JP2011241935A - Elastic wedge damper for rotary shaft - Google Patents

Elastic wedge damper for rotary shaft Download PDF

Info

Publication number
JP2011241935A
JP2011241935A JP2010115900A JP2010115900A JP2011241935A JP 2011241935 A JP2011241935 A JP 2011241935A JP 2010115900 A JP2010115900 A JP 2010115900A JP 2010115900 A JP2010115900 A JP 2010115900A JP 2011241935 A JP2011241935 A JP 2011241935A
Authority
JP
Japan
Prior art keywords
elastic wedge
damper
rotating shaft
vibration
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010115900A
Other languages
Japanese (ja)
Other versions
JP5598084B2 (en
Inventor
Jose Javier Bayod
ハビエル バヨッド ホセ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010115900A priority Critical patent/JP5598084B2/en
Publication of JP2011241935A publication Critical patent/JP2011241935A/en
Application granted granted Critical
Publication of JP5598084B2 publication Critical patent/JP5598084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Support Of The Bearing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an elastic wedge damper for a rotary shaft easy to be manufactured, capable of reducing the vibration at a vibration resonant speed without using an attenuating device in a bearing, and capable of reducing a radial load to be applied to the bearing.SOLUTION: This elastic wedge damper for a rotary shaft is concentrically provided in an end 1a (or both ends) of the rotary shaft 1 supported at two points separated in the axial direction and rotating around the axis X-X, and is formed into a shape symmetrical relative to the axis. A diameter h(x) of this shape at a distance x from a virtual point 12 outside of an end surface 11 of the rotary shaft 1 is h(x)=εx(ε is a positive constant, n is a real number of 1 or more).

Description

本発明は、高速回転する回転シャフト用の弾性くさびダンパに関する。   The present invention relates to an elastic wedge damper for a rotating shaft that rotates at a high speed.

本発明において、「回転シャフト」とは、ジェットエンジン、ターボ機械(ガスタービン、ターボチャージャー)、その他の回転機械で用いられ、軸心を中心に回転するシャフトを意味する。   In the present invention, the “rotating shaft” means a shaft that is used in a jet engine, a turbo machine (gas turbine, turbocharger), and other rotating machines and rotates around an axis.

振動する機械装置の振動を減衰する手段として、ダンパ装置が広く知られている。また、ダンパ装置は、粘弾性ダンパ、粘性ダンパ、摩擦ダンパ、マスダンパ、慣性力ダンパ、等に大別することができる。
このうちマスダンパは、質量体の振動を逆利用して、機械装置の振動を消去するものであり、他のダンパ装置と比較して構造が簡単である利点がある。
A damper device is widely known as means for attenuating vibration of a vibrating mechanical device. The damper device can be roughly classified into a viscoelastic damper, a viscous damper, a friction damper, a mass damper, an inertial force damper, and the like.
Among these, the mass damper eliminates the vibration of the mechanical device by reversely using the vibration of the mass body, and has an advantage that the structure is simple compared to other damper devices.

マスダンパの一種として、音響ブラックホール効果(Acoustic Black Hole Effect)を利用した弾性くさびダンパ(Elastic Wedge damper)が例えば非特許文献1に開示されている。   As a kind of mass damper, an elastic wedge damper using an acoustic black hole effect is disclosed in Non-Patent Document 1, for example.

弾性くさび(Elastic Wedge)とは、くさび形の弾性体を意味する。曲げ振動について、弾性くさびの厚さが次第に薄くなると振動波の速度を遅くなり、厚さがゼロ(0)になると振動波の速度がゼロになるので振動波は反射されない。すなわち、弾性くさびは、「音のブラックホール」として機能し、その結果、振動エネルギは厚さがゼロの端部に集まるのでそのエネルギを減衰しやすくなる。
しかし、実際には、厚さがゼロの端部を有する弾性くさびの製造は困難であり、反射はゼロ(0)にならない。そこで、非特許文献1ではその反射を低減するため、弾性くさびの端部に減衰材料を貼り付けている。
The elastic wedge means a wedge-shaped elastic body. As for bending vibration, when the thickness of the elastic wedge is gradually reduced, the speed of the vibration wave is decreased, and when the thickness is zero (0), the speed of the vibration wave is zero, so that the vibration wave is not reflected. That is, the elastic wedge functions as a “sound black hole”, and as a result, the vibration energy collects at the end portion having a thickness of zero, so that the energy is easily attenuated.
In practice, however, it is difficult to produce an elastic wedge with zero thickness ends and the reflection does not go to zero (0). Therefore, in Non-Patent Document 1, in order to reduce the reflection, a damping material is attached to the end of the elastic wedge.

上述した弾性くさびダンパは、マスダンパと同様に構造が簡単であり、かつマスダンパよりも厚さが薄く、軽量化できる利点がある。
なお、くさび形の弾性体を用いた振動又は音響の低減手段は、例えば特許文献1,2にも開示されている。
The elastic wedge damper described above has the advantage of being simple in structure as in the case of the mass damper, thinner than the mass damper, and lighter in weight.
Note that vibration or sound reduction means using a wedge-shaped elastic body is also disclosed in Patent Documents 1 and 2, for example.

V.V.Krylov & R.E.T.B.Winward,“Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates”,Journal of Sound and Vibration 300(2007) 43−49V. V. Krylov & R. E. T.A. B. Winward, “Experimental investing of the acoustic black hole effect for flexural waves in tapered plates”, Journal of Sound and 43 (Vi200).

特開2000−43252号公報、「インクジェットプリンタ用の印字ヘッド」JP 2000-43252 A, “Print Head for Inkjet Printer” 特表2008−532917号公報、「音響を低減させる楔形ポリマー中間層」JP-T-2008-532917, “Wedge-shaped polymer intermediate layer for reducing sound”

図1は、非特許文献1で使用した弾性くさびダンパの模式図である。この弾性くさびダンパは、非対称2次元くさび状ダンパ(non−symmetric quadratic wedge−like damper)である。この図において、51は弾性くさび、52は振動吸収膜(absorbing film)、53は弾性くさび51と一体の厚板部である。
非特許文献1で実験に使用した弾性くさび51の寸法は、長さ280mm、幅200mm、厚さは厚板部53で4.5mm、最小厚さ0.02mmである。厚さh(x)は、先端からの距離xに対し、h(x)=εx・・・(A1)の関係である。ここで、εは正の定数である。
また、振動吸収膜52はポリマー膜であり、寸法は弾性くさび51の寸法と同じ(長さ280mm、幅200mm)であり、厚さは0.2mmであった。
FIG. 1 is a schematic diagram of an elastic wedge damper used in Non-Patent Document 1. This elastic wedge damper is a non-symmetric quadrature wedge-like damper. In this figure, 51 is an elastic wedge, 52 is a vibration absorbing film (absorbing film), and 53 is a thick plate portion integrated with the elastic wedge 51.
The dimensions of the elastic wedge 51 used in the experiment in Non-Patent Document 1 are a length of 280 mm, a width of 200 mm, a thickness of 4.5 mm at the thick plate portion 53, and a minimum thickness of 0.02 mm. The thickness h (x) has a relationship of h (x) = εx 2 (A1) with respect to the distance x from the tip. Here, ε is a positive constant.
Further, the vibration absorbing film 52 was a polymer film, the dimensions were the same as the dimensions of the elastic wedge 51 (length 280 mm, width 200 mm), and the thickness was 0.2 mm.

この実験結果から、500Hz〜18000Hzの広帯域において、振動ピークの減衰効果が認められ、特に高周波数と中周波数において大きな減衰(振動エネルギの低減)が得られることが確認されている。   From this experimental result, it has been confirmed that a vibration peak attenuation effect is observed in a wide band of 500 Hz to 18000 Hz, and that a large attenuation (reduction of vibration energy) can be obtained particularly at high and medium frequencies.

上述したように、非特許文献1で使用した弾性くさびダンパ(試験板)の厚さは、理論式(A1)に基づき、4.5mmから0.02mmまでであった。しかし、理論式(A1)に基づき厚さを0mm近く(この例で0.02mm)まで加工することは、極めて困難であり、これを達成するためには、特別な加工機械、或いは特別な方法が不可欠である。そのため、非特許文献1に開示された弾性くさびの製造は、実質的に不可能であるか、可能であっても非常に高価であった。   As described above, the thickness of the elastic wedge damper (test plate) used in Non-Patent Document 1 was 4.5 mm to 0.02 mm based on the theoretical formula (A1). However, it is extremely difficult to process the thickness to near 0 mm (0.02 mm in this example) based on the theoretical formula (A1). To achieve this, a special processing machine or a special method is used. Is essential. Therefore, the production of the elastic wedge disclosed in Non-Patent Document 1 is substantially impossible or very expensive even if possible.

一方、ジェットエンジンなどの回転シャフトは、アンバランスにより振動し、その振動によりシャフトを支持する軸受等が破損する可能性がある。そのため、回転シャフトの実用回転速度はその振動共振速度で制限される。
従来、振動共振速度における振動を低減するために、軸受にフィルムダンパなどの減衰装置を用いているが、その構造は複雑である。
また、回転シャフトを支持する軸受には、振動共振速度において過大なラジアル荷重が作用するが、そのラジアル荷重を低減する手段がなかった。
On the other hand, a rotating shaft such as a jet engine vibrates due to unbalance, and the vibration or the like may damage a bearing that supports the shaft. Therefore, the practical rotational speed of the rotating shaft is limited by its vibration resonance speed.
Conventionally, in order to reduce vibration at the vibration resonance speed, a damping device such as a film damper is used for the bearing, but its structure is complicated.
An excessive radial load acts on the bearing supporting the rotating shaft at the vibration resonance speed, but there is no means for reducing the radial load.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、容易に製造可能であり、軸受に減衰装置を用いることなく、振動共振速度における振動を低減し、かつ軸受に作用するラジアル荷重を低減することができる回転シャフト用の弾性くさびダンパを提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is for a rotating shaft that can be easily manufactured and can reduce vibration at a vibration resonance speed and a radial load acting on the bearing without using a damping device. It is to provide an elastic wedge damper.

本発明によれば、軸方向に間隔を隔てた2点で支持され軸心を中心に回転する回転シャフトの一端又は両端に同心に設けられ、前記軸心に対して対称な形状を有する、ことを特徴とする回転シャフト用の弾性くさびダンパが提供される。   According to the present invention, the rotary shaft is supported at two points spaced apart in the axial direction and is concentrically provided at one or both ends of the rotating shaft that rotates about the axis, and has a symmetrical shape with respect to the axis. An elastic wedge damper for a rotating shaft is provided.

本発明の実施形態によれば、前記形状は、前記回転シャフトの端面より外側の仮想点からの距離xにおける直径h(x)がh(x)=εx(εは正の定数、nは1以上の実数)である。 According to an embodiment of the present invention, the shape is such that the diameter h (x) at a distance x from the virtual point outside the end face of the rotating shaft is h (x) = εx n (ε is a positive constant, n is 1 or more real number).

上述した本発明の構成によれば、回転シャフトの一端又は両端に同心に設けられた弾性くさびダンパが、回転シャフトの軸心に対して対称な形状を有するので、弾性くさびダンパにより軸心まわりのアンバランスが発生せず、回転シャフトの高速回転が可能である。   According to the configuration of the present invention described above, the elastic wedge damper provided concentrically at one or both ends of the rotating shaft has a symmetrical shape with respect to the axis of the rotating shaft. No imbalance occurs and the rotating shaft can be rotated at high speed.

また、前記形状が、弾性くさびダンパの理論に基づく形状をしているので、その形状により振動エネルギが弾性くさびダンパの先端部に集中するため、弾性くさびダンパにより回転シャフトの変形モードを調整でき、回転シャフトの支持位置における反力を低減できることが後述するコンピュータ解析により確認された。
Also, since the shape is based on the theory of the elastic wedge damper, the vibration energy is concentrated on the tip of the elastic wedge damper due to the shape, so that the deformation mode of the rotating shaft can be adjusted by the elastic wedge damper, It was confirmed by computer analysis described later that the reaction force at the support position of the rotating shaft can be reduced.

非特許文献1で使用した弾性くさびダンパの模式図である。3 is a schematic diagram of an elastic wedge damper used in Non-Patent Document 1. FIG. 本発明による回転シャフト用の弾性くさびダンパの模式図である。It is a schematic diagram of an elastic wedge damper for a rotating shaft according to the present invention. 本発明のくさびダンパ部の厚さ、速度、及び振幅を示す図である。It is a figure which shows the thickness of the wedge damper part of this invention, speed, and an amplitude. 実施例における振動特性の解析結果である。It is the analysis result of the vibration characteristic in an Example.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図2は、本発明による回転シャフト用の弾性くさびダンパの模式図である。   FIG. 2 is a schematic view of an elastic wedge damper for a rotating shaft according to the present invention.

図2(A)に示すように、本発明が対象とする回転シャフト1は、軸方向に間隔を隔てた2点の軸受2、3で支持され、回転シャフト1の軸心X−Xを中心に回転する。
ここで、回転シャフト1の全長をL、回転シャフト1の両端から軸受2、3までの距離をLとする。また、回転シャフト1の中央には、質量M、慣性モーメントIの円盤4が取り付けられているものとする。
As shown in FIG. 2A, a rotating shaft 1 targeted by the present invention is supported by two bearings 2 and 3 that are spaced apart in the axial direction, and is centered on an axis XX of the rotating shaft 1. Rotate to.
Here, the total length of the rotating shaft 1 is L 1 , and the distance from both ends of the rotating shaft 1 to the bearings 2 and 3 is L 2 . Further, it is assumed that a disk 4 having a mass M and a moment of inertia I is attached to the center of the rotating shaft 1.

図2(B)は、回転シャフト1の右端部の拡大図である。この図に示すように、本発明の弾性くさびダンパ10は、回転シャフト1の一端(この例で右端)に同心に設けられ、軸心X−Xに対して対称な形状を有する。   FIG. 2B is an enlarged view of the right end portion of the rotating shaft 1. As shown in this figure, the elastic wedge damper 10 of the present invention is provided concentrically at one end (the right end in this example) of the rotary shaft 1 and has a symmetrical shape with respect to the axis XX.

図2(C)は、仮想点12からの距離xにおける直径h(x)を示す模式図である。なおこの図は、図2(B)に対し左右反対に示している。   FIG. 2C is a schematic diagram showing the diameter h (x) at the distance x from the virtual point 12. In addition, this figure is shown right and left opposite to FIG. 2 (B).

図2(B)(C)に示すように、本発明の弾性くさびダンパ10の形状は、回転シャフト1の端面11より外側の仮想点12からの距離xにおける直径h(x)は、以下の式(A2)(A3)で表される。
ここで、εは正の定数、nは1以上の実数である。
As shown in FIGS. 2B and 2C, the elastic wedge damper 10 according to the present invention has a diameter h (x) at a distance x from a virtual point 12 outside the end face 11 of the rotary shaft 1 as follows. It is represented by Formula (A2) (A3).
Here, ε is a positive constant, and n is a real number of 1 or more.

ε<<(3ρω/E)0.5・・・(A2)
h(x)=εx・・・(A3)
ε << (3ρω 2 / E) 0.5 (A2)
h (x) = εx n (A3)

図3は、本発明の弾性くさびダンパ10の直径、速度、及び振幅を示す図である。   FIG. 3 is a diagram showing the diameter, speed, and amplitude of the elastic wedge damper 10 of the present invention.

図3(A)において、弾性くさびダンパ10は、回転シャフト1の端面11より外側の仮想点12からの距離xにおける直径h(x)がh(x)=εx(εは正の定数)になっている。
なお、本発明はこの関係に限定されず、h(x)=εx(εは正の定数、nは1以上の実数)の関係であればよい。
In FIG. 3A, the elastic wedge damper 10 has a diameter h (x) at a distance x from the virtual point 12 outside the end face 11 of the rotary shaft 1 as h (x) = εx 2 (ε is a positive constant). It has become.
In addition, this invention is not limited to this relationship, What is necessary is just the relationship of h (x) = (epsilon) xn ((epsilon) is a positive constant and n is 1 or more real numbers).

弾性くさびダンパ10における振幅A(x),伝播速度Cp(x)は数1の式(1)〜式(4)で示される。ここで、nは1以上の実数、Aは入力振幅(振動伝播部から伝播される振動の振幅)、ωは周波数、kは波数(wave number)、ρは密度、Eはヤング率である。 The amplitude A (x) and the propagation velocity Cp (x) in the elastic wedge damper 10 are expressed by Equations (1) to (4) of Equation 1. Here, n is a real number of 1 or more, A 0 is an input amplitude (amplitude of vibration propagated from the vibration propagation unit), ω is a frequency, k is a wave number, ρ is a density, and E is a Young's modulus. .

式(1)〜式(4)から、弾性くさびダンパ10における伝播速度Cp(x)と振幅A(x)は、図3(B)(C)のようになる。   From the equations (1) to (4), the propagation velocity Cp (x) and the amplitude A (x) in the elastic wedge damper 10 are as shown in FIGS.

図3(C)に示すように、振動エネルギは弾性くさびダンパ10の薄肉部分(先端部近傍)に集中する。   As shown in FIG. 3C, the vibration energy is concentrated on the thin portion (near the tip) of the elastic wedge damper 10.

図2(A)に示した回転シャフト1のモデルにおいて、以下の4通りのケースについて、コンピュータを用いて振動解析を実施した。
ケース1:従来例、軸受2、3における減衰なし。
ケース2:従来例、軸受2、3における減衰あり。
ケース3:本発明、弾性くさびダンパ10の減衰なし。
ケース4:本発明、弾性くさびダンパ10の減衰あり。
In the model of the rotating shaft 1 shown in FIG. 2A, vibration analysis was performed using the computer for the following four cases.
Case 1: No attenuation in the conventional example, the bearings 2 and 3.
Case 2: Attenuation in conventional example, bearings 2 and 3
Case 3: The present invention, the elastic wedge damper 10 is not attenuated.
Case 4: In the present invention, the elastic wedge damper 10 is attenuated.

なお、回転シャフト1のモデルにおいて、L=1000mm、L=100mm、M=60kg、I=1.5×10kg.cmとした。また、回転シャフト1の外径を300mm、内径を296mmとした。 In the model of the rotating shaft 1, L 1 = 1000 mm, L 2 = 100 mm, M = 60 kg, I = 1.5 × 10 4 kg. It was cm 2. The outer diameter of the rotary shaft 1 was 300 mm, and the inner diameter was 296 mm.

図4は、実施例における振動特性の解析結果である。この図において、(A)は、従来例(ケース1、2)の場合、(B)は本発明(ケース3、4)の場合である。
また各図において、横軸は周波数(Hz)、縦軸は回転シャフト1の軸受3(図2(A)で右側)に作用するラジアル荷重(N)である。また、図中の実線は「減衰あり」の場合、破線は「減衰なし」の場合である。
FIG. 4 is an analysis result of vibration characteristics in the example. In this figure, (A) is the case of the conventional example (cases 1 and 2), and (B) is the case of the present invention (cases 3 and 4).
Moreover, in each figure, a horizontal axis is a frequency (Hz) and a vertical axis | shaft is the radial load (N) which acts on the bearing 3 (right side in FIG. 2 (A)) of the rotating shaft 1. FIG. Further, the solid line in the figure indicates the case of “with attenuation”, and the broken line indicates the case of “without attenuation”.

図4(A)(B)の比較から、高速側の振動共振速度は、従来例(A)が約945Hz、本発明(B)が約795Hzであり、本発明により高速側の振動共振速度が低速側にシフトしていることがわかる。
また、高速側の振動共振速度におけるラジアル荷重は、従来例(A)が約10N、本発明(B)が約10Nであり、本発明により高速側の振動共振速度におけるラジアル荷重が大幅に低減されていることがわかる。
4A and 4B, the vibration resonance speed on the high speed side is about 945 Hz in the conventional example (A) and about 795 Hz in the present invention (B). It turns out that it has shifted to the low speed side.
Also, the radial load in the vibration resonance speed of the high speed side, the conventional example (A) of about 10 4 N, the present invention (B) is about 10 2 N, the radial load in the vibration resonance speed of the high speed side by the present invention It can be seen that it is greatly reduced.

図4(A)(B)における実線(減衰あり)と破線(減衰なし)との比較から、減衰は必須ではなく、減衰なしでも、従来例と比較して本発明により高速側の振動共振速度におけるラジアル荷重を大幅に低減できることがわかる。   From comparison between the solid line (with attenuation) and the broken line (without attenuation) in FIGS. 4 (A) and 4 (B), the attenuation is not essential. It can be seen that the radial load at can be greatly reduced.

この理由は、また、弾性くさびダンパの形状が、理論に基づく形状をしているので、その形状により振動エネルギが弾性くさびダンパに集中するため、回転シャフトの変形モードを調整でき、回転シャフトの支持位置における反力を低減できるためと考えられる。   This is also because the shape of the elastic wedge damper is based on the theory, and the vibration energy concentrates on the elastic wedge damper due to the shape, so the deformation mode of the rotating shaft can be adjusted and the rotating shaft is supported. This is because the reaction force at the position can be reduced.

なお、上述した例では、弾性くさびダンパ10を、回転シャフト1の一端(図2(B)の例で右端)のみに設けた場合を説明したが、本発明はこれに限定されず、両端に設けてもよい。
また、上述した例では、弾性くさびダンパ10を、回転シャフト1の一端の軸方向外側に設けたが、回転シャフト1が中空シャフトである場合に、軸方向内側に設けてもよい。この場合、弾性くさびダンパ10の先端部が振動するが、その振動により先端部が中空シャフトの内面に接触しないように設定するのがよい。
In the above-described example, the case where the elastic wedge damper 10 is provided only at one end of the rotating shaft 1 (the right end in the example of FIG. 2B) has been described. However, the present invention is not limited to this, and both ends are provided. It may be provided.
Moreover, in the example mentioned above, although the elastic wedge damper 10 was provided in the axial direction outer side of the end of the rotating shaft 1, when the rotating shaft 1 is a hollow shaft, you may provide in an axial direction inner side. In this case, the tip of the elastic wedge damper 10 vibrates, but it is preferable to set the tip so that the tip does not contact the inner surface of the hollow shaft due to the vibration.

上述したように本発明の構成によれば、回転シャフト1の一端又は両端に同心に設けられた弾性くさびダンパ10が、回転シャフト1の軸心に対して対称な形状を有するので、弾性くさびダンパ10により軸心まわりのアンバランスが発生せず、回転シャフト1の高速回転が可能である。   As described above, according to the configuration of the present invention, the elastic wedge damper 10 provided concentrically at one or both ends of the rotary shaft 1 has a symmetrical shape with respect to the axis of the rotary shaft 1. 10 does not cause unbalance around the shaft center, and the rotating shaft 1 can be rotated at high speed.

また、回転シャフト1の形状が、弾性くさびダンパの理論に基づく形状をしているので、その形状により振動エネルギが弾性くさびダンパ10の先端部に集中するため、弾性くさびダンパ10により回転シャフト1の変形モードを調整でき、回転シャフト1の支持位置における反力を低減することができる。   Further, since the shape of the rotary shaft 1 is based on the theory of the elastic wedge damper, the vibration energy is concentrated on the tip of the elastic wedge damper 10 due to the shape, so that the elastic wedge damper 10 The deformation mode can be adjusted, and the reaction force at the support position of the rotating shaft 1 can be reduced.

なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.

1 回転シャフト、1a 一端、
2、3 軸受、4 円盤(回転負荷)、
10 弾性くさびダンパ、
11 端面、12 仮想点
1 rotating shaft, 1a one end,
2, 3 bearings, 4 discs (rotational load),
10 Elastic wedge damper,
11 end face, 12 virtual points

Claims (2)

軸方向に間隔を隔てた2点で支持され軸心を中心に回転する回転シャフトの一端又は両端に同心に設けられ、前記軸心に対して対称な形状を有する、ことを特徴とする回転シャフト用の弾性くさびダンパ。   A rotating shaft supported at two points spaced apart in the axial direction and concentrically provided at one or both ends of a rotating shaft that rotates about an axis and has a symmetrical shape with respect to the axis Elastic wedge damper. 前記形状は、前記回転シャフトの端面より外側の仮想点からの距離xにおける直径h(x)がh(x)=εx(εは正の定数、nは1以上の実数)である、ことを特徴とする請求項1に記載の弾性くさびダンパ。
The shape is such that the diameter h (x) at a distance x from a virtual point outside the end face of the rotating shaft is h (x) = εx n (ε is a positive constant, n is a real number of 1 or more). The elastic wedge damper according to claim 1.
JP2010115900A 2010-05-20 2010-05-20 Elastic wedge damper for rotating shaft Expired - Fee Related JP5598084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115900A JP5598084B2 (en) 2010-05-20 2010-05-20 Elastic wedge damper for rotating shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115900A JP5598084B2 (en) 2010-05-20 2010-05-20 Elastic wedge damper for rotating shaft

Publications (2)

Publication Number Publication Date
JP2011241935A true JP2011241935A (en) 2011-12-01
JP5598084B2 JP5598084B2 (en) 2014-10-01

Family

ID=45408802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115900A Expired - Fee Related JP5598084B2 (en) 2010-05-20 2010-05-20 Elastic wedge damper for rotating shaft

Country Status (1)

Country Link
JP (1) JP5598084B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878370B1 (en) * 2016-12-30 2018-07-13 한국과학기술원 Apparatus for damping vibration
CN110630685A (en) * 2019-10-28 2019-12-31 苏州大学 Torsional vibration damper
CN115163729A (en) * 2022-07-13 2022-10-11 重庆大学 Circumferential array type inhaul cable vibration energy dissipation ring based on acoustic black hole beam
JP7387219B2 (en) 2020-11-27 2023-11-28 江蘇科技大学 Composite vibration damping support frame using acoustic black hole and its design method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895809U (en) * 1981-12-22 1983-06-29 オリンパス光学工業株式会社 Intrabody ultrasound scanning device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895809U (en) * 1981-12-22 1983-06-29 オリンパス光学工業株式会社 Intrabody ultrasound scanning device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V.V.KRYLOV & R.E.T.B.WINWARD: "Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates", JOURNAL OF SOUND AND VIBRATION, vol. Volume 300,Issues 1-2, JPN6013052363, 20 February 2007 (2007-02-20), pages 43 - 49, ISSN: 0002661469 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878370B1 (en) * 2016-12-30 2018-07-13 한국과학기술원 Apparatus for damping vibration
US10422398B2 (en) 2016-12-30 2019-09-24 Korea Advanced Institute Of Science And Technology Apparatus for damping vibration
CN110630685A (en) * 2019-10-28 2019-12-31 苏州大学 Torsional vibration damper
JP7387219B2 (en) 2020-11-27 2023-11-28 江蘇科技大学 Composite vibration damping support frame using acoustic black hole and its design method
CN115163729A (en) * 2022-07-13 2022-10-11 重庆大学 Circumferential array type inhaul cable vibration energy dissipation ring based on acoustic black hole beam

Also Published As

Publication number Publication date
JP5598084B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5403157B2 (en) Vibration damping blade for fluid
JP2010144868A (en) Elastic wedge damper
JP5598084B2 (en) Elastic wedge damper for rotating shaft
Zhang Parametric analysis of frequency of rotating laminated composite cylindrical shells with the wave propagation approach
CA2997902A1 (en) Improvements in or relating to audio transducers
Sekhar et al. Vibrations of cracked rotor system: transverse crack versus slant crack
JP6363194B2 (en) Simple torsional damper device with pendulum
WO2006087972A1 (en) Vibration reducing bracket
Li et al. Dynamic modeling and analysis of axial vibration of a coupled propeller and shaft system
Wang et al. Improving the gravity-rotation-excited vibration energy harvesting in offset configurations
Cao et al. A multi-stable nonlinear energy sink for torsional vibration of the rotor system
JP2002542944A (en) Prevention of chatter vibration that is self-excited in rolling equipment
JP2012047190A (en) Elastic damper for vibrator
Deeyiengyang et al. Suppression of resonance amplitude of disk vibrations by squeeze air bearing plate
JP5302367B2 (en) Damping device and control method thereof
Dou et al. Permanent magnet based nonlinear energy sink for torsional vibration suppression of rotor systems
Nagaya et al. Vibration control of milling machine by using auto-tuning magnetic damper and auto-tuning vibration absorber
郭彭 et al. Low frequency vibration reduction method of ship floating rafts based on local resonance
WO2010041672A1 (en) Vibration control structure
US9459123B1 (en) Vibration probe protection bracket apparatus and method of use thereof
Sivak Experimental investigation of the sensitivity of a rotating shell to the position of its axis
Li¹ et al. China North Vehicle Research Institute, Beijing 100000, People's Republic of China 2 Northeastern University, Shenyang 110819, People's Republic of China hlyao@ mail. neu. edu. cn
Pei et al. Modal interactions in a rotating flexible disc
JP2018044561A (en) Power transmission device using gear pair, and gear member
JP5723926B2 (en) Damping device and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140728

LAPS Cancellation because of no payment of annual fees