JP2011242169A - In-pile structure of fast reactor - Google Patents

In-pile structure of fast reactor Download PDF

Info

Publication number
JP2011242169A
JP2011242169A JP2010112459A JP2010112459A JP2011242169A JP 2011242169 A JP2011242169 A JP 2011242169A JP 2010112459 A JP2010112459 A JP 2010112459A JP 2010112459 A JP2010112459 A JP 2010112459A JP 2011242169 A JP2011242169 A JP 2011242169A
Authority
JP
Japan
Prior art keywords
core
reactor
support plate
upper support
reactor vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010112459A
Other languages
Japanese (ja)
Inventor
Katsushi Hasegawa
克史 長谷川
Takanari Inatomi
誉也 稲冨
Masahiko Ariyoshi
昌彦 有吉
Yasushi Tsuboi
靖 坪井
Toshiro Sakai
俊郎 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010112459A priority Critical patent/JP2011242169A/en
Publication of JP2011242169A publication Critical patent/JP2011242169A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To propose a pressurized water reactor capable of improving uniformity of distribution of coolant flow at the inlet to a reactor core to suppress a change in the flow of coolant that flows into the reactor core.SOLUTION: A fast reactor 1 includes an upper support base 16 and a lower support base 17 that are provided on a body portion 3b of a reactor vessel 3 having a closed-end cylindrical shape; a reactor core 7 that is accommodated in the reactor vessel; a reactor core barrel 8 that surrounds the reactor core 7; a neutron shield 12 that is provided at a position closer to the inner surface of the reactor vessel 3 than the reactor core barrel 8; and a reactor core support structure 15. The reactor core support structure 15 is produced by integrally forming: an annular upper support plate 35 that is fixed on the upper support base 16; a support cylinder 36 that is suspended from an inner edge portion of the upper support plate 35; and a circular lower support plate 37 that is provided at the lower edge portion of the support cylinder 36, is in contact with the lower support base 17, and supports the reactor core 7, reactor core barrel 8 and neutron shield 12.

Description

本発明の実施形態は、高速炉の炉内構造に関する。   Embodiments described herein relate generally to an in-core structure of a fast reactor.

従来の高速炉は、有底円筒形状の原子炉容器と、原子炉容器の胴部の下部内面に設けられた炉心支持板と、原子炉容器に収容されて円柱形状に構成された炉心と、炉心を取り囲む炉心槽と、炉心槽を取り囲む隔壁と、炉心槽と隔壁との間に配置されて原子炉容器の長手軸方向へ移動する反射体と、隔壁と原子炉容器との間に配置されて炉心を取り囲む中性子遮蔽体と、中性子遮蔽体の頂部を保持する上部支持板と、原子炉容器内に収容された一次冷却材と、を備える。炉心、炉心槽、隔壁および中性子遮蔽体は、炉心支持板によって原子炉容器内に支持される。   A conventional fast reactor includes a bottomed cylindrical reactor vessel, a core support plate provided on the lower inner surface of the trunk of the reactor vessel, a reactor core housed in a reactor vessel and configured in a columnar shape, A reactor core that surrounds the reactor core; a partition that surrounds the reactor core; a reflector that is disposed between the reactor core and the partition and moves in the longitudinal direction of the reactor vessel; and that is disposed between the partition and the reactor vessel. A neutron shield that surrounds the reactor core, an upper support plate that holds the top of the neutron shield, and a primary coolant housed in the reactor vessel. The core, the core tank, the bulkhead, and the neutron shield are supported in the reactor vessel by the core support plate.

また、従来の高速炉は、中性子遮蔽体の上方に順次に配置された流体駆動機器および中間熱交換器を備える。例えば電磁ポンプなどで構成された流体駆動機器は、原子炉容器内に一次冷却材の流れを発生させる。流体駆動機器から吐出された一次冷却材は、隔壁と原子炉容器との間の流路から原子炉容器の底部(下部プレナム)へ下降し、ここで反転して炉心槽の内側を上昇し、中間熱交換器を通って流体駆動機器へ戻り原子炉容器内を循環する。このように循環される一次冷却材は、中性子遮蔽体と炉心とを順次に冷却し(すなわち加熱され)、中間熱交換器で二次冷却材と熱交換される。この中間熱交換器は、保守点検を考慮して原子炉容器から取り出し可能な構造を有する。   Further, the conventional fast reactor includes a fluid drive device and an intermediate heat exchanger that are sequentially arranged above the neutron shield. For example, a fluid drive device configured by an electromagnetic pump or the like generates a flow of a primary coolant in a nuclear reactor vessel. The primary coolant discharged from the fluid drive device descends from the flow path between the partition wall and the reactor vessel to the bottom of the reactor vessel (lower plenum), where it reverses and rises inside the reactor core, Return to the fluid drive through the intermediate heat exchanger and circulate in the reactor vessel. The primary coolant circulated in this way cools the neutron shield and the core sequentially (that is, is heated), and exchanges heat with the secondary coolant in the intermediate heat exchanger. This intermediate heat exchanger has a structure that can be removed from the reactor vessel in consideration of maintenance and inspection.

特開平5−119175号公報JP-A-5-119175

冷却材にナトリウムを用いた場合、冷却材温度は、およそ350℃から500℃と想定される。より詳しくは、炉心出口から中間熱交換器入口までの領域(以下、「高温領域」と呼ぶ。)における冷却材温度は約500℃、中間熱交換器出口から炉心入口までの領域(以下、「低温領域」と呼ぶ。)における冷却材温度は約350℃となる。特に、一次冷却材の下降流路と上昇流路とを区画する隔壁は、高温領域と低温領域との間の温度差に加えて大きな圧力差も受けるため、非常に厳しい環境に晒される。   When sodium is used as the coolant, the coolant temperature is assumed to be approximately 350 ° C. to 500 ° C. More specifically, the coolant temperature in the region from the core outlet to the intermediate heat exchanger inlet (hereinafter referred to as “high temperature region”) is about 500 ° C., and the region from the intermediate heat exchanger outlet to the core inlet (hereinafter referred to as “ The coolant temperature in the “low temperature region” is about 350 ° C. In particular, the partition wall that partitions the descending flow path and the ascending flow path of the primary coolant is exposed to a very severe environment because it receives a large pressure difference in addition to the temperature difference between the high temperature region and the low temperature region.

一方、従来の高速炉は、中間熱交換器を挟んだ高温領域と低温領域との間における冷却材の漏洩を防ぐため、隔壁に固定したベローズ台座と、中間熱交換器に設置したシールベローズと、を備える。従来の高速炉は、中間熱交換器の重量によってベローズ台座に着座させたシールベローズを圧縮させて、中間熱交換器の入口側と出口側との一次冷却材の流通を遮断させる。しかしながら、ベローズ台座とシールベローズとのシール面は、晒される環境条件(温度差や圧力差)だけでなく、表面粗さや平面度などの製作公差、平行度や同心度など据付公差から十分なシール機能を達成する上で課題がある。高速炉は、このシール面におけるシール機能が失われると、流体駆動機器から吐出された低温領域の冷却材が中間熱交換器の入口の高温領域に流入し、中間熱交換器の入口と出口との間の温度差が減少し、熱交換性能が低下するという機能性における課題がある。このようなヒートバランスの乱れは、高速炉の出力に大きな影響をおよぼすとともに炉心への冷却材流量が失われ、炉心温度上昇という高速炉の安全性における課題である。   On the other hand, in the conventional fast reactor, in order to prevent leakage of coolant between the high temperature region and the low temperature region across the intermediate heat exchanger, a bellows pedestal fixed to the partition wall and a seal bellows installed in the intermediate heat exchanger . The conventional fast reactor compresses the seal bellows seated on the bellows pedestal by the weight of the intermediate heat exchanger to block the flow of the primary coolant on the inlet side and the outlet side of the intermediate heat exchanger. However, the seal surface between the bellows pedestal and the seal bellows is not only sealed due to the exposed environmental conditions (temperature difference and pressure difference), but also from manufacturing tolerances such as surface roughness and flatness, and installation tolerances such as parallelism and concentricity. There are challenges in achieving the function. In the fast reactor, when the sealing function at the sealing surface is lost, the coolant in the low temperature region discharged from the fluid drive device flows into the high temperature region at the inlet of the intermediate heat exchanger, and the inlet and outlet of the intermediate heat exchanger There is a problem in functionality that the temperature difference between the two decreases and the heat exchange performance decreases. Such disturbance of the heat balance has a significant effect on the output of the fast reactor, and the flow rate of the coolant to the core is lost, which is a problem in the safety of the fast reactor that the core temperature rises.

また、従来の高速炉は、炉心支持板、炉心槽、上部支持板、隔壁などの炉内構造物がそれぞれ分割されているため、それぞれの炉内構造物の熱膨張差や地震による変形を考慮して構造健全性を確保しなければならないという課題がある。さらに、高速炉は、全体的に長尺で複雑密集した構造であり、狭蓋部が多いため、これらの分割された炉内構造物の据付性に課題がある。   In addition, conventional fast reactors are divided into core structures such as the core support plate, core tank, upper support plate, and bulkhead, so the thermal expansion differences of each core structure and deformation due to earthquakes are taken into account. Thus, there is a problem that structural soundness must be ensured. Furthermore, the fast reactor has a long and complicated and dense structure as a whole, and has many narrow lid portions, so that there is a problem in the installability of these divided in-reactor structures.

そこで、本発明は、機能性、据付性および構造健全性に優れ信頼性向上を図った高速炉の炉内構造を提供することを目的とする。   Accordingly, an object of the present invention is to provide an in-furnace structure of a fast reactor that is excellent in functionality, installation property, and structural soundness and has improved reliability.

前記の課題を解決するため本発明に係る高速炉の炉内構造は、有底円筒形状の原子炉容器と、前記原子炉容器の胴部の中間部内面に設けられた上部支持台と、前記原子炉容器の胴部の下部内面に設けられた下部支持台と、前記原子炉容器に収容された冷却材と、前記原子炉容器に収容されて前記冷却材に浸された炉心と、前記炉心を取り囲む炉心槽内胴と、前記炉心槽内胴を取り囲む炉心槽外胴と、前記炉心槽内胴と前記炉心槽外胴との間に配置されて前記原子炉容器の長手軸方向へ移動する反射体と、前記炉心槽外胴よりも前記原子炉容器の内面側に寄せて設けられた中性子遮蔽体と、前記上部支持台に固定された環形状の上部支持板、前記上部支持板の内縁部から垂下された支持円筒および前記支持円筒の下端部に設けられて前記下部支持台に当接されるとともに前記炉心、前記炉心槽内胴、前記炉心槽外胴および前記中性子遮蔽体を支持する円形状の下部支持板が一体に形成された炉心支持構造物と、を備えたことを特徴とする。   In order to solve the above-mentioned problems, a fast reactor internal structure according to the present invention includes a bottomed cylindrical reactor vessel, an upper support provided on an inner surface of a middle portion of the trunk of the reactor vessel, A lower support provided on a lower inner surface of a trunk portion of the reactor vessel; a coolant contained in the reactor vessel; a core contained in the reactor vessel and immersed in the coolant; and the core Is disposed between the inner core of the reactor core, the outer shell of the reactor core surrounding the inner shell of the reactor core, the inner shell of the reactor core and the outer shell of the reactor core, and moves in the longitudinal axis direction of the reactor vessel. A reflector, a neutron shield provided closer to the inner surface of the reactor vessel than the core outer shell, an annular upper support plate fixed to the upper support, and an inner edge of the upper support plate A support cylinder suspended from a lower portion and the lower support provided at a lower end of the support cylinder. A core support structure in which a circular lower support plate that is in contact with a base and supports the core, the core inner shell, the core outer shell, and the neutron shield is integrally formed. It is characterized by that.

本発明によれば、機能性、据付性および構造健全性に優れ信頼性向上を図った高速炉の炉内構造を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the in-core structure of the fast reactor which was excellent in functionality, installation property, and structural soundness, and aimed at the reliability improvement can be provided.

本発明に係る高速炉の炉内構造を示した縦断面図。The longitudinal cross-sectional view which showed the in-furnace structure of the fast reactor which concerns on this invention. 本発明に係る高速炉の炉内構造を示した模式的な縦断面図。The typical longitudinal section showing the in-furnace structure of the fast reactor concerning the present invention.

本発明に係る高速炉の炉内構造の実施形態について、図1および図2を参照して説明する。   An embodiment of the in-core structure of a fast reactor according to the present invention will be described with reference to FIG. 1 and FIG.

図1は、本発明に係る高速炉の炉内構造を示した縦断面図である。   FIG. 1 is a longitudinal sectional view showing the in-core structure of a fast reactor according to the present invention.

図1に示した高速炉1は、核燃料の交換なしに10数年から数十年、例えば30年程度連続して運転することができる原子炉である。高速炉1の炉出力は、30MWから百数十MW(電気出力で1万KWから10数万KW)である。高速炉1は、25mから35m、例えば30m程度の全体的な高さを有する。高速炉1の炉心高さは、例えば2.5m程度である。冷却材は液体ナトリウムである。冷却材の温度は、液体ナトリウムが凝固しない温度以上であり、余裕をもたせて200℃以上、好ましくは300℃から550℃である。高速炉1の各部位における冷却材の温度は、原子炉容器内の冷却材流路で300℃から400℃、一例として350℃、炉心側で500℃から550℃、一例として500℃程度である。   The fast reactor 1 shown in FIG. 1 is a nuclear reactor that can be operated continuously for 10 to several decades, for example, about 30 years without replacement of nuclear fuel. The reactor power of the fast reactor 1 is 30 MW to several hundreds MW (electric power 10,000 to 100,000 kW). The fast reactor 1 has an overall height of about 25 m to 35 m, for example about 30 m. The core height of the fast reactor 1 is, for example, about 2.5 m. The coolant is liquid sodium. The temperature of the coolant is equal to or higher than the temperature at which liquid sodium does not solidify, with a margin of 200 ° C. or higher, preferably 300 ° C. to 550 ° C. The temperature of the coolant in each part of the fast reactor 1 is 300 ° C. to 400 ° C. in the coolant channel in the reactor vessel, 350 ° C. as an example, 500 ° C. to 550 ° C. on the core side, and about 500 ° C. as an example. .

図1に示すように、高速炉1は、反射体制御方式の原子炉である。高速炉1は、有底円筒状の原子炉容器3と、原子炉容器3の頂部を閉塞させる遮蔽プラグ4と、原子炉容器3に収容された一次冷却材5と、原子炉容器3に収容されて一次冷却材5に浸された炉心7と、炉心7の周囲を取り囲む二重の円筒を有する炉心槽8と、炉心7の中心部へ出し入れ自在に構成された炉停止棒9と、炉心槽8の二重の円筒の間に配置されて原子炉容器3の長手軸方向へ移動する反射体11と、炉心槽8よりも原子炉容器3の内面側に寄せて設けられた中性子遮蔽体12と、炉心7、炉心槽8および中性子遮蔽体12を支持する炉心支持構造物15と、を備える。   As shown in FIG. 1, the fast reactor 1 is a reflector-controlled nuclear reactor. The fast reactor 1 includes a bottomed cylindrical reactor vessel 3, a shielding plug 4 for closing the top of the reactor vessel 3, a primary coolant 5 contained in the reactor vessel 3, and a reactor vessel 3. The core 7 immersed in the primary coolant 5, the reactor core 8 having a double cylinder surrounding the periphery of the reactor core 7, the reactor stop rod 9 configured to be freely inserted into and removed from the center of the reactor core 7, and the reactor core A reflector 11 arranged between the double cylinders of the tank 8 and moving in the longitudinal axis direction of the reactor vessel 3, and a neutron shield provided closer to the inner surface side of the reactor vessel 3 than the reactor core vessel 8 12 and a core support structure 15 that supports the core 7, the core tank 8, and the neutron shield 12.

原子炉容器3は、下端部に半球殻状の底部3aを有する。また、原子炉容器3は、円筒状の胴部3bの中間部内面に設けられた上部支持台16と、胴部3bの下部内面に設けられた下部支持台17と、を備える。   The reactor vessel 3 has a hemispherical bottom 3a at the lower end. The reactor vessel 3 includes an upper support 16 provided on the inner surface of the middle part of the cylindrical trunk 3b and a lower support 17 provided on the lower inner surface of the trunk 3b.

遮蔽プラグ4は、反射体11を移動させる反射体駆動装置18と、炉停止棒9を移動させる炉停止棒駆動装置19と、を原子炉容器3の頂部に支持する。   The shielding plug 4 supports a reflector driving device 18 that moves the reflector 11 and a reactor stop rod driving device 19 that moves the reactor stop rod 9 on the top of the reactor vessel 3.

一次冷却材5は液体ナトリウムである。   The primary coolant 5 is liquid sodium.

炉心7は、核燃料を有する複数の燃料集合体21を備え、全体として円柱形状に構成される。炉心7は、その下方に構成されたエントランスモジュール22を介して炉心支持構造物15に支持される。   The core 7 includes a plurality of fuel assemblies 21 having nuclear fuel, and is configured in a cylindrical shape as a whole. The core 7 is supported by the core support structure 15 via an entrance module 22 formed below the core 7.

炉心槽8は、炉心7を取り囲む炉心槽内胴24と、炉心槽内胴24を取り囲む炉心槽外胴25と、を備える。炉心槽内胴24と炉心槽内胴24とは同心状に配置され、その間に上方へ開放された円筒形状の隙間を形成する。   The reactor core 8 includes a reactor core inner shell 24 that surrounds the reactor core 7, and a reactor core outer shell 25 that surrounds the reactor core inner shell 24. The reactor core inner cylinder 24 and the reactor core inner cylinder 24 are arranged concentrically, and form a cylindrical gap opened upward therebetween.

炉停止棒9は、炉停止棒駆動装置19によって原子炉容器3の胴部3bの中心線方向(すなわち、原子炉容器3の長手軸方向)へ移動自在に保持されて炉心7に出し入れされる。   The reactor stop rod 9 is held by a reactor stop rod drive device 19 so as to be movable in the direction of the center line of the trunk portion 3b of the reactor vessel 3 (that is, in the longitudinal axis direction of the reactor vessel 3). .

反射体11は、炉心槽内胴24と炉心槽内胴24との隙間に配置され、全体としてスリーブ形状(円筒形状あるいは円環形状)に構成される。反射体11は、反射体駆動装置18によって炉心7の周囲を原子炉容器3の胴部3bの中心線方向(すなわち、原子炉容器3の長手軸方向)へ移動し、炉心7の反応度を制御する。反射体11は、中実な中性子反射部11aと、中空のキャビティ部11bと、を備える。キャビティ部11bは、アルゴンガスなどの不活性ガスや中性子反射能力が一次冷却材5よりも低い金属(例えば、ジルコニウムやハフニウム)を封入した中空部を有する。   The reflector 11 is disposed in a gap between the core tank inner shell 24 and the core core inner shell 24, and is configured in a sleeve shape (cylindrical shape or ring shape) as a whole. The reflector 11 is moved around the core 7 in the direction of the center line of the trunk portion 3b of the reactor vessel 3 (that is, in the longitudinal axis direction of the reactor vessel 3) by the reflector driving device 18, and the reactivity of the core 7 is increased. Control. The reflector 11 includes a solid neutron reflecting portion 11a and a hollow cavity portion 11b. The cavity portion 11b has a hollow portion in which an inert gas such as argon gas or a metal (for example, zirconium or hafnium) having a lower neutron reflection capability than the primary coolant 5 is enclosed.

中性子遮蔽体12は、炉心支持構造物15と原子炉容器3との間に配置される。中性子遮蔽体12は、炉心7から反射体11を透過または迂回して放射する中性子を遮蔽する。 また、高速炉1は、原子炉容器3に収容され中性子遮蔽体12の上方に設置された円環形状の電磁ポンプ27と、原子炉容器3に収容され電磁ポンプ27の上方に設置された中間熱交換器28と、を備える。電磁ポンプ27および中間熱交換器28は、一体あるいは一体的に構成され、中間熱交換器28から上方へ延びた熱交換器支持構造29によって原子炉容器3に垂下させて保持される。   The neutron shield 12 is disposed between the core support structure 15 and the reactor vessel 3. The neutron shield 12 shields neutrons radiated from the core 7 through the reflector 11 or detoured. The fast reactor 1 includes an annular electromagnetic pump 27 accommodated in the reactor vessel 3 and installed above the neutron shield 12, and an intermediate electromagnetic pump 27 accommodated in the reactor vessel 3 and installed above the electromagnetic pump 27. And a heat exchanger 28. The electromagnetic pump 27 and the intermediate heat exchanger 28 are configured integrally or integrally, and are suspended and held in the reactor vessel 3 by a heat exchanger support structure 29 extending upward from the intermediate heat exchanger 28.

電磁ポンプ27は、原子炉容器3内の一次冷却材5を循環させる流体駆動機器であり、原子炉容器3の内面に略平行させて環形状に構成される。   The electromagnetic pump 27 is a fluid drive device that circulates the primary coolant 5 in the reactor vessel 3, and is configured in a ring shape substantially parallel to the inner surface of the reactor vessel 3.

中間熱交換器28は、一次冷却材5と二次冷却材31との熱交換を行う。この二次冷却材31は、二次冷却材入口ノズル32から流入して中間熱交換器28に至り、中間熱交換器28で一次冷却材5と熱交換して温度上昇した後、二次冷却材出口ノズル33から原子炉容器3外の蒸気発生器(図示省略)に送られる。二次冷却材31も、一次冷却材5と同様に液体ナトリウムである。   The intermediate heat exchanger 28 performs heat exchange between the primary coolant 5 and the secondary coolant 31. The secondary coolant 31 flows from the secondary coolant inlet nozzle 32 and reaches the intermediate heat exchanger 28. After the temperature is increased by exchanging heat with the primary coolant 5 in the intermediate heat exchanger 28, the secondary coolant 31 is cooled. It is sent from the material outlet nozzle 33 to a steam generator (not shown) outside the reactor vessel 3. The secondary coolant 31 is also liquid sodium like the primary coolant 5.

図2は、本発明に係る高速炉の炉内構造を示した模式的な縦断面図である。   FIG. 2 is a schematic longitudinal sectional view showing the in-core structure of the fast reactor according to the present invention.

図2に示すように、高速炉1の炉心支持構造物15は、原子炉容器3の上部支持台16に固定された環形状の上部支持板35と、上部支持板35の内縁部から垂下された支持円筒36と、支持円筒36の下端部に設けられて原子炉容器3の下部支持台17に当接されるとともに炉心7、炉心槽8(すなわち、炉心槽内胴24および炉心槽外胴25)および中性子遮蔽体12を支持する円形状の下部支持板37と、支持円筒36の外面から環形状に突出させて形成された中間支持板38と、を備える。上部支持板35、支持円筒36、下部支持板37および中間支持板38は、一体に形成される。炉心支持構造物15は、SUS304などのオーステナイト系鋼材や、耐放射線性や強度を考慮してフェライト系鋼材を用いて構成される。また、炉心支持構造物15は、高速炉1の定常運転時に下部支持板37を下部支持台17に当接させる。   As shown in FIG. 2, the core support structure 15 of the fast reactor 1 is suspended from an annular upper support plate 35 fixed to the upper support base 16 of the reactor vessel 3 and an inner edge portion of the upper support plate 35. The support cylinder 36 and the lower end of the support cylinder 36 are brought into contact with the lower support 17 of the reactor vessel 3, and the reactor core 7 and the reactor core tank 8 (that is, the reactor core inner shell 24 and the reactor core outer shell). 25) and a circular lower support plate 37 that supports the neutron shield 12, and an intermediate support plate 38 that is formed to project from the outer surface of the support cylinder 36 into an annular shape. The upper support plate 35, the support cylinder 36, the lower support plate 37, and the intermediate support plate 38 are integrally formed. The core support structure 15 is configured using an austenitic steel material such as SUS304 or a ferritic steel material in consideration of radiation resistance and strength. Further, the core support structure 15 brings the lower support plate 37 into contact with the lower support base 17 during the steady operation of the fast reactor 1.

下部支持板37は、その略中央にエントランスモジュール22を介して炉心7を支持し、炉心7の周囲であり支持円筒36の内側に炉心槽8を支持し、支持円筒36より外側に中性子遮蔽体12を支持する。また、下部支持板37は、支持円筒36の内側の領域に表裏を貫く多数の第一流路孔37aと、支持円筒36の外側の領域に表裏を貫く多数の第二流路孔37bと、を有する。   The lower support plate 37 supports the core 7 through the entrance module 22 at substantially the center thereof, supports the core tank 8 around the core 7 and inside the support cylinder 36, and the neutron shield outside the support cylinder 36. 12 is supported. Further, the lower support plate 37 includes a large number of first flow path holes 37a penetrating the front and back in a region inside the support cylinder 36, and a large number of second flow passage holes 37b penetrating the front and back in a region outside the support cylinder 36. Have.

また、下部支持板37は、下部支持台17に重なり合う外周縁部に孔部37cを有する。孔部37cには、下部支持台17に固定されたスペーサ41が遊嵌される。スペーサ41は、孔部37cとの隙間の範囲で原子炉容器3の長手軸方向および径方向における下部支持板37の移動を許容しつつ炉心支持構造物15の下部支持台17側端部の移動を適宜に規制する。なお、スペーサ41に代えてキー構造を用いて下部支持板37を支持しても良い。また、支持円筒36の軸長低減や材料選定等により、原子炉容器3と支持円筒36の熱膨張差を小さくできる場合、下部支持板37を下部支持台17にボルトなどの締結部材で固定しても良い。この場合は、より堅牢な炉心支持構造とすることができる。   Further, the lower support plate 37 has a hole 37 c in the outer peripheral edge overlapping the lower support 17. A spacer 41 fixed to the lower support 17 is loosely fitted in the hole 37c. The spacer 41 moves the end of the core support structure 15 on the side of the lower support base 17 while allowing the lower support plate 37 to move in the longitudinal axis direction and the radial direction of the reactor vessel 3 within the gap with the hole 37c. Are regulated appropriately. Note that the lower support plate 37 may be supported using a key structure instead of the spacer 41. If the difference in thermal expansion between the reactor vessel 3 and the support cylinder 36 can be reduced by reducing the axial length of the support cylinder 36 or selecting a material, the lower support plate 37 is fixed to the lower support base 17 with a fastening member such as a bolt. May be. In this case, a more robust core support structure can be obtained.

さらに、下部支持板37は、炉心槽8の炉心槽内胴24と炉心槽外胴25との間の隙間に連通された流通孔37dを有する。流通孔37dから炉心槽8へ流れ込む一次冷却材5は、反射体11を冷却する。   Further, the lower support plate 37 has a flow hole 37 d that communicates with a gap between the core inner shell 24 and the core outer shell 25 of the core tank 8. The primary coolant 5 that flows into the core tank 8 from the flow hole 37 d cools the reflector 11.

上部支持板35は、外周縁を原子炉容器3の上部支持台16に載せて炉心支持構造物15全体の重量を支持する。すなわち、上部支持板35、支持円筒36、下部支持板37および中間支持板38が一体化された炉心支持構造物15は、上部支持板35によって原子炉容器3の上部支持台16に固定される。上部支持板35は、ボルトなどの締結部材42によって上部支持台16に固定される。また、上部支持板35は、柱形状の中性子遮蔽体12の頂部を保持し、倒れ込まないように保持する。   The upper support plate 35 places the outer peripheral edge on the upper support 16 of the reactor vessel 3 and supports the weight of the entire core support structure 15. That is, the core support structure 15 in which the upper support plate 35, the support cylinder 36, the lower support plate 37, and the intermediate support plate 38 are integrated is fixed to the upper support base 16 of the reactor vessel 3 by the upper support plate 35. . The upper support plate 35 is fixed to the upper support base 16 by a fastening member 42 such as a bolt. The upper support plate 35 holds the top of the columnar neutron shield 12 so as not to fall down.

上部支持板35は、その内周35aと炉心槽8(より詳しくは、炉心槽外胴25)との間に挟み込まれたシール部材44を介して炉心槽外胴25の熱膨張による伸縮を阻害しないように炉心槽8の径方向を保持する。   The upper support plate 35 inhibits expansion and contraction due to thermal expansion of the core tank outer shell 25 via a seal member 44 sandwiched between the inner periphery 35a and the core tank 8 (more specifically, the core tank outer shell 25). The radial direction of the core tank 8 is held so that it does not occur.

支持円筒36は、その内周に熱遮蔽板45を備える。熱遮蔽板45は、薄板多層構造に構成されるとともに、原子炉容器3の長手軸方向に見て炉心7の存在する高さの範囲(炉心7の存在領域)に配置され、炉心7の発生させた熱から支持円筒36を保護する。   The support cylinder 36 includes a heat shielding plate 45 on its inner periphery. The heat shielding plate 45 is configured in a thin multilayer structure and is disposed in a range of the height of the core 7 when viewed in the longitudinal axis direction of the reactor vessel 3 (region where the core 7 is present). The support cylinder 36 is protected from the generated heat.

中間支持板38は、中性子遮蔽体12が挿通された孔部38aを有する。中間支持板38は、原子炉容器3の長手軸方向に見て炉心7の存在する高さの範囲外(炉心7の非存在領域)に配置される。また、中間支持板38は、中性子遮蔽体12の倒れ込みを支持するとともに、支持円筒36の強め輪として機能する。   The intermediate support plate 38 has a hole 38a through which the neutron shield 12 is inserted. The intermediate support plate 38 is disposed outside the height range in which the core 7 exists when viewed in the longitudinal axis direction of the reactor vessel 3 (non-existence region of the core 7). Further, the intermediate support plate 38 supports the falling of the neutron shield 12 and functions as a strengthening wheel of the support cylinder 36.

一方、高速炉1は、中間支持板38に並設させて中性子遮蔽体47を保持する中間支持台48を備える。中性子遮蔽体47は、中性子遮蔽体12に比べて長さが短い。   On the other hand, the fast reactor 1 includes an intermediate support base 48 that holds the neutron shield 47 in parallel with the intermediate support plate 38. The neutron shield 47 is shorter than the neutron shield 12.

また、高速炉1は、中間熱交換器28の内側シュラウド28aから上部支持板35の近傍へ垂下された上部隔壁51と、上部隔壁51と上部支持板35との間に設けられたマノメータシール52と、電磁ポンプ27の吐出を中性子遮蔽体12へ導くシール構造53と、炉心槽8か上方へ突出させてマノメータシール52およびシール構造53の内側に配置された円筒壁54と、を備える。   Further, the fast reactor 1 includes an upper partition wall 51 suspended from the inner shroud 28 a of the intermediate heat exchanger 28 to the vicinity of the upper support plate 35, and a manometer seal 52 provided between the upper partition wall 51 and the upper support plate 35. And a seal structure 53 for guiding discharge of the electromagnetic pump 27 to the neutron shield 12, and a manometer seal 52 and a cylindrical wall 54 disposed inside the seal structure 53 so as to protrude upward from the reactor core 8.

ここで、先ず、電磁ポンプ27および中間熱交換器28は、中間熱交換器28の出口と電磁ポンプ27の入口とを連通させる中間プレナム57を区画した中間ヘッダ58によって一体化される。中間ヘッダ58は、電磁ポンプ27の周囲から一次冷却材5を電磁ポンプ27の入口側へ導く貫通口58aを有する。   Here, first, the electromagnetic pump 27 and the intermediate heat exchanger 28 are integrated by an intermediate header 58 that defines an intermediate plenum 57 that communicates the outlet of the intermediate heat exchanger 28 and the inlet of the electromagnetic pump 27. The intermediate header 58 has a through hole 58 a that guides the primary coolant 5 from the periphery of the electromagnetic pump 27 to the inlet side of the electromagnetic pump 27.

上部隔壁51は、中間熱交換器28の内側シュラウドの上端部から吊下げ支持されて電磁ポンプ27および中間熱交換器28よりも内側に配置された筒形状の構造体である。上部隔壁51は、電磁ポンプ27および中間熱交換器28の内側に一次冷却材5の高温領域を区画し、原子炉容器3との間に電磁ポンプ27および中間熱交換器28が配置された一次冷却材5の流路を区画する。   The upper partition wall 51 is a cylindrical structure that is suspended and supported from the upper end portion of the inner shroud of the intermediate heat exchanger 28 and arranged on the inner side of the electromagnetic pump 27 and the intermediate heat exchanger 28. The upper partition 51 partitions the high temperature region of the primary coolant 5 inside the electromagnetic pump 27 and the intermediate heat exchanger 28, and the primary pump in which the electromagnetic pump 27 and the intermediate heat exchanger 28 are disposed between the reactor vessel 3. The flow path of the coolant 5 is partitioned.

なお、電磁ポンプ27および中間熱交換器28の内側に区画された一次冷却材5の高温領域は、炉心7で温められた一次冷却材5が上昇流を生じる上部プレナム61である。また、原子炉容器3との間に電磁ポンプ27および中間熱交換器28が配置された一次冷却材5の流路は、上部隔壁51の上端を内側から外側へと越えて中間熱交換器28、電磁ポンプ27の順に下降流を生じる環状下降流路62である。   The high temperature region of the primary coolant 5 partitioned inside the electromagnetic pump 27 and the intermediate heat exchanger 28 is an upper plenum 61 where the primary coolant 5 warmed in the core 7 generates an upward flow. Further, the flow path of the primary coolant 5 in which the electromagnetic pump 27 and the intermediate heat exchanger 28 are disposed between the reactor vessel 3 passes the upper end of the upper partition wall 51 from the inside to the outside, and the intermediate heat exchanger 28. An annular descending flow path 62 that generates a descending flow in the order of the electromagnetic pump 27.

上部隔壁51の内面は、一次冷却材5の高温領域に晒され、上部隔壁51の外面は、中間熱交換器28による熱交換前後の一次冷却材5に晒される。上部隔壁51は、このような激しい温度勾配を有する環境に晒されるため、それぞれの領域の温度差を維持できる熱遮蔽機能が必要であり、薄板多層構造に構成される。また、上部隔壁51は、例えばセラミック等の断熱材を配した構造でも良い。   The inner surface of the upper partition wall 51 is exposed to the high temperature region of the primary coolant 5, and the outer surface of the upper partition wall 51 is exposed to the primary coolant 5 before and after heat exchange by the intermediate heat exchanger 28. Since the upper partition wall 51 is exposed to an environment having such a severe temperature gradient, a heat shielding function capable of maintaining a temperature difference between the respective regions is necessary, and is configured in a thin plate multilayer structure. The upper partition 51 may have a structure in which a heat insulating material such as ceramic is disposed.

マノメータシール52は、上部隔壁51から上部支持板35の方へ開放された隙間を形成する二重円筒板65と、上部支持板35から突出させて二重円筒板65の隙間に挿入された円筒壁66と、備える。マノメータシール52は、二重円筒板65の隙間にアルゴンガスなどの不活性ガスが充填され、上部プレナム61と電磁ポンプ27周辺との圧力差により均衡して電磁ポンプ27から吐出側と上部プレナム61側との間の漏洩量を極めて小さく、ほぼゼロにする。また、この圧力差は、中間熱交換器28内部の圧力損失にほぼ等しく、高々数kPa程度である。したがって、マノメータシール52における不活性ガスと一次冷却材5との液面の差は、数百mm程度に留まる。さらに、マノメータシール52に充填された不活性ガスは、高温領域である上部プレナム61から低温領域である環状下降流路62への熱移行も低減する。   The manometer seal 52 includes a double cylindrical plate 65 that forms a gap opened from the upper partition wall 51 toward the upper support plate 35, and a cylinder that protrudes from the upper support plate 35 and is inserted into the gap between the double cylindrical plates 65. And a wall 66. The manometer seal 52 is filled with an inert gas such as argon gas in the gap between the double cylindrical plates 65, and is balanced by the pressure difference between the upper plenum 61 and the periphery of the electromagnetic pump 27 to discharge from the electromagnetic pump 27 to the upper plenum 61. The amount of leakage between the sides is extremely small and almost zero. Moreover, this pressure difference is almost equal to the pressure loss inside the intermediate heat exchanger 28, and is at most about several kPa. Therefore, the difference in liquid level between the inert gas and the primary coolant 5 in the manometer seal 52 is only about several hundred mm. Furthermore, the inert gas filled in the manometer seal 52 also reduces the heat transfer from the upper plenum 61 that is the high temperature region to the annular downflow passage 62 that is the low temperature region.

シール構造53は、電磁ポンプ27の吐出側に設けられたヘッダ68と、ヘッダ68から上部支持板35側へ突出されたノズル69と、上部支持板35を貫く流路孔35bに連通されてノズル69から吐出される一次冷却材5を上部支持板35と下部支持板37との間の流路へ導くノズル受け71(ノズル受け)と、ノズル69とノズル受け71との間を摺動自在にシールするシールリング72と、を備える。ヘッダ68は、電磁ポンプ27の出口を覆うような環形状の流路を区画する。ノズル69は、環形状のヘッダ68に沿わせて複数設けられる。シールリング72は、二重以上にしても良い。   The seal structure 53 communicates with a header 68 provided on the discharge side of the electromagnetic pump 27, a nozzle 69 protruding from the header 68 toward the upper support plate 35, and a flow passage hole 35 b penetrating the upper support plate 35. A nozzle receiver 71 (nozzle receiver) that guides the primary coolant 5 discharged from 69 to a flow path between the upper support plate 35 and the lower support plate 37, and a slidable movement between the nozzle 69 and the nozzle receiver 71. And a seal ring 72 for sealing. The header 68 defines an annular channel that covers the outlet of the electromagnetic pump 27. A plurality of nozzles 69 are provided along the ring-shaped header 68. The seal ring 72 may be double or more.

シール構造53は、ノズル受け71に摺動自在に差し込まれたノズル69によって、電磁ポンプ27および中間熱交換器28と炉心支持構造物15との間の熱膨張差を吸収しつつ電磁ポンプ27から吐出された一次冷却材5を効率的に原子炉容器3の循環流にする。仮に、電磁ポンプ27から吐出された一次冷却材5が電磁ポンプ27の周辺へと漏洩しても、中間ヘッダ58の貫通口58aから再度電磁ポンプ27へ吸い込まれて循環流を発生させる。なお、電磁ポンプ27とヘッダ68との間に流量計を設置できる。   The seal structure 53 absorbs a difference in thermal expansion between the electromagnetic pump 27 and the intermediate heat exchanger 28 and the core support structure 15 by the nozzle 69 slidably inserted into the nozzle receiver 71, from the electromagnetic pump 27. The discharged primary coolant 5 is efficiently made into a circulation flow of the reactor vessel 3. Even if the primary coolant 5 discharged from the electromagnetic pump 27 leaks to the periphery of the electromagnetic pump 27, it is sucked into the electromagnetic pump 27 again from the through-hole 58 a of the intermediate header 58 to generate a circulating flow. A flow meter can be installed between the electromagnetic pump 27 and the header 68.

円筒壁54は、マノメータシール52およびシール構造53を高温領域の高熱から保護する熱遮蔽板である。   The cylindrical wall 54 is a heat shielding plate that protects the manometer seal 52 and the seal structure 53 from high heat in a high temperature region.

このように構成された高速炉1は、先ず、炉心7で一次冷却材5を加熱する。熱された一次冷却材5は、上部プレナム61を上昇し、上部隔壁51の頂部を越えて中間熱交換器28へ流入する。中間熱交換器28へ流入した一次冷却材5は、二次冷却材31との間で熱交換を行って冷却された後、中間ヘッダ58を通過して電磁ポンプ27に吸い込まれる。電磁ポンプ27は、吸い込んだ一次冷却材5を炉心支持構造物15の上部支持板35へ向かって吐出する。電磁ポンプ27から吐出された一次冷却材5は、シール構造53および上部支持板35の流路孔35bを通過して中性子遮蔽体12を冷却しつつ下降し、炉心支持構造物15の下部支持板37の第二流路孔37bを通過して原子炉容器3の底部の下部プレナム73に達する。下部プレナム73に達した一次冷却材5は、反転して上昇流となり、下部支持板37の第一流路孔37aを通過してエントランスモジュール22を経由し、再び炉心7へ流入する。これらの一次冷却材5の流れを図2中に実線矢で示す。   The fast reactor 1 configured in this manner first heats the primary coolant 5 in the core 7. The heated primary coolant 5 moves up the upper plenum 61 and flows into the intermediate heat exchanger 28 over the top of the upper partition wall 51. The primary coolant 5 that has flowed into the intermediate heat exchanger 28 is cooled by exchanging heat with the secondary coolant 31, passes through the intermediate header 58, and is sucked into the electromagnetic pump 27. The electromagnetic pump 27 discharges the sucked primary coolant 5 toward the upper support plate 35 of the core support structure 15. The primary coolant 5 discharged from the electromagnetic pump 27 passes through the seal hole 53b of the upper support plate 35 and the seal structure 53 and descends while cooling the neutron shield 12, and lower support plate of the core support structure 15 37 and reaches the lower plenum 73 at the bottom of the reactor vessel 3. The primary coolant 5 that has reached the lower plenum 73 is reversed and becomes an upward flow, passes through the first flow path hole 37 a of the lower support plate 37, passes through the entrance module 22, and flows into the core 7 again. The flow of the primary coolant 5 is indicated by solid arrows in FIG.

このように構成された本実施形態に係る高速炉1は、一体に形成された炉心支持構造物15を原子炉容器3(より詳しくは原子炉容器3の上部支持台16)で吊り下げるように支持する構造を備えたことによって、炉心7、エントランスモジュール22、炉心槽8および中性子遮蔽体12の一体取出しを可能とし、据付性の大幅な向上を図ることができる。   In the fast reactor 1 according to the present embodiment configured as described above, the integrally formed core support structure 15 is suspended by the reactor vessel 3 (more specifically, the upper support 16 of the reactor vessel 3). By providing the structure to support, the core 7, the entrance module 22, the core tank 8, and the neutron shield 12 can be taken out integrally, and the installation property can be greatly improved.

また、本実施形態に係る高速炉1は、炉心支持構造物15の下部支持板37を下部支持台17に固定せず、原子炉容器3の長手軸方向および径方向に移動可能に構成したことによって、原子炉容器3と炉心支持構造物15との熱膨張差や地震時における変位を許容しつつ支持できる。   In addition, the fast reactor 1 according to the present embodiment is configured such that the lower support plate 37 of the core support structure 15 is not fixed to the lower support base 17 and is movable in the longitudinal axis direction and the radial direction of the reactor vessel 3. Thus, it is possible to support the reactor vessel 3 and the core support structure 15 while allowing a difference in thermal expansion and displacement during an earthquake.

さらに、本実施形態に係る高速炉1は、炉心支持構造物15の中間支持板38によって、支持円筒36の強め輪として座屈や差圧に対する強度を向上させつつ中性子遮蔽体12の倒れ込みを防ぐことができる。この、中間支持板38は、炉心7の非存在領域に配置され、放射線の照射条件の厳しい炉心7中心部における照射脆化による構造健全性の低下を回避できる。   Furthermore, the fast reactor 1 according to the present embodiment prevents the neutron shield 12 from collapsing while improving the strength against buckling and differential pressure as a strong wheel of the support cylinder 36 by the intermediate support plate 38 of the core support structure 15. be able to. The intermediate support plate 38 is disposed in a non-existing region of the core 7 and can avoid deterioration of structural integrity due to irradiation embrittlement in the central portion of the core 7 where radiation irradiation conditions are severe.

さらにまた、本実施形態に係る高速炉1は、支持円筒36の内側に熱遮蔽板45を備え、支持円筒36の内側と外側との間の温度差を抑制して熱応力を低減させ炉心支持構造物15の構造健全性を保つ。また、熱遮蔽板45によって反射体11周辺の温度勾配も緩和され、反射体11に生じる熱応力を低減できる。   Furthermore, the fast reactor 1 according to the present embodiment includes the heat shielding plate 45 inside the support cylinder 36, and suppresses the temperature difference between the inside and the outside of the support cylinder 36 to reduce the thermal stress and support the core. The structural integrity of the structure 15 is maintained. Moreover, the temperature gradient around the reflector 11 is also relaxed by the heat shielding plate 45, and the thermal stress generated in the reflector 11 can be reduced.

また、本実施形態に係る高速炉1は、マノメータシール52によって、電磁ポンプ27から吐出される一次冷却材5における高温領域と低温領域との間の漏洩量をほぼゼロにでき、熱交換性悪化による原子炉性能の低下を回避できる。また、マノメータシール52の内側に円筒壁54を設けたことで熱移行も低減できる。   In addition, the fast reactor 1 according to the present embodiment can substantially reduce the amount of leakage between the high temperature region and the low temperature region in the primary coolant 5 discharged from the electromagnetic pump 27 by the manometer seal 52, and the heat exchange performance is deteriorated. It is possible to avoid a decrease in reactor performance due to. In addition, heat transfer can be reduced by providing the cylindrical wall 54 inside the manometer seal 52.

さらに、本実施形態に係る高速炉1は、シール構造53によって、電磁ポンプ27から吐出される一次冷却材5における漏洩量を最小限に抑えることができ、原子炉性能への影響を低減できる。   Furthermore, the fast reactor 1 according to the present embodiment can minimize the amount of leakage in the primary coolant 5 discharged from the electromagnetic pump 27 by the seal structure 53, and can reduce the influence on the reactor performance.

さらにまた、本実施形態に係る高速炉1は、バックアップ支持構造物74を備え、万一の炉心支持構造物15の破損時にも炉心7の健全性を保持できる。   Furthermore, the fast reactor 1 according to the present embodiment includes the backup support structure 74 and can maintain the soundness of the core 7 even when the core support structure 15 is broken.

したがって、本実施形態に係る高速炉1の炉内構造は、機能性、据付性および構造健全性に優れ信頼性向上が図られる。   Therefore, the in-furnace structure of the fast reactor 1 according to the present embodiment is excellent in functionality, installation, and structural soundness, and reliability is improved.

1 高速炉
3 原子炉容器
3a 底部
3b 胴部
4 遮蔽プラグ
5 一次冷却材
7 炉心
8 炉心槽
9 炉停止棒
11 反射体
11a 中性子反射部
11b キャビティ部
12 中性子遮蔽体
15 炉心支持構造物
16 上部支持台
17 下部支持台
18 反射体駆動装置
19 炉停止棒駆動装置
21 燃料集合体
22 エントランスモジュール
24 炉心槽内胴
25 炉心槽外胴
27 電磁ポンプ
28 中間熱交換器
28a 内側シュラウド
29 熱交換器支持構造
31 二次冷却材
32 二次冷却材入口ノズル
33 二次冷却材出口ノズル
35 上部支持板
35a 内周
35b 流路孔
36 支持円筒
37 下部支持板
37a 第一流路孔
37b 第二流路孔
37c 孔部
37d 流通孔
38 中間支持板
38a 孔部
41 スペーサ
42 締結部材
44 シール部材
45 熱遮蔽板
47 中性子遮蔽体
48 中間支持台
51 上部隔壁
52 マノメータシール
53 シール構造
54 円筒壁
57 中間プレナム
58 中間ヘッダ
58a 貫通口
61 上部プレナム
62 環状下降流路
65 二重円筒板
66 円筒壁
68 ヘッダ
69 ノズル
71 ノズル受け
72 シールリング
73 下部プレナム
74 バックアップ支持構造物
DESCRIPTION OF SYMBOLS 1 Fast reactor 3 Reactor vessel 3a Bottom part 3b Trunk part 4 Shielding plug 5 Primary coolant 7 Core 8 Reactor core 9 Reactor stop rod 11 Reflector 11a Neutron reflector 11b Cavity part 12 Neutron shield 15 Core support structure 16 Upper support Base 17 Lower support base 18 Reflector drive unit 19 Furnace stop rod drive unit 21 Fuel assembly 22 Entrance module 24 Core tank inner shell 25 Core tank outer shell 27 Electromagnetic pump 28 Intermediate heat exchanger 28a Inner shroud 29 Heat exchanger support structure 31 Secondary coolant 32 Secondary coolant inlet nozzle 33 Secondary coolant outlet nozzle 35 Upper support plate 35a Inner circumference 35b Channel hole 36 Support cylinder 37 Lower support plate 37a First channel hole 37b Second channel hole 37c Hole Portion 37d Flow hole 38 Intermediate support plate 38a Hole 41 Spacer 42 Fastening member 44 Seal member 45 Heat shield plate 47 Neutron shield 8 Intermediate support base 51 Upper partition wall 52 Manometer seal 53 Seal structure 54 Cylindrical wall 57 Intermediate plenum 58 Intermediate header 58a Through port 61 Upper plenum 62 Annular downflow passage 65 Double cylindrical plate 66 Cylindrical wall 68 Header 69 Nozzle 71 Nozzle receiver 72 Seal Ring 73 Lower plenum 74 Backup support structure

Claims (8)

有底円筒形状の原子炉容器と、
前記原子炉容器の胴部の中間部内面に設けられた上部支持台と、
前記原子炉容器の胴部の下部内面に設けられた下部支持台と、
前記原子炉容器に収容された冷却材と、
前記原子炉容器に収容されて前記冷却材に浸された炉心と、
前記炉心を取り囲む炉心槽内胴と、
前記炉心槽内胴を取り囲む炉心槽外胴と、
前記炉心槽内胴と前記炉心槽外胴との間に配置されて前記原子炉容器の長手軸方向へ移動する反射体と、
前記炉心槽外胴よりも前記原子炉容器の内面側に寄せて設けられた中性子遮蔽体と、
前記上部支持台に固定された環形状の上部支持板、前記上部支持板の内縁部から垂下された支持円筒および前記支持円筒の下端部に設けられて前記下部支持台に当接されるとともに前記炉心、前記炉心槽内胴、前記炉心槽外胴および前記中性子遮蔽体を支持する円形状の下部支持板が一体に形成された炉心支持構造物と、を備えたことを特徴とする高速炉の炉内構造。
A bottomed cylindrical reactor vessel;
An upper support provided on the inner surface of the middle part of the trunk of the reactor vessel;
A lower support provided on the lower inner surface of the trunk of the reactor vessel;
A coolant contained in the reactor vessel;
A core housed in the reactor vessel and immersed in the coolant;
A core of the reactor core surrounding the reactor core;
A core outer shell surrounding the core inner shell,
A reflector disposed between the inner core of the reactor core and the outer shell of the reactor core and moving in the longitudinal axis direction of the reactor vessel;
A neutron shield provided closer to the inner surface side of the reactor vessel than the reactor core outer shell,
An annular upper support plate fixed to the upper support, a support cylinder suspended from the inner edge of the upper support, and a lower end of the support cylinder, abutting against the lower support and A reactor core, a core support structure in which a circular lower support plate for supporting the reactor core inner shell, the reactor core outer shell, and the neutron shield is integrally formed. Furnace structure.
前記炉心支持構造物は、前記支持円筒の外面から環形状に突出させて一体に形成され前記中性子遮蔽体が挿通された孔を有する中間支持板を備えたことを特徴とする請求項1に記載の高速炉の炉内構造。 The said core support structure was provided with the intermediate | middle support plate which has the hole by which the said neutron shield was penetrated integrally formed by making it project from the outer surface of the said support cylinder in the ring shape. In-core structure of the fast reactor. 前記中間支持板は、前記原子炉容器の長手軸方向に見て前記炉心の非存在領域に配置されたことを特徴とする請求項2に記載の高速炉の炉内構造。 The in-core structure of a fast reactor according to claim 2, wherein the intermediate support plate is disposed in a non-existing region of the core as viewed in the longitudinal axis direction of the reactor vessel. 前記下部支持板に形成された孔に遊嵌させて前記下部支持台に固定され前記炉心支持構造物の下部支持板側端部の移動を適宜に規制するスペーサを備えたことを特徴とする請求項1から3のいずれか1項に記載の高速炉の炉内構造。 A spacer is provided that is loosely fitted in a hole formed in the lower support plate and fixed to the lower support base, and appropriately restricts the movement of the lower support plate side end of the core support structure. Item 4. The internal structure of the fast reactor according to any one of Items 1 to 3. 前記炉心支持構造物の支持円筒の内側に配置されて薄板多層構造を有する熱遮蔽板を備えたことを特徴とする請求項1から4のいずれか1項に記載の高速炉の炉内構造。 The in-furnace structure of a fast reactor according to any one of claims 1 to 4, further comprising a heat shielding plate disposed inside a support cylinder of the core support structure and having a thin multi-layer structure. 前記上部支持板の上方に配置された中間熱交換器と、
前記中間熱交換器の内側シュラウドから前記上部支持板の近傍へ垂下された上部隔壁と、
上部隔壁から前記上部支持板の方へ開放された隙間を形成する二重円筒部および前記上部支持板から突出されて前記二重円筒部の隙間に挿入された円筒壁を有するマノメータシールと、を備えたことを特徴とする請求項1から5のいずれか1項に記載の高速炉の炉内構造。
An intermediate heat exchanger disposed above the upper support plate;
An upper partition wall suspended from the inner shroud of the intermediate heat exchanger to the vicinity of the upper support plate;
A double cylindrical portion that forms a gap opened from the upper partition toward the upper support plate, and a manometer seal that has a cylindrical wall that protrudes from the upper support plate and is inserted into the gap of the double cylindrical portion. The in-furnace structure of a fast reactor according to any one of claims 1 to 5, further comprising:
前記上部支持板の上方に配置されて前記上部支持板の方向へ冷却材を流動させる流体駆動機器と、
前記流体駆動機器の吐出側に設けられたヘッダと、
前記ヘッダから前記上部支持板側へ突出されたノズルと、
前記上部支持板を貫く孔に連通されて前記ノズルから吐出される冷却材を前記上部支持板と前記下部支持板との間の流路へ導くノズル受けと、
前記ノズルと前記ノズル受けとの間を摺動自在にシールするシールリングと、を備えたことを特徴とする請求項1から6のいずれか1項に記載の高速炉の炉内構造。
A fluid drive device arranged above the upper support plate to flow a coolant in the direction of the upper support plate;
A header provided on the discharge side of the fluid drive device;
A nozzle protruding from the header toward the upper support plate,
A nozzle receiver that communicates with a hole penetrating the upper support plate and guides a coolant discharged from the nozzle to a flow path between the upper support plate and the lower support plate;
The in-furnace structure of a fast reactor according to any one of claims 1 to 6, further comprising a seal ring that slidably seals between the nozzle and the nozzle receiver.
前記下部支持板よりも前記原子炉容器の底部側に偏倚させて設けられたバックアップ支持構造物を備えたことを特徴とする請求項1から7のいずれか1項に記載の高速炉の炉内構造。 The fast reactor interior according to any one of claims 1 to 7, further comprising a backup support structure provided to be biased toward the bottom side of the reactor vessel with respect to the lower support plate. Construction.
JP2010112459A 2010-05-14 2010-05-14 In-pile structure of fast reactor Pending JP2011242169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112459A JP2011242169A (en) 2010-05-14 2010-05-14 In-pile structure of fast reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112459A JP2011242169A (en) 2010-05-14 2010-05-14 In-pile structure of fast reactor

Publications (1)

Publication Number Publication Date
JP2011242169A true JP2011242169A (en) 2011-12-01

Family

ID=45408994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112459A Pending JP2011242169A (en) 2010-05-14 2010-05-14 In-pile structure of fast reactor

Country Status (1)

Country Link
JP (1) JP2011242169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115862902A (en) * 2022-09-22 2023-03-28 中国原子能科学研究院 Reactor with a reactor core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115862902A (en) * 2022-09-22 2023-03-28 中国原子能科学研究院 Reactor with a reactor core
CN115862902B (en) * 2022-09-22 2024-05-14 中国原子能科学研究院 Reactor with a reactor body

Similar Documents

Publication Publication Date Title
US11075013B2 (en) Removing heat from a nuclear reactor by having molten fuel pass through plural heat exchangers before returning to core
US8295425B2 (en) Fast reactor having reactivity control reflector
RU2536817C2 (en) Fuel assembly housing and fuel assembly having said housing
JP2019012073A (en) Nuclear reactor module
JP4825763B2 (en) Reflector-controlled fast reactor
US9093182B2 (en) Fast reactor
US20200388411A1 (en) Nuclear steam supply system
JP2013217874A (en) Fast reactor and reflector aggregate of fast reactor
JP2011242169A (en) In-pile structure of fast reactor
JP2001188093A (en) Liquid metal-cooled nuclear reactor and liquid metal- cooled nuclear power plant
JP2010066191A (en) Intermediate heat exchanger and fast breeder reactor plant
US20080159465A1 (en) Fast reactor
CN104011801A (en) Earthquake-resistant reinforcement assembly
KR20180111335A (en) Induction apparatus for measuring pressure and nuclear power plant having the same
JP2011174728A (en) Nuclear reactor of reflector control type
US20100172459A1 (en) Fast reactor
FI129308B (en) A nuclear reactor module and a nuclear district heating reactor comprising and method of operating the same
KR20170040552A (en) Korean standard liquid metal cooled fast reactor fuel assembly with dispersed inner ducts
CN115410728A (en) Full natural circulation reactor body system
JP2017058330A (en) Core shroud and nuclear reactor
JP2010243291A (en) Fast reactor
KR20090098979A (en) Permanent seal ring for a nuclear reactor cavity
JP2011080886A (en) Reflector control type fast reactor, and reflector used for the same
JP2009250882A (en) Fast reactor
JP2001242272A (en) Radiation shielding body

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111222