JP2011241930A - Liquid-sealed vibration control device - Google Patents

Liquid-sealed vibration control device Download PDF

Info

Publication number
JP2011241930A
JP2011241930A JP2010115686A JP2010115686A JP2011241930A JP 2011241930 A JP2011241930 A JP 2011241930A JP 2010115686 A JP2010115686 A JP 2010115686A JP 2010115686 A JP2010115686 A JP 2010115686A JP 2011241930 A JP2011241930 A JP 2011241930A
Authority
JP
Japan
Prior art keywords
liquid chamber
movable body
orifice passage
chamber side
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010115686A
Other languages
Japanese (ja)
Other versions
JP5555047B2 (en
Inventor
Kazutoshi Satori
和俊 佐鳥
Yukinobu Hirano
行信 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2010115686A priority Critical patent/JP5555047B2/en
Publication of JP2011241930A publication Critical patent/JP2011241930A/en
Application granted granted Critical
Publication of JP5555047B2 publication Critical patent/JP5555047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily broaden resonance by using an existing orifice passage.SOLUTION: An accommodation part 30 is formed in the vicinity of an opening 18 at the side of a sub-liquid chamber in an annular groove 17 constituting the orifice passage 8, and a movable body 20 is accommodated therein. The movable body 20 can freely move between a stopper 31a at the side of a main liquid chamber and a stopper 31b at the side of a sub-liquid chamber which are both ends of the accommodation part 30 in the longitudinal direction, irreguralities 21 are formed at the external periphery of the movable body, and a through-hole 25 is formed at the center of the movable body. By this, an operation liquid flows between the external periphery and the inside wall of the annular groove 17 and in the through-hole 25, a disturbance flow is generated by the irreguralities 21 at the external periphery and narrowed at the through-hole 25, thereby large passage resistance is generated as a whole, the movable body resonates at a different resonance frequency, and thus the resonance is broadened.

Description

この発明は、自動車用パワートレンの防振マウント等に用いられる液封防振装置に係り、特に共振を簡単な構造でブロード化したものに関する。
The present invention relates to a liquid seal vibration isolator for use in an anti-vibration mount for a power train for automobiles, and more particularly to a device in which resonance is broadened with a simple structure.

オリフィス通路内へ回転体を収容し、作動液の流動に伴って回転体が回転することにより、その慣性力を利用して共振させて高減衰を得るものが公知である。
It is known that a rotating body is accommodated in an orifice passage, and the rotating body rotates with the flow of hydraulic fluid to resonate using its inertia force to obtain high attenuation.

特開昭61−13043号公報JP-A-61-13043

上記従来例は、回転体の慣性力をオリフィス通路内の流動マスに加えることにより短い管路にても有効に共振を発生させるものである。
しかし、このようにすると、回転体を必要とするので、その回転を確実にさせるための特別構造を必要とする。また、共振をブロード化を実現するものでもない。
したがって、このような回転体を用いずに、より簡潔な構造で共振のブロード化をすることが望まれており、本願はこのような要請の実現を目的とする。
In the above conventional example, resonance is effectively generated even in a short pipeline by applying the inertial force of the rotating body to the flow mass in the orifice passage.
However, if it does in this way, since a rotating body is required, the special structure for ensuring the rotation is required. In addition, the resonance is not realized.
Therefore, it is desired to broaden resonance with a simpler structure without using such a rotating body, and the present application aims to realize such a demand.

上記課題を解決するため請求項1に記載した液封防振装置は、弾性体のインシュレータを液室を構成する壁の一部とし、この液室内を仕切部材で主液室と副液室に区画するとともに、仕切部材に設けたオリフィス通路により主液室と副液室を連通した液封防振装置において、
主液室側又は副液室側の少なくともいずれか近傍となるオリフィス通路(8)内に可動体(20)を配置し、抜け止め手段(31a・31b)により所定範囲内で作動液とともに移動自在にするとともに、
可動体(20)の外表面に凹凸部(21)を形成し、かつ流動方向へ貫通穴(25)を形成したことを特徴とする。
In order to solve the above-mentioned problem, the liquid seal vibration isolator described in claim 1 uses an elastic insulator as a part of a wall constituting the liquid chamber, and the liquid chamber is divided into a main liquid chamber and a sub liquid chamber by a partition member. In the liquid seal vibration isolator which partitions the main liquid chamber and the sub liquid chamber through an orifice passage provided in the partition member,
A movable body (20) is disposed in an orifice passage (8) in the vicinity of at least one of the main liquid chamber side and the sub liquid chamber side, and is movable with a working fluid within a predetermined range by a retaining means (31a, 31b). And
An uneven portion (21) is formed on the outer surface of the movable body (20), and a through hole (25) is formed in the flow direction.

請求項2に記載した発明は、上記請求項1において、前記可動体(20)は比重が1.1〜1.4であることを特徴とする。 According to a second aspect of the present invention, in the first aspect, the movable body (20) has a specific gravity of 1.1 to 1.4.

請求項3に記載した発明は、上記請求項1又は2において、前記凹凸部(21)は、可動体(20)の長さ方向において不連続に適当間隔をもって複数形成されることを特徴とする。 A third aspect of the present invention is characterized in that, in the first or second aspect, a plurality of the uneven portions (21) are formed discontinuously at appropriate intervals in the length direction of the movable body (20). .

請求項4に記載した発明は、上記請求項1〜3のいずれかにおいて、
前記可動体(20)はオリフィス通路(8)内へ複数個配置されることを特徴とする。
The invention described in claim 4 is any one of claims 1 to 3, wherein
A plurality of the movable bodies (20) are arranged in the orifice passage (8).

請求項1に記載した発明によれば、主液室側又は副液室側の少なくともいずれか近傍となるオリフィス通路(8)内に可動体(20)を配置し、この可動体(20)の外表面に凹凸部(21)を形成するとともに、作動液の流動によって一体に移動自在としたので、可動体(20)を移動させる力並びに、可動体(20)の外表面に設けられた凹凸部(21)による乱流の発生により、オリフィス通路を流れる振動液の流通抵抗を発生し、この流通抵抗によりオリフィス通路における液柱共振の共振効率を下げるため、液柱共振を変化させて共振のブロード化が可能になる。 According to the first aspect of the present invention, the movable body (20) is disposed in the orifice passage (8) in the vicinity of at least one of the main liquid chamber side and the sub liquid chamber side, and the movable body (20) The concave and convex portions (21) are formed on the outer surface, and the movable portion (21) can be moved integrally by the flow of the hydraulic fluid. The flow resistance of the oscillating liquid flowing through the orifice passage is generated by the turbulent flow generated by the section (21), and the resonance resistance of the liquid column resonance in the orifice passage is lowered by this flow resistance. Broadening is possible.

しかも、可動体(20)は抜け止め手段(31a・31b)により所定範囲内で作動液とともに移動自在であるが、抜け止め手段(31a・31b)に当接して移動を停止したときは、貫通穴(25)を通して作動液を絞って流すので、さらに流通抵抗が大きくなり、一層ブロード化することができ、入力振動の大きさに応じてブロード幅を変化させることができる。 In addition, the movable body (20) can be moved together with the working fluid within a predetermined range by the retaining means (31a, 31b), but when the movement is stopped by contacting the retaining means (31a, 31b), the movable body (20) penetrates. Since the hydraulic fluid is squeezed and flowed through the hole (25), the flow resistance is further increased, and further broadening can be achieved, and the broad width can be changed according to the magnitude of the input vibration.

請求項2に記載した発明によれば、可動体(20)の比重が1.1〜1.4であり、作動液の比重に近似するので、可動体(20)は作動液の流動と共にスムーズに移動できる。このため、液柱共振発生時の摺動抵抗が大きくなり、共振のブロード化を実現できる。 According to the invention described in claim 2, since the specific gravity of the movable body (20) is 1.1 to 1.4, which is close to the specific gravity of the hydraulic fluid, the movable body (20) becomes smooth as the hydraulic fluid flows. Can move to. For this reason, the sliding resistance at the time of occurrence of liquid column resonance is increased, and the resonance can be broadened.

請求項3に記載した発明によれば、凹凸部(21)の凸部(22)及び凹部(23)は、可動体(20)の長さ方向において不連続に適当間隔をもって複数形成され、らせん溝のように連続しないので、凹凸部(21)の表面を流れる作動液は乱流を生じて流通抵抗を大きくすることができる。 According to the invention described in claim 3, the convex portion (22) and the concave portion (23) of the concave and convex portion (21) are formed in a plurality of discontinuous spaces at appropriate intervals in the length direction of the movable body (20). Since it does not continue like a groove, the hydraulic fluid flowing on the surface of the concavo-convex part (21) can generate turbulent flow and increase the flow resistance.

請求項4に記載した発明によれば、可動体(20)をオリフィス通路(8)内へ複数個配置したので、より大きな流通抵抗を生じさせてより広い共振のブロード化を実現できる。
According to the invention described in claim 4, since a plurality of the movable bodies (20) are arranged in the orifice passage (8), a larger flow resistance can be generated and a wider resonance can be realized.

本願が適用される一般的な防振マウントの模式断面図Schematic cross section of a general anti-vibration mount to which the present application is applied 第1実施形態に係る仕切部材の平面図The top view of the partition member concerning a 1st embodiment 図2の3−3線断面図3-3 sectional view of FIG. 下枠部材の同平面図The same plan view of the lower frame member 可動体の斜視図Perspective view of movable body 可動体の動作説明図Explanation of operation of movable body 効果を示すグラフEffect graph

以下、図面に基づいて一実施例を説明する。
図1は本願のオリフィス通路構造が適用される防振マウントの一般的構造を概略的に示す模式断面図である。
この図において、エンジン等の振動源(図示せず)へ取付けられる第1の取付金具1と車体等の振動受側(図示せず)へ取付けられる第2の取付金具2と、これらを弾性的に連結するとともに、液室の壁部の一部をなす防振ゴム等の適宜弾性部材からなるインシュレータ3と、第2の取付金具2の開口部を塞ぐことにより、内側に液室を形成するダイアフラム4と、この液室に仕切部材5により区画された主液室6及び副液室7と、これら主液室6と副液室7を連通すべく仕切部材5に形成されたオリフィス通路8とを備える。
An embodiment will be described below with reference to the drawings.
FIG. 1 is a schematic cross-sectional view schematically showing a general structure of an anti-vibration mount to which the orifice passage structure of the present application is applied.
In this figure, a first mounting bracket 1 mounted on a vibration source (not shown) such as an engine, a second mounting bracket 2 mounted on a vibration receiving side (not shown) such as a vehicle body, and the like are elastically connected. The liquid chamber is formed on the inner side by closing the insulator 3 made of an appropriate elastic member such as an anti-vibration rubber that forms a part of the wall portion of the liquid chamber and the opening of the second mounting bracket 2. Diaphragm 4, main liquid chamber 6 and sub liquid chamber 7 partitioned by partition member 5 in this liquid chamber, and orifice passage 8 formed in partition member 5 to communicate these main liquid chamber 6 and sub liquid chamber 7. With.

オリフィス通路8は第1の取付金具1へ振動が入力されると、作動液が主液室6と副液室7間を流動することにより、所定の共振周波数で液柱共振し、入力振動を吸収し、第2の取付金具2側へ振動の伝達を遮断する。本実施形態では、10〜20Hz程度の低周波数大振幅振動を対象とするダンピングオリフィス通路として構成されている。但し、液柱共振の共振周波数は任意に設定でき、対象とする周波数域により、オリフィス通路の機能は、例えば、アイドルオリフィスや発進オリフィスなど、種々に変更できる。 When vibration is input to the first fitting 1 in the orifice passage 8, the hydraulic fluid flows between the main liquid chamber 6 and the sub liquid chamber 7, thereby causing liquid column resonance at a predetermined resonance frequency, and input vibration. Absorbs and blocks transmission of vibration to the second mounting bracket 2 side. In this embodiment, it is configured as a damping orifice passage for low frequency large amplitude vibration of about 10 to 20 Hz. However, the resonance frequency of the liquid column resonance can be arbitrarily set, and the function of the orifice passage can be variously changed depending on the target frequency range, such as an idle orifice or a starting orifice.

図2は仕切部材5の平面図、図3は図2の3−3線断面図、図4は下枠部材12の平面図である。
図3に示すように、仕切部材5は上枠部材10と、弾性仕切部材11と、下枠部材12とを重ねて一体化した構造をなす。
図2において、仕切部材5は円形をなし、金属又は樹脂製の円板状をなすふた部材である上枠部材10の中央部に中央開口13が設けられ、ここで主液室6と連通する。外周部にオリフィス通路の主液室側開口14が設けられて主液室6と連通している。
2 is a plan view of the partition member 5, FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 2, and FIG. 4 is a plan view of the lower frame member 12.
As shown in FIG. 3, the partition member 5 has a structure in which an upper frame member 10, an elastic partition member 11, and a lower frame member 12 are stacked and integrated.
In FIG. 2, the partition member 5 has a circular shape, and a central opening 13 is provided in the central portion of the upper frame member 10 that is a lid member having a disk shape made of metal or resin, and communicates with the main liquid chamber 6 here. . A main liquid chamber side opening 14 of the orifice passage is provided in the outer peripheral portion and communicates with the main liquid chamber 6.

図3において、下枠部材12の内部にはゴム等の適宜弾性部材からなる円形の弾性仕切部材11が収容され、外周部を固定されている。弾性仕切部材11は下枠部材12の中央部に貫通形成された中央開口15を覆い、中央開口13で主液室6へ臨み、中央開口15で副液室7へ臨んでいる。したがって、主液室6において内圧変動が生じると、弾性仕切部材11がこれを受けて弾性変形することにより、主液室6の内圧変動を吸収する作用をなすようになっている。 In FIG. 3, a circular elastic partition member 11 made of an appropriate elastic member such as rubber is accommodated in the lower frame member 12, and the outer peripheral portion is fixed. The elastic partition member 11 covers a central opening 15 formed through the central portion of the lower frame member 12, faces the main liquid chamber 6 through the central opening 13, and faces the sub liquid chamber 7 through the central opening 15. Therefore, when an internal pressure fluctuation occurs in the main liquid chamber 6, the elastic partition member 11 receives the elastic deformation and elastically deforms to thereby absorb the internal pressure fluctuation of the main liquid chamber 6.

下枠部材12は略カップ状をなす金属又は樹脂等の適宜剛性材料からなる略円筒状の部材であり、外周壁16に上方へ開放された環状溝17が形成され、この開放部を上枠部材10の外周部で塞ぐことによりオリフィス通路8が形成されている。 The lower frame member 12 is a substantially cylindrical member made of an appropriate rigid material such as a substantially cup-shaped metal or resin, and an annular groove 17 opened upward is formed in the outer peripheral wall 16. The orifice passage 8 is formed by closing the outer periphery of the member 10.

本例において、オリフィス通路8はダンピングオリフィスとして構成され、一端が主液室側開口14を介して主液室6と連通し、他端は副液室側開口18にて副液室7と連通することにより、10〜20Hz等の比較的低周波数の振動において液柱共振をするようになっている。但し、液柱共振の共振周波数は任意に設定できる。 In this example, the orifice passage 8 is configured as a damping orifice, one end communicating with the main liquid chamber 6 via the main liquid chamber side opening 14, and the other end communicating with the sub liquid chamber 7 via the sub liquid chamber side opening 18. By doing so, the liquid column resonates in a vibration of a relatively low frequency such as 10 to 20 Hz. However, the resonance frequency of the liquid column resonance can be arbitrarily set.

図4において、環状溝17は略全周に及ぶ環状をなし、その一端17aは主液室側開口14に臨み、他端17bは副液室側開口18に臨む。
外周壁16に設けられて環状溝17の内外壁をなす外周壁16aと内周壁16bは、環状溝17を挟んで同心円状をなして内外に対向配置されている。
In FIG. 4, the annular groove 17 has an annular shape extending over substantially the entire circumference, one end 17 a thereof facing the main liquid chamber side opening 14, and the other end 17 b thereof facing the sub liquid chamber side opening 18.
An outer peripheral wall 16a and an inner peripheral wall 16b, which are provided on the outer peripheral wall 16 and form the inner and outer walls of the annular groove 17, are concentrically arranged on both sides of the annular groove 17 so as to face each other.

一端17aと他端17bは接近するが、外周壁16aと内周壁16bが部分的に接続する内外連結部16cにより分離されている。副液室側開口18はこの内外連結部16c近傍の内周壁16bの肉厚中へ入り込みつつ、さらに環状溝17の底部を下方へ貫通して形成されている。 The one end 17a and the other end 17b approach each other, but are separated by an inner / outer connection portion 16c where the outer peripheral wall 16a and the inner peripheral wall 16b are partially connected. The sub liquid chamber side opening 18 is formed so as to penetrate the bottom of the annular groove 17 downward while entering the thickness of the inner peripheral wall 16b in the vicinity of the inner / outer connection portion 16c.

図中の符号19は内側環状壁であり、内周壁16bのさらに内側へ環状溝19aをなすよう間隔をもって同心円状に形成される。環状溝19aには弾性仕切部材11の外周部に設けた上面から下方へ屈曲する周壁を嵌合するようになっている。 Reference numeral 19 in the figure denotes an inner annular wall, which is formed concentrically with an interval so as to form an annular groove 19a further inside the inner peripheral wall 16b. A circumferential wall bent downward from the upper surface provided on the outer peripheral portion of the elastic partition member 11 is fitted into the annular groove 19a.

オリフィス通路8を構成する環状溝17の副液室側開口18近傍に可動体20が収容されている。可動体20が収容される収容部30は、環状溝17の一部を拡幅して形成され、主液室側開口14側及び副液室側開口18側の段差をなすコーナー部がそれぞれ主液室側ストッパ31a及び副液室側ストッパ31bをなす。オリフィス通路8を移動する可動体20が主液室側ストッパ31a及び副液室側ストッパ31bへ当接すると移動を停止する。 A movable body 20 is accommodated in the vicinity of the secondary liquid chamber side opening 18 of the annular groove 17 constituting the orifice passage 8. The accommodating portion 30 in which the movable body 20 is accommodated is formed by expanding a part of the annular groove 17, and the corner portions forming steps on the main liquid chamber side opening 14 side and the sub liquid chamber side opening 18 side are respectively the main liquid. The chamber side stopper 31a and the auxiliary liquid chamber side stopper 31b are formed. When the movable body 20 moving in the orifice passage 8 comes into contact with the main liquid chamber side stopper 31a and the sub liquid chamber side stopper 31b, the movement is stopped.

主液室側ストッパ31aと副液室側ストッパ31bの間隔は、可動体20よりも十分長く、オリフィス通路8の液柱共振時において、オリフィス通路8内を往復移動する可動体20の移動幅よりも長くなっている。液柱共振時には、オリフィス通路8内を往復流動する作動液に乗って、可動体20が主液室側ストッパ31a又は副液室側ストッパ31bの間を移動自在である。可動体20はオリフィス通路8と同じ曲率で曲がる円弧状に形成された角柱状をなし、オリフィス通路8の円弧に沿って流動可能になっている。 The interval between the main liquid chamber side stopper 31 a and the sub liquid chamber side stopper 31 b is sufficiently longer than the movable body 20, and is larger than the moving width of the movable body 20 that reciprocates in the orifice passage 8 during liquid column resonance of the orifice passage 8. Is also getting longer. At the time of liquid column resonance, the movable body 20 can move between the main liquid chamber side stopper 31a or the sub liquid chamber side stopper 31b by riding on the working fluid reciprocatingly flowing in the orifice passage 8. The movable body 20 has a prismatic shape formed in an arc shape that bends with the same curvature as the orifice passage 8, and can flow along the arc of the orifice passage 8.

図5は可動体20を曲げずに真っ直ぐに伸ばした状態で示す斜視図であり、この可動体20における長手方向の両端面以外の面を側面とするとき、この側面には蛇腹状の凹凸21が複数形成されている。この凹凸21は、可動体20の長さ方向の中心軸線CLと直交する平面内に形成される環状の凸部22と凹部23であり、これが長さ方向へ交互に複数形成されている。隣り合う凹部23はらせん溝のように連続せず、不連続であり、表面を流れる作動液に乱流を発生させる。 FIG. 5 is a perspective view showing the movable body 20 stretched straight without bending. When the movable body 20 has a side surface other than both end faces in the longitudinal direction as a side surface, the side surface has a bellows-like unevenness 21. A plurality of are formed. The irregularities 21 are annular convex portions 22 and concave portions 23 formed in a plane perpendicular to the central axis CL in the length direction of the movable body 20, and a plurality of the convex and concave portions 22 are alternately formed in the length direction. Adjacent concave portions 23 are not continuous like a spiral groove, are discontinuous, and generate turbulent flow in the hydraulic fluid flowing on the surface.

可動体20は、凸部22のうち長さ方向両端のものが端面24a,24bをなし、これら端面24a,24bが、主液室側ストッパ31a、副液室側ストッパ31bへ当接する当接面になっている。可動体20の中心部には中心軸線CLに沿って長手方向へ貫通する貫通穴25が形成されている。 The movable body 20 has both end faces 24a and 24b at both ends in the length direction of the convex portion 22, and these end faces 24a and 24b come into contact with the main liquid chamber side stopper 31a and the sub liquid chamber side stopper 31b. It has become. A through hole 25 penetrating in the longitudinal direction along the central axis CL is formed at the center of the movable body 20.

図示では、端面24a,24bの中心軸線CLから見た正面視形状は正方形をなしているが、この形状は任意であり、要は環状溝17内へ適当な間隔をもって収容され、流動自在であればどのような形状であってもよい。但し、可動体20と環状溝17の内壁との間隔が所定の狭い間隙をなすようにするには、断面形状がオリフィス通路8の断面形状と略相似形になるのが好ましい。 In the drawing, the shape of the front surface as viewed from the central axis CL of the end faces 24a, 24b is square, but this shape is arbitrary, and in short, it is accommodated in the annular groove 17 at an appropriate interval and can flow freely. Any shape may be used. However, in order for the distance between the movable body 20 and the inner wall of the annular groove 17 to form a predetermined narrow gap, the cross-sectional shape is preferably substantially similar to the cross-sectional shape of the orifice passage 8.

可動体20は、樹脂等の比較的軽い材料からなるが、作動液の流動と共に移動するので、可能な限り作動液に近い比重を有することが好ましく、このようにすると、入力振動に応じて可動体20をスムーズに流動させることができる。
このような比重は、例えば、1.1〜1.4である。このようにすると、作動液が水等の非圧縮性の液体であり、例えば水などからなる作動液の比重1.1であれば、ほぼ作動液と同程度の比重になるため、作動液の流動と共に自由に移動可能となる。但し、これ以外の比重を有する作動液とすれば、その比重に近いものを選択すればよい。
Although the movable body 20 is made of a relatively light material such as resin, it moves with the flow of the hydraulic fluid, and therefore preferably has a specific gravity as close as possible to the hydraulic fluid. In this way, the movable body 20 can move according to the input vibration. The body 20 can flow smoothly.
Such specific gravity is, for example, 1.1 to 1.4. In this way, the hydraulic fluid is an incompressible liquid such as water. For example, if the specific gravity of the hydraulic fluid made of water is 1.1, the specific gravity is almost the same as that of the hydraulic fluid. It can move freely with flow. However, if the hydraulic fluid has a specific gravity other than this, a fluid close to the specific gravity may be selected.

このような樹脂材料としては、例えば、ポリプロピレン,ポリエチレン,ポリスチレン,ポリ塩化ビニール,ポリウレタン等の適宜樹脂材料が可能である。
また、より軽くする場合にはこれらの発泡製品、好ましくは独立気泡タイプのものを用いればよい。その際、弾力に富む軟質のものを用いれば、主液室側ストッパ31a、副液室側ストッパ31bへ当接する際、材料自体の弾性で異音の発生を抑制することもできる。
As such a resin material, for example, an appropriate resin material such as polypropylene, polyethylene, polystyrene, polyvinyl chloride, and polyurethane can be used.
Moreover, when making lighter, these foamed products, Preferably the thing of a closed cell type should just be used. At that time, if a soft material having a high elasticity is used, it is possible to suppress the generation of noise due to the elasticity of the material itself when contacting the main liquid chamber side stopper 31a and the sub liquid chamber side stopper 31b.

次に、作用を説明する。図6は可動体20と収容部30部分を簡略的に表記した作用の説明図である。この図において、可動体20は収容部30内を流線A又は反対のB方向へ往復流動する。このとき、例えば、流線A方向へ作動液と共に可動体20が移動すると、可動体20と収容部30の内壁凸部22及び凹部23との間にS1及びS2なる間隙がある。 Next, the operation will be described. FIG. 6 is an explanatory view of the operation in which the movable body 20 and the accommodating portion 30 are simply described. In this figure, the movable body 20 reciprocates in the accommodating portion 30 in the streamline A or the opposite B direction. At this time, for example, when the movable body 20 moves together with the working fluid in the direction of the streamline A, there are gaps S1 and S2 between the movable body 20 and the inner wall convex portion 22 and the concave portion 23 of the accommodating portion 30.

したがって、この間隙が絞り通路となり、この絞り通路を作動液の一部はA1のように大きく蛇行しながら流れて乱流を生じ、比較的大きな流通抵抗を生じる。また、作動液の他の一部は流線A2のように貫通穴25を通過する。
このとき貫通穴25も絞り通路をなすので、やはり流通抵抗を生じる。
Therefore, this gap serves as a throttle passage, and a part of the hydraulic fluid flows through the throttle passage in a large meandering manner as in A1 to generate a turbulent flow, resulting in a relatively large flow resistance. Further, the other part of the hydraulic fluid passes through the through hole 25 as shown by the streamline A2.
At this time, since the through hole 25 also forms a throttle passage, flow resistance is also generated.

振動の反転により作動液の流線が反転してB方向となると、可動体20は速やかに流線Bに乗って反対方向へ移動する。したがって、入力振動が所定の周波数になると液柱共振が生じ、可動体20は、主液室側ストッパ31a及び副液室側ストッパ31b間を往復移動する。 When the flow line of the hydraulic fluid is reversed by the reversal of vibration and becomes the B direction, the movable body 20 quickly rides on the stream line B and moves in the opposite direction. Accordingly, when the input vibration reaches a predetermined frequency, liquid column resonance occurs, and the movable body 20 reciprocates between the main liquid chamber side stopper 31a and the sub liquid chamber side stopper 31b.

このとき、2つの流線A1,A2に沿う部分の流動によって生じた流通抵抗の合計が全体の流通抵抗となり、可動体20を備えない状態におけるオリフィス通路8における固有の共振周波数と異なる液柱共振を発生する。但し、流線A2は、可動体20が主液室側ストッパ31a又は副液室側ストッパ31bへ当接することにより流線A1が消滅した後から発生する流れである。可動体20が主液室側ストッパ31a又は副液室側ストッパ31bへ当接するまでは、可動体20の周囲を流れる方が貫通穴25を流れるよりも流通抵抗が小さいので、作動液は貫通穴25を流れず、実質的に流線A2の流れは生じない。すなわち貫通穴25は流線A1の流れにおける流通抵抗が流線A2の流れにおける流通抵抗よりも大きくなるように絞られている。したがって、液柱共振は流線A1の流れにおける流通抵抗のみによる影響を受ける。その結果、図7のグラフに示すように、共振がブロード化される。
図7はこの共振の変化を示すグラフであり、横軸に周波数、縦軸に減衰を取ってあり、実線の特性aは流線変更突起20を設けた本願発明のもの、破線の特性bは流線変更突起20を設けない従来のものである。各特性曲線a及びbの極大値(ピーク)P2・P1がそれぞれ共振点であり、これら各共振点における周波数(共振周波数)をf2・f1とする。このグラフに示すように、可動体20を設けると流動抵抗の増加により共振効率が低下するため、可動体20を設けないものに対して共振のピークがP1→P2と下がる。このため、特性曲線aは曲線が緩やかになってブロード化する。
なお、共振周波数はf1→f2と変化する。これは、可動体20を設けたことによる流通抵抗の増大によって、作動液をオリフィス通路内へ押しているバネ(拡張バネ)分が損失され、この損失分に対応して共振周波数が低くなるためである。
なお、特性曲線aの共振周波数f2は、オリフィス通路8の通路断面積や通路長を変化させることにより自由に調整できる。図中の一点鎖線で示す曲線cは、共振周波数を従来例の低周波数の特性曲線bにおける共振周波数f1へずらせたものである。この場合は、ピークP3が同P2より若干高くなるものの、特性曲線aと同程度のブロード化を実現できる。
また、二点差線で示す曲線dは、可動体20が主液室側ストッパ31a又は副液室側ストッパ31bによって移動停止され、貫通穴25を作動液が流線A2となって流動するときの液柱共振であり、より低周波数の共振周波数f3でかつより低いピークP4で共振する。しかしこの共振も共振のブロード化に貢献できる。
At this time, the sum of the flow resistance generated by the flow of the portions along the two streamlines A1 and A2 becomes the total flow resistance, and the liquid column resonance is different from the inherent resonance frequency in the orifice passage 8 in the state where the movable body 20 is not provided. Is generated. However, the streamline A2 is a flow generated after the streamline A1 disappears due to the movable body 20 coming into contact with the main liquid chamber side stopper 31a or the sub liquid chamber side stopper 31b. Until the movable body 20 contacts the main liquid chamber side stopper 31a or the sub liquid chamber side stopper 31b, the flow resistance around the movable body 20 is smaller than the flow through the through hole 25. 25 does not flow, and the flow of the streamline A2 does not substantially occur. That is, the through hole 25 is narrowed so that the flow resistance in the flow of the streamline A1 is larger than the flow resistance in the flow of the streamline A2. Therefore, the liquid column resonance is influenced only by the flow resistance in the flow line A1. As a result, the resonance is broadened as shown in the graph of FIG.
FIG. 7 is a graph showing the change in resonance. The horizontal axis represents frequency and the vertical axis represents attenuation. The solid line characteristic a is that of the present invention in which the streamline changing protrusion 20 is provided, and the broken line characteristic b is This is a conventional one in which the streamline changing projection 20 is not provided. The maximum values (peaks) P2 and P1 of the characteristic curves a and b are resonance points, and the frequencies (resonance frequencies) at these resonance points are f2 and f1, respectively. As shown in this graph, when the movable body 20 is provided, the resonance efficiency is lowered due to an increase in flow resistance. Therefore, the resonance peak is lowered from P1 → P2 with respect to the case where the movable body 20 is not provided. For this reason, the characteristic curve a becomes broad as the curve becomes gentle.
Note that the resonance frequency changes from f1 to f2. This is because the spring (expansion spring) that pushes the hydraulic fluid into the orifice passage is lost due to the increase in the flow resistance due to the provision of the movable body 20, and the resonance frequency decreases corresponding to this loss. is there.
The resonance frequency f2 of the characteristic curve a can be freely adjusted by changing the passage sectional area and the passage length of the orifice passage 8. A curve c indicated by a one-dot chain line in the figure is obtained by shifting the resonance frequency to the resonance frequency f1 in the low-frequency characteristic curve b of the conventional example. In this case, although the peak P3 is slightly higher than the same P2, a broadening similar to the characteristic curve a can be realized.
A curve d indicated by a two-point difference line indicates that the movable body 20 is stopped by the main liquid chamber side stopper 31a or the sub liquid chamber side stopper 31b, and the hydraulic fluid flows through the through hole 25 as the streamline A2. It is liquid column resonance and resonates at a lower resonance frequency f3 and at a lower peak P4. However, this resonance can also contribute to the broadening of resonance.

なお、液柱共振時の可動体20は、主液室側ストッパ31a及び副液室側ストッパ31b間を往復移動する。しかし、比較的大きな振動の入力があると、作動液のオリフィス8内に対する押し込み量が増大し、可動体20は大きく移動して、主液室側ストッパ31a又は副液室側ストッパ31bへ至ると、これに当接して移動を停止する。 The movable body 20 at the time of liquid column resonance reciprocates between the main liquid chamber side stopper 31a and the sub liquid chamber side stopper 31b. However, if there is a relatively large vibration input, the amount of hydraulic fluid pushed into the orifice 8 increases and the movable body 20 moves greatly to reach the main liquid chamber side stopper 31a or the sub liquid chamber side stopper 31b. Then, the movement stops in contact with this.

この状態では、可動体20の周囲とオリフィス通路8の内壁面間における間隙を通過する作動液の流れは止められるが、貫通穴25から作動液を通過させる。このため、可動体20が流動を停止しても、作動液の停滞を防ぐことができるとともに、一段と絞られた状態になり、より大きな流通抵抗を発生するので、大入力振動を吸収できるとともに、一層のブロード化が可能になり、入力振動の大きさに応じてブロード幅を変化させることができる。 In this state, the flow of the hydraulic fluid passing through the gap between the periphery of the movable body 20 and the inner wall surface of the orifice passage 8 is stopped, but the hydraulic fluid is allowed to pass through the through hole 25. For this reason, even if the movable body 20 stops flowing, the stagnation of the working fluid can be prevented, and it becomes more constricted and generates a larger flow resistance, so that it can absorb large input vibrations, Further broadening is possible, and the broad width can be changed according to the magnitude of the input vibration.

なお、主液室側ストッパ31a、副液室側ストッパ31bは可動体20の抜け止めとして機能し、収容部30を環状溝17の一部へ拡幅して形成することにより、その一部を有効利用できる。但し、別部材を取付けてストッパとすることは自由である。 The main liquid chamber side stopper 31 a and the sub liquid chamber side stopper 31 b function as a retaining member for the movable body 20, and a part of the main liquid chamber side stopper 31 a and the sub liquid chamber side stopper 31 b are effectively formed by forming the accommodating portion 30 widened to a part of the annular groove 17. Available. However, it is free to attach a separate member as a stopper.

また、可動体20を副液室側開口18近傍に設けたので、オリフィス通路8へ流入する作動液の比較的エネルギーの高い部分であるオリフィス通路8の出入口近傍で可動体20を流動させることになり、可動体20による圧力損失を大きくすることができる。 Further, since the movable body 20 is provided in the vicinity of the sub liquid chamber side opening 18, the movable body 20 is caused to flow in the vicinity of the entrance / exit of the orifice passage 8 which is a relatively high energy portion of the working fluid flowing into the orifice passage 8. Thus, the pressure loss due to the movable body 20 can be increased.

この意味では、可動体20を主液室側開口14側近傍へ設けてもよく、同様の効果を得られる。また、主液室側開口14及び副液室側開口18の各近傍へ同時に設ければさらに効果が増大する。
そのうえ、中間部にも設けることができる。すなわち、可動体20を配置する位置や数は自由に設定できる。
可動体20をはオリフィス通路8内へ複数個配置すれば、より大きな流通抵抗を生じさせてより広い共振のブロード化を実現できる。
In this sense, the movable body 20 may be provided in the vicinity of the main liquid chamber side opening 14 side, and the same effect can be obtained. Further, the effect is further increased if it is provided near each of the main liquid chamber side opening 14 and the sub liquid chamber side opening 18 at the same time.
Moreover, it can also be provided in the middle part. That is, the position and number where the movable body 20 is arranged can be freely set.
If a plurality of the movable bodies 20 are arranged in the orifice passage 8, a wider flow resistance can be generated and a wider resonance can be realized.

さらに、可動体20の比重が1.1〜1.4であり、作動液の比重に近似するので、可動体20は作動液の流動と共にスムーズに移動できる。このため、液柱共振発生時の摺動抵抗が大きくなり、共振のブロード化を実現できる。
Furthermore, since the specific gravity of the movable body 20 is 1.1 to 1.4 and approximates the specific gravity of the hydraulic fluid, the movable body 20 can move smoothly with the flow of the hydraulic fluid. For this reason, the sliding resistance at the time of occurrence of liquid column resonance is increased, and the resonance can be broadened.

5:仕切部材、8:オリフィス通路、12:下枠部材、17:環状溝、20:可動体、21:凹凸部、22:凸部、23:凹部、25:貫通穴、30:収容部、31:主液室側ストッパ、32:副液室側ストッパ、33:#33# 5: partition member, 8: orifice passage, 12: lower frame member, 17: annular groove, 20: movable body, 21: concavo-convex part, 22: convex part, 23: concave part, 25: through hole, 30: accommodating part, 31: Main liquid chamber side stopper, 32: Sub liquid chamber side stopper, 33: # 33 #

Claims (4)

弾性体のインシュレータを液室を構成する壁の一部とし、この液室内を仕切部材で主液室と副液室に区画するとともに、仕切部材に設けたオリフィス通路により主液室と副液室を連通した液封防振装置において、
主液室側又は副液室側の少なくともいずれか近傍となるオリフィス通路(8)内に可動体(20)を配置し、抜け止め手段(31a・31b)により所定範囲内で作動液とともに移動自在にするとともに、
可動体(20)の外表面に凹凸部(21)を形成し、かつ流動方向へ貫通穴(25)を形成したことを特徴とする液封防振装置。
The insulator of the elastic body is used as a part of a wall constituting the liquid chamber, and the liquid chamber is partitioned into a main liquid chamber and a sub liquid chamber by a partition member, and the main liquid chamber and the sub liquid chamber are provided by an orifice passage provided in the partition member. In the liquid seal vibration isolator that communicates with
A movable body (20) is disposed in an orifice passage (8) in the vicinity of at least one of the main liquid chamber side and the sub liquid chamber side, and is movable with a working fluid within a predetermined range by a retaining means (31a, 31b). And
A liquid seal vibration-proof device, wherein an uneven portion (21) is formed on the outer surface of the movable body (20), and a through hole (25) is formed in the flow direction.
前記可動体(20)は比重が1.1〜1.4であることを特徴とする請求項1に記載した液封防振装置。 The liquid seal vibration isolator according to claim 1, wherein the movable body (20) has a specific gravity of 1.1 to 1.4. 前記凹凸部(21)は、可動体(20)の長さ方向において不連続に適当間隔をもって複数形成されることを特徴とする請求項1又は2に記載した液封防振装置。 The liquid seal vibration isolator according to claim 1 or 2, wherein a plurality of the uneven portions (21) are formed discontinuously at appropriate intervals in the length direction of the movable body (20). 前記可動体(20)はオリフィス通路(8)内へ複数個配置されることを特徴とする請求項1〜3のいずれかに記載した液封防振装置。 The liquid seal vibration isolator according to any one of claims 1 to 3, wherein a plurality of the movable bodies (20) are arranged in the orifice passage (8).
JP2010115686A 2010-05-19 2010-05-19 Liquid seal vibration isolator Expired - Fee Related JP5555047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115686A JP5555047B2 (en) 2010-05-19 2010-05-19 Liquid seal vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115686A JP5555047B2 (en) 2010-05-19 2010-05-19 Liquid seal vibration isolator

Publications (2)

Publication Number Publication Date
JP2011241930A true JP2011241930A (en) 2011-12-01
JP5555047B2 JP5555047B2 (en) 2014-07-23

Family

ID=45408798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115686A Expired - Fee Related JP5555047B2 (en) 2010-05-19 2010-05-19 Liquid seal vibration isolator

Country Status (1)

Country Link
JP (1) JP5555047B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008643A (en) * 2014-06-23 2016-01-18 住友理工株式会社 Fluid sealed type vibration-proof device
KR20170108590A (en) * 2016-03-18 2017-09-27 현대자동차주식회사 Structure of engine-mount
JP2020200932A (en) * 2019-06-13 2020-12-17 株式会社ブリヂストン Liquid seal bush and suspension device
JP2021063545A (en) * 2019-10-11 2021-04-22 本田技研工業株式会社 Vehicular vibration isolating device
JP2021063547A (en) * 2019-10-11 2021-04-22 本田技研工業株式会社 Vehicular vibration isolating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260733A (en) * 1984-06-08 1985-12-23 Bridgestone Corp Vibro-isolator
JPS61156750U (en) * 1985-03-20 1986-09-29
JPS6420551U (en) * 1987-07-28 1989-02-01

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260733A (en) * 1984-06-08 1985-12-23 Bridgestone Corp Vibro-isolator
JPS61156750U (en) * 1985-03-20 1986-09-29
JPS6420551U (en) * 1987-07-28 1989-02-01

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008643A (en) * 2014-06-23 2016-01-18 住友理工株式会社 Fluid sealed type vibration-proof device
KR20170108590A (en) * 2016-03-18 2017-09-27 현대자동차주식회사 Structure of engine-mount
KR102431496B1 (en) 2016-03-18 2022-08-10 현대자동차주식회사 Structure of engine-mount
JP2020200932A (en) * 2019-06-13 2020-12-17 株式会社ブリヂストン Liquid seal bush and suspension device
JP7183118B2 (en) 2019-06-13 2022-12-05 株式会社プロスパイラ Liquid-sealed bushings and suspension devices
JP2021063545A (en) * 2019-10-11 2021-04-22 本田技研工業株式会社 Vehicular vibration isolating device
JP2021063547A (en) * 2019-10-11 2021-04-22 本田技研工業株式会社 Vehicular vibration isolating device
JP7038093B2 (en) 2019-10-11 2022-03-17 本田技研工業株式会社 Anti-vibration device for vehicles
JP7083328B2 (en) 2019-10-11 2022-06-10 本田技研工業株式会社 Anti-vibration device for vehicles

Also Published As

Publication number Publication date
JP5555047B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5555047B2 (en) Liquid seal vibration isolator
JP6196682B2 (en) Vibration isolator
EP3026292B1 (en) Vibration prevention device
JP2006097824A (en) Fluid sealing type vibration control device
JP6240523B2 (en) Fluid filled vibration isolator
JP5801134B2 (en) Liquid-filled vibration isolator
KR101585429B1 (en) Hydro mount for reducing dynamic characteristics
JP5882124B2 (en) Liquid-filled vibration isolator
US20090243171A1 (en) Fluid filled type vibration damping device
JP2011241928A (en) Liquid-sealed vibration control device
JP6343491B2 (en) Fluid filled vibration isolator
JP7349325B2 (en) Vibration isolator
JP7350627B2 (en) Vibration isolator
JP7350628B2 (en) Vibration isolator
JP7326121B2 (en) Anti-vibration device
WO2010119643A1 (en) Liquid-sealed vibration-isolating device
JP7350629B2 (en) Vibration isolator
JP4344677B2 (en) Anti-vibration support device
KR101882504B1 (en) Nozzle plate of engine-mount
JP6153428B2 (en) Liquid-filled vibration isolator
JP5606892B2 (en) Vibration isolator
JP2006291990A (en) Vibration control device
JP2010078017A (en) Fluid-sealed vibration isolating device
JP2014031844A (en) Vibration-proofing device
JP6343486B2 (en) Liquid-filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140530

R150 Certificate of patent or registration of utility model

Ref document number: 5555047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees