JP2001242272A - Radiation shielding body - Google Patents

Radiation shielding body

Info

Publication number
JP2001242272A
JP2001242272A JP2000055964A JP2000055964A JP2001242272A JP 2001242272 A JP2001242272 A JP 2001242272A JP 2000055964 A JP2000055964 A JP 2000055964A JP 2000055964 A JP2000055964 A JP 2000055964A JP 2001242272 A JP2001242272 A JP 2001242272A
Authority
JP
Japan
Prior art keywords
gem
gas
shield
core
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000055964A
Other languages
Japanese (ja)
Inventor
Hiroyuki Handa
博之 半田
Hiroshi Hanaki
洋 花木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2000055964A priority Critical patent/JP2001242272A/en
Publication of JP2001242272A publication Critical patent/JP2001242272A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shielding body improved in shielding performance by suppressing the upward directivity of leakage radiation while ensuring the necessary volume and shift path of gas in a GEM. SOLUTION: In a gas expansion mechanism installed around a core of a fast reactor, a gas shift path is formed occupying almost the whole area in a gas space in the mechanism.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高速炉のガス膨張機
構に係わり、同機構内を漏洩する放射線を遮蔽する遮蔽
体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas expansion mechanism for a fast reactor, and more particularly to a shield for shielding radiation leaking in the mechanism.

【0002】[0002]

【従来の技術】図2は、従来計画されている高速炉の原
子炉の概略構成を示したものであり、本図を用いて従来
計画例を説明する。
2. Description of the Related Art FIG. 2 shows a schematic configuration of a conventionally planned fast reactor, and an example of the conventional plan will be described with reference to FIG.

【0003】高速炉の原子炉は、ほぼ中央に核分裂によ
って熱を生成する炉心3があり、その炉心から発生する
放射線を遮蔽する為、炉心の上下には軸方向遮蔽体13
が、側部方向には径方向遮蔽体11が設置されている。こ
れらの原子炉は炉心から発生した熱を除去する為の冷却
材10中に浸漬しており、この冷却材は鋼製の容器2に
収納されている。また、冷却材は容器外部での熱交換の
為、ポンプ6によって循環している。冷却材の上部には
上蓋としてスラブ5設置されており、非常用炉心冷却の
為の熱交換器4がスラブを貫通して炉心斜め上方に設置
されている。
In a fast reactor, a reactor core 3 that generates heat by nuclear fission is provided substantially at the center, and axial shields 13 are provided above and below the core in order to shield radiation generated from the core.
However, a radial shield 11 is provided in the side direction. These reactors are immersed in a coolant 10 for removing heat generated from the core, and the coolant is contained in a steel vessel 2. The coolant is circulated by the pump 6 for heat exchange outside the container. A slab 5 is provided as an upper lid on the upper part of the coolant, and a heat exchanger 4 for emergency core cooling is installed diagonally above the core through the slab.

【0004】高速炉の炉心では、炉心安全性向上方策と
して炉心流量減少型炉停止失敗事象に対応して、ガス膨
張機構12(Gas Expansion Module;以下GEMと略
す)が設置する計画があり、GEMは炉心に接して炉心を
囲んで挿入されている。
[0004] In the core of a fast reactor, there is a plan to install a gas expansion module 12 (hereinafter abbreviated as GEM) in response to a core flow reduction type reactor shutdown failure event as a measure for improving core safety. Is inserted in contact with the core and surrounding the core.

【0005】図3は、GEMの原理を示したものであり、
本図を用いてGEMの原理を説明する。
FIG. 3 shows the principle of GEM.
The principle of GEM will be described with reference to FIG.

【0006】GEMの原理は、通常の定格運転時において
は、ポンプ圧力によって内部の不活性なガス8は圧縮さ
れ、冷却材10の液位は炉心上端よりやや上となるよう
ガス量が調整されており、GEM内冷却材は中性子反射体
の機能を果たす。一方、ポンプの機能が低下し冷却材流
量が極端に低下した場合、圧力の低下によりガスが膨張
して冷却材液位が下がり、中性子はガス領域から漏れ負
の反応度効果を生ずる。このように、GEM内部にはGEMの
機能上炉心上端より上の領域に放射線が透過しやすいガ
ス領域が形成され、図2に示すように炉心周りは軸方向
遮蔽体及び径方向遮蔽体によって囲まれ遮蔽機能が高く
なっている為、GEMが炉心で発生した放射線の炉心外側
への主要な漏洩経路となっている。
[0006] The principle of GEM is that during normal rated operation, the inert gas 8 inside is compressed by the pump pressure, and the gas amount is adjusted so that the liquid level of the coolant 10 is slightly above the upper end of the core. And the coolant in the GEM acts as a neutron reflector. On the other hand, when the function of the pump is reduced and the coolant flow rate is extremely reduced, the gas expands due to the decrease in the pressure and the coolant level is lowered, and neutrons leak from the gas region to produce a negative reactivity effect. As described above, a gas region through which radiation is easily transmitted is formed in a region above the upper end of the core due to the function of the GEM inside the GEM, and the core is surrounded by the axial shield and the radial shield as shown in FIG. Due to the enhanced shielding performance, GEM is the main leakage path of radiation generated in the core to the outside of the core.

【0007】図4は、従来計画されているGEMの概略構
造を示したものであり、本図を用いて従来計画例を説明
する。
FIG. 4 shows a schematic structure of a GEM that has been conventionally planned. An example of the conventional plan will be described with reference to FIG.

【0008】GEM遮蔽体1は、ラッパー管9内のハンド
リングヘッド7下部に設置されており、下部のガス領域
を上昇してきた放射線をここで遮蔽をする。
The GEM shield 1 is installed below the handling head 7 in the wrapper tube 9 and shields the radiation that has risen in the lower gas region here.

【0009】[0009]

【発明が解決しようとする課題】従来の技術では、GEM
内冷却材液面より上方に大きなガス空間が存在する為、
炉心で発生しGEM内に流入した放射線は同空間によって
上方向への強い指向性を帯び、上部への漏洩が加速され
る。この為、図2に示すようにGEMが炉心外側に漏洩す
る放射線の主要な透過経路となる。この放射線は、熱交
換器に達し、内部の2次冷却材を放射化する。放射化を
抑制する為に、熱交換器周りに遮蔽体を設置することが
考えられるが、その場合容器の径が増加し、コスト増と
なる。また、GEM遮蔽体を厚くすることによって放射線
を遮蔽することも考えられが、その場合、原子炉を構成
する要素の交換作業性の観点よりGEMは勿論のことその
他の原子炉を構成する要素の軸長も同一長さに増加する
必要があり、コスト増加要因となり得る。
In the prior art, GEM
Because there is a large gas space above the inner coolant level,
Radiation generated in the reactor core and flowing into the GEM has strong directivity in the upward direction due to the space, and leakage to the upper part is accelerated. Therefore, as shown in FIG. 2, the GEM is a main transmission path for radiation leaking to the outside of the reactor core. This radiation reaches the heat exchanger and activates the secondary coolant inside. In order to suppress activation, it is conceivable to install a shield around the heat exchanger. However, in that case, the diameter of the container increases and the cost increases. In addition, it is conceivable to shield the radiation by increasing the thickness of the GEM shield. The shaft length also needs to be increased to the same length, which can be a cost increase factor.

【0010】本発明の目的は、GEM内ガスの必要な体積
及び移行経路を確保しつつ、漏洩放射線の上方向の指向
性を抑制することにより遮蔽性能を向上させる遮蔽体を
提供することにある。
An object of the present invention is to provide a shielding body which improves shielding performance by suppressing the upward directivity of leaked radiation while securing a necessary volume and a transfer path of the gas in the GEM. .

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、GEM内において合計のガス体積は必要体積とし、ガ
スの移行経路を確保しつつ、まとまったガス空間を形成
しない形状の遮蔽体とする。具体的には遮蔽体の範囲
を、軸方向については定格運転時の冷却材液面のほぼ直
上からハンドリングヘッド下面まで、径方向については
ラッパー管内面付近までとする。また、遮蔽体の形状
は、連続したガス空間が形成できる形状とし、遮蔽体の
占有体積は残りのガス空間体積の合計がGEMとして必要
なガス体積を確保できるよう設定する。
Means for Solving the Problems In order to achieve the above object, the total gas volume in the GEM is set to a required volume, and a shielding body having a shape that does not form a united gas space while securing a gas transfer path is provided. . Specifically, the range of the shielding body is set from almost directly above the coolant level during rated operation to the lower surface of the handling head in the axial direction, and to the vicinity of the inner surface of the wrapper pipe in the radial direction. Further, the shape of the shield is a shape capable of forming a continuous gas space, and the volume occupied by the shield is set so that the sum of the remaining gas space volumes can secure the gas volume required as a GEM.

【0012】[0012]

【発明の実施の形態】本発明の実施例を図1を用いて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.

【0013】図1は、GEMの断面形状、および上部遮蔽
体を示したものである。
FIG. 1 shows a sectional shape of the GEM and an upper shield.

【0014】本実施例では、GEM遮蔽体1は中心棒周り
に複数のスクリュー型の羽根で構成された遮蔽体であ
り、GEMの機能上必要な連続するガス空間は羽根と羽根
の間で形成される。
In this embodiment, the GEM shield 1 is a shield composed of a plurality of screw blades around the center rod, and a continuous gas space necessary for the function of the GEM is formed between the blades. Is done.

【0015】したがって、必要なガス空間は遮蔽体内部
に存在することが可能となる為、遮蔽体全体の占有範囲
としては軸方向については定格運転時の冷却材液面のほ
ぼ直上からハンドリングヘッド下面まで、径方向につい
てはラッパー管内面付近までとすることが可能である。
そのため、従来の実施例では放射線が漏洩しやすいGEM
内冷却材液面より上方の大きなガス空間が、スクリュー
型の羽根によって分割された形となり、さらに遮蔽体が
GEM内の冷却材液面より上方の空間のほぼ全領域を占有
することが可能である為、GEM内の放射線の上部方向へ
の指向性を抑制でき、 その結果GEM遮蔽体の遮蔽性能
が向上する。
Therefore, since the necessary gas space can be present inside the shield, the occupation range of the entire shield is from almost directly above the coolant level during rated operation in the axial direction to the lower surface of the handling head. , And in the radial direction, up to near the inner surface of the wrapper tube.
Therefore, in the conventional embodiment, radiation
The large gas space above the inner coolant level is divided by screw-type blades, and the shield is
It is possible to occupy almost the entire area of the space above the coolant level in the GEM, so that the directivity of radiation in the GEM to the upper direction can be suppressed, and as a result, the shielding performance of the GEM shield improves. I do.

【0016】また、同遮蔽体において、スクリュー型の
羽根と羽根の間によって連続したガス空間が形成できる
為、GEM内のガスの移行経路が確保できポンプ停止時に
ガスが膨張可能であり、遮蔽体形状を調整することによ
りガス空間体積は機能上の必要体積を確保できることか
らGEMの機能を損なわない。スクリュー型の羽根の枚
数、形状及び寸法は、遮蔽体以外の空間体積の合計がGE
Mとして必要なガス体積を確保できるよう設定すればよ
い。
In the shield, a continuous gas space can be formed between the screw-type blades, so that a gas transfer path in the GEM can be secured, and the gas can expand when the pump is stopped. By adjusting the shape, the gas space volume can secure the required volume for the function, so that the function of the GEM is not impaired. The number, shape and dimensions of screw-type blades are based on the total
What is necessary is just to set so that the required gas volume can be secured as M.

【0017】[0017]

【発明の効果】本発明の効果は、遮蔽体がGEM内のガス
空間のほぼ全領域を占有することが可能である為、GEM
内の放射線の上部方向への指向性を抑制でき、 その結
果遮蔽体の遮蔽性能が向上する。
The effect of the present invention is that the shielding body can occupy almost the entire gas space in the GEM.
The directivity of the radiation in the upper part can be suppressed, and as a result, the shielding performance of the shielding body is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のGEM遮蔽体の形状を示す
図。
FIG. 1 is a diagram showing the shape of a GEM shield according to one embodiment of the present invention.

【図2】高速炉の原子炉周り概略構成を示す図。FIG. 2 is a diagram showing a schematic configuration around a nuclear reactor of a fast reactor.

【図3】従来計画のGEM遮蔽体の形状を示す図。FIG. 3 is a diagram showing a shape of a GEM shield of a conventional plan.

【図4】GEMの原理を示す図。FIG. 4 is a diagram showing the principle of GEM.

【符号の説明】[Explanation of symbols]

1…GEM遮蔽体、2…容器、3…炉心、4…熱交換器、
5…スラブ、6…ポンプ、7…ハンドリングヘッド、8
…ガス、9…ラッパー管、10…冷却材、11…径方向
遮蔽体、12…ガス膨張機構(GEM)、13…軸方向遮
蔽体。
1 ... GEM shield, 2 ... container, 3 ... core, 4 ... heat exchanger,
5 slab, 6 pump, 7 handling head, 8
... gas, 9 ... wrapper tube, 10 ... coolant, 11 ... radial shield, 12 ... gas expansion mechanism (GEM), 13 ... axial shield.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高速炉の炉心周りに設置するガス膨張機
構において、同機構内ガス空間内のほぼ全体の領域を占
有しガスの移行経路を形成することを特徴とする遮蔽
体。
In a gas expansion mechanism installed around a core of a fast reactor, a shield occupies substantially the entire area of a gas space in the mechanism and forms a gas transfer path.
【請求項2】 請求項1に記載の遮蔽体において、スク
リュー形状を特徴とする遮蔽体。
2. The shield according to claim 1, wherein the shield has a screw shape.
JP2000055964A 2000-02-28 2000-02-28 Radiation shielding body Pending JP2001242272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055964A JP2001242272A (en) 2000-02-28 2000-02-28 Radiation shielding body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055964A JP2001242272A (en) 2000-02-28 2000-02-28 Radiation shielding body

Publications (1)

Publication Number Publication Date
JP2001242272A true JP2001242272A (en) 2001-09-07

Family

ID=18577002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055964A Pending JP2001242272A (en) 2000-02-28 2000-02-28 Radiation shielding body

Country Status (1)

Country Link
JP (1) JP2001242272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853788A (en) * 2018-08-21 2020-02-28 Fei 公司 X-ray and particle shield for improved vacuum conductivity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853788A (en) * 2018-08-21 2020-02-28 Fei 公司 X-ray and particle shield for improved vacuum conductivity

Similar Documents

Publication Publication Date Title
US8711997B2 (en) Reactor core of liquid metal cooled reactor
JP4886220B2 (en) Fast reactor
JP4825763B2 (en) Reflector-controlled fast reactor
JP2001242272A (en) Radiation shielding body
JP2008122248A (en) Fast reactor
JP2551892B2 (en) Hollow core of fast reactor
JP3432965B2 (en) Fast reactor and fast reactor core protection equipment
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
US5610956A (en) Fast reactor core
WO2021221051A1 (en) Reactor core
JP3964489B2 (en) Gas filled assembly
JPH08201562A (en) Control rod assembly
JPH08327762A (en) Gas-sealed assembly
JP2837874B2 (en) Liquid metal cooled fast neutron reactor
JP2685994B2 (en) Core structure of fast breeder reactor
JP2020180907A (en) Fuel element, fuel assembly, and core
JPH04335190A (en) Fast breeder reactor
JPH09211167A (en) Gas charged assembly
JPH08211179A (en) Gem device containing floating type neutron absorber
JP2005249638A (en) Passive reactor shutdown method and lead reflector used therefor
JP2018004445A (en) Fuel assembly for fast reactor and core of fast reactor loaded with the same
JPH05164873A (en) Reactor core of fast reactor
JPH06258481A (en) Fast breeder reactor
JPH07318680A (en) Gas encapsulated assembly for fast reactor
JPH06160571A (en) Reflector control type reactor