JP5366314B2 - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP5366314B2
JP5366314B2 JP2009153218A JP2009153218A JP5366314B2 JP 5366314 B2 JP5366314 B2 JP 5366314B2 JP 2009153218 A JP2009153218 A JP 2009153218A JP 2009153218 A JP2009153218 A JP 2009153218A JP 5366314 B2 JP5366314 B2 JP 5366314B2
Authority
JP
Japan
Prior art keywords
lens
imaging lens
object side
curvature
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009153218A
Other languages
Japanese (ja)
Other versions
JP2011008134A (en
Inventor
洋治 久保田
賢一 久保田
整 平野
一郎 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Logic Inc
Kantatsu Co Ltd
Original Assignee
Optical Logic Inc
Kantatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Logic Inc, Kantatsu Co Ltd filed Critical Optical Logic Inc
Priority to JP2009153218A priority Critical patent/JP5366314B2/en
Publication of JP2011008134A publication Critical patent/JP2011008134A/en
Application granted granted Critical
Publication of JP5366314B2 publication Critical patent/JP5366314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Description

本発明は、CCDセンサやCMOSセンサ等の撮像素子上に被写体像を形成する撮像レンズに係り、携帯電話機、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、車載カメラ、ネットワークカメラ等の比較的小型のカメラに搭載されて好適な撮像レンズに関するものである。   The present invention relates to an imaging lens that forms a subject image on an imaging element such as a CCD sensor or a CMOS sensor, and is relatively small such as a mobile phone, a digital still camera, a portable information terminal, a security camera, an in-vehicle camera, and a network camera. The present invention relates to an imaging lens suitable for being mounted on a camera.

上記小型のカメラに搭載される撮像レンズには、レンズの構成枚数が少ないことはもちろんのこと、近年の高画素化された撮像素子にも対応できる解像度の高いレンズ構成が要求されている。従来、レンズ構成として様々なものが提案されてきたが、中でも3枚のレンズから成るレンズ構成は、各種の収差を比較的良好に補正できる上に、小型化にも適していることから多くのカメラに採用されている。   An imaging lens mounted on the above-described small camera is required to have a high-resolution lens configuration that can cope with a recent imaging device with a high number of pixels as well as a small number of lenses. Conventionally, various lens configurations have been proposed. Among them, a lens configuration including three lenses can correct various aberrations relatively well and is suitable for downsizing. It is used in cameras.

3枚構成の撮像レンズとしては、例えば特許文献1に記載の撮像レンズが知られている。当該撮像レンズは、物体側から順に、正の屈折力(パワー)を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズとから構成されており、レンズ系全体の焦点距離に対して第3レンズの焦点距離を短く、すなわち第3レンズの屈折力を比較的強くするとともに、第2レンズの屈折力を第1レンズよりも強くすることによって像面湾曲やコマ収差等の補正を行っている。   For example, an imaging lens described in Patent Document 1 is known as a three-lens imaging lens. The imaging lens includes, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a positive refractive power. By shortening the focal length of the third lens with respect to the focal length of the entire lens system, that is, by making the refractive power of the third lens relatively strong and making the refractive power of the second lens stronger than that of the first lens, It corrects surface curvature and coma.

特開2008−76594号公報JP 2008-76594 A

近年、携帯電話機をはじめ、カメラの小型化および高画素化が急速に進んでおり、撮像レンズに対して要求される性能も従来にも増して厳しいものとなっている。上記特許文献1に記載の撮像レンズによれば、確かに収差は良好に補正されるものの、レンズ系全体の焦点距離が比較的長いため、第1レンズの物体側の面から像面までの光軸上の距離を短縮することは難しく、小型化と良好な収差補正との両立を図るには自ずと限界が生じていた。   In recent years, the downsizing and the increase in the number of pixels of a camera such as a mobile phone are rapidly progressing, and the performance required for the imaging lens is also stricter than before. According to the imaging lens described in Patent Document 1, although aberration is certainly corrected satisfactorily, since the focal length of the entire lens system is relatively long, the light from the object-side surface of the first lens to the image plane It is difficult to shorten the distance on the axis, and there is a limit to achieving both miniaturization and good aberration correction.

本発明は上記のような従来技術の問題点に鑑みてなされたものであり、その目的は、小型でありながらも収差を良好に補正することのできる撮像レンズを提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide an imaging lens that can correct aberrations satisfactorily while being small in size.

上記課題を解決するために、本発明では、物体側から像面側に向かって順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正または負の屈折力を有する第3レンズとを配置し、第1レンズを、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる形状に形成し、第2レンズを、物体側の面の曲率半径が負であって、物体側の面が光軸近傍で物体側に凹形状で且つ周辺部が物体側に凸形状となり、像面側の面の曲率半径が正となる形状に形成し、第3レンズを、物体側の面の曲率半径および像面側の面の曲率半径が共に正であって、像面側の面が光軸近傍で物体側に凸形状で且つ周辺部が物体側に凹形状となる形状に形成し、第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第3レンズの焦点距離をf3、第2レンズの物体側の面の曲率半径をR3、像面側の面の曲率半径をR4としたとき、下記条件式(1)および(2)を満足するように構成した。
f1<|f2|、f1<|f3| (1)
−0.15<R3/R4<0 (2)
In order to solve the above problems, in the present invention, in order from the object side to the image plane side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a positive or negative refraction. A third lens having power, and forming the first lens in a shape in which the curvature radius of the object-side surface is positive and the curvature radius of the image-side surface is negative, and the second lens is the object The radius of curvature of the surface on the side is negative, the surface on the object side is concave on the object side near the optical axis and the peripheral portion is convex on the object side, and the radius of curvature of the surface on the image plane is positive And the third lens is formed such that both the radius of curvature of the object-side surface and the radius of curvature of the image-side surface are positive, the image-side surface is convex toward the object side in the vicinity of the optical axis, and The peripheral part is formed in a concave shape on the object side, the focal length of the first lens is f1, the focal length of the second lens is f2, and the third lens Point distance f3, the radius of curvature of the object side surface of the second lens R3, and a radius of curvature of the image-side surface was R4, and configured so as to satisfy the following conditional expressions (1) and (2) .
f1 <| f2 |, f1 <| f3 | (1)
-0.15 <R3 / R4 <0 (2)

本発明の撮像レンズでは、第1レンズの焦点距離を第2および第3レンズの焦点距離よりも短くし、すなわち、第2および第3レンズの屈折力を第1レンズの屈折力よりも相対的に弱くし、これら相対的に屈折力の弱い第2および第3レンズにて各種収差の補正を行う構成となっている。そして、本発明に係る撮像レンズでは、第2レンズの物体側の面形状を、光軸近傍において物体側に凹形状で且つ周辺部が物体側に凸形状となる形状とし、第3レンズの像面側の面形状を、光軸近傍で物体側に凸形状で且つ周辺部が物体側に凹形状となる形状とした。これにより、像面の補正をはじめ各種収差が第2および第3レンズによって良好に補正されるとともに、第2レンズの物体側の面形状および第3レンズの像面側の面形状により、撮像レンズの小型化を図りつつ、当該撮像レンズから射出される光の像面への入射角を好ましい一定の範囲内に抑制することが可能となる。   In the imaging lens of the present invention, the focal length of the first lens is made shorter than the focal lengths of the second and third lenses, that is, the refractive power of the second and third lenses is relative to the refractive power of the first lens. The second and third lenses having relatively weak refractive power are used to correct various aberrations. In the imaging lens according to the present invention, the surface of the second lens on the object side has a concave shape on the object side and a peripheral portion is convex on the object side in the vicinity of the optical axis, and the image of the third lens. The surface shape on the surface side is a shape that is convex toward the object side in the vicinity of the optical axis and that the peripheral portion is concave toward the object side. As a result, various aberrations including the correction of the image plane are corrected well by the second and third lenses, and the imaging lens is formed by the surface shape of the second lens on the object side and the surface shape of the third lens on the image plane side. It is possible to suppress the incident angle of the light emitted from the imaging lens to the image plane within a preferable constant range while reducing the size of the imaging lens.

ここで、条件式(1)は、撮像レンズの光軸に沿った長さ(厚さ)を短縮するための条件である。本発明によれば、第1レンズは、物体側の面の曲率半径が正、像面側の面の曲率半径が負となる形状、すなわち光軸近傍において両凸レンズとなる形状に形成され、第2レンズは、物体側の面の曲率半径が負、像面側の面の曲率半径が正となる形状、すなわち光軸近傍において両凹レンズとなる形状に形成される。このような構成において、本発明では、第1レンズの屈折力が第2レンズの屈折力よりも強いため、第1レンズと第2レンズとの間隔が狭くなり、撮像レンズの小型化、特に撮像レンズの厚さの短縮を好適に図ることができる。   Here, conditional expression (1) is a condition for shortening the length (thickness) along the optical axis of the imaging lens. According to the present invention, the first lens is formed into a shape in which the curvature radius of the object side surface is positive and the curvature radius of the image side surface is negative, that is, a shape that becomes a biconvex lens in the vicinity of the optical axis. The two lenses are formed in a shape in which the curvature radius of the object side surface is negative and the curvature radius of the image side surface is positive, that is, a shape that is a biconcave lens in the vicinity of the optical axis. In such a configuration, in the present invention, since the refractive power of the first lens is stronger than the refractive power of the second lens, the distance between the first lens and the second lens is reduced, and the imaging lens is reduced in size, particularly imaging. It is possible to favorably reduce the thickness of the lens.

条件式(2)は、撮像レンズの厚さを短縮しつつ、収差を良好な範囲内に抑制するための条件である。上限値「0」を超えると、レンズ系の主点の位置が像面側に移動するため、撮像レンズを小型化することが困難となる。一方、下限値「−0.15」を下回ると、レンズ系の主点の位置が物体側に移動するため、撮像レンズの小型化には有効であるものの、像面が補正過剰(+方向に増大)となる。よって、収差の補正された良好な結像性能を得ることは困難となる。さらに、この場合には外方コマ収差が増大し、その補正も困難となる。Conditional expression (2) is a condition for suppressing the aberration within a favorable range while shortening the thickness of the imaging lens. If the upper limit value “0” is exceeded, the position of the principal point of the lens system moves to the image plane side, making it difficult to reduce the size of the imaging lens. On the other hand, if the value falls below the lower limit “−0.15”, the position of the principal point of the lens system moves to the object side, which is effective for downsizing the imaging lens, but the image plane is overcorrected (in the + direction). Increase). Therefore, it is difficult to obtain good imaging performance with corrected aberration. Further, in this case, outward coma increases and correction thereof becomes difficult.

上記構成の撮像レンズでは、第3レンズを、その物体側の面が光軸近傍で物体側に凸形状で且つ周辺部が物体側に凹形状となる形状に形成することが望ましい。第3レンズとしてこのような面形状を採用することにより、撮像レンズから射出される光の像面への入射角を一層良好に抑制することができる。In the imaging lens having the above-described configuration, it is desirable to form the third lens in a shape in which the object side surface is convex toward the object side near the optical axis and the peripheral part is concave toward the object side. By adopting such a surface shape as the third lens, the incident angle of the light emitted from the imaging lens to the image plane can be further suppressed.

上記構成の撮像レンズにおいて、小型化と良好な収差補正との両立を図るためには、第2レンズの形状が重要な要素となる。各種収差の補正に伴って増大する撮像レンズの厚さを抑制するためにも、第2レンズの厚さを一定の範囲内に抑制することが望ましい。本発明では、第2レンズの物体側の面と光軸とが交わる点から当該物体側の面の接平面と光軸とが垂直に交わる点までの距離をH、第2レンズの光軸上の厚さをDとしたとき、下記条件式(3)を満足するように構成した。
0.02<H/D<0.07 (3)
In the imaging lens having the above-described configuration, the shape of the second lens is an important element in order to achieve both reduction in size and good aberration correction. In order to suppress the thickness of the imaging lens that increases with correction of various aberrations, it is desirable to suppress the thickness of the second lens within a certain range. In the present invention, the distance from the point where the object-side surface of the second lens intersects the optical axis to the point where the tangential plane of the object-side surface intersects the optical axis perpendicularly is H, on the optical axis of the second lens. When the thickness of D is D, the following conditional expression (3) is satisfied.
0.02 <H / D <0.07 (3)

さらに、上記構成の撮像レンズにおいては、下記条件式(4)を満足することが望ましい。
−0.8<f1/f2<−0.3 (4)
Further, in the imaging lens having the above-described configuration, it is preferable that the following conditional expression (4) is satisfied.
−0.8 <f1 / f2 <−0.3 (4)

条件式(4)は、撮像レンズの厚さを短縮しつつ、軸上の色収差、軸外の倍率色収差、および像面湾曲を良好な範囲内に抑制するための条件である。上限値「−0.3」を超えると、撮像レンズの厚さの短縮には有効であるものの、軸上の色収差が補正不足(基準波長に対し短波長が−方向に増大)になるとともに、軸外の倍率色収差が補正不足となる。また、像面が物体側に倒れるため、良好な結像性能を得ることが困難となる。一方、下限値「−0.8」を下回ると、軸外の倍率色収差が補正過剰(基準波長に対し短波長が+方向に増大)となる。また、像面が像面側に倒れるため、この場合も良好な結像性能を得ることが困難となる。   Conditional expression (4) is a condition for suppressing on-axis chromatic aberration, off-axis magnification chromatic aberration, and field curvature within a favorable range while reducing the thickness of the imaging lens. Exceeding the upper limit “−0.3” is effective in reducing the thickness of the imaging lens, but the axial chromatic aberration is undercorrected (short wavelength increases in the − direction with respect to the reference wavelength), and Off-axis lateral chromatic aberration is undercorrected. Further, since the image plane falls to the object side, it is difficult to obtain good imaging performance. On the other hand, below the lower limit “−0.8”, off-axis lateral chromatic aberration is overcorrected (short wavelength increases in the + direction with respect to the reference wavelength). Further, since the image plane falls to the image plane side, it is difficult to obtain good imaging performance in this case.

上記構成の撮像レンズにおいては、第1レンズと第2レンズとの間の間隔をdA、第2レンズと第3レンズとの間の間隔をdBとしたとき、下記条件式(5)を満足することが望ましい。
0.05<dA/dB<0.5 (5)
In the imaging lens having the above configuration, when the distance between the first lens and the second lens is dA and the distance between the second lens and the third lens is dB, the following conditional expression (5) is satisfied. It is desirable.
0.05 <dA / dB <0.5 (5)

条件式(5)は、球面収差およびコマ収差を良好な範囲内に抑制するための条件である。第2レンズを、条件式(5)を満足するように配置することにより、球面収差およびコマ収差を良好な範囲内に抑制することができる。上限値「0.5」を超えると、球面収差が補正過剰となり、軸上の色収差が補正不足となる。また、軸外光線による内方コマ収差が増大し、各収差を良好な範囲内に抑制することが困難となる。一方、下限値「0.05」を下回ると、球面収差が補正不足となり、また軸外光線による外方コマ収差が増大するため、この場合も各収差を良好な範囲内に抑制することが困難となる。   Conditional expression (5) is a condition for suppressing spherical aberration and coma aberration within a favorable range. By disposing the second lens so as to satisfy the conditional expression (5), it is possible to suppress the spherical aberration and the coma aberration within a favorable range. When the upper limit “0.5” is exceeded, spherical aberration is overcorrected, and axial chromatic aberration is undercorrected. In addition, inward coma due to off-axis rays increases, making it difficult to suppress each aberration within a favorable range. On the other hand, if the value falls below the lower limit “0.05”, the spherical aberration becomes insufficiently corrected, and the outward coma aberration due to off-axis rays increases, and in this case as well, it is difficult to suppress each aberration within a favorable range. It becomes.

本発明の撮像レンズによれば、撮像レンズの小型化と良好な収差補正との両立が図られ、各種の収差が良好に補正された小型の撮像レンズを提供することができる。   According to the imaging lens of the present invention, it is possible to provide both a compact imaging lens in which various types of aberrations are favorably corrected while achieving both a reduction in size of the imaging lens and good aberration correction.

本発明の第1の実施の形態について、数値実施例1に係る撮像レンズの概略構成を示すレンズ断面図である。1 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 1 according to a first embodiment of the present invention. 同数値実施例1に係る撮像レンズのうち、第2レンズのみを示す断面図である。It is sectional drawing which shows only a 2nd lens among the imaging lenses which concern on the same numerical value Example 1. FIG. 同数値実施例1に係る撮像レンズの横収差を示す収差図である。FIG. 6 is an aberration diagram showing lateral aberration of the imaging lens according to Example 1 with the same numerical values. 同数値実施例1に係る撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens according to Example 1 of the same numerical value. 本発明の実施の形態について、数値実施例2に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 5 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 2 according to the embodiment of the present invention. 同数値実施例2に係る撮像レンズの横収差を示す収差図である。FIG. 6 is an aberration diagram showing lateral aberration of the imaging lens according to Numerical Example 2; 同数値実施例2に係る撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 6 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens according to Example 2 of the same numerical value. 本発明の実施の形態について、数値実施例3に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 10 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 3 according to the embodiment of the present invention. 同数値実施例3に係る撮像レンズの横収差を示す収差図である。FIG. 10 is an aberration diagram showing lateral aberration of the imaging lens according to Numerical Example 3; 同数値実施例3に係る撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens according to Numerical Example 3; 本発明の実施の形態について、数値実施例4に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 10 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 4 according to the embodiment of the present invention. 同数値実施例4に係る撮像レンズの横収差を示す収差図である。FIG. 6 is an aberration diagram showing lateral aberration of the imaging lens according to Numerical Example 4; 同数値実施例4に係る撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens according to Numerical Example 4; 本発明の第2の実施の形態について、数値実施例5に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 10 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 5 regarding the second embodiment of the present invention. 同数値実施例5に係る撮像レンズの横収差を示す収差図である。FIG. 10 is an aberration diagram illustrating lateral aberration of the imaging lens according to Numerical Example 5; 同数値実施例5に係る撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens according to Numerical Example 5; 本発明の第3の実施の形態について、数値実施例6に係る撮像レンズの概略構成を示すレンズ断面図である。FIG. 10 is a lens cross-sectional view illustrating a schematic configuration of an imaging lens according to Numerical Example 6 according to a third embodiment of the present invention. 同数値実施例6に係る撮像レンズの横収差を示す収差図である。FIG. 10 is an aberration diagram showing lateral aberration of the imaging lens according to Numerical Example 6; 同数値実施例6に係る撮像レンズの球面収差、非点収差、歪曲収差を示す収差図である。FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion of the imaging lens according to Numerical Example 6;

(第1の実施の形態)
以下、本発明を具体化した第1の実施の形態について、図面を参照しながら詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.

図1、図5、図8、図11はそれぞれ、本実施の形態の数値実施例1〜4に対応するレンズ断面図を示したものである。いずれの数値実施例も基本的なレンズ構成は同一であるため、ここでは数値実施例1のレンズ断面図を参照しながら、本実施の形態のレンズ構成について説明する。   1, 5, 8, and 11 are lens cross-sectional views corresponding to Numerical Examples 1 to 4 of the present embodiment, respectively. Since any of the numerical examples has the same basic lens configuration, the lens configuration of the present embodiment will be described with reference to the lens cross-sectional view of Numerical Example 1.

図1に示すように、本実施の形態に係る撮像レンズは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2と、同じく負の屈折力を有する第3レンズL3とが配列されて構成される。第3レンズL3と撮像素子の像面との間には、カバーガラス10が配置されている。なお、このカバーガラス10は、割愛することも可能である。   As shown in FIG. 1, the imaging lens according to the present embodiment includes a first lens L1 having a positive refractive power and a second lens L2 having a negative refractive power in order from the object side to the image plane side. And a third lens L3 having the same negative refractive power is arranged. A cover glass 10 is disposed between the third lens L3 and the image plane of the image sensor. The cover glass 10 can be omitted.

第1レンズL1は、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる非球面形状、すなわち光軸近傍において両凸レンズとなる形状に形成されている。第2レンズL2は、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる非球面形状、すなわち光軸近傍において両凹レンズとなる形状に形成されている。この第2レンズL2の物体側の面は、光軸近傍が物体側に凹形状で且つ周辺部が物体側に凸形状となる非球面形状に形成されている。第3レンズL3は、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる非球面形状、すなわち光軸近傍においてメニスカスレンズとなる形状に形成されている。この第3レンズL3では、物体側の面および像面側の面が共に、光軸近傍において物体側に凸形状で且つ周辺部において物体側に凹形状となる非球面形状に形成されている。   The first lens L1 is formed in an aspherical shape in which the radius of curvature of the object side surface is positive and the radius of curvature of the image side surface is negative, that is, a shape that becomes a biconvex lens near the optical axis. The second lens L2 is formed in an aspherical shape in which the radius of curvature of the object side surface is negative and the curvature radius of the image side surface is positive, that is, a shape that is a biconcave lens in the vicinity of the optical axis. The object side surface of the second lens L2 is formed in an aspherical shape in which the vicinity of the optical axis is concave on the object side and the peripheral portion is convex on the object side. The third lens L3 is formed in an aspherical shape in which both the radius of curvature of the object side surface and the radius of curvature of the image side surface are positive, that is, a shape that becomes a meniscus lens in the vicinity of the optical axis. In the third lens L3, both the object-side surface and the image-side surface are formed in an aspherical shape that is convex toward the object side in the vicinity of the optical axis and concave toward the object side in the periphery.

本実施の形態では、開口絞りを、第1レンズL1の物体側面の頂点接平面よりも物体側に配置している。この開口絞りの位置は、本実施の形態における位置に限定されるものではなく、例えば、第1レンズL1の物体側面の頂点接平面と同第1レンズL1の像面側面との間に開口絞りを配置するようにしてもよい。   In the present embodiment, the aperture stop is disposed closer to the object side than the vertex tangent plane of the object side surface of the first lens L1. The position of the aperture stop is not limited to the position in the present embodiment. For example, the aperture stop is located between the apex tangent plane of the object side surface of the first lens L1 and the image surface side surface of the first lens L1. May be arranged.

本実施の形態では、第1レンズL1〜第3レンズL3のレンズ面の全てを非球面で形成している。これらレンズ面に採用する非球面形状は、光軸方向の軸をZ、光軸に直交する方向の高さをH、円錐係数をk、非球面係数をA4、A6、A8、A10、A12、A14、A16としたとき、次式により表される(後述する第2および第3の実施の形態においても同じ)。
In the present embodiment, all the lens surfaces of the first lens L1 to the third lens L3 are aspherical. The aspherical shape adopted for these lens surfaces is that the axis in the optical axis direction is Z, the height in the direction perpendicular to the optical axis is H, the conic coefficient is k, and the aspherical coefficients are A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , and A 16 are expressed by the following formulas (the same applies to the second and third embodiments described later).

本実施の形態に係る撮像レンズは、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第3レンズL3の焦点距離をf3としたとき、次の条件式(1)および(4)を満足する。
f1<|f2|、f1<|f3| (1)
−0.8<f1/f2<−0.3 (4)
In the imaging lens according to the present embodiment, when the focal length of the first lens L1 is f1, the focal length of the second lens L2 is f2, and the focal length of the third lens L3 is f3, the following conditional expression (1) And (4) is satisfied.
f1 <| f2 |, f1 <| f3 | (1)
−0.8 <f1 / f2 <−0.3 (4)

また、本実施の形態に係る撮像レンズでは、上述の第2レンズL2の物体側の面における周辺部での物体側への突出量、すなわち第2レンズL2の物体側の面の頂点から、当該物体側の面と光軸とが交わる点(底点)を通り光軸に対して垂直となる面に、垂線を下ろしたときの当該垂線の長さを一定の範囲内に抑制している。換言すれば、第2レンズL2の物体側の面と光軸とが交わる点から当該物体側の面の接平面(上記頂点を通る)と光軸とが垂直に交わる点までの距離を一定の範囲内に抑制することによって、良好な収差補正を行いつつ第2レンズL2の厚さを短縮し、撮像レンズの小型化と良好な収差補正との両立を図っている。   In the imaging lens according to the present embodiment, the amount of protrusion toward the object side at the peripheral portion of the object-side surface of the second lens L2, that is, the vertex of the object-side surface of the second lens L2, The length of the perpendicular when the perpendicular is lowered to a surface that passes through a point (bottom) where the object-side surface and the optical axis intersect and is perpendicular to the optical axis is suppressed within a certain range. In other words, the distance from the point at which the object-side surface of the second lens L2 intersects with the optical axis to the point at which the tangential plane of the object-side surface (through the vertex) and the optical axis intersect perpendicularly is constant. By suppressing within the range, the thickness of the second lens L2 is shortened while performing good aberration correction, and both downsizing of the imaging lens and good aberration correction are achieved.

詳しくは、図2に示すように、本実施の形態に係る撮像レンズは、第2レンズL2の物体側の面と光軸とが交わる点から当該物体側の面の接平面と光軸とが垂直に交わる点までの距離をH、第2レンズL2の光軸上の厚さをDとしたとき、次の条件式(3)を満足する。
0.02<H/D<0.07 (3)
Specifically, as shown in FIG. 2, in the imaging lens according to the present embodiment, the tangential plane of the object-side surface and the optical axis are from the point where the object-side surface of the second lens L2 intersects with the optical axis. When the distance to the perpendicular intersection is H and the thickness on the optical axis of the second lens L2 is D, the following conditional expression (3) is satisfied.
0.02 <H / D <0.07 (3)

さらに、本実施の形態に係る撮像レンズは、第2レンズL2の物体側の面の曲率半径をR3、第2レンズL2の像面側の面の曲率半径をR4、第1レンズL1と第2レンズL2との間の間隔をdA、第2レンズL2と第3レンズL3との間の間隔をdBとしたとき、次の条件式(2)および(5)を満足する。
−0.15<R3/R4<0 (2)
0.05<dA/dB<0.5 (5)
Furthermore, in the imaging lens according to the present embodiment, the radius of curvature of the object-side surface of the second lens L2 is R3, the radius of curvature of the image-side surface of the second lens L2 is R4, and the first lens L1 and the second lens When the distance between the lens L2 is dA and the distance between the second lens L2 and the third lens L3 is dB, the following conditional expressions (2) and (5) are satisfied.
-0.15 <R3 / R4 <0 (2)
0.05 <dA / dB <0.5 (5)

また、本実施の形態に係る撮像レンズでは、軸上の色収差および軸外の色収差を一定の範囲内に抑制するために、第2レンズL2のアッベ数を第1レンズL1および第3レンズL3のアッベよりも低い値に設定し、以下に示す範囲内に収めている。
第1レンズL1のd線におけるアッベ数νd1:νd1>50
第2レンズL2のd線におけるアッベ数νd2:νd2<35
第3レンズL3のd線におけるアッベ数νd3:νd3>50
νd1−νd2<32
Further, in the imaging lens according to the present embodiment, in order to suppress the axial chromatic aberration and the off-axis chromatic aberration within a certain range, the Abbe number of the second lens L2 is set between the first lens L1 and the third lens L3. The value is set lower than Abbe and is within the range shown below.
Abbe number νd1: νd1> 50 in the d-line of the first lens L1
Abbe number νd2 at the d-line of the second lens L2: νd2 <35
Abbe number νd3 at the d-line of the third lens L3: νd3> 50
νd1−νd2 <32

なお、上記条件式(1)〜(5)の全てを満たす必要はなく、上記条件式(1)〜(5)のそれぞれを単独に満たすことにより、各条件式に対応する作用効果を得ることができ、従来の撮像レンズに比較して良好に収差の補正された小型の撮像レンズを構成することができる。   In addition, it is not necessary to satisfy all of the conditional expressions (1) to (5), and by obtaining each of the conditional expressions (1) to (5) independently, an effect corresponding to each conditional expression is obtained. Therefore, it is possible to construct a small imaging lens in which aberrations are corrected well compared to a conventional imaging lens.

次に、本実施の形態の数値実施例を示す。各数値実施例において、fはレンズ系全体の焦点距離を、FnoはFナンバーを、ωは半画角をそれぞれ示す。また、iは物体側より数えた面番号を示し、Rは曲率半径を示し、dは光軸に沿ったレンズ面間の距離(面間隔)を示し、Ndはd線に対する屈折率を、νdはd線に対するアッベ数をそれぞれ示す。なお、非球面の面には、面番号iの後に*(アスタリスク)の符号を付加して示す。   Next, numerical examples of the present embodiment will be shown. In each numerical example, f represents the focal length of the entire lens system, Fno represents the F number, and ω represents the half angle of view. Further, i indicates a surface number counted from the object side, R indicates a radius of curvature, d indicates a distance (surface interval) between lens surfaces along the optical axis, Nd indicates a refractive index with respect to d-line, and νd Indicates the Abbe number for the d line. An aspheric surface is indicated by adding a symbol of * (asterisk) after the surface number i.

数値実施例1
基本的なレンズデータを以下に示す。
f=2.872mm、Fno=2.850、ω=31.36°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
(絞り) ∞ 0.0101
1* 1.326 0.4300 1.54420 56.0(=νd1)
2* -4.014 0.2189(=dA)
3* -2.145 0.2700 1.58500 29.0(=νd2)
4* 250.000 0.5201(=dB)
5* 1.777 0.4500 1.54420 56.0(=νd3)
6* 1.595 0.1400
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6997
(像面) ∞

非球面データ
第1面
k=-2.726960,A4=-3.110338E-02,A6=2.321001E-01,A8=1.207622E-01,
10=-3.243233
第2面
k=-2.000000E-01,A4=-6.466253E-02,A6=1.405198,A8=-7.307537E-01,
10=-7.964204
第3面
k=-8.973423,A4=1.076485,A6=7.134322E-01,A8=-3.000000,
10=1.000000
第4面
k=-5.974132E+05,A4=1.034534,A6=1.966603E-01,A8=1.002229,
10=-1.685398
第5面
k=-1.772930E+01,A4=4.521145E-02,A6=-3.908136E-01,A8=3.405364E-01,
10=-8.843657E-02
第6面
k=-5.043102,A4=-9.871068E-02,A6=-7.247517E-02,A8=4.645177E-02,
10=-1.600082E-02
Numerical example 1
Basic lens data is shown below.
f = 2.872mm, Fno = 2.850, ω = 31.36 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
(Aperture) ∞ 0.0101
1 * 1.326 0.4300 1.54420 56.0 (= νd1)
2 * -4.014 0.2189 (= dA)
3 * -2.145 0.2700 1.58500 29.0 (= νd2)
4 * 250.000 0.5201 (= dB)
5 * 1.777 0.4500 1.54420 56.0 (= νd3)
6 * 1.595 0.1400
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6997
(Image plane) ∞

Aspherical data first surface k = -2.726960, A 4 = -3.110338E-02, A 6 = 2.321001E-01, A 8 = 1.207622E-01,
A 10 = -3.243233
Second side k = -2.000000E-01, A 4 = -6.466253E-02, A 6 = 1.405198, A 8 = -7.307537E-01,
A 10 = -7.964204
3rd surface k = -8.973423, A 4 = 1.076485, A 6 = 7.134322E-01, A 8 = -3.000000,
A 10 = 1.000000
4th surface k = -5.974132E + 05, A 4 = 1.034534, A 6 = 1.966603E-01, A 8 = 1.002229,
A 10 = -1.685398
5th surface k = -1.772930E + 01, A 4 = 4.521145E-02, A 6 = -3.908136E-01, A 8 = 3.405364E-01,
A 10 = -8.843657E-02
6th surface k = -5.043102, A 4 = -9.871068E-02, A 6 = -7.247517E-02, A 8 = 4.645177E-02,
A 10 = -1.600082E-02

各レンズL1〜L3の焦点距離f1〜f3、および各条件式の値を以下に示す。
f1=1.885
f2=−3.634
f3=−222.45
R3/R4=−0.009
H/D=H/d3=0.0414
f1/f2=−0.519
dA/dB=d2/d4=0.421
νd1−νd2=27.0
このように、本数値実施例1による撮像レンズは、条件式(1)〜(5)を満たしている。
The focal lengths f1 to f3 of the lenses L1 to L3 and the values of the conditional expressions are shown below.
f1 = 1.85
f2 = -3.634
f3 = −222.45
R3 / R4 = −0.009
H / D = H / d3 = 0.0414
f1 / f2 = −0.519
dA / dB = d2 / d4 = 0.421
νd1−νd2 = 27.0
As described above, the imaging lens according to Numerical Example 1 satisfies the conditional expressions (1) to (5).

図3は、数値実施例1の撮像レンズについて、半画角ωに対応する横収差をタンジェンシャル方向とサジタル方向に分けて示したものである(図6、図9、図12、図15において同じ)。また、図4は、数値実施例1の撮像レンズについて、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら収差図において、球面収差図には、587.56nm、435.84nm、656.27nm、486.13nm、546.07nmの各波長に対する収差量とともに、正弦条件違反量OSCを併せて示し、非点収差図には、サジタル像面Sにおける収差量とタンジェンシャル像面Tにおける収差量とをそれぞれ示す(図7、図10、図13、図16において同じ)。   FIG. 3 shows the lateral aberration corresponding to the half angle of view ω divided into the tangential direction and the sagittal direction for the imaging lens of Numerical Example 1 (in FIGS. 6, 9, 12, and 15). the same). FIG. 4 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion aberration DIST (%) for the imaging lens of Numerical Example 1. In these aberration diagrams, the spherical aberration diagram shows the amount of aberration for each wavelength of 587.56 nm, 435.84 nm, 656.27 nm, 486.13 nm, and 546.07 nm as well as the sine condition violation amount OSC. The aberration diagrams show the aberration amount on the sagittal image surface S and the aberration amount on the tangential image surface T (the same applies to FIGS. 7, 10, 13, and 16).

図3および図4に示されるように、本数値実施例1に係る撮像レンズによれば、各種収差が良好に補正される。しかも、第1レンズL1の物体側の面から像面までの空気換算距離は3.058mmと短くなっており、撮像レンズの小型化も好適に図られている。   As shown in FIGS. 3 and 4, according to the imaging lens according to Numerical Example 1, various aberrations are favorably corrected. In addition, the air-converted distance from the object side surface of the first lens L1 to the image surface is as short as 3.058 mm, and the image pickup lens is also favorably downsized.

数値実施例2
基本的なレンズデータを以下に示す。
f=2.885mm、Fno=2.850、ω=31.24°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
(絞り) ∞ 0.0101
1* 1.223 0.4300 1.54420 56.0(=νd1)
2* -5.389 0.1600(=dA)
3* -2.268 0.2700 1.58500 29.0(=νd2)
4* 150.000 0.6500(=dB)
5* 2.168 0.4500 1.54420 56.0(=νd3)
6* 1.904 0.1100
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6823
(像面) ∞

非球面データ
第1面
k=-1.693778,A4=7.048642E-03,A6=-7.148810E-02,A8=-5.193070E-02,
10=-3.027556E-01
第2面
k=-2.000000E-01,A4=7.381654E-02,A6=9.810826E-01,A8=-1.093289,
10=-3.303644
第3面
k=-8.973423,A4=1.076485,A6=7.134322E-01,A8=-3.000000,
10=1.000000
第4面
k=1.491354E+04,A4=9.763533E-01,A6=4.060082E-01,A8=8.507295E-01,
10=-2.750323
第5面
k=-3.462211E+01,A4=9.585375E-02,A6=-4.208477E-01,A8=3.317266E-01,
10=-8.075152E-02
第6面
k=-1.228985,A4=-1.181057E-01,A6=-8.791890E-02,A8=5.875926E-02,
10=-1.607393E-02
Numerical example 2
Basic lens data is shown below.
f = 2.885mm, Fno = 2.850, ω = 31.24 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
(Aperture) ∞ 0.0101
1 * 1.223 0.4300 1.54420 56.0 (= νd1)
2 * -5.389 0.1600 (= dA)
3 * -2.268 0.2700 1.58500 29.0 (= νd2)
4 * 150.000 0.6500 (= dB)
5 * 2.168 0.4500 1.54420 56.0 (= νd3)
6 * 1.904 0.1100
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6823
(Image plane) ∞

Aspherical data first surface k = -1.693778, A 4 = 7.048642E-03, A 6 = -7.148810E-02, A 8 = -5.193070E-02,
A 10 = -3.027556E-01
2nd surface k = -2.000000E-01, A 4 = 7.381654E-02, A 6 = 9.810826E-01, A 8 = -1.093289,
A 10 = -3.303644
3rd surface k = -8.973423, A 4 = 1.076485, A 6 = 7.134322E-01, A 8 = -3.000000,
A 10 = 1.000000
4th surface k = 1.491354E + 04, A 4 = 9.763533E-01, A 6 = 4.060082E-01, A 8 = 8.507295E-01,
A 10 = -2.750323
5th surface k = -3.462211E + 01, A 4 = 9.585375E-02, A 6 = -4.208477E-01, A 8 = 3.317266E-01,
A 10 = -8.075152E-02
6th surface k = -1.228985, A 4 = -1.181057E-01, A 6 = -8.791890E-02, A 8 = 5.875926E-02,
A 10 = -1.607393E-02

各レンズL1〜L3の焦点距離f1〜f3、および各条件式の値を以下に示す。
f1=1.875
f2=−3.817
f3=−71.957
R3/R4=−0.015
H/D=H/d3=0.0376
f1/f2=−0.491
dA/dB=d2/d4=0.246
νd1−νd2=27.0
このように、本数値実施例2による撮像レンズは、条件式(1)〜(5)を満たしている。
The focal lengths f1 to f3 of the lenses L1 to L3 and the values of the conditional expressions are shown below.
f1 = 1.875
f2 = -3.817
f3 = −71.957
R3 / R4 = −0.015
H / D = H / d3 = 0.0376
f1 / f2 = −0.491
dA / dB = d2 / d4 = 0.246
νd1−νd2 = 27.0
As described above, the imaging lens according to Numerical Example 2 satisfies the conditional expressions (1) to (5).

図6は、数値実施例2の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図7は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図6および図7に示されるように、本数値実施例2に係る撮像レンズによっても、数値実施例1と同様に、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.082mmとなっており、撮像レンズの小型化も好適に図られている。   FIG. 6 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 2. FIG. 7 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIG. 6 and FIG. 7, various aberrations are satisfactorily corrected by the imaging lens according to Numerical Example 2 as well as Numerical Example 1. In this numerical example, the air-converted distance from the object-side surface of the first lens L1 to the image plane is 3.082 mm, and the image pickup lens is also suitably reduced in size.

数値実施例3
基本的なレンズデータを以下に示す。
f=2.876mm、Fno=2.856、ω=31.32°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
(絞り) ∞ 0.0101
1* 1.200 0.4300 1.54420 56.0(=νd1)
2* -5.461 0.1100(=dA)
3* -2.414 0.2700 1.58500 29.0(=νd2)
4* 41.076 0.7000(=dB)
5* 2.458 0.4500 1.54420 56.0(=νd3)
6* 2.123 0.1100
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6886
(像面) ∞

非球面データ
第1面
k=-1.901343,A4=-1.077516E-02,A6=-2.466574E-01,A8=-3.848209E-01,
10=7.850272E-01
第2面
k=-2.000000E-01,A4=2.295499E-02,A6=7.989374E-01,A8=-1.419015,
10=-1.851361
第3面
k=-8.973423,A4=1.076485,A6=7.134322E-01,A8=-3.000000,
10=1.000000
第4面
k=5.704117E+02,A4=9.930533E-01,A6=4.351151E-01,A8=8.434294E-01,
10=-2.636398
第5面
k=-6.462274E+01,A4=1.126729E-01,A6=-4.225992E-01,A8=3.293896E-01,
10=-8.061301E-02
第6面
k=-9.384260E-01,A4=-1.029261E-01,A6=-9.007869E-02,A8=5.891562E-02,
10=-1.563757E-02
Numerical Example 3
Basic lens data is shown below.
f = 2.876mm, Fno = 2.856, ω = 31.32 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
(Aperture) ∞ 0.0101
1 * 1.200 0.4300 1.54420 56.0 (= νd1)
2 * -5.461 0.1100 (= dA)
3 * -2.414 0.2700 1.58500 29.0 (= νd2)
4 * 41.076 0.7000 (= dB)
5 * 2.458 0.4500 1.54420 56.0 (= νd3)
6 * 2.123 0.1100
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6886
(Image plane) ∞

Aspherical data first surface k = -1.901343, A 4 = -1.077516E-02, A 6 = -2.466574E-01, A 8 = -3.848209E-01,
A 10 = 7.850272E-01
Second surface k = -2.000000E-01, A 4 = 2.295499E-02, A 6 = 7.989374E-01, A 8 = -1.419015,
A 10 = -1.851361
3rd surface k = -8.973423, A 4 = 1.076485, A 6 = 7.134322E-01, A 8 = -3.000000,
A 10 = 1.000000
4th surface k = 5.704117E + 02, A 4 = 9.930533E-01, A 6 = 4.351151E-01, A 8 = 8.434294E-01,
A 10 = -2.636398
5th surface k = -6.462274E + 01, A 4 = 1.126729E-01, A 6 = -4.225992E-01, A 8 = 3.293896E-01,
A 10 = -8.061301E-02
6th surface k = -9.384260E-01, A 4 = -1.029261E-01, A 6 = -9.007869E-02, A 8 = 5.891562E-02,
A 10 = -1.563757E-02

各レンズL1〜L3の焦点距離f1〜f3、および各条件式の値を以下に示す。
f1=1.850
f2=−3.889
f3=−54.355
R3/R4=−0.059
H/D=H/d3=0.0335
f1/f2=−0.476
dA/dB=d2/d4=0.157
νd1−νd2=27.0
このように、本数値実施例3による撮像レンズは、条件式(1)〜(5)を満たしている。
The focal lengths f1 to f3 of the lenses L1 to L3 and the values of the conditional expressions are shown below.
f1 = 1.850
f2 = −3.889
f3 = −54.355
R3 / R4 = −0.059
H / D = H / d3 = 0.0335
f1 / f2 = −0.476
dA / dB = d2 / d4 = 0.157
νd1−νd2 = 27.0
Thus, the imaging lens according to Numerical Example 3 satisfies the conditional expressions (1) to (5).

図9は、数値実施例3の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図10は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図9および図10に示されるように、本数値実施例3に係る撮像レンズによっても、数値実施例1と同様に、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.088mmとなっており、撮像レンズの小型化も好適に図られている。   FIG. 9 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 3, and FIG. 10 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIGS. 9 and 10, various aberrations are satisfactorily corrected by the imaging lens according to Numerical Example 3 as well as Numerical Example 1. In this numerical example, the air-converted distance from the object side surface of the first lens L1 to the image plane is 3.088 mm, and the imaging lens is also favorably miniaturized.

数値実施例4
基本的なレンズデータを以下に示す。
f=2.883mm、Fno=2.850、ω=31.35°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
(絞り) ∞ 0.0101
1* 1.200 0.4300 1.54420 56.0(=νd1)
2* -6.181 0.1600(=dA)
3* -2.245 0.2700 1.58500 29.0(=νd2)
4* 500.000 0.6000(=dB)
5* 1.942 0.4300 1.54420 56.0(=νd3)
6* 1.727 0.1500
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6927
(像面) ∞

非球面データ
第1面
k=-1.682257,A4=1.008400E-02,A6=-6.309280E-03,A8=-1.376137E-01,
10=-2.072613
第2面
k=-2.000000E-01,A4=6.713812E-02,A6=9.984905E-01,A8=-1.315973,
10=-5.712717
第3面
k=-8.973423,A4=1.076485,A6=7.134322E-01,A8=-3.000000,
10=1.000000
第4面
k=4.509810E+05,A4=1.005785,A6=2.811773E-01,A8=9.059264E-01,
10=-5.675254E-01
第5面
k=-2.421189E+01,A4=9.692854E-02,A6=-4.169404E-01,A8=3.322301E-01,
10=-8.234996E-02
第6面
k=-1.874003,A4=-1.270593E-01,A6=-7.749536E-02,A8=5.824229E-02,
10=-1.750529E-02
Numerical Example 4
Basic lens data is shown below.
f = 2.883mm, Fno = 2.850, ω = 31.35 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
(Aperture) ∞ 0.0101
1 * 1.200 0.4300 1.54420 56.0 (= νd1)
2 * -6.181 0.1600 (= dA)
3 * -2.245 0.2700 1.58500 29.0 (= νd2)
4 * 500.000 0.6000 (= dB)
5 * 1.942 0.4300 1.54420 56.0 (= νd3)
6 * 1.727 0.1500
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.6927
(Image plane) ∞

Aspherical data first surface k = -1.682257, A 4 = 1.008400E-02, A 6 = -6.309280E-03, A 8 = -1.376137E-01,
A 10 = -2.072613
Second side k = -2.000000E-01, A 4 = 6.713812E-02, A 6 = 9.984905E-01, A 8 = -1.315973,
A 10 = -5.712717
3rd surface k = -8.973423, A 4 = 1.076485, A 6 = 7.134322E-01, A 8 = -3.000000,
A 10 = 1.000000
4th surface k = 4.509810E + 05, A 4 = 1.005785, A 6 = 2.811773E-01, A 8 = 9.059264E-01,
A 10 = -5.675254E-01
5th surface k = -2.421189E + 01, A 4 = 9.692854E-02, A 6 = -4.169404E-01, A 8 = 3.322301E-01,
A 10 = -8.234996E-02
6th surface k = -1.874003, A 4 = -1.270593E-01, A 6 = -7.749536E-02, A 8 = 5.824229E-02,
A 10 = -1.750529E-02

各レンズL1〜L3の焦点距離f1〜f3、および各条件式の値を以下に示す。
f1=1.885
f2=−3.820
f3=−97.112
R3/R4=−0.004
H/D=H/d3=0.0383
f1/f2=−0.493
dA/dB=d2/d4=0.267
νd1−νd2=27.0
このように、本数値実施例4による撮像レンズは、条件式(1)〜(5)を満たしている。
The focal lengths f1 to f3 of the lenses L1 to L3 and the values of the conditional expressions are shown below.
f1 = 1.85
f2 = −3.820
f3 = −97.112
R3 / R4 = −0.004
H / D = H / d3 = 0.0383
f1 / f2 = −0.493
dA / dB = d2 / d4 = 0.267
νd1−νd2 = 27.0
As described above, the imaging lens according to Numerical Example 4 satisfies the conditional expressions (1) to (5).

図12は、数値実施例4の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図13は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図12および図13に示されるように、本数値実施例4に係る撮像レンズによっても、数値実施例1と同様に、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.062mmとなっており、撮像レンズの小型化も好適に図られている。   12 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 4, and FIG. 13 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIGS. 12 and 13, the imaging lens according to Numerical Example 4 also corrects various aberrations in the same manner as Numerical Example 1. In this numerical example, the air conversion distance from the object side surface of the first lens L1 to the image surface is 3.062 mm, and the imaging lens is also favorably miniaturized.

(第2の実施の形態)
以下、本発明を具体化した第2の実施の形態について、図面を参照しながら詳細に説明する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings.

図14は、本実施の形態に対応する数値実施例5のレンズ断面図を示したものである。   FIG. 14 shows a lens cross-sectional view of Numerical Example 5 corresponding to the present embodiment.

図14に示すように、本実施の形態に係る撮像レンズは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズL1と、負の屈折力を有する第2レンズL2と、正の屈折力を有する第3レンズL3とが配列されて構成される。第3レンズL3と撮像素子の像面との間には、カバーガラス10が配置されている。なお、このカバーガラス10は、割愛することも可能である。   As shown in FIG. 14, the imaging lens according to the present embodiment includes a first lens L1 having a positive refractive power and a second lens L2 having a negative refractive power in order from the object side to the image plane side. And a third lens L3 having a positive refractive power are arranged. A cover glass 10 is disposed between the third lens L3 and the image plane of the image sensor. The cover glass 10 can be omitted.

第1レンズL1は、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる非球面形状、すなわち光軸近傍において両凸レンズとなる形状に形成されている。第2レンズL2は、物体側の面の曲率半径が負となり、像面側の面の曲率半径が正となる非球面形状、すなわち光軸近傍において両凹レンズとなる形状に形成されている。この第2レンズL2の物体側の面は、光軸近傍が物体側に凹形状で且つ周辺部が物体側に凸形状となる非球面形状に形成されている。第3レンズL3は、物体側の面の曲率半径および像面側の面の曲率半径が共に正となる非球面形状、すなわち光軸近傍においてメニスカスレンズとなる形状に形成されている。この第3レンズL3では、物体側の面および像面側の面が共に、光軸近傍において物体側に凸形状で且つ周辺部において物体側に凹形状となる非球面形状に形成されている。   The first lens L1 is formed in an aspherical shape in which the radius of curvature of the object side surface is positive and the radius of curvature of the image side surface is negative, that is, a shape that becomes a biconvex lens near the optical axis. The second lens L2 is formed in an aspherical shape in which the radius of curvature of the object side surface is negative and the curvature radius of the image side surface is positive, that is, a shape that is a biconcave lens in the vicinity of the optical axis. The object side surface of the second lens L2 is formed in an aspherical shape in which the vicinity of the optical axis is concave on the object side and the peripheral portion is convex on the object side. The third lens L3 is formed in an aspherical shape in which both the radius of curvature of the object side surface and the radius of curvature of the image side surface are positive, that is, a shape that becomes a meniscus lens in the vicinity of the optical axis. In the third lens L3, both the object-side surface and the image-side surface are formed in an aspherical shape that is convex toward the object side in the vicinity of the optical axis and concave toward the object side in the periphery.

本実施の形態においても、開口絞りを、第1レンズL1の物体側面の頂点接平面よりも物体側に配置している。この開口絞りの位置は、例えば、第1レンズL1の物体側面の頂点接平面と同第1レンズL1の像面側面との間でもよい。   Also in the present embodiment, the aperture stop is disposed closer to the object side than the vertex tangent plane of the object side surface of the first lens L1. The position of the aperture stop may be, for example, between the vertex tangent plane of the object side surface of the first lens L1 and the image surface side surface of the first lens L1.

本実施の形態に係る撮像レンズにおいても、第1レンズL1の焦点距離をf1、第2レンズL2の焦点距離をf2、第2レンズL2の物体側の面の曲率半径をR3、第2レンズL2の像面側の面の曲率半径をR4、第1レンズL1と第2レンズL2との間の間隔をdA、第2レンズL2と第3レンズL3との間の間隔をdB、第2レンズL2の物体側の面と光軸とが交わる点から当該物体側の面の接平面と光軸とが垂直に交わる点までの距離をH、第2レンズL2の光軸上の厚さをDとしたとき、次の条件式(1)〜(5)を満足する。
f1<|f2|、f1<|f3| (1)
−0.15<R3/R4<0 (2)
0.02<H/D<0.07 (3)
−0.8<f1/f2<−0.3 (4)
0.05<dA/dB<0.5 (5)
Also in the imaging lens according to the present embodiment, the focal length of the first lens L1 is f1, the focal length of the second lens L2 is f2, the radius of curvature of the object side surface of the second lens L2 is R3, and the second lens L2. The radius of curvature of the surface on the image plane side is R4, the distance between the first lens L1 and the second lens L2 is dA, the distance between the second lens L2 and the third lens L3 is dB, and the second lens L2 The distance from the point where the object-side surface and the optical axis intersect to the point where the tangential plane of the object-side surface and the optical axis intersect perpendicularly is H, and the thickness of the second lens L2 on the optical axis is D When satisfied, the following conditional expressions (1) to (5) are satisfied.
f1 <| f2 |, f1 <| f3 | (1)
-0.15 <R3 / R4 <0 (2)
0.02 <H / D <0.07 (3)
−0.8 <f1 / f2 <−0.3 (4)
0.05 <dA / dB <0.5 (5)

また、軸上の色収差および軸外の色収差を一定の範囲内に抑制するために、本実施の形態に係る撮像レンズにおいても、各レンズL1〜L3のアッベ数νd1〜νd3は以下に示す範囲内に収まっている。
νd1>50
νd2<35
νd3>50
νd1−νd2<32
Further, in order to suppress the on-axis chromatic aberration and the off-axis chromatic aberration within a certain range, also in the imaging lens according to the present embodiment, the Abbe numbers νd1 to νd3 of the lenses L1 to L3 are within the following ranges. Is in the range.
νd1> 50
νd2 <35
νd3> 50
νd1−νd2 <32

なお、本実施の形態においても上記条件式(1)〜(5)の全てを満たす必要はなく、上記条件式(1)〜(5)のそれぞれを単独に満たすことにより、各条件式に対応する作用効果を得ることができ、従来の撮像レンズに比較して良好に収差の補正された小型の撮像レンズを構成することができる。   In the present embodiment, it is not necessary to satisfy all of the conditional expressions (1) to (5). By satisfying each of the conditional expressions (1) to (5) independently, each conditional expression can be handled. Thus, it is possible to obtain a small-sized imaging lens in which aberrations are favorably corrected as compared with a conventional imaging lens.

次に、本実施の形態の数値実施例を示す。各数値実施例において、fはレンズ系全体の焦点距離を、FnoはFナンバーを、ωは半画角をそれぞれ示す。また、iは物体側より数えた面番号を示し、Rは曲率半径を示し、dは光軸に沿ったレンズ面間の距離(面間隔)を示し、Ndはd線に対する屈折率を、νdはd線に対するアッベ数をそれぞれ示す。なお、非球面の面には、面番号iの後に*(アスタリスク)の符号を付加して示す。   Next, numerical examples of the present embodiment will be shown. In each numerical example, f represents the focal length of the entire lens system, Fno represents the F number, and ω represents the half angle of view. Further, i indicates a surface number counted from the object side, R indicates a radius of curvature, d indicates a distance (surface interval) between lens surfaces along the optical axis, Nd indicates a refractive index with respect to d-line, and νd Indicates the Abbe number for the d line. An aspheric surface is indicated by adding a symbol of * (asterisk) after the surface number i.

数値実施例5
基本的なレンズデータを以下に示す。
f=2.835mm、Fno=2.850、ω=31.69°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
(絞り) ∞ 0.0101
1* 1.228 0.4300 1.54420 56.0(=νd1)
2* -5.109 0.1100(=dA)
3* -2.261 0.2700 1.58500 29.0(=νd2)
4* 234.916 0.7000(=dB)
5* 2.400 0.4500 1.54420 56.0(=νd3)
6* 2.400 0.1100
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.7120
(像面) ∞

非球面データ
第1面
k=-1.786122,A4=-1.604778E-03,A6=-1.685937E-01,A8=-3.792832E-01,
10=-8.140890E-01
第2面
k=-2.000000E-01,A4=7.189249E-02,A6=9.062164E-01,A8=-1.692214,
10=-4.033243
第3面
k=-8.973423,A4=1.076485,A6=7.134322E-01,A8=-3.000000,
10=1.000000
第4面
k=-3.024910E+07,A4=9.588657E-01,A6=4.023783E-01,A8=9.849866E-01,
10=-1.800379
第5面
k=-7.413000E+01,A4=1.246003E-01,A6=-4.185439E-01,A8=3.296663E-01,
10=-8.119929E-02
第6面
k=-2.441679E-01,A4=-9.905229E-02,A6=-9.880606E-02,A8=6.025187E-02,
10=-1.335594E-02
Numerical Example 5
Basic lens data is shown below.
f = 2.835mm, Fno = 2.850, ω = 31.69 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
(Aperture) ∞ 0.0101
1 * 1.228 0.4300 1.54420 56.0 (= νd1)
2 * -5.109 0.1100 (= dA)
3 * -2.261 0.2700 1.58500 29.0 (= νd2)
4 * 234.916 0.7000 (= dB)
5 * 2.400 0.4500 1.54420 56.0 (= νd3)
6 * 2.400 0.1100
7 ∞ 0.5000 1.51633 64.2
8 ∞ 0.7120
(Image plane) ∞

Aspherical data first surface k = -1.786122, A 4 = -1.604778E-03, A 6 = -1.685937E-01, A 8 = -3.792832E-01,
A 10 = -8.140890E-01
Second surface k = -2.000000E-01, A 4 = 7.189249E-02, A 6 = 9.062164E-01, A 8 = -1.692214,
A 10 = -4.033243
3rd surface k = -8.973423, A 4 = 1.076485, A 6 = 7.134322E-01, A 8 = -3.000000,
A 10 = 1.000000
4th surface k = -3.024910E + 07, A 4 = 9.588657E-01, A 6 = 4.023783E-01, A 8 = 9.849866E-01,
A 10 = -1.800379
5th surface k = -7.413000E + 01, A 4 = 1.246003E-01, A 6 = -4.185439E-01, A 8 = 3.296663E-01,
A 10 = -8.119929E-02
6th surface k = -2.441679E-01, A 4 = -9.905229E-02, A 6 = -9.880606E-02, A 8 = 6.025187E-02,
A 10 = -1.335594E-02

各レンズL1〜L3の焦点距離f1〜f3、および各条件式の値を以下に示す。
f1=1.864
f2=−3.827
f3=66.742
R3/R4=−0.010
H/D=H/d3=0.0378
f1/f2=−0.487
dA/dB=d2/d4=0.157
νd1−νd2=27.0
このように、本数値実施例5による撮像レンズは、条件式(1)〜(5)を満たしている。
The focal lengths f1 to f3 of the lenses L1 to L3 and the values of the conditional expressions are shown below.
f1 = 1.864
f2 = −3.827
f3 = 66.742
R3 / R4 = −0.010
H / D = H / d3 = 0.0378
f1 / f2 = −0.487
dA / dB = d2 / d4 = 0.157
νd1−νd2 = 27.0
As described above, the imaging lens according to Numerical Example 5 satisfies the conditional expressions (1) to (5).

図15は、数値実施例5の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図16は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図15および図16に示されるように、本数値実施例5に係る撮像レンズによっても、数値実施例1と同様に、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.112mmとなっており、撮像レンズの小型化も好適に図られている。   FIG. 15 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 5, and FIG. 16 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIG. 15 and FIG. 16, various aberrations are satisfactorily corrected by the imaging lens according to Numerical Example 5 as well as Numerical Example 1. In this numerical example, the air conversion distance from the object-side surface of the first lens L1 to the image plane is 3.112 mm, and the imaging lens is also favorably miniaturized.

(第3の実施の形態)
以下、本発明を具体化した第3の実施の形態について、図面を参照しながら詳細に説明する。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described in detail with reference to the drawings.

図17は、本実施の形態に対応する数値実施例6のレンズ断面図を示したものである。   FIG. 17 shows a lens cross-sectional view of Numerical Example 6 corresponding to the present embodiment.

本実施の形態に係る撮像レンズの基本的な構成は、上記第2の実施の形態に係る撮像レンズと同様である。但し、本実施の形態に係る撮像レンズは、上記第2の実施の形態と異なり、第3レンズL3の物体側の面の形状が異なっている。   The basic configuration of the imaging lens according to the present embodiment is the same as that of the imaging lens according to the second embodiment. However, the imaging lens according to the present embodiment differs from the second embodiment in the shape of the object-side surface of the third lens L3.

上記第2の実施の形態では、第3レンズL3の物体側の面および像面側の面が共に、光軸近傍において物体側に凸形状で且つ周辺部において物体側に凹形状となる非球面形状に形成されている。これに対して本実施の形態では、図17に示すように、第3レンズL3の像面側の面のみが、光軸近傍において物体側に凸形状で且つ周辺部において物体側に凹形状となる非球面形状に形成されている。第3レンズL3としてこのような形状を採用したとしても、撮像レンズの小型化と良好な収差補正との両立を図ることができる。   In the second embodiment, both the object side surface and the image surface side surface of the third lens L3 are convex on the object side in the vicinity of the optical axis and concave on the object side in the periphery. It is formed into a shape. On the other hand, in the present embodiment, as shown in FIG. 17, only the image side surface of the third lens L3 has a convex shape on the object side in the vicinity of the optical axis and a concave shape on the object side in the peripheral portion. It is formed into an aspherical shape. Even if such a shape is adopted as the third lens L3, it is possible to achieve both reduction in size of the imaging lens and good aberration correction.

数値実施例6
基本的なレンズデータを以下に示す。
f=2.821mm、Fno=2.856、ω=31.81°
単位 mm
面データ
面番号i R d Nd νd
(物面) ∞ ∞
(絞り) ∞ 0.0101
1* 0.988 0.3399 1.54420 56.0(=νd1)
2* 52.040 0.1022(=dA)
3* -2.164 0.2700 1.58500 29.0(=νd2)
4* 500.000 0.7000(=dB)
5* 2.322 0.5000 1.54420 56.0(=νd3)
6* 2.380 0.5000
7 ∞ 0.3000 1.51633 64.2
8 ∞ 0.4351
(像面) ∞

非球面データ
第1面
k=-1.324165,A4=3.629701E-02,A6=-1.689376E-01,A8=-4.823010E-01,
10=-2.706396,A12=-1.678278,A14=-7.824178,A16=-2.359938E+01
第2面
k=-2.000000E-01,A4=3.891946E-03,A6=5.654417E-01,A8=-2.489689,
10=-8.388261,A12=-4.566875,A14=-2.054143
第3面
k=-8.973423,A4=1.027423,A6=4.637295E-01,A8=-4.049567,A10=-2.165919,
12=-7.131607,A14=-1.418408E+01
第4面
k=-3.641872E+08,A4=1.157415,A6=2.676480E-01,A8=-7.084293E-01,
10=-7.781085E-01,A12=1.468836,A14=-2.749283,A16=-7.179977E+01
第5面
k=-1.322595E+01
第6面
k=-2.317301,A4=-4.757656E-02,A6=-3.815292E-02,A8=3.725375E-02,
10=-1.672389E-02,A12=2.143275E-03,A14=5.171325E-04,A16=-1.445483E-04
Numerical Example 6
Basic lens data is shown below.
f = 2.821mm, Fno = 2.856, ω = 31.81 °
Unit mm
Surface data Surface number i R d Nd νd
(Surface) ∞ ∞
(Aperture) ∞ 0.0101
1 * 0.988 0.3399 1.54420 56.0 (= νd1)
2 * 52.040 0.1022 (= dA)
3 * -2.164 0.2700 1.58500 29.0 (= νd2)
4 * 500.000 0.7000 (= dB)
5 * 2.322 0.5000 1.54420 56.0 (= νd3)
6 * 2.380 0.5000
7 ∞ 0.3000 1.51633 64.2
8 ∞ 0.4351
(Image plane) ∞

Aspherical data first surface k = -1.324165, A 4 = 3.629701E-02, A 6 = -1.689376E-01, A 8 = -4.823010E-01,
A 10 = -2.706396, A 12 = -1.678278, A 14 = -7.824178, A 16 = -2.359938E + 01
Second surface k = -2.000000E-01, A 4 = 3.891946E-03, A 6 = 5.654417E-01, A 8 = -2.489689,
A 10 = -8.388261, A 12 = -4.566875, A 14 = -2.054143
Third surface k = −8.973423, A 4 = 1.027423, A 6 = 4.637295E-01, A 8 = −4.049567, A 10 = −2.165919,
A 12 = -7.131607, A 14 = -1.418408E + 01
4th surface k = -3.641872E + 08, A 4 = 1.157415, A 6 = 2.676480E-01, A 8 = -7.084293E-01,
A 10 = -7.781085E-01, A 12 = 1.468836, A 14 = -2.749283, A 16 = -7.179977E + 01
5th surface k = -1.322595E + 01
6th surface k = -2.317301, A 4 = -4.757656E-02, A 6 = -3.815292E-02, A 8 = 3.725375E-02,
A 10 = -1.672389E-02, A 12 = 2.143275E-03, A 14 = 5.171325E-04, A 16 = -1.445483E-04

各レンズL1〜L3の焦点距離f1〜f3、および各条件式の値を以下に示す。
f1=1.846
f2=−3.682
f3=43.359
R3/R4=−0.004
H/D=H/d3=0.0441
f1/f2=−0.501
dA/dB=d2/d4=0.146
νd1−νd2=27.0
このように、本数値実施例6による撮像レンズは、条件式(1)〜(5)を満たしている。
The focal lengths f1 to f3 of the lenses L1 to L3 and the values of the conditional expressions are shown below.
f1 = 1.847
f2 = -3.682
f3 = 43.359
R3 / R4 = −0.004
H / D = H / d3 = 0.0441
f1 / f2 = −0.501
dA / dB = d2 / d4 = 0.146
νd1−νd2 = 27.0
As described above, the imaging lens according to Numerical Example 6 satisfies the conditional expressions (1) to (5).

図18は、数値実施例6の撮像レンズについて、半画角ωに対応する横収差を示したものであり、図19は、球面収差SA(mm)、非点収差AS(mm)、および歪曲収差DIST(%)をそれぞれ示したものである。これら図18および図19に示されるように、本数値実施例6に係る撮像レンズによっても、数値実施例1と同様に、各種収差が良好に補正される。また、本数値実施例では、第1レンズL1の物体側の面から像面までの空気換算距離は3.045mmとなっており、撮像レンズの小型化も好適に図られている。   FIG. 18 shows lateral aberration corresponding to the half angle of view ω for the imaging lens of Numerical Example 6, and FIG. 19 shows spherical aberration SA (mm), astigmatism AS (mm), and distortion. Each aberration DIST (%) is shown. As shown in FIGS. 18 and 19, various aberrations are favorably corrected by the imaging lens according to Numerical Example 6 as well as Numerical Example 1. In this numerical example, the air-converted distance from the object-side surface of the first lens L1 to the image plane is 3.045 mm, and the imaging lens is also favorably downsized.

したがって、本実施の形態に係る撮像レンズを、携帯電話機、デジタルスティルカメラ、携帯情報端末、セキュリティカメラ、車載カメラ、ネットワークカメラ等の撮像光学系に適用した場合、当該カメラ等の高機能化と小型化の両立を図ることができる。   Therefore, when the imaging lens according to the present embodiment is applied to an imaging optical system such as a mobile phone, a digital still camera, a portable information terminal, a security camera, an in-vehicle camera, and a network camera, the camera and the like have high functionality and small size. Can be achieved simultaneously.

なお、本発明に係る撮像レンズは、上記各実施の形態に限定されるものではない。上記実施の形態では第1レンズL1〜第3レンズL3の全ての面を非球面としたが、全ての面を必ずしも非球面にする必要はない。   The imaging lens according to the present invention is not limited to the above embodiments. In the above embodiment, all the surfaces of the first lens L1 to the third lens L3 are aspherical surfaces, but it is not always necessary to make all the surfaces aspherical.

本発明は、撮像レンズとして小型化とともに良好な収差補正能力が要求される機器、例えば携帯電話機やデジタルスティルカメラ等の機器に搭載される撮像レンズに適用することができる。   The present invention can be applied to an imaging lens mounted on a device that is required to have a small aberration as well as a good aberration correction capability, such as a mobile phone or a digital still camera.

L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
10 カバーガラス
L1 1st lens L2 2nd lens L3 3rd lens 10 Cover glass

Claims (5)

物体側から像面側に向かって順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正または負の屈折力を有する第3レンズとから構成され、
前記第1レンズは、物体側の面の曲率半径が正となり、像面側の面の曲率半径が負となる形状に形成されており、
前記第2レンズは、物体側の面の曲率半径が負であって、物体側の面が光軸近傍で物体側に凹形状で且つ周辺部が物体側に凸形状となり、像面側の面の曲率半径が正となる形状に形成されており、
前記第3レンズは、物体側の面の曲率半径および像面側の面の曲率半径が共に正であって、像面側の面が光軸近傍で物体側に凸形状で且つ周辺部が物体側に凹形状となる形状に形成されており、
前記第1レンズの焦点距離をf1、前記第2レンズの焦点距離をf2、前記第3レンズの焦点距離をf3、前記第2レンズの物体側の面の曲率半径をR3、像面側の面の曲率半径をR4としたとき、
f1<|f2|、f1<|f3|
−0.15<R3/R4<0
を満足することを特徴とする撮像レンズ。
In order from the object side to the image plane side, the first lens having a positive refractive power, the second lens having a negative refractive power, and a third lens having a positive or negative refractive power,
The first lens is formed in a shape in which the curvature radius of the object side surface is positive and the curvature radius of the image side surface is negative,
The second lens has a negative radius of curvature of the object side surface, the object side surface is concave on the object side in the vicinity of the optical axis, and the peripheral part is convex on the object side, and the image side surface Is formed in a shape with a positive curvature radius,
In the third lens, both the radius of curvature of the object-side surface and the radius of curvature of the image-side surface are positive, the image-side surface is convex near the optical axis, and the peripheral portion is an object. It is formed in a concave shape on the side,
The focal length of the first lens is f1, the focal length of the second lens is f2, the focal length of the third lens is f3 , the radius of curvature of the object side surface of the second lens is R3, and the surface on the image plane side When the radius of curvature is R4 ,
f1 <| f2 |, f1 <| f3 |
-0.15 <R3 / R4 <0
An imaging lens characterized by satisfying
前記第3レンズは、物体側の面が光軸近傍で物体側に凸形状で且つ周辺部が物体側に凹形状となる形状に形成されている、
ことを特徴とする請求項1に記載の撮像レンズ。
The third lens is formed in a shape in which the object-side surface is convex toward the object side in the vicinity of the optical axis and the peripheral portion is concave toward the object side.
The imaging lens according to claim 1.
前記第2レンズの物体側の面と光軸とが交わる点から前記第2レンズの物体側の面の接平面と光軸とが垂直に交わる点までの距離をH、前記第2レンズの光軸上の厚さをDとしたとき、
0.02<H/D<0.07
を満足することを特徴とする請求項1または2に記載の撮像レンズ。
The distance from the point at which the object side surface of the second lens intersects with the optical axis to the point at which the tangent plane of the object side surface of the second lens intersects perpendicularly with the optical axis is H, the light of the second lens When the thickness on the shaft is D,
0.02 <H / D <0.07
The imaging lens according to claim 1, wherein:
−0.8<f1/f2<−0.3
を満足することを特徴とする請求項1〜3のいずれか一項に記載の撮像レンズ。
−0.8 <f1 / f2 <−0.3
The imaging lens according to claim 1, wherein the imaging lens is satisfied.
前記第1レンズと前記第2レンズとの間の間隔をdA、前記第2レンズと前記第3レンズとの間の間隔をdBとしたとき、
0.05<dA/dB<0.5
を満足することを特徴とする請求項1〜4のいずれか一項に記載の撮像レンズ。
When the distance between the first lens and the second lens is dA, and the distance between the second lens and the third lens is dB,
0.05 <dA / dB <0.5
The imaging lens according to claim 1, wherein the imaging lens is satisfied.
JP2009153218A 2009-06-29 2009-06-29 Imaging lens Active JP5366314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009153218A JP5366314B2 (en) 2009-06-29 2009-06-29 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009153218A JP5366314B2 (en) 2009-06-29 2009-06-29 Imaging lens

Publications (2)

Publication Number Publication Date
JP2011008134A JP2011008134A (en) 2011-01-13
JP5366314B2 true JP5366314B2 (en) 2013-12-11

Family

ID=43564849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009153218A Active JP5366314B2 (en) 2009-06-29 2009-06-29 Imaging lens

Country Status (1)

Country Link
JP (1) JP5366314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181673A (en) * 2014-08-20 2014-12-03 青岛歌尔声学科技有限公司 Large-aperture camera lens

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8558939B2 (en) * 2009-10-16 2013-10-15 Konica Minolta Advanced Layers, Inc. Image pickup lens and image pickup apparatus
JP2015111174A (en) * 2012-03-28 2015-06-18 富士フイルム株式会社 Imaging lens
TWI468726B (en) * 2012-05-08 2015-01-11 Largan Precision Co Ltd Imaging optical lens system
CN104765131B (en) * 2015-04-17 2017-12-19 广东旭业光电科技股份有限公司 A kind of high-quality fidelity CCD camera assembly of low sensitivity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518836B2 (en) * 2004-05-14 2010-08-04 Hoya株式会社 Imaging lens system
JP2006078820A (en) * 2004-09-10 2006-03-23 Seiko Precision Inc Imaging lens and imaging module equipped with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181673A (en) * 2014-08-20 2014-12-03 青岛歌尔声学科技有限公司 Large-aperture camera lens
CN104181673B (en) * 2014-08-20 2017-01-18 青岛歌尔声学科技有限公司 Large-aperture camera lens

Also Published As

Publication number Publication date
JP2011008134A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5201679B2 (en) Imaging lens
JP5201690B2 (en) Imaging lens
JP5750698B2 (en) Imaging lens
JP5371148B2 (en) Imaging lens
JP5754670B2 (en) Imaging lens
JP5804474B2 (en) Imaging lens
JP5577531B2 (en) Imaging lens
JP5467342B2 (en) Imaging lens
JP5280326B2 (en) Imaging lens
US20080055742A1 (en) Imaging lens
JP5526303B2 (en) Imaging lens
JP5613962B2 (en) Imaging lens
JP5568732B2 (en) Imaging lens
JP5877523B2 (en) Imaging lens
JP5366314B2 (en) Imaging lens
JP5548845B2 (en) Imaging lens
JP5839357B2 (en) Imaging lens
WO2014203720A1 (en) Imaging lens and imaging device
JP2010276836A (en) Imaging lens
JP5308915B2 (en) Imaging lens
JP5780424B2 (en) Imaging lens
WO2011111561A1 (en) Imaging lens
WO2009133657A1 (en) Imaging lens
JP5187951B2 (en) Imaging lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5366314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250