens
JP5366314B2 (en) Imaging lens
JP5548845B2 (en) Imaging lens
JP5839357B2 (en) Imaging lens
JP5308915B2 (en) Imaging lens
JP2010276836A (en) Imaging lens
JP5780424B2 (en) Imaging lens
WO2011111561A1 (en) Imaging lens
WO2009133657A1 (en) Imaging lens
WO2012005070A1 (en) Image-capturing lens
JP5187951B2 (en) Imaging lens

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140320

R150 Certificate of patent or registration of utility model

Ref document number: 5548845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250