JP2011241731A - Fuel injection control device of engine with selective reduction catalyst device - Google Patents

Fuel injection control device of engine with selective reduction catalyst device Download PDF

Info

Publication number
JP2011241731A
JP2011241731A JP2010113738A JP2010113738A JP2011241731A JP 2011241731 A JP2011241731 A JP 2011241731A JP 2010113738 A JP2010113738 A JP 2010113738A JP 2010113738 A JP2010113738 A JP 2010113738A JP 2011241731 A JP2011241731 A JP 2011241731A
Authority
JP
Japan
Prior art keywords
fuel injection
injection timing
purification rate
engine
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113738A
Other languages
Japanese (ja)
Other versions
JP5516058B2 (en
Inventor
Hiromi Sato
浩美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2010113738A priority Critical patent/JP5516058B2/en
Priority to PCT/JP2011/061204 priority patent/WO2011145566A1/en
Publication of JP2011241731A publication Critical patent/JP2011241731A/en
Application granted granted Critical
Publication of JP5516058B2 publication Critical patent/JP5516058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/08Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1621Catalyst conversion efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection control device of an engine with a selective reduction catalyst device which can improve fuel consumption while preventing the deterioration of purifying capability.SOLUTION: The fuel injection control device includes an SCR device 4 disposed on an exhaust pipe 3 of the engine 2, an upstream-side NOx sensor 5 which detects an NOx concentration on the upstream side to the SCR device 4, a downstream-side NOx sensor 6 which detects an NOx concentration on the downstream side to the SCR device 4, a purification rate calculating unit 7 which calculates a purification rate E at the SCR device 4 based on an NOx concentration detected by the upstream-side NOx sensor 5 and an NOx concentration detected by the downstream-side NOx sensor 6, and a fuel injection time control unit 8 which controls fuel injection time of the engine 2 to a standard fuel injection time when the purification rate E at the SCR device 4 is fine while controlling the fuel injection time of the engine 2 to a fuel injection time at which exhaust gas is more clear than exhaust gas at the standard fuel injection time when the purification rate E at the SCR device 4 is deteriorated.

Description

本発明は、排気管に選択還元触媒装置が設けられたエンジンにおける燃料噴射時期を制御する選択還元触媒装置付きエンジンの燃料噴射制御装置に係り、浄化性能の悪化を防ぎつつ、燃費を向上させることができる選択還元触媒装置付きエンジンの燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an engine with a selective reduction catalyst device that controls fuel injection timing in an engine having an exhaust pipe provided with a selective reduction catalyst device, and to improve fuel efficiency while preventing deterioration in purification performance. The present invention relates to a fuel injection control device for an engine with a selective reduction catalyst device.

ディーゼルエンジンのエンジン制御において、燃料噴射時期は、アクセル開度、エンジン回転数等のエンジンパラメータで噴射時期マップを参照して求められる。   In the engine control of a diesel engine, the fuel injection timing is obtained by referring to an injection timing map with engine parameters such as accelerator opening and engine speed.

従来、噴射時期マップは、排気ガス中に含まれるNOx等の汚染物質が少なくなることを最優先に設定されており、この噴射時期マップを参照して噴射時期を決定すれば清浄な排気ガスが排出されるように最適化されている。また、エンジンの温度を示す冷却水温、吸入する外気の温度である大気温、平地と高地で異なる大気圧なども排気ガス成分に影響を与えるので、これらの要素で噴射時期を補正することも行われている。   Conventionally, the injection timing map has been set with the highest priority on reducing the amount of pollutants such as NOx contained in the exhaust gas. If the injection timing is determined with reference to this injection timing map, clean exhaust gas is produced. Optimized to be discharged. Also, the cooling water temperature indicating the engine temperature, the atmospheric temperature that is the temperature of the outside air to be sucked in, and the atmospheric pressure that differs between the flatland and the highland affect the exhaust gas components, so the injection timing is also corrected with these factors. It has been broken.

一方、近年では、エンジンの後段において排気ガス中のNOxを浄化するSCR(Selective Catalytic Reduction;選択還元触媒)装置が開発されつつある。SCR装置では、上流で噴射された尿素水が排気ガスの熱でアンモニアとなり、選択還元触媒の働きによりアンモニアとNOxが中和されるようになっている。尿素水噴射の制御(SCR制御)では、エンジンパラメータや排気ガス温度から排気ガス中のNOx量を推定し、尿素水噴射量を決定するようになっている。SCR装置の上流と下流にはNOxセンサが設置され、SCR装置の上流と下流のNOx濃度がSCR制御にフィードバックされる。   On the other hand, in recent years, an SCR (Selective Catalytic Reduction) device for purifying NOx in exhaust gas is being developed at the rear stage of the engine. In the SCR device, urea water injected upstream becomes ammonia by the heat of the exhaust gas, and ammonia and NOx are neutralized by the action of the selective reduction catalyst. In the urea water injection control (SCR control), the NOx amount in the exhaust gas is estimated from the engine parameters and the exhaust gas temperature, and the urea water injection amount is determined. NOx sensors are installed upstream and downstream of the SCR device, and NOx concentrations upstream and downstream of the SCR device are fed back to the SCR control.

特開平9−125938号公報Japanese Patent Laid-Open No. 9-125938 特開2000−303826号公報JP 2000-303826 A

ところで、SCR装置を研究開発段階から実際に車両に搭載される実用段階に移そうとするにあたり、SCR制御とエンジン制御の連携が不十分であることが分かった。   By the way, it was found that the SCR control and the engine control are not sufficiently linked in order to move the SCR device from the research and development stage to the practical stage where it is actually mounted on the vehicle.

すなわち、現状では、SCR制御とエンジン制御とが互いに独立しているため、例えば、SCR装置においてNOx浄化の性能が何かの原因で悪化しているときでも、エンジン制御の側でNOx排出を抑制する制御を行うようにはなっていない。   In other words, at present, since SCR control and engine control are independent of each other, for example, even when the performance of NOx purification in the SCR device deteriorates for some reason, NOx emission is suppressed on the engine control side. It is not designed to perform control.

図4に示されるように、SCR装置の上流におけるNOx濃度(線41)が増加しているピークにおいて、SCR装置での浄化性能が良好であれば、SCR装置の下流におけるNOx濃度(線42)は増加しない。しかし、SCR装置での浄化性能が悪化していると、SCR装置の下流におけるNOx濃度(線43)は、上流におけるNOx濃度の増加に伴い、増加してしまう。   As shown in FIG. 4, at the peak where the NOx concentration upstream of the SCR device (line 41) increases, if the purification performance of the SCR device is good, the NOx concentration downstream of the SCR device (line 42). Does not increase. However, if the purification performance of the SCR device is deteriorated, the NOx concentration (line 43) downstream of the SCR device increases with an increase in the NOx concentration upstream.

逆に、SCR装置において浄化性能が良好であるときに、エンジン制御でもEGR率を大きくするなどしてNOx排出を抑制していることがある。しかし、このときエンジン制御では排気を清浄にすることを優先し燃費を犠牲にしている場合がある。このため、燃費の向上が妨げられる。   Conversely, when the purification performance of the SCR device is good, NOx emission may be suppressed by increasing the EGR rate even in engine control. However, at this time, the engine control may give priority to cleaning the exhaust gas and sacrifice the fuel consumption. For this reason, improvement in fuel consumption is hindered.

そこで、本発明の目的は、上記課題を解決し、浄化性能の悪化を防ぎつつ、燃費を向上させることができる選択還元触媒装置付きエンジンの燃料噴射制御装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fuel injection control device for an engine with a selective reduction catalyst device that can improve the fuel efficiency while solving the above-described problems and preventing deterioration in purification performance.

上記目的を達成するために本発明は、エンジンの排気管に設置されたSCR(選択還元触媒)装置と、前記SCR装置の上流側でNOx濃度を検出する上流側NOxセンサと、前記SCR装置の下流側でNOx濃度を検出する下流側NOxセンサと、前記上流側NOxセンサで検出されたNOx濃度と前記下流側NOxセンサで検出されたNOx濃度に基づいて前記SCR装置における浄化率を算出する浄化率算出部と、前記SCR装置における浄化率が良好時には、前記エンジンの燃料噴射時期を標準の燃料噴射時期に制御し、前記SCR装置における浄化率が悪化時には、前記エンジンの燃料噴射時期を前記標準の燃料噴射時期に比べて排気がより清浄となる燃料噴射時期に制御する燃料噴射時期制御部とを備えたものである。   In order to achieve the above object, the present invention provides an SCR (Selective Reduction Catalyst) device installed in an exhaust pipe of an engine, an upstream NOx sensor for detecting NOx concentration upstream of the SCR device, and an SCR device. A downstream NOx sensor that detects the NOx concentration on the downstream side, a purification that calculates the purification rate in the SCR device based on the NOx concentration detected by the upstream NOx sensor and the NOx concentration detected by the downstream NOx sensor When the purification rate in the rate calculation unit and the SCR device is good, the fuel injection timing of the engine is controlled to a standard fuel injection timing, and when the purification rate in the SCR device is deteriorated, the fuel injection timing of the engine is set to the standard fuel injection timing. And a fuel injection timing control unit that controls the fuel injection timing so that the exhaust gas becomes cleaner than the fuel injection timing.

前記燃料噴射時期制御部は、あらかじめ設定された前記SCR装置における理論浄化率に対する前記浄化率算出部で算出された浄化率の差分を浄化率悪化分として算出する浄化率悪化分算出部と、浄化率悪化分に応じて前記標準の燃料噴射時期から排気が最も清浄となる燃料噴射時期までの間に燃料噴射時期を決定する噴射時期決定部とを備えてもよい。   The fuel injection timing control unit calculates a purification rate deterioration amount calculation unit that calculates a purification rate deterioration amount as a purification rate deterioration amount by calculating a difference of the purification rate calculated by the purification rate calculation unit with respect to a theoretical purification rate in the SCR device set in advance. There may be provided an injection timing determining section for determining the fuel injection timing between the standard fuel injection timing and the fuel injection timing at which the exhaust gas becomes the cleanest according to the rate deterioration.

前記噴射時期決定部は、前記標準の燃料噴射時期がエンジンパラメータで参照される浄化率良好時噴射時期マップと、前記排気が最も清浄となる燃料噴射時期がエンジンパラメータで参照される浄化率悪化時噴射時期マップと、あらかじめ浄化率悪化分ごとに補間係数が設定された補間係数マップと、前記浄化率良好時噴射時期マップを参照して読み出した標準の燃料噴射時期と前記浄化率悪化時噴射時期マップを参照して読み出した排気が最も清浄となる燃料噴射時期とを、前記補間係数マップを浄化率悪化分で参照して読み出した補間係数で補間演算して、決定結果となる燃料噴射時期を求める補間演算部とを備えてもよい。   The injection timing determination unit includes an injection timing map when the standard fuel injection timing is referred to by an engine parameter when the purification rate is good, and a purification rate deterioration when the fuel injection timing at which the exhaust gas is most purified is referred to by an engine parameter. An injection timing map, an interpolation coefficient map in which an interpolation coefficient is set in advance for each purification rate deterioration, a standard fuel injection timing read with reference to the injection timing map when the purification rate is good, and the injection timing when the purification rate deteriorates The fuel injection timing at which the exhaust gas read out with reference to the map is the cleanest is interpolated with the interpolation coefficient read out by referring to the interpolation coefficient map by the amount of deterioration of the purification rate, and the fuel injection timing as a determination result is calculated. An interpolation calculation unit to be obtained may be provided.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)浄化性能の悪化を防ぎつつ、燃費を向上させることができる。   (1) The fuel efficiency can be improved while preventing the purification performance from deteriorating.

本発明の一実施形態を示す選択還元触媒装置付きエンジンの燃料噴射制御装置のブロック構成図である。It is a block block diagram of the fuel-injection control apparatus of the engine with a selective reduction catalyst apparatus which shows one Embodiment of this invention. 図1の燃料噴射制御装置を搭載した車両の排気系の構成図である。It is a block diagram of the exhaust system of the vehicle carrying the fuel-injection control apparatus of FIG. 本発明におけるSCR装置の上流下流のNOx濃度を示すグラフである。It is a graph which shows the NOx density | concentration of the upstream of the SCR apparatus in this invention, and downstream. 従来におけるSCR装置の上流下流のNOx濃度を示すグラフである。It is a graph which shows the NOx density | concentration of the upstream and downstream of the conventional SCR apparatus.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1及び図2に示されるように、本発明に係る選択還元触媒装置付きエンジンの燃料噴射制御装置(以下、燃料噴射制御装置という)1は、エンジン2の排気管3に設置されたSCR装置4と、SCR装置4の上流側でNOx濃度を検出する上流側NOxセンサ5と、SCR装置4の下流側でNOx濃度を検出する下流側NOxセンサ6と、上流側NOxセンサ5で検出されたNOx濃度と下流側NOxセンサ6で検出されたNOx濃度に基づいてSCR装置4における浄化率Eを算出する浄化率算出部7と、SCR装置4における浄化率Eが良好時には、エンジン2の燃料噴射時期を標準の燃料噴射時期に制御し、SCR装置4における浄化率Eが悪化時には、エンジン2の燃料噴射時期を前記標準の燃料噴射時期に比べて排気がより清浄となる燃料噴射時期に制御する燃料噴射時期制御部8とを備えたものである。   As shown in FIGS. 1 and 2, a fuel injection control device (hereinafter referred to as a fuel injection control device) 1 for an engine with a selective catalytic reduction device according to the present invention is an SCR device installed in an exhaust pipe 3 of an engine 2. 4, an upstream NOx sensor 5 that detects the NOx concentration upstream of the SCR device 4, a downstream NOx sensor 6 that detects the NOx concentration downstream of the SCR device 4, and an upstream NOx sensor 5. Based on the NOx concentration and the NOx concentration detected by the downstream NOx sensor 6, the purification rate calculation unit 7 that calculates the purification rate E in the SCR device 4, and the fuel injection of the engine 2 when the purification rate E in the SCR device 4 is good The timing is controlled to the standard fuel injection timing, and when the purification rate E in the SCR device 4 deteriorates, the fuel injection timing of the engine 2 is cleaner than the standard fuel injection timing. Is obtained by a fuel injection timing control section 8 for controlling the fuel injection timing becomes.

燃料噴射時期制御部8は、あらかじめ設定されたSCR装置4における理論浄化率に対する浄化率算出部7で算出された浄化率Eの差分を浄化率悪化分Δとして算出する浄化率悪化分算出部9と、浄化率悪化分Δに応じて前記標準の燃料噴射時期から排気が最も清浄となる燃料噴射時期までの間に燃料噴射時期τを決定する噴射時期決定部10とを備える。   The fuel injection timing control unit 8 calculates a purification rate deterioration component calculation unit 9 that calculates a difference between the purification rate E calculated by the purification rate calculation unit 7 with respect to a theoretical purification rate in the SCR device 4 set in advance as a purification rate deterioration component Δ. And an injection timing determination unit 10 that determines the fuel injection timing τ between the standard fuel injection timing and the fuel injection timing at which the exhaust gas is most clean in accordance with the purification rate deterioration Δ.

噴射時期決定部10は、前記標準の燃料噴射時期がエンジンパラメータで参照される浄化率良好時噴射時期マップ11と、前記排気が最も清浄となる燃料噴射時期がエンジンパラメータで参照される浄化率悪化時噴射時期マップ12と、あらかじめ浄化率悪化分Δごとに補間係数Kが設定された補間係数マップ13と、浄化率良好時噴射時期マップ11を参照して読み出した標準の燃料噴射時期と浄化率悪化時噴射時期マップ12を参照して読み出した排気が最も清浄となる燃料噴射時期とを、補間係数マップ13を浄化率悪化分Δで参照して読み出した補間係数Kで補間演算して、決定結果となる燃料噴射時期τを求める補間演算部14とを備える。   The injection timing determining unit 10 includes a purification rate good injection timing map 11 in which the standard fuel injection timing is referred to by an engine parameter, and a purification rate deterioration in which the fuel injection timing at which the exhaust gas is most clean is referred to by an engine parameter. Standard fuel injection timing and purification rate read with reference to the injection timing map 12, the interpolation coefficient map 13 in which the interpolation coefficient K is set in advance for each purification rate deterioration Δ, and the purification rate favorable injection timing map 11 The fuel injection timing at which the exhaust gas read with reference to the deterioration injection timing map 12 is the cleanest is interpolated by the interpolation coefficient K read with reference to the interpolation coefficient map 13 by the purification rate deterioration Δ, and determined. And an interpolation calculation unit 14 for obtaining the resulting fuel injection timing τ.

浄化率算出部7は、例えば、上流側NOxセンサ5で検出されたNOx濃度から下流側NOxセンサ6で検出されたNOx濃度を引き、上流側NOxセンサ5で検出されたNOx濃度で割ることにより、浄化率Eを求めるようになっている。この場合、SCR装置4でのNOx浄化性能が良好なときは、浄化率Eは最も1に近く、これを浄化率が良好であるという。SCR装置4でのNOx浄化性能が悪いときは、浄化率Eは0に近づき、これを浄化率が悪化しているという。   The purification rate calculation unit 7 subtracts the NOx concentration detected by the downstream NOx sensor 6 from the NOx concentration detected by the upstream NOx sensor 5 and divides by the NOx concentration detected by the upstream NOx sensor 5, for example. The purification rate E is obtained. In this case, when the NOx purification performance in the SCR device 4 is good, the purification rate E is closest to 1, which is said to be good. When the NOx purification performance in the SCR device 4 is poor, the purification rate E approaches 0, which is said to be that the purification rate has deteriorated.

浄化率算出部7、燃料噴射時期制御部8は、ECM(Engine Control Module)あるいはECU(Engine Control Unit)と呼ばれるプログラム式のデジタル回路にソフトウェアとして設けられる。   The purification rate calculation unit 7 and the fuel injection timing control unit 8 are provided as software in a program digital circuit called an ECM (Engine Control Module) or ECU (Engine Control Unit).

浄化率悪化分算出部9は、あらかじめ設定されている理論浄化率から浄化率算出部7で算出された浄化率Eを差し引いて浄化率悪化分Δとする。浄化率が良好であれば、浄化率悪化分Δは最も小さく、浄化率が悪化していると、浄化率悪化分Δは大きくなることになる。理論浄化率は、理論浄化率マップ15に設定されており、エンジンパラメータあるいはSCR制御に用いるパラメータで参照される。   The purification rate deterioration calculation unit 9 subtracts the purification rate E calculated by the purification rate calculation unit 7 from a preset theoretical purification rate to obtain a purification rate deterioration Δ. If the purification rate is good, the purification rate deterioration Δ is the smallest, and if the purification rate is deteriorated, the purification rate deterioration Δ increases. The theoretical purification rate is set in the theoretical purification rate map 15 and is referred to by an engine parameter or a parameter used for SCR control.

噴射時期決定部10は、基本的には従来同様、アクセル開度、エンジン回転数等のエンジンパラメータで噴射時期マップを参照するものであるが、本発明では、浄化率良好時噴射時期マップ11と浄化率悪化時噴射時期マップ12の両方を参照して、両者の燃料噴射時期を補間することで、中間的な値をとるようになっている。より具体的には、補間演算部14が補間係数マップ13を浄化率悪化分Δで参照して補間係数Kを読み出し、この補間係数Kで補間演算するようになっている。補間係数Kは、浄化率悪化分Δが小さいとき、浄化率良好時噴射時期マップ11から読み出した燃料噴射時期に近い結果が得られるような値をとり、浄化率悪化分Δが大きいとき、浄化率悪化時噴射時期マップ12から読み出した燃料噴射時期に近い結果が得られるような値をとる係数である。補間係数Kの具体的な値及び補間演算式は、実験により最適なものを採用するとよい。   The injection timing determination unit 10 basically refers to the injection timing map with engine parameters such as the accelerator opening and the engine speed, as in the prior art. In the present invention, the injection timing determination unit 10 An intermediate value is obtained by interpolating both fuel injection timings with reference to both the purification rate deterioration injection timing maps 12. More specifically, the interpolation calculation unit 14 reads the interpolation coefficient K with reference to the interpolation coefficient map 13 by the purification rate deterioration Δ, and performs interpolation calculation using the interpolation coefficient K. The interpolation coefficient K takes such a value that a result close to the fuel injection timing read from the injection timing map 11 when the purification rate is good is small when the purification rate deterioration Δ is small. It is a coefficient that takes a value that gives a result close to the fuel injection timing read from the rate deterioration time injection timing map 12. As the specific value of the interpolation coefficient K and the interpolation calculation formula, it is preferable to adopt an optimum one by experiment.

図2に示されるように、エンジン2の排気管3には、DPF(Diesel Particulate Filter)16が設置され、DPF16の下流に尿素水噴射装置17が設置され、尿素水噴射装置17の下流にSCR装置4が設置される。エンジン2は、例えば、蓄圧式噴射装置を備えたエンジン2である。尿素水噴射装置17は、図示しないSCR制御装置により制御されて尿素水を排気管3内に噴射するものである。SCR装置4は、尿素水から生じたアンモニアと排気ガス中のNOxを中和させる選択還元触媒18を有する。上流側NOxセンサ5は、SCR装置4の入口に設けられ、下流側NOxセンサ6は、SCR装置4の出口に設けられる。上流側NOxセンサ5、下流側NOxセンサ6は、公知のNOxセンサからなるので、説明は省略する。   As shown in FIG. 2, a DPF (Diesel Particulate Filter) 16 is installed in the exhaust pipe 3 of the engine 2, a urea water injection device 17 is installed downstream of the DPF 16, and an SCR is installed downstream of the urea water injection device 17. A device 4 is installed. The engine 2 is, for example, the engine 2 provided with a pressure accumulation type injection device. The urea water injection device 17 is controlled by an SCR control device (not shown) and injects urea water into the exhaust pipe 3. The SCR device 4 includes a selective reduction catalyst 18 that neutralizes ammonia generated from urea water and NOx in the exhaust gas. The upstream NOx sensor 5 is provided at the inlet of the SCR device 4, and the downstream NOx sensor 6 is provided at the outlet of the SCR device 4. Since the upstream NOx sensor 5 and the downstream NOx sensor 6 are made of known NOx sensors, description thereof is omitted.

次に、燃料噴射制御装置1の動作を説明する。   Next, the operation of the fuel injection control device 1 will be described.

噴射時期決定部10は、燃料噴射時期制御の開始時、浄化率良好時噴射時期マップ11から得られた燃料噴射時期と浄化率悪化時噴射時期マップ12から得られた燃料噴射時期の中点を無条件(デフォルト)に燃料噴射時期に決定する。この燃料噴射時期でエンジン制御が行われ、一方、SCR制御装置はSCR制御を開始する。   The injection timing determination unit 10 determines the midpoint between the fuel injection timing obtained from the injection timing map 11 when the purification rate is good and the fuel injection timing obtained from the injection timing map 12 when the purification rate is deteriorated at the start of the fuel injection timing control. The fuel injection timing is determined unconditionally (default). Engine control is performed at this fuel injection timing, while the SCR control device starts SCR control.

上流側NOxセンサ5と下流側NOxセンサ6が出力するNOx濃度は、常時(例えば、1燃焼サイクルよりも短いサンプリングインターバルで)、浄化率算出部7に読み込まれ、浄化率算出部7では浄化率が算出される。浄化率悪化分算出部9では、あらかじめ設定されたSCR装置4における理論浄化率に対する浄化率算出部7で算出された浄化率Eの差分が浄化率悪化分Δとして算出される。もし、SCR装置4におけるNOxの浄化率が良好であれば、浄化率悪化分Δは最も小さい値となる。もし、浄化率が悪化していると、浄化率悪化分Δは悪化の度合いに応じて大きくなる。   The NOx concentrations output from the upstream NOx sensor 5 and the downstream NOx sensor 6 are always read into the purification rate calculation unit 7 (for example, at a sampling interval shorter than one combustion cycle). Is calculated. In the purification rate deterioration calculation unit 9, the difference between the purification rate E calculated by the purification rate calculation unit 7 with respect to the theoretical purification rate in the SCR device 4 set in advance is calculated as the purification rate deterioration Δ. If the NOx purification rate in the SCR device 4 is good, the purification rate deterioration Δ is the smallest value. If the purification rate has deteriorated, the purification rate deterioration Δ increases in accordance with the degree of deterioration.

補間演算部14は、浄化率悪化分Δで補間係数マップ13を参照して補間係数Kを読み出す。同時に、補間演算部14は、アクセル開度、エンジン回転数等のエンジンパラメータで浄化率良好時噴射時期マップ11と浄化率悪化時噴射時期マップ12をそれぞれ参照して燃料噴射時期を読み出す。浄化率良好時噴射時期マップ11から読み出されるのは標準の燃料噴射時期である。浄化率悪化時噴射時期マップ12から読み出されるのは排気が最も清浄となる燃料噴射時期である。次いで、補間演算部14は、2つの燃料噴射時期を補間係数Kで補間演算して、決定結果となる燃料噴射時期τを求める。   The interpolation calculation unit 14 reads the interpolation coefficient K with reference to the interpolation coefficient map 13 by the purification rate deterioration Δ. At the same time, the interpolation calculation unit 14 reads the fuel injection timing by referring to the injection timing map 11 when the purification rate is good and the injection timing map 12 when the purification rate is deteriorated, respectively, with engine parameters such as the accelerator opening and the engine speed. The standard fuel injection timing is read from the injection timing map 11 when the purification rate is good. What is read from the injection timing map 12 when the purification rate deteriorates is the fuel injection timing at which the exhaust gas becomes the cleanest. Next, the interpolation calculation unit 14 interpolates the two fuel injection timings with the interpolation coefficient K to obtain the fuel injection timing τ that is the determination result.

これにより、浄化率が比較的良好なときには、燃料噴射時期τは標準の燃料噴射時期に近く、浄化率が悪化してくると、燃料噴射時期τは排気が最も清浄となる燃料噴射時期に近づいていく。燃料噴射時期τの決定は、例えば、1燃焼サイクルごとに行うとよい。   Thus, when the purification rate is relatively good, the fuel injection timing τ is close to the standard fuel injection timing, and when the purification rate deteriorates, the fuel injection timing τ approaches the fuel injection timing at which the exhaust gas is most clean. To go. The fuel injection timing τ may be determined, for example, every one combustion cycle.

なお、同じエンジンパラメータにおける浄化率良好時噴射時期マップ11による燃料噴射時期と浄化率悪化時噴射時期マップ12による燃料噴射時期は、従来の噴射時期マップと同様、エンジン機種ごとにエンジンパラメータを多様に変化させつつNOx濃度を測定する実験を行い、その実験結果から求めた最適値を設定するとよい。   Note that the fuel injection timing based on the injection timing map 11 when the purification rate is good and the fuel injection timing based on the injection timing map 12 when the purification rate is deteriorated with the same engine parameters are different for each engine model as in the conventional injection timing map. An experiment for measuring the NOx concentration while changing it may be performed, and an optimum value obtained from the experiment result may be set.

このような燃料噴射時期制御が行われるため、SCR装置4におけるNOxの浄化率が良好なときにはエンジンでは標準の燃料噴射時期で燃料噴射が行われ、SCR装置4におけるNOxの浄化率が悪化するにつれてエンジンでは排気が清浄となる燃料噴射時期での燃料噴射に変わっていく。したがって、最終的に、大気に排出されるNOxは低減される。   Since such fuel injection timing control is performed, when the NOx purification rate in the SCR device 4 is good, the engine performs fuel injection at the standard fuel injection timing, and as the NOx purification rate in the SCR device 4 deteriorates. The engine changes to fuel injection at the fuel injection timing when the exhaust becomes clean. Therefore, finally, NOx discharged to the atmosphere is reduced.

ここで、図4と同じ条件、すなわち燃料噴射時期を除く他のエンジンパラメータは同じとし、本発明におけるSCR装置4の上流と下流のNOx濃度の変化を観測した。   Here, the same conditions as in FIG. 4, that is, other engine parameters except the fuel injection timing were the same, and changes in the NOx concentration upstream and downstream of the SCR device 4 in the present invention were observed.

図3に示されるように、SCR装置4の上流におけるNOx濃度(線31)が増加しているピークにおいて、SCR装置4での浄化性能が良好であれば、SCR装置4の下流におけるNOx濃度(線32)は増加しない。SCR装置4での浄化性能が悪化したとき、上流におけるNOx濃度の増加のピークにおいて、下流におけるNOx濃度(線33)の増加は従来(図4)に比較して抑制されている。   As shown in FIG. 3, if the purification performance of the SCR device 4 is good at the peak where the NOx concentration (line 31) upstream of the SCR device 4 is increasing, the NOx concentration (downstream of the SCR device 4 ( Line 32) does not increase. When the purification performance of the SCR device 4 deteriorates, the increase in the NOx concentration downstream (line 33) is suppressed at the peak of the increase in NOx concentration upstream as compared with the conventional case (FIG. 4).

この実験結果から、SCR装置4における浄化率が悪化したときにエンジン2の燃料噴射時期を標準の燃料噴射時期に比べて排気がより清浄となる燃料噴射時期に制御することで、大気に排出されるNOxが低減されることが実証された。   From this experimental result, when the purification rate in the SCR device 4 is deteriorated, the fuel injection timing of the engine 2 is controlled to the fuel injection timing at which the exhaust gas becomes cleaner compared to the standard fuel injection timing, thereby being discharged into the atmosphere. NOx was demonstrated to be reduced.

本実施形態では、エンジン2が蓄圧式噴射装置を備えたものとしたが、分配式噴射装置を備えたものにおいても、ポンプに進角を与えるタイマを電子制御して噴射時期を変えることで本発明を適用することができる。   In the present embodiment, the engine 2 is provided with a pressure accumulating injection device. However, even in the case where the engine 2 is provided with a distribution-type injection device, the engine 2 is electronically controlled by changing the injection timing by electronically controlling a timer that gives an advance angle to the pump. The invention can be applied.

以上説明したように、本発明によれば、SCR装置4における浄化率が良好時にはエンジン2の燃料噴射時期を標準の燃料噴射時期に制御し、SCR装置4における浄化率が悪化時には、エンジン2の燃料噴射時期を標準の燃料噴射時期に比べて排気がより清浄となる燃料噴射時期に制御するようにしたので、SCR装置4における浄化率が良好時はもとより、悪化時でも最終的な浄化性能は悪化を防ぐことができる。よって、浄化性能が悪化したときに表示灯を点灯する構成においても、点灯に至ることを回避することができる。   As described above, according to the present invention, when the purification rate in the SCR device 4 is good, the fuel injection timing of the engine 2 is controlled to the standard fuel injection timing, and when the purification rate in the SCR device 4 deteriorates, Since the fuel injection timing is controlled to the fuel injection timing at which the exhaust gas is cleaner than the standard fuel injection timing, the final purification performance is not only when the purification rate in the SCR device 4 is good but also when it deteriorates. Deterioration can be prevented. Therefore, even in the configuration in which the indicator lamp is turned on when the purification performance is deteriorated, it is possible to avoid lighting.

本発明に用いる標準の燃料噴射時期は、それよりも排気が清浄となる燃料噴射時期に比較して、燃費がよいエンジン条件となる。よって、本発明によれば、SCR装置4における浄化率が良好時あるいはそれに準じ悪化があまり深刻でないときは、標準の燃料噴射時期あるいはそれに近い燃料噴射時期で燃料噴射が行われることになるので、燃費を向上させることができる。   The standard fuel injection timing used in the present invention is an engine condition with better fuel consumption than the fuel injection timing when the exhaust gas is cleaner than that. Therefore, according to the present invention, when the purification rate in the SCR device 4 is good or the deterioration is not so serious, fuel injection is performed at the standard fuel injection timing or a fuel injection timing close thereto. Fuel consumption can be improved.

本発明によれば、浄化率の悪化をNOx濃度差から算出された浄化率Eの大小で表すのではなく、理論浄化率に対する算出された浄化率Eの差分である浄化率悪化分Δで表すようにしたので、SCR装置4の性能の悪化を適正に評価することができる。つまり、浄化率Eが低いときにSCR装置4の性能が悪化したと評価する論理では、排気ガス温度などの諸条件によってもともと浄化率Eが低い場合(つまり理論浄化率が低い場合)があっても、これをSCR装置4の性能の悪化と評価してしまうのに対し、浄化率悪化分Δで評価すれば、浄化率Eが理論浄化率から乖離した場合をSCR装置4の性能の悪化と評価できる。   According to the present invention, the deterioration of the purification rate is not represented by the magnitude of the purification rate E calculated from the NOx concentration difference, but is represented by the purification rate deterioration Δ that is the difference of the calculated purification rate E with respect to the theoretical purification rate. Since it did in this way, the deterioration of the performance of the SCR apparatus 4 can be evaluated appropriately. That is, according to the logic that evaluates that the performance of the SCR device 4 has deteriorated when the purification rate E is low, the purification rate E is originally low (that is, the theoretical purification rate is low) depending on various conditions such as the exhaust gas temperature. However, if this is evaluated by the purification rate deterioration Δ, the case where the purification rate E deviates from the theoretical purification rate is regarded as the deterioration of the performance of the SCR device 4. Can be evaluated.

本発明によれば、標準の燃料噴射時期がエンジンパラメータで参照される浄化率良好時噴射時期マップ11と排気が最も清浄となる燃料噴射時期がエンジンパラメータで参照される浄化率悪化時噴射時期マップ12の2つの噴射時期マップ11,12を用い、これらから読み出した2つの燃料噴射時期補間演算して燃料噴射時期τを求めるようにしたので、2つの噴射時期マップ11,12だけで、全ての浄化率悪化分Δに対応して燃料噴射時期τを決定することができる。   According to the present invention, the injection timing map 11 at the time of good purification rate in which the standard fuel injection timing is referred to by the engine parameter and the injection timing map at the time of deterioration of the purification rate in which the fuel injection timing at which the exhaust gas is most clean is referred to by the engine parameter. Since the two fuel injection timing maps 11 and 12 are used to calculate the fuel injection timing τ by performing the two fuel injection timing interpolation operations read out from these maps, all the two fuel injection timing maps 11 and 12 are used. The fuel injection timing τ can be determined corresponding to the purification rate deterioration Δ.

1 燃料噴射制御装置
2 エンジン
3 排気管
4 SCR装置
5 上流側NOxセンサ
6 下流側NOxセンサ
7 浄化率算出部
8 燃料噴射時期制御部
9 浄化率悪化分算出部
10 噴射時期決定部
11 浄化率良好時噴射時期マップ
12 浄化率悪化時噴射時期マップ
13 補間係数マップ
14 補間演算部
15 理論浄化率マップ
DESCRIPTION OF SYMBOLS 1 Fuel injection control apparatus 2 Engine 3 Exhaust pipe 4 SCR apparatus 5 Upstream side NOx sensor 6 Downstream side NOx sensor 7 Purification rate calculation part 8 Fuel injection timing control part 9 Purification rate deterioration part calculation part 10 Injection timing determination part 11 Good purification rate Injection timing map 12 Purification rate deterioration injection timing map 13 Interpolation coefficient map 14 Interpolation calculation unit 15 Theoretical purification rate map

Claims (3)

エンジンの排気管に設置されたSCR(選択還元触媒)装置と、
前記SCR装置の上流側でNOx濃度を検出する上流側NOxセンサと、
前記SCR装置の下流側でNOx濃度を検出する下流側NOxセンサと、
前記上流側NOxセンサで検出されたNOx濃度と前記下流側NOxセンサで検出されたNOx濃度に基づいて前記SCR装置における浄化率を算出する浄化率算出部と、
前記SCR装置における浄化率が良好時には、前記エンジンの燃料噴射時期を標準の燃料噴射時期に制御し、前記SCR装置における浄化率が悪化時には、前記エンジンの燃料噴射時期を前記標準の燃料噴射時期に比べて排気がより清浄となる燃料噴射時期に制御する燃料噴射時期制御部とを備えたことを特徴とする選択還元触媒装置付きエンジンの燃料噴射制御装置。
An SCR (Selective Reduction Catalyst) device installed in the exhaust pipe of the engine;
An upstream NOx sensor for detecting the NOx concentration upstream of the SCR device;
A downstream NOx sensor for detecting the NOx concentration downstream of the SCR device;
A purification rate calculation unit for calculating a purification rate in the SCR device based on the NOx concentration detected by the upstream NOx sensor and the NOx concentration detected by the downstream NOx sensor;
When the purification rate in the SCR device is good, the fuel injection timing of the engine is controlled to a standard fuel injection timing, and when the purification rate in the SCR device is deteriorated, the fuel injection timing of the engine is set to the standard fuel injection timing. A fuel injection control device for an engine with a selective reduction catalyst device, comprising: a fuel injection timing control unit that controls the fuel injection timing so that the exhaust gas becomes cleaner than that.
前記燃料噴射時期制御部は、
あらかじめ設定された前記SCR装置における理論浄化率に対する前記浄化率算出部で算出された浄化率の差分を浄化率悪化分として算出する浄化率悪化分算出部と、
浄化率悪化分に応じて前記標準の燃料噴射時期から排気が最も清浄となる燃料噴射時期までの間に燃料噴射時期を決定する噴射時期決定部とを備えることを特徴とする請求項1記載の選択還元触媒装置付きエンジンの燃料噴射制御装置。
The fuel injection timing control unit
A purification rate deterioration calculation unit that calculates a difference between the purification rates calculated by the purification rate calculation unit with respect to a theoretical purification rate in the SCR device set in advance as a purification rate deterioration;
The fuel injection timing determination unit according to claim 1, further comprising: an injection timing determination unit that determines a fuel injection timing between the standard fuel injection timing and a fuel injection timing at which exhaust gas is most clean in accordance with the deterioration of the purification rate. A fuel injection control device for an engine with a selective reduction catalyst device.
前記噴射時期決定部は、
前記標準の燃料噴射時期がエンジンパラメータで参照される浄化率良好時噴射時期マップと、
前記排気が最も清浄となる燃料噴射時期がエンジンパラメータで参照される浄化率悪化時噴射時期マップと、
あらかじめ浄化率悪化分ごとに補間係数が設定された補間係数マップと、
前記浄化率良好時噴射時期マップを参照して読み出した標準の燃料噴射時期と前記浄化率悪化時噴射時期マップを参照して読み出した排気が最も清浄となる燃料噴射時期とを、前記補間係数マップを浄化率悪化分で参照して読み出した補間係数で補間演算して、決定結果となる燃料噴射時期を求める補間演算部とを備えることを特徴とする請求項2記載の選択還元触媒装置付きエンジンの燃料噴射制御装置。
The injection timing determination unit
An injection timing map when the purification rate is good in which the standard fuel injection timing is referred to by an engine parameter;
A fuel injection timing map at which the exhaust gas becomes the cleanest, and a purification rate deterioration injection timing map in which engine parameters are referred to,
An interpolation coefficient map in which an interpolation coefficient is set for each purification rate deterioration, and
A standard fuel injection timing read with reference to the injection timing map when the purification rate is good and a fuel injection timing when the exhaust gas read with reference to the injection timing map when the purification rate deterioration is the cleanest are the interpolation coefficient map. The engine with a selective catalytic reduction catalyst device according to claim 2, further comprising: an interpolation calculation unit that performs an interpolation calculation using an interpolation coefficient that is read with reference to the deterioration rate of the purification rate and obtains a fuel injection timing that is a determination result. Fuel injection control device.
JP2010113738A 2010-05-17 2010-05-17 Fuel injection control device for engine with selective reduction catalyst device Expired - Fee Related JP5516058B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010113738A JP5516058B2 (en) 2010-05-17 2010-05-17 Fuel injection control device for engine with selective reduction catalyst device
PCT/JP2011/061204 WO2011145566A1 (en) 2010-05-17 2011-05-16 Fuel injection control device for engine equipped with selective reduction catalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113738A JP5516058B2 (en) 2010-05-17 2010-05-17 Fuel injection control device for engine with selective reduction catalyst device

Publications (2)

Publication Number Publication Date
JP2011241731A true JP2011241731A (en) 2011-12-01
JP5516058B2 JP5516058B2 (en) 2014-06-11

Family

ID=44991669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113738A Expired - Fee Related JP5516058B2 (en) 2010-05-17 2010-05-17 Fuel injection control device for engine with selective reduction catalyst device

Country Status (2)

Country Link
JP (1) JP5516058B2 (en)
WO (1) WO2011145566A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641089A (en) * 2012-10-25 2015-05-20 三菱重工业株式会社 Diesel engine control device
US10458300B2 (en) 2016-08-30 2019-10-29 Hyundai Motor Company Engine exhaust catalyst heating system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988779A3 (en) * 2012-03-30 2013-10-04 Renault Sa Method for controlling emissions of pollutants in depollution system of diesel engine of car, involves generating and continuously updating control parameter to control scenario of engine adjustment to decrease fuel consumption
CN103674103B (en) * 2013-10-18 2016-05-11 广东电网公司电力科学研究院 SCR method flue gas denitrification system performance test methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09125938A (en) * 1995-11-07 1997-05-13 Hitachi Ltd Engine control device
JP2001159360A (en) * 1999-12-02 2001-06-12 Nissan Motor Co Ltd Fuel control device for diesel engine
JP2006037769A (en) * 2004-07-23 2006-02-09 Hino Motors Ltd Control method for exhaust emission control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641089A (en) * 2012-10-25 2015-05-20 三菱重工业株式会社 Diesel engine control device
JP5913619B2 (en) * 2012-10-25 2016-04-27 三菱重工業株式会社 Diesel engine control device
US9410495B2 (en) 2012-10-25 2016-08-09 Mitsubishi Heavy Industries, Ltd. Diesel engine control apparatus
US10458300B2 (en) 2016-08-30 2019-10-29 Hyundai Motor Company Engine exhaust catalyst heating system

Also Published As

Publication number Publication date
JP5516058B2 (en) 2014-06-11
WO2011145566A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP2008157136A (en) Exhaust emission control device for internal combustion engine
JP2010185325A (en) DETERIORATION DIAGNOSIS DEVICE FOR NOx CATALYST
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP6025606B2 (en) Fuel cetane number estimation method and apparatus
JP5223963B2 (en) Exhaust gas purification device for internal combustion engine
JP2015151929A (en) Exhaust emission control device, and control method for the same
JP5516058B2 (en) Fuel injection control device for engine with selective reduction catalyst device
US10077699B2 (en) Exhaust purifying system
JP4314089B2 (en) Internal combustion engine catalyst control device and catalyst deterioration determination device
JP4930416B2 (en) Exhaust purification device
JP5610956B2 (en) Exhaust gas purification device control method and control device
JP5570188B2 (en) Engine exhaust purification system
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP2013104346A (en) Exhaust gas purification device for internal combustion device
JP2019073980A (en) Exhaust emission control device for internal combustion engine
JP2013253540A (en) Exhaust cleaning system for internal combustion engine
JP2016200111A (en) Exhaust emission control system
JP2019035380A (en) Exhaust emission control device for internal combustion engine
JP2019116876A (en) Sensor diagnostic system
JP2013092055A (en) Abnormality detection apparatus for exhaust emission control system
JP7106922B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP6904167B2 (en) Exhaust gas flow rate measuring device for internal combustion engine
JP2016200110A (en) Exhaust emission control system
JP2014156824A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees