JP2011241435A - Aluminum alloy brazing sheet - Google Patents

Aluminum alloy brazing sheet Download PDF

Info

Publication number
JP2011241435A
JP2011241435A JP2010113950A JP2010113950A JP2011241435A JP 2011241435 A JP2011241435 A JP 2011241435A JP 2010113950 A JP2010113950 A JP 2010113950A JP 2010113950 A JP2010113950 A JP 2010113950A JP 2011241435 A JP2011241435 A JP 2011241435A
Authority
JP
Japan
Prior art keywords
brazing
mass
core material
less
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113950A
Other languages
Japanese (ja)
Other versions
JP5466080B2 (en
Inventor
Takahiro Izumi
孝裕 泉
Toshiki Ueda
利樹 植田
Shinhei Kimura
申平 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010113950A priority Critical patent/JP5466080B2/en
Priority to US13/099,590 priority patent/US8247083B2/en
Priority to CN2011101346446A priority patent/CN102251155B/en
Publication of JP2011241435A publication Critical patent/JP2011241435A/en
Application granted granted Critical
Publication of JP5466080B2 publication Critical patent/JP5466080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy brazing sheet which can improve erosion resistance while maintaining strength after brazing, brazing property, formability and corrosion resistance, or the like, even when Mg is added to a core material.SOLUTION: The aluminum alloy brazing sheet is an aluminum alloy brazing sheet where Al-Si-based or Al-Si-Zn-based brazing material is cladded on at least one face of the core material. The core material contains, by mass%, 0.3 to 1.0% Si, 0.6 to 2.0% Mn, 0.3 to 1.0% Cu, 0.15 to 0.5% Mg, 0.05 to 0.25% Ti, and the balance being Al and unavoidable impurities, and the density of a Mg-Si, Al-Mg-Cu and Al-Cu-Mg-Si intermetallic compound having a particle diameter of 1.0 μm or larger in the core material is less than 5,000 pieces/mm.

Description

本発明は、自動車用熱交換器等に使用される耐エロージョン性に優れたアルミニウム合金ブレージングシートに関する。   The present invention relates to an aluminum alloy brazing sheet excellent in erosion resistance used for a heat exchanger for automobiles and the like.

自動車用熱交換器等に使用されるアルミニウム合金ブレージングシートには、良好な耐エロージョン性(溶融したろうの侵食に対する耐久性)が求められる。これまで、Al−Si−Mn−Cu系心材を有するブレージングシートにおいては、例えば特許文献1に記載されるように、心材の均質化処理を行わないことによりMnやSiの固溶元素の析出を抑制してろう付加熱後の心材結晶粒を粗大化させ、耐エロージョン性を向上させてきた。また、ろう付後強度を向上させるために、心材にMgを添加していた。   Aluminum alloy brazing sheets used for automobile heat exchangers and the like are required to have good erosion resistance (durability against molten wax erosion). Until now, in a brazing sheet having an Al—Si—Mn—Cu core material, for example, as described in Patent Document 1, precipitation of solid solution elements of Mn and Si can be performed by not performing homogenization treatment of the core material. It has been suppressed to increase the erosion resistance by coarsening the core material crystal grains after brazing heat. Further, Mg is added to the core material in order to improve the strength after brazing.

特開2004−17116号公報JP 2004-17116 A

しかしながら、Mgを心材に添加したブレージングシートでは、製造工程中の熱処理条件によっては、Mg−Si系、Al−Mg−Cu系、Al−Cu−Mg−Si系金属間化合物が生成される場合があるため、従来の手法だけでは耐エロージョン性の向上には不十分であった。   However, in the brazing sheet in which Mg is added to the core material, Mg-Si, Al-Mg-Cu, and Al-Cu-Mg-Si intermetallic compounds may be generated depending on the heat treatment conditions during the manufacturing process. For this reason, the conventional method alone is insufficient for improving the erosion resistance.

本発明はかかる点に鑑みてなされたものであって、Mgを心材に添加した場合であっても、ろう付後強度、ろう付性、成形性、耐食性等を維持しつつ、耐エロージョン性を向上させることができるアルミニウム合金ブレージングシートを提供することを課題とする。   The present invention has been made in view of such points, and even when Mg is added to the core material, the erosion resistance is maintained while maintaining post-brazing strength, brazing property, moldability, corrosion resistance, and the like. It is an object to provide an aluminum alloy brazing sheet that can be improved.

前記した課題を解決するために本発明に係るアルミニウム合金ブレージングシートは、心材の少なくとも一方の面に、Al−Si系もしくはAl−Si−Zn系ろう材をクラッドしたアルミニウム合金ブレージングシートであって、前記心材は、Si:0.3〜1.0質量%、Mn:0.6〜2.0質量%、Cu:0.3〜1.0質量%、Mg:0.15〜0.5質量%、Ti:0.05〜0.25質量%を含有し、残部がAlと不可避的不純物からなり、前記心材内部における粒径1.0μm以上のMg−Si系、Al−Mg−Cu系、Al−Cu−Mg−Si系金属間化合物の密度が5000個/mm未満である構成とする。 In order to solve the above-mentioned problems, an aluminum alloy brazing sheet according to the present invention is an aluminum alloy brazing sheet in which at least one surface of a core material is clad with an Al-Si-based or Al-Si-Zn-based brazing material, The core material is Si: 0.3 to 1.0 mass%, Mn: 0.6 to 2.0 mass%, Cu: 0.3 to 1.0 mass%, Mg: 0.15 to 0.5 mass% %, Ti: 0.05 to 0.25% by mass, the balance is made of Al and inevitable impurities, and Mg—Si based, Al—Mg—Cu based on the core material having a particle size of 1.0 μm or more, The density of the Al—Cu—Mg—Si intermetallic compound is less than 5000 / mm 2 .

かかる構成により、アルミニウム合金ブレージングシートは、心材にSi,Mn,Cu,Mgを所定量含有させることにより、ろう付後強度、ろう付性、成形性を向上させることができ、かつ、心材にTiを所定量含有させることにより、耐食性を向上させることができる。また、ろう付加熱時に再結晶核として働く粒径1.0μm以上の金属間化合物の密度を所定範囲に規制することにより、ろう付加熱後の心材結晶粒を粗大化させ、溶融ろう侵食の優先サイトを減少させることができる。   With such a configuration, the aluminum alloy brazing sheet can improve the strength after brazing, brazeability, and formability by containing a predetermined amount of Si, Mn, Cu, Mg in the core material, and Ti in the core material. By containing a predetermined amount, corrosion resistance can be improved. In addition, by controlling the density of intermetallic compounds with a grain size of 1.0 μm or more that act as recrystallization nuclei during brazing addition heat to a predetermined range, the core material crystal grains after brazing addition heat are coarsened, giving priority to melting braze erosion. The site can be reduced.

また、本発明に係るアルミニウム合金ブレージングシートは、心材の一方の面にAl−Si系もしくはAl−Si−Zn系ろう材をクラッドし、前記心材の他方の面に犠牲陽極材をクラッドしたアルミニウム合金ブレージングシートであって、前記心材は、Si:0.3〜1.0質量%、Mn:0.6〜2.0質量%、Cu:0.3〜1.0質量%、Mg:0.15〜0.5質量%、Ti:0.05〜0.25質量%を含有し、残部がAlと不可避的不純物からなり、前記心材内部における粒径1.0μm以上のMg−Si系、Al−Mg−Cu系、Al−Cu−Mg−Si系金属間化合物の密度が5000個/mm未満である構成とする。 Moreover, the aluminum alloy brazing sheet according to the present invention is an aluminum alloy in which an Al—Si or Al—Si—Zn brazing material is clad on one surface of a core material, and a sacrificial anode material is clad on the other surface of the core material. It is a brazing sheet, The said core material is Si: 0.3-1.0 mass%, Mn: 0.6-2.0 mass%, Cu: 0.3-1.0 mass%, Mg: 0.0. 15 to 0.5% by mass, Ti: 0.05 to 0.25% by mass, the balance being made of Al and inevitable impurities, Mg—Si based particles having a particle size of 1.0 μm or more inside the core material, Al The density of the Mg—Cu based and Al—Cu—Mg—Si based intermetallic compounds is less than 5000 / mm 2 .

かかる構成により、アルミニウム合金ブレージングシートは、心材にSi,Mn,Cu,Mgを所定量含有させることにより、ろう付後強度、ろう付性、成形性を向上させることができ、かつ、心材にTiを所定量含有させることにより、耐食性を向上させることができる。また、ろう付加熱時に再結晶核として働く粒径1.0μm以上の金属間化合物の密度を所定範囲に規制することにより、ろう付加熱後の心材結晶粒を粗大化させ、溶融ろう侵食の優先サイトを減少させることができる。   With such a configuration, the aluminum alloy brazing sheet can improve the strength after brazing, brazeability, and formability by containing a predetermined amount of Si, Mn, Cu, Mg in the core material, and Ti in the core material. By containing a predetermined amount, corrosion resistance can be improved. In addition, by controlling the density of intermetallic compounds with a grain size of 1.0 μm or more that act as recrystallization nuclei during brazing addition heat to a predetermined range, the core material crystal grains after brazing addition heat are coarsened, giving priority to melting braze erosion. The site can be reduced.

本発明に係るアルミニウム合金ブレージングシートによれば、Mg添加心材を有する場合であっても、溶融ろう侵食の優先サイトを減少させることができるため、耐エロージョン性を向上させることができる。   According to the aluminum alloy brazing sheet according to the present invention, the erosion resistance can be improved because the preferential site of melting braze erosion can be reduced even when the Mg-added core material is provided.

以下、本発明の実施形態に係るアルミニウム合金ブレージングシートについて、詳細に説明する。   Hereinafter, an aluminum alloy brazing sheet according to an embodiment of the present invention will be described in detail.

(心材)
心材は、Si:0.3〜1.0質量%、Mn:0.6〜2.0質量%、Cu:0.3〜1.0質量%、Mg:0.15〜0.5質量%、Ti:0.05〜0.25質量%を含有し、残部がAlと不可避的不純物からなる。また、心材は、その内部における粒径1.0μm以上のMg−Si系、Al−Mg−Cu系、Al−Cu−Mg−Si系金属間化合物の密度が5000個/mm未満である。
(Heartwood)
The core material is Si: 0.3-1.0 mass%, Mn: 0.6-2.0 mass%, Cu: 0.3-1.0 mass%, Mg: 0.15-0.5 mass% , Ti: 0.05 to 0.25% by mass, with the balance being Al and inevitable impurities. Further, the core material has a density of Mg—Si, Al—Mg—Cu, and Al—Cu—Mg—Si intermetallic compounds having a particle size of 1.0 μm or more inside thereof is less than 5000 / mm 2 .

(心材中のSi:0.3〜1.0質量%)
Siは、Mgと共存させることでMgSiを形成し、ろう付後強度を向上させる。但し、Siが0.3質量%未満の場合、ろう付後強度を向上させる効果が小さく、Siが1.0質量%を越える場合、心材の固相線温度が低下してろう付加熱時に心材が溶融する。従って、心材に含有されるSiの量は、上記範囲内とする。
(Si in core: 0.3 to 1.0 mass%)
Si coexists with Mg to form Mg 2 Si and improve the strength after brazing. However, when Si is less than 0.3% by mass, the effect of improving the strength after brazing is small, and when Si exceeds 1.0% by mass, the solidus temperature of the core material is lowered and the core material is heated at the time of brazing addition heat. Melts. Therefore, the amount of Si contained in the core is within the above range.

(心材中のMn:0.6〜2.0質量%)
Mnは、Al−Mn−Si系金属間化合物を形成し、ろう付後強度を向上させる。但し、Mnが0.6質量%未満の場合、ろう付後強度を向上させる効果が小さく、Mnが2.0質量%を越える場合、鋳造時に形成される粗大な金属間化合物の量が増加して成形性が低下する。従って、心材に含有されるMnの量は、上記範囲内とする。
(Mn in the core material: 0.6 to 2.0 mass%)
Mn forms an Al—Mn—Si intermetallic compound and improves the strength after brazing. However, when Mn is less than 0.6% by mass, the effect of improving the strength after brazing is small, and when Mn exceeds 2.0% by mass, the amount of coarse intermetallic compound formed during casting increases. As a result, moldability is reduced. Therefore, the amount of Mn contained in the core is within the above range.

(心材中のCu:0.3〜1.0質量%)
Cuは、固溶することでろう付後強度を向上させる。但し、Cuが0.3質量%未満の場合、ろう付後強度を向上させる効果が小さく、Cuが1.0質量%を越える場合、心材の固相線温度が低下してろう付加熱時に心材が溶融する。従って、心材に含有されるCuの量は、上記範囲内とする。
(Cu in the core material: 0.3 to 1.0 mass%)
Cu improves the strength after brazing by solid solution. However, when Cu is less than 0.3% by mass, the effect of improving the strength after brazing is small, and when Cu exceeds 1.0% by mass, the solidus temperature of the core is lowered and the core is heated at the time of brazing addition heat. Melts. Therefore, the amount of Cu contained in the core is within the above range.

(心材中のMg:0.15〜0.5質量%)
Mgは、Siと共存することでMgSiを形成し、ろう付後強度を向上させる。但し、Mgが0.15質量%未満の場合、ろう付後強度を向上させる効果が小さく、Mgが0.5質量%を越える場合、ろう付加熱時にフラックス中に到達するMg量が増えてフラックスの機能が損なわれるため、ろう付性が低下する。従って、心材に含有されるMgの量は、上記範囲内とする。
(Mg in core material: 0.15 to 0.5 mass%)
Mg coexists with Si to form Mg 2 Si and improve the strength after brazing. However, when Mg is less than 0.15% by mass, the effect of improving the strength after brazing is small, and when Mg exceeds 0.5% by mass, the amount of Mg reaching the flux during the brazing heat increases and the flux Since the function of is impaired, brazability is reduced. Therefore, the amount of Mg contained in the core is within the above range.

(心材中のTi:0.05〜0.25質量%)
Tiは、Al合金中でTi−Al系化合物を形成し、層状に分散する。このTi−Al系化合物は電位が貴であるため、腐食形態が層状化して厚さ方向への腐食(孔食)に進展し難くなり、耐食性が向上する。但し、Tiが0.05質量%未満の場合、腐食形態が層状化しないため耐食性を向上させる効果が小さく、Tiが0.25質量%を超える場合、粗大な金属間化合物が形成されて成形性が低下する。従って、心材に含有されるTiの量は、上記範囲内とする。
(Ti in the core material: 0.05 to 0.25% by mass)
Ti forms a Ti—Al-based compound in the Al alloy and disperses in layers. Since this Ti—Al-based compound has a noble potential, the corrosion form is layered and it is difficult to progress to corrosion (pitting corrosion) in the thickness direction, and the corrosion resistance is improved. However, when Ti is less than 0.05% by mass, the corrosion form is not layered, so the effect of improving the corrosion resistance is small, and when Ti exceeds 0.25% by mass, a coarse intermetallic compound is formed and formability is increased. Decreases. Therefore, the amount of Ti contained in the core is within the above range.

(心材中の不可避的不純物)
なお、心材が、例えばCr:0.2質量%以下、Zr:0.2質量%以下、Zn:0.2質量%以下、Fe:0.3質量%以下(いずれも0質量%を超える)の不可避的不純物を含有していても、本発明の効果を妨げるものではない。
(Inevitable impurities in heartwood)
The core material is, for example, Cr: 0.2% by mass or less, Zr: 0.2% by mass or less, Zn: 0.2% by mass or less, Fe: 0.3% by mass or less (both exceeding 0% by mass) Even if it contains these inevitable impurities, the effect of the present invention is not disturbed.

(粒径1.0μm以上の金属間化合物の密度:5000個/mm未満)
実施形態に係るアルミニウム合金ブレージングシートは、心材内部における粒径1.0μm以上のMg−Si、Al−Mg−Cu、Al−Cu−Mg−Si系金属間化合物の密度を5000個/mm未満とする。なお、金属間化合物の粒径とは、円相当径のことである。
(Density of intermetallic compounds having a particle size of 1.0 μm or more: less than 5000 / mm 2 )
In the aluminum alloy brazing sheet according to the embodiment, the density of Mg—Si, Al—Mg—Cu, and Al—Cu—Mg—Si intermetallic compounds having a particle diameter of 1.0 μm or more inside the core material is less than 5000 / mm 2. And In addition, the particle size of an intermetallic compound is an equivalent circle diameter.

心材中における粒径1.0μm以上の金属間化合物は、ろう付加熱時に再結晶核として働く。すなわち、粒径1.0μm以上の金属間化合物の数が多いと、ろう付加熱時における再結晶が増加するため、ろう付加熱後の心材結晶粒が微細となる。一方、粒径1.0μm以上の金属間化合物の数が少ないと、ろう付加熱時における再結晶が減少するため、ろう付加熱後の心材結晶粒が粗大となる。ここで、心材結晶粒界は、一般に溶融ろうによる侵食(エロージョン)の優先サイトとなる。従って、心材結晶粒が粗大であれば粒界の体積率が小さくなりエロージョンが発生しにくく、心材結晶粒が微細であればエロージョンが発生しやすくなる。   An intermetallic compound having a particle size of 1.0 μm or more in the core material acts as a recrystallization nucleus during heat of brazing. That is, when the number of intermetallic compounds having a particle size of 1.0 μm or more is increased, recrystallization at the time of brazing addition heat increases, so that the core material crystal grains after brazing addition heat become fine. On the other hand, if the number of intermetallic compounds having a particle size of 1.0 μm or more is small, recrystallization during brazing addition heat is reduced, and the core crystal grains after brazing addition heat become coarse. Here, the core crystal grain boundary is generally a priority site for erosion caused by melting wax. Therefore, if the core material crystal grains are coarse, the volume ratio of the grain boundary is small and erosion is unlikely to occur, and if the core material crystal grains are fine, erosion is likely to occur.

ここで、粒径1.0μm以上の金属間化合物が5000個/mm未満の場合、再結晶核が少なく心材結晶粒が粗大となる。従って、溶融ろうによる侵食の優先サイトとなる粒界の体積率が低下するため、耐エロージョン性が向上する。一方、粒径1.0μm以上の金属間化合物が5000個/mm以上の場合、再結晶核が多く心材結晶粒が微細となる。従って、溶融ろうによる侵食の優先サイトとなる粒界の体積率が増加するため、耐エロージョン性が低下する。 Here, when the number of intermetallic compounds having a particle size of 1.0 μm or more is less than 5000 / mm 2 , the recrystallization nuclei are few and the core material crystal grains are coarse. Accordingly, the volume ratio of the grain boundary which is a priority site for erosion by the molten solder is lowered, and the erosion resistance is improved. On the other hand, when the number of intermetallic compounds having a particle size of 1.0 μm or more is 5000 pieces / mm 2 or more, there are many recrystallization nuclei and the core material crystal grains are fine. Therefore, the volume ratio of the grain boundary, which is a priority site for erosion by the molten solder, is increased, so that the erosion resistance is lowered.

なお、心材内部における粒径1.0μm以上のMg−Si、Al−Mg−Cu、Al−Cu−Mg−Si系金属間化合物の密度は、例えば、心材のL−LT面(圧延面)をST方向(厚さ方向)に心材中央部まで両面から研磨し、透過型電子顕微鏡(TEM)で観察することで、測定することができる。   The density of Mg—Si, Al—Mg—Cu, Al—Cu—Mg—Si intermetallic compound having a particle size of 1.0 μm or more inside the core material is, for example, the L-LT surface (rolled surface) of the core material. It can be measured by polishing from both sides to the center of the core material in the ST direction (thickness direction) and observing with a transmission electron microscope (TEM).

(粒径1.0μm以上の金属間化合物の密度の制御条件)
実施形態に係るアルミニウム合金ブレージングシートにおける心材内部の金属間化合物の粒径・密度は、ブレージングシートの製造工程において、熱間圧延後の巻き取り温度を所定温度とし、かつ、熱間圧延後に所定条件下で焼鈍を1回以上行うことで制御することができる。具体的には以下の通りである。
(Conditions for controlling the density of intermetallic compounds having a particle size of 1.0 μm or more)
In the aluminum alloy brazing sheet according to the embodiment, the particle diameter / density of the intermetallic compound in the core material is set to a predetermined temperature after the hot rolling in the brazing sheet manufacturing process, and a predetermined condition after the hot rolling. It can control by performing annealing 1 time or more below. Specifically, it is as follows.

(熱間圧延の巻き取り温度)
熱間圧延の巻き取り温度は360℃未満とする。すなわち、熱間圧延後の巻き取り温度が360℃以上の場合、巻き取り後の冷却時に金属間化合物が成長・粗大化して粒径1.0μm以上の金属間化合物が増加するため、粒径1.0μm以上の金属間化合物の密度が5000個/mm未満とならず、かつ、耐エロージョン性も低下する。
(Hot rolling coiling temperature)
The coiling temperature for hot rolling is less than 360 ° C. That is, when the coiling temperature after hot rolling is 360 ° C. or higher, the intermetallic compound grows and coarsens during cooling after winding, and the intermetallic compound having a particle diameter of 1.0 μm or more increases. The density of intermetallic compounds of 0.0 μm or more does not become less than 5000 / mm 2 , and the erosion resistance also decreases.

(焼鈍条件)
また、熱間圧延後の焼鈍条件は、焼鈍温度を200℃以上400℃以下、焼鈍合計時間を1h以上10h以下、150〜200℃範囲での昇温速度を20℃/h以上とする。
(Annealing conditions)
In addition, annealing conditions after hot rolling are set such that the annealing temperature is 200 ° C. or more and 400 ° C. or less, the total annealing time is 1 h or more and 10 h or less, and the temperature rising rate in the range of 150 to 200 ° C. is 20 ° C./h or more.

焼鈍温度が200℃未満の場合、ひずみの除去が不十分となるため、ろう付加熱前の蓄積ひずみが大きくなる。従って、ろう付加熱時の再結晶核が増大してろう付加熱後の心材結晶粒が微細となるため、耐エロージョン性が低下する。また、焼鈍温度が400℃を越える場合、焼鈍時に金属間化合物が成長・粗大化して粒径1.0μm以上の金属間化合物が増加するため、粒径1.0μm以上の金属間化合物の密度が5000個/mm未満とならず、かつ、耐エロージョン性も低下する。 When the annealing temperature is less than 200 ° C., the removal of strain becomes insufficient, so that the accumulated strain before brazing heat increases. Accordingly, the recrystallization nuclei at the time of brazing addition heat increase, and the core material crystal grains after brazing addition heat become fine, so that the erosion resistance decreases. In addition, when the annealing temperature exceeds 400 ° C., the intermetallic compound grows and coarsens during annealing, and the intermetallic compound having a particle diameter of 1.0 μm or more increases, so the density of the intermetallic compound having a particle diameter of 1.0 μm or more is increased. It does not become less than 5000 pieces / mm 2 and the erosion resistance is also lowered.

また、焼鈍合計時間が1h未満の場合、ひずみの除去が不十分となるため、ろう付加熱前の蓄積ひずみが大きくなる。従って、ろう付加熱時の再結晶核が増大してろう付加熱後の心材結晶粒が微細となるため、耐エロージョン性が低下する。また、焼鈍合計時間が10hを超える場合、金属間化合物が成長・粗大化して粒径1.0μm以上の金属間化合物が増加するため、粒径1.0μm以上の金属間化合物の密度が5000個/mm未満とならず、かつ、耐エロージョン性も低下する。 Further, when the total annealing time is less than 1 h, the strain is not sufficiently removed, so that the accumulated strain before brazing heat increases. Accordingly, the recrystallization nuclei at the time of brazing addition heat increase, and the core material crystal grains after brazing addition heat become fine, so that the erosion resistance decreases. Further, when the total annealing time exceeds 10 hours, the intermetallic compound grows and coarsens, and the intermetallic compound having a particle diameter of 1.0 μm or more increases, so that the density of the intermetallic compound having a particle diameter of 1.0 μm or more is 5000 pieces. / Mm < 2 >, and the erosion resistance also decreases.

また、150〜200℃範囲での昇温速度が20℃/h未満の場合、昇温時に金属間化合物が成長・粗大化して粒径1.0μm以上の金属間化合物が増加するため、粒径1.0μm以上の金属間化合物の密度が5000個/mm未満とならず、かつ、耐エロージョン性も低下する。 In addition, when the rate of temperature increase in the range of 150 to 200 ° C. is less than 20 ° C./h, the intermetallic compound grows and coarsens during the temperature increase, and the intermetallic compound having a particle size of 1.0 μm or more increases. The density of the intermetallic compound of 1.0 μm or more does not become less than 5000 / mm 2 , and the erosion resistance also decreases.

なお、熱間圧延後に焼鈍を行なわない場合、冷間圧延により材料に導入された蓄積ひずみが多くなる。従って、ろう付加熱時の再結晶核が増大してろう付加熱後の心材結晶粒が微細となるため、耐エロージョン性が低下する。   In addition, when annealing is not performed after hot rolling, the accumulated strain introduced into the material by cold rolling increases. Accordingly, the recrystallization nuclei at the time of brazing addition heat increase, and the core material crystal grains after brazing addition heat become fine, so that the erosion resistance decreases.

(心材の製造方法)
心材の製造方法は特に限定されない。例えば、前記した合金を用いて心材用アルミニウム合金を造塊し、所定の鋳造温度で鋳造後、鋳塊を所定温度で所定時間均質化熱処理することにより製造することができる。
(Manufacturing method of core material)
The manufacturing method of a core material is not specifically limited. For example, it can be manufactured by ingoting an aluminum alloy for core material using the above-described alloy, casting at a predetermined casting temperature, and then homogenizing and heat-treating the ingot at a predetermined temperature for a predetermined time.

(ろう材)
ろう材としては、Al−Si系合金もしくは、Al−Si−Zn系合金を用い、心材の少なくとも一方の面にクラッドする。ろう材の具体的な組成成分の例としては、以下のような組成成分が挙げられる。
(Brazing material)
As the brazing material, an Al—Si based alloy or an Al—Si—Zn based alloy is used and clad on at least one surface of the core material. Specific examples of the composition component of the brazing material include the following composition components.

(ろう材:Al−Si系合金において、Si:4〜12質量%)
Siが4質量%未満の場合、液相率が低くなってろう付けが不十分となり、Siが12質量%を超える場合、粗大な初晶Siが発生して成形加工時に割れが生じる。従って、ろう材としてAl−Si系合金を用いる場合は、Siを上記範囲内とすることが好ましい。
(Brazing material: Al: Si alloy, Si: 4 to 12% by mass)
When Si is less than 4% by mass, the liquid phase ratio becomes low and brazing becomes insufficient. When Si exceeds 12% by mass, coarse primary crystal Si is generated and cracks occur during molding. Therefore, when an Al—Si based alloy is used as the brazing material, it is preferable that Si be within the above range.

(ろう材:Al−Si−Zn系合金において、Si:4〜12質量%およびZn:1〜7質量%)
ろう材の電位を卑化させてろう材に犠牲陽極効果を持たせるため、Al−Si系合金にZnを添加したAl−Si−Zn系合金を用いてもよい。但し、Znが1質量%未満の場合、電位卑化の度合いが小さく犠牲防食が不十分となり、Znは7質量%を超える場合、ろう溜り部にZnが濃縮して優先腐食サイトとなる。従って、ろう材としてAl−Si−Zn系合金を用いる場合は、SiおよびZnを上記範囲内とすることが好ましい。
(Brazing material: Al—Si—Zn alloy, Si: 4 to 12% by mass and Zn: 1 to 7% by mass)
In order to make the brazing material have a sacrificial anode effect by lowering the potential of the brazing material, an Al—Si—Zn alloy obtained by adding Zn to an Al—Si alloy may be used. However, when Zn is less than 1% by mass, the degree of potential baseing is small and sacrificial corrosion protection is insufficient, and when Zn exceeds 7% by mass, Zn is concentrated in the brazing reservoir and becomes a preferential corrosion site. Accordingly, when an Al—Si—Zn alloy is used as the brazing material, Si and Zn are preferably within the above range.

(ろう材の不可避的不純物)
なお、ろう材が、例えばCr:0.1質量%以下、Fe:0.3質量%以下(いずれも0質量%を超える)の不可避的不純物を含有していても、本発明の効果を妨げるものではない。
(Inevitable impurities in brazing filler metal)
Even if the brazing material contains unavoidable impurities such as Cr: 0.1% by mass or less and Fe: 0.3% by mass or less (both exceeding 0% by mass), the effect of the present invention is hindered. It is not a thing.

(ろう材の製造方法)
ろう材の製造方法は特に限定されない。例えば、前記した合金を用いてろう材用アルミニウム合金を造塊し、所定の鋳造温度で鋳造後、鋳塊を所定温度で所定時間均質化熱処理することにより製造することができる。
(Method for producing brazing material)
The method for producing the brazing material is not particularly limited. For example, it can be produced by ingot-making an aluminum alloy for brazing filler metal using the above-described alloy, casting at a predetermined casting temperature, and then homogenizing and heat-treating the ingot at a predetermined temperature for a predetermined time.

(犠牲陽極材)
ろう材を心材の一方の面にクラッドした場合、犠牲陽極材を他方の面にクラッドする構成としてもよい。この犠牲陽極材としては、Al−Zn系合金、Al−Si−Zn系合金、Al−Mg−Si−Zn系合金を用いることができる。犠牲陽極材の具体的な組成成分の例としては、以下のような組成成分が挙げられる。
(Sacrificial anode material)
When the brazing material is clad on one surface of the core material, the sacrificial anode material may be clad on the other surface. As the sacrificial anode material, an Al—Zn alloy, an Al—Si—Zn alloy, or an Al—Mg—Si—Zn alloy can be used. Examples of specific composition components of the sacrificial anode material include the following composition components.

(犠牲陽極材:Al−Zn系合金において、Zn:0.5〜5.0質量%)
Znは、犠牲陽極材の電位を卑化し犠牲陽極効果を持たせる。但し、Znが0.5質量%未満の場合、犠牲防食効果が不十分となり、Znが5.0質量%を超える場合、犠牲陽極材と心材との電位差が大きくなって犠牲陽極材の消耗速度が増すため、十分な耐食性を確保できない。従って、犠牲陽極材としてAl−Zn系合金を用いる場合は、Znを上記範囲内とすることが好ましい。
(Sacrificial anode material: In an Al—Zn alloy, Zn: 0.5 to 5.0 mass%)
Zn lowers the potential of the sacrificial anode material and has a sacrificial anode effect. However, when Zn is less than 0.5% by mass, the sacrificial anticorrosive effect is insufficient, and when Zn exceeds 5.0% by mass, the potential difference between the sacrificial anode material and the core material becomes large, and the consumption rate of the sacrificial anode material Therefore, sufficient corrosion resistance cannot be ensured. Accordingly, when an Al—Zn alloy is used as the sacrificial anode material, it is preferable that Zn be within the above range.

(犠牲陽極材:Al−Si−Zn系合金において、Si:0.1〜1.0質量%およびZn:1.0〜6.0質量%)
Siは、犠牲陽極材の強度を高める働きをする。但し、Siが0.1質量%未満の場合、強度を向上させる効果が不十分となり、Siが1.0質量%を超える場合、犠牲陽極材の固相線温度が低下し、ろう付加熱時に溶融する。また、Znが1.0質量%未満の場合、犠牲防食効果が不十分となり、Znが6.0質量%を超える場合、犠牲陽極材と心材との電位差が大きくなって犠牲陽極材の消耗速度が増すため、十分な耐食性を確保できない。従って、犠牲陽極材としてAl−Si−Zn系合金を用いる場合は、SiおよびZnを上記範囲内とすることが好ましい。
(Sacrificial anode material: In an Al—Si—Zn alloy, Si: 0.1 to 1.0 mass% and Zn: 1.0 to 6.0 mass%)
Si serves to increase the strength of the sacrificial anode material. However, when Si is less than 0.1% by mass, the effect of improving the strength is insufficient, and when Si exceeds 1.0% by mass, the solidus temperature of the sacrificial anode material decreases, Melt. In addition, when Zn is less than 1.0% by mass, the sacrificial anticorrosive effect is insufficient, and when Zn exceeds 6.0% by mass, the potential difference between the sacrificial anode material and the core material is increased, and the consumption rate of the sacrificial anode material is increased. Therefore, sufficient corrosion resistance cannot be ensured. Therefore, when an Al—Si—Zn alloy is used as the sacrificial anode material, it is preferable to keep Si and Zn within the above range.

(犠牲陽極材:Al−Mg−Si−Zn系合金において、Mg:1.0〜4.0質量%、Si:0.1〜1.0質量%およびZn:1.0〜6.0質量%)
Mgは、Siと共存することで、MgSiを形成し、ろう付後強度を向上させる。但し、Mgが1.0質量%未満の場合、ろう付後強度を向上させる効果が不十分であり、Mgが4.0質量%を超える場合、犠牲陽極材の固相線温度が低下してろう付加熱時に溶融する。また、Siが0.1質量%未満の場合、強度を向上させる効果が不十分となり、Siが1.0質量%を超える場合、犠牲陽極材の固相線温度が低下してろう付加熱時に溶融する。また、Znが1.0質量%未満の場合、犠牲防食効果が不十分となり、Znが6.0質量%を超える場合、犠牲陽極材と心材との電位差が大きくなって犠牲陽極材の消耗速度が増すため、十分な耐食性を確保できない。従って、犠牲陽極材としてAl−Mg−Si−Zn系合金を用いる場合は、Mg,SiおよびZnを上記範囲内とすることが好ましい。
(Sacrificial anode material: Al—Mg—Si—Zn alloy, Mg: 1.0 to 4.0 mass%, Si: 0.1 to 1.0 mass%, and Zn: 1.0 to 6.0 mass %)
Mg coexists with Si to form Mg 2 Si and improve strength after brazing. However, when Mg is less than 1.0% by mass, the effect of improving the strength after brazing is insufficient, and when Mg exceeds 4.0% by mass, the solidus temperature of the sacrificial anode material is lowered. Melts during brazing heat. In addition, when Si is less than 0.1% by mass, the effect of improving the strength is insufficient, and when Si exceeds 1.0% by mass, the solidus temperature of the sacrificial anode material is lowered and during brazing additional heat. Melt. In addition, when Zn is less than 1.0% by mass, the sacrificial anticorrosive effect is insufficient, and when Zn exceeds 6.0% by mass, the potential difference between the sacrificial anode material and the core material is increased, and the consumption rate of the sacrificial anode material is increased. Therefore, sufficient corrosion resistance cannot be ensured. Therefore, when an Al—Mg—Si—Zn alloy is used as the sacrificial anode material, it is preferable that Mg, Si and Zn are within the above range.

なお、犠牲陽極材はこれらに限定されるものではなく、他にAl−Si−Mn−Zn系、Al−Mg−Zn系を用いても良い。また、本発明はろう材側からの心材へのろう侵食(エロージョン)に関するものであるため、犠牲陽極材の合金種には影響を受けない。   Note that the sacrificial anode material is not limited to these, and an Al—Si—Mn—Zn system or an Al—Mg—Zn system may be used. In addition, since the present invention relates to brazing erosion (erosion) of the core material from the brazing material side, it is not affected by the alloy type of the sacrificial anode material.

(犠牲陽極材の不可避的不純物)
なお、犠牲陽極材が、例えばCr:0.1質量%以下、Zr:0.2質量%以下、Fe:0.3質量%以下(いずれも0質量%を超える)の不可避的不純物を含有していても、本発明の効果を妨げるものではない。
(Inevitable impurities in sacrificial anode materials)
The sacrificial anode material contains inevitable impurities such as Cr: 0.1% by mass or less, Zr: 0.2% by mass or less, Fe: 0.3% by mass or less (both exceeding 0% by mass). However, this does not hinder the effects of the present invention.

(犠牲陽極材の製造方法)
犠牲陽極材の製造方法は特に限定されない。例えば、前記した合金を用いて犠牲陽極材用アルミニウム合金を造塊し、所定の鋳造温度で鋳造後、鋳塊を所定温度で所定時間均質化熱処理することにより製造することができる。
(Sacrificial anode material manufacturing method)
The method for producing the sacrificial anode material is not particularly limited. For example, an aluminum alloy for sacrificial anode material can be ingoted using the above-described alloy, cast at a predetermined casting temperature, and then ingot can be manufactured by homogenizing heat treatment at a predetermined temperature for a predetermined time.

(アルミニウム合金ブレージングシート)
実施形態に係るアルミニウム合金ブレージングシートは、前記したように、心材の少なくとも一方の面にろう材がクラッドされた二層あるいは三層のシートである。また、実施形態に係るアルミニウム合金ブレージングシートは、前記したように、心材の一方の面にろう材をクラッドし、心材の他方の面に犠牲陽極材をクラッドした三層のシートとすることもできる。
(Aluminum alloy brazing sheet)
As described above, the aluminum alloy brazing sheet according to the embodiment is a two-layer or three-layer sheet in which a brazing material is clad on at least one surface of a core material. In addition, as described above, the aluminum alloy brazing sheet according to the embodiment may be a three-layer sheet in which a brazing material is clad on one surface of a core material and a sacrificial anode material is clad on the other surface of the core material. .

(アルミニウム合金ブレージングシートの製造方法)
実施形態に係るアルミニウム合金ブレージングシートは、前記した製造方法で製造した心材、ろう材および犠牲陽極材を組み合わせることで製造することができる。例えば、心材にろう材または犠牲陽極材を重ねて熱間圧延を行ない、所定の巻き取り温度でコイルに巻き取った後、冷間圧延、中間焼鈍、冷間圧延を施すことにより製造することができる。また、熱間圧延後、所定の巻き取り温度でコイルに巻き取った後、冷間圧延、最終焼鈍を施すことにより製造することもできる。さらに、熱間圧延後、所定の巻き取り温度でコイルに巻き取った後、冷間圧延、中間焼鈍、冷間圧延、最終焼鈍を施すことにより製造することもできる。ろう材および犠牲陽極材のクラッド率は、5〜25%の範囲、例えば15%前後とすることが好ましい。
(Aluminum alloy brazing sheet manufacturing method)
The aluminum alloy brazing sheet according to the embodiment can be manufactured by combining the core material, the brazing material, and the sacrificial anode material manufactured by the above-described manufacturing method. For example, it can be manufactured by superposing a brazing material or a sacrificial anode material on a core material, performing hot rolling, winding the coil at a predetermined winding temperature, and then performing cold rolling, intermediate annealing, and cold rolling. it can. In addition, after hot rolling, it can be produced by winding it in a coil at a predetermined winding temperature, followed by cold rolling and final annealing. Furthermore, after hot rolling, after winding on a coil at a predetermined winding temperature, it can be manufactured by performing cold rolling, intermediate annealing, cold rolling, and final annealing. The clad rate of the brazing material and the sacrificial anode material is preferably in the range of 5 to 25%, for example, around 15%.

なお、前記したように、熱間圧延後の巻き取り温度は360℃未満とし、熱間圧延後の焼鈍は、焼鈍温度:200℃以上400℃以下、焼鈍合計時間:1h以上10h以下、150〜200℃範囲での昇温速度:20℃/h以上、として行う。このような条件で焼鈍を行うことにより、心材内部における粒径1.0μm以上のMg−Si系、Al−Mg−Cu系、Al−Cu−Mg−Si系金属間化合物の密度を5000個/mm未満に制御することができる。 In addition, as mentioned above, the coiling temperature after hot rolling shall be less than 360 degreeC, and annealing after hot rolling is annealing temperature: 200 degreeC or more and 400 degrees C or less, total annealing time: 1 h or more and 10 h or less, 150- The heating rate in the 200 ° C. range is 20 ° C./h or more. By performing annealing under such conditions, the density of Mg-Si, Al—Mg—Cu, and Al—Cu—Mg—Si intermetallic compounds having a particle size of 1.0 μm or more inside the core material is 5000 / It can be controlled to be less than mm 2 .

次に、本発明に係るアルミニウム合金ブレージングシートについて、本発明の要件を満たす実施例と、本発明の要件を満たさない比較例と、を対比して具体的に説明する。   Next, the aluminum alloy brazing sheet according to the present invention will be specifically described by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.

(アルミニウム合金ブレージングシートの製造)
表1に示す組成を有するA1〜A24の心材、Al−10質量%Si合金もしくはAl−8質量%Si−2質量%Zn合金ろう材、Al−4質量%Zn合金の犠牲陽極材をDC鋳造により造塊し、各々所望の厚さまで両面を面削した。そして、ろう材および犠牲陽極材にはそれぞれ均質化処理を施し、ろう材−心材−犠牲陽極材の順で組み合わせて530℃×4hの加熱を施した後、3.0mm厚まで熱間圧延し、表3に示す熱延後巻き取り温度でコイルに巻き取った。なお、ろう材および犠牲陽極材のクラッド率は15%とした。
(Manufacture of aluminum alloy brazing sheet)
DC casting of core materials of A1 to A24 having the composition shown in Table 1, Al-10 mass% Si alloy or Al-8 mass% Si-2 mass% Zn alloy brazing material, Al-4 mass% Zn alloy sacrificial anode material And both sides were chamfered to a desired thickness. The brazing material and the sacrificial anode material are each subjected to homogenization treatment, heated in combination of the brazing material, the core material, and the sacrificial anode material in order of 530 ° C. × 4 h, and then hot-rolled to a thickness of 3.0 mm. The coil was wound around the coil at the coiling temperature after hot rolling shown in Table 3. The clad rate of the brazing material and the sacrificial anode material was 15%.

また、熱間圧延後、冷間圧延により0.5mmとした後、表2に示した条件で中間焼鈍を施し、その後、冷間圧延により0.25mmの板材とし、最終的に表2に示した条件で最終焼鈍を施した。また、熱間圧延および冷間圧延の後に中間焼鈍または最終焼鈍を施さない板材も用意した。   In addition, after hot rolling, the thickness is set to 0.5 mm by cold rolling, and then subjected to intermediate annealing under the conditions shown in Table 2, and thereafter, a plate material of 0.25 mm is obtained by cold rolling, and finally shown in Table 2. The final annealing was performed under the conditions. Moreover, the board | plate material which does not give intermediate annealing or final annealing after hot rolling and cold rolling was also prepared.

次に、前記したように作製したアルミニウム合金ブレージングシートを供試材とし、供試材の金属間化合物の密度 [個/mm]、ろう付後強度、ろう付性、成形性、耐食性、ろう付後心材結晶粒径、耐エロージョン性、を下記に示す方法で測定・評価し、それらの結果を表3に示した。なお、本実施例においては、これらの評価項目の全てが良好と評価されたものを本発明の要件を満たす実施例とし、これらの評価項目の一つでも不良と評価されたものを本発明の要件を満たさない比較例とした。 Next, using the aluminum alloy brazing sheet prepared as described above as a test material, the density of the intermetallic compound of the test material [piece / mm 2 ], strength after brazing, brazing, formability, corrosion resistance, brazing The attached core material crystal grain size and erosion resistance were measured and evaluated by the methods shown below, and the results are shown in Table 3. In this example, all of these evaluation items are evaluated as good examples that satisfy the requirements of the present invention, and even one of these evaluation items is evaluated as defective. It was set as the comparative example which does not satisfy | fill requirements.

Figure 2011241435
Figure 2011241435

Figure 2011241435
Figure 2011241435

Figure 2011241435
Figure 2011241435

(金属間化合物の密度 [個/mm]の測定)
金属間化合物の密度は、心材のL−LT面をST方向に心材中央部まで両面から研磨し、透過型電子顕微鏡を用いた観察によって測定した。観察箇所は、等厚干渉縞から観察部の膜厚を測定し、膜厚が0.1〜0.3μmである箇所のみとした。そして、各サンプルを10視野ずつ20000倍で観察し、それぞれの視野でのTEM写真を画像解析することで、ろう付後の粒径1.0μm以上の金属間化合物の密度を求め、各10視野から求めた値を平均することで、金属間化合物の密度を測定した。
(Measurement of density of intermetallic compound [pieces / mm 2 ])
The density of the intermetallic compound was measured by polishing the L-LT surface of the core material from both sides in the ST direction to the center portion of the core material, and using a transmission electron microscope. The observation part measured only the film thickness of the observation part from the equal-thickness interference fringes, and it was only the part where the film thickness was 0.1 to 0.3 μm. Then, each sample was observed at 20000 magnifications with 10 fields of view, and the density of an intermetallic compound having a particle size of 1.0 μm or more after brazing was determined by image analysis of a TEM photograph in each field. The density of the intermetallic compound was measured by averaging the values obtained from 1.

(ろう付後強度の評価)
ろう付後強度は、供試材を600℃×3分間のろう付けを模した条件で加熱処理した後に室温で7日間保持し、引張方向が圧延方向と平行となるように、JIS5号試験片に加工し、室温で引張試験を実施することにより測定した。そして、引張強さが160MPa以上のものを良好「○」と評価し、引張強さが160MPa未満のものを不良「×」と評価した。また、加熱処理後に心材が溶解して評価不能であったものを評価不能「−」と評価した。
(Evaluation of strength after brazing)
The strength after brazing is JIS No. 5 test piece so that the specimen is heat-treated under conditions simulating brazing at 600 ° C. for 3 minutes and then held at room temperature for 7 days so that the tensile direction is parallel to the rolling direction. And measured by performing a tensile test at room temperature. And those having a tensile strength of 160 MPa or more were evaluated as good “◯”, and those having a tensile strength of less than 160 MPa were evaluated as “bad”. Moreover, the core material dissolved after the heat treatment was evaluated as “−” that could not be evaluated because it could not be evaluated.

(ろう付性の評価)
ろう付性は、「アルミニウムブレージングハンドブック 改訂版(竹本正ら著、軽金属溶接構造協会、2003年3月発行)」の132〜136頁に記載されている評価方法により評価した。すなわち、水平に置いた下板(3003Al合金板(厚さ1.0mm×縦幅25mm×横幅60mm))と、この下板に対して垂直に立てて配置した上板(供試材(厚さ0.3mm×縦幅25mm×横幅55mm))との間に、φ2mmのステンレス製スペーサを挟んで、一定のクリアランスを設定した。また、上板の供試材のろう材面側にフラックス(森田化学工業株製FL−7)を5g/m塗布した。そして、間隙充填長さが15mm以上のものを良好「○」と評価し、間隙充填長さが15mm未満を不良「×」と評価した。
(Evaluation of brazing)
The brazing property was evaluated by the evaluation method described on pages 132 to 136 of “Aluminum Brazing Handbook Revised Edition (by Tadashi Takemoto et al., Light Metal Welding Structure Association, March 2003)”. That is, a lower plate (3003Al alloy plate (thickness 1.0 mm × length 25 mm × width 60 mm)) placed horizontally and an upper plate (test material (thickness) 0.3 mm × vertical width 25 mm × horizontal width 55 mm)), and a certain clearance was set by sandwiching a φ2 mm stainless steel spacer. Further, 5 g / m 2 of flux (FL-7 manufactured by Morita Chemical Co., Ltd.) was applied to the brazing material surface side of the test material on the upper plate. A gap filling length of 15 mm or more was evaluated as good “◯”, and a gap filling length of less than 15 mm was evaluated as defective “x”.

(成形性の評価)
成形性は、供試材を加熱処理する前に、ろう材面側に張り出すように、「JIS Z 2247」によりエリクセン試験を行い、張り出し高さを測定することにより評価した。そして、張り出し高さが8mm以下のものを良好「○」と評価し、張り出し高さが8mm未満のものを不良「×」と評価した。
(Evaluation of formability)
Formability was evaluated by performing an Erichsen test according to “JIS Z 2247” and measuring the overhang height so as to overhang the brazing material surface before heat-treating the test material. And the thing with overhang height of 8 mm or less was evaluated as favorable "(circle)", and the thing with overhang height less than 8 mm was evaluated as defect "x".

(耐食性の評価)
耐食性は、供試材を600℃×3分間のろう付けを模した条件で加熱処理した後に、犠牲陽極材側を試験面として、3ヶ月間OY水浸漬試験を行い、腐食深さを測定することにより評価した。そして、腐食深さが40μm未満のものを良好「○」と評価し、腐食深さが40μm以上のものを不良「×」と評価した。
(Evaluation of corrosion resistance)
Corrosion resistance is measured by subjecting the specimen to heat treatment under conditions simulating brazing at 600 ° C. for 3 minutes, then performing an OY water immersion test for 3 months using the sacrificial anode material side as a test surface, and measuring the corrosion depth. It was evaluated by. And the thing whose corrosion depth is less than 40 micrometers was evaluated as favorable "(circle)", and the thing whose corrosion depth is 40 micrometers or more was evaluated as defect "x".

(ろう付後心材結晶粒径の測定および評価)
ろう付後心材結晶粒径は、600℃×3分間のろう付けを模した条件で加熱処理をした後に、好適な大きさに切断した後、L−ST面を研磨するとともに電解液でエッチングし、研磨面を100倍で写真撮影して観察し、心材の圧延方向の結晶粒径を切片法により測定した。なお、結晶粒径は5箇所の平均値とした。そして、ろう付後心材結晶粒径が120μm以上のものを最も良好「◎」と評価し、ろう付後心材結晶粒径が100μm以上120μm未満のものを良好「○」と評価し、ろう付後心材結晶粒径が100μm未満のものを不良「×」と評価した。
(Measurement and evaluation of core particle size after brazing)
After brazing, the core particle size is 600 ° C. × 3 minutes after the heat treatment, and after cutting to a suitable size, the L-ST surface is polished and etched with an electrolyte. The polished surface was photographed at a magnification of 100 and observed, and the crystal grain size in the rolling direction of the core material was measured by the intercept method. The crystal grain size was an average value at five locations. Then, the core particle diameter after brazing of 120 μm or more is evaluated as “Good”, and the core particle diameter after brazing of 100 μm or more and less than 120 μm is evaluated as “Good”. A core material having a crystal grain size of less than 100 μm was evaluated as a defective “x”.

(耐エロージョン性の評価)
耐エロージョン性の評価は、ろう付後供試材を切り出し、樹脂に埋め込んで断面を研磨し、その研磨面を光学顕微鏡にて心材へのろうの侵食度合い(エロージョン度合い)を観察することで行った。そして、心材残存率(ろう付相当加熱後におけるエロージョン最悪部の心材残存厚/加熱前の心材厚×100)が70%以上のものを良好「○」と評価し、心材残存率が70%未満のものを不良「×」と評価した。
(Evaluation of erosion resistance)
Evaluation of erosion resistance is performed by cutting out the test material after brazing, embedding it in a resin, polishing the cross section, and observing the degree of erosion (erosion degree) of the wax on the core material with an optical microscope. It was. A core material remaining rate (core material remaining thickness at the worst part of erosion after brazing equivalent heating / core material thickness before heating × 100) is evaluated as good “◯”, and the core material remaining rate is less than 70%. Were evaluated as defective “x”.

表3に示すように、No.1〜20の供試材は、本発明の要件を満たすため、ろう付後強度、ろう付性、成形性、耐食性、ろう付後心材結晶粒径、耐エロージョン性が良好な結果となった。一方、No.31〜54の供試材は、本発明の規定する要件を満たさないため、ろう付後強度、ろう付性、成形性、耐食性、ろう付後心材結晶粒径、耐エロージョン性のいずれかが不良な結果となった。   As shown in Table 3, no. Since the test materials 1 to 20 satisfy the requirements of the present invention, the post-brazing strength, the brazing property, the moldability, the corrosion resistance, the post-brazing core material crystal grain size, and the erosion resistance were satisfactory. On the other hand, no. Since the specimens 31 to 54 do not satisfy the requirements stipulated by the present invention, any of strength after brazing, brazing, formability, corrosion resistance, core grain size after brazing, and erosion resistance is poor. It became a result.

具体的には、No.31の供試材は、心材中のSiが0.3質量%未満であるため、ろう付後強度が低かった。また、No.32の供試材は、心材中のSiが1.0質量%を超えるため、ろう付加熱時に心材が溶融して評価ができなかった。   Specifically, no. Since the sample material of 31 had less than 0.3% by mass of Si in the core material, the strength after brazing was low. No. In the specimen No. 32, since Si in the core material exceeded 1.0 mass%, the core material melted during brazing addition heat and evaluation could not be performed.

No.33の供試材は、心材中のMnが0.6質量%未満であるため、ろう付後強度が低かった。また、No.34の供試材は、心材中のMnが2.0質量%を超えるため、成形性が低かった。   No. The specimen No. 33 had a low strength after brazing because Mn in the core was less than 0.6% by mass. No. Since the Mn in the core material exceeded 2.0% by mass, the sample material of 34 had low formability.

No.35の供試材は、心材中のCuが0.3質量%未満であるため、ろう付後強度が低かった。また、No.36の供試材は、心材中のCuが1.0質量%を超えるため、ろう付加熱時に心材が溶融して評価ができなかった。   No. Since the test material No. 35 contained less than 0.3% by mass of Cu in the core material, the strength after brazing was low. No. Since the sample material of 36 exceeded 1.0% by mass of Cu in the core material, it could not be evaluated because the core material melted during brazing heat application.

No.37の供試材は、心材中のMgが0.15量%未満であるため、ろう付後強度が低かった。また、No.38の供試材は、心材中のMgが0.5質量%を超えるため、ろう付性が低かった。   No. Since the sample material of 37 had less than 0.15% by weight of Mg in the core material, the strength after brazing was low. No. The 38 specimens had low brazeability because Mg in the core material exceeded 0.5 mass%.

No.39の供試材は、心材中のTiが0.05量%未満であるため、耐食性が低かった。また、No.40の供試材は、心材中のTiが0.25質量%を超えるため、成形性が低かった。   No. The test material No. 39 had low corrosion resistance because Ti in the core material was less than 0.05% by weight. No. Forty test materials had low formability because Ti in the core material exceeded 0.25 mass%.

No.41〜52の供試材は、中間焼鈍または最終焼鈍の焼鈍条件が、温度範囲200℃以上400℃以下、焼鈍合計時間1h以上10h以下、150〜200℃範囲での昇温速度20℃/h以上、のいずれかの条件を満たさないため、粒径1.0μm以上の金属間化合物の密度が5000個/mm未満とならず、かつ、耐エロージョン性も低かった。 No. In the specimens 41 to 52, the annealing conditions for intermediate annealing or final annealing are in a temperature range of 200 ° C. to 400 ° C., a total annealing time of 1 h to 10 h, and a temperature increase rate in the range of 150 to 200 ° C. 20 ° C./h. Since either of the above conditions was not satisfied, the density of the intermetallic compound having a particle diameter of 1.0 μm or more did not become less than 5000 / mm 2 , and the erosion resistance was also low.

No.53の供試材は、熱延後巻き取り温度が360℃以上であるため、粒径1.0μm以上の金属間化合物の密度が5000個/mm未満とならず、かつ、耐エロージョン性も低かった。 No. The sample material No. 53 has a coiling temperature of 360 ° C. or higher after hot rolling, so that the density of intermetallic compounds having a particle size of 1.0 μm or more does not become less than 5000 / mm 2 , and the erosion resistance is also good. It was low.

以上、本発明に係るアルミニウム合金ブレージングシートについて、発明を実施するための最良の形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。   As mentioned above, the aluminum alloy brazing sheet according to the present invention has been specifically described by the best mode and examples for carrying out the invention, but the gist of the present invention is not limited to these descriptions, and the claims Should be interpreted broadly based on the description of the scope. Needless to say, various changes and modifications based on these descriptions are also included in the spirit of the present invention.

Claims (2)

心材の少なくとも一方の面に、Al−Si系もしくはAl−Si−Zn系ろう材をクラッドしたアルミニウム合金ブレージングシートであって、
前記心材は、Si:0.3〜1.0質量%、Mn:0.6〜2.0質量%、Cu:0.3〜1.0質量%、Mg:0.15〜0.5質量%、Ti:0.05〜0.25質量%を含有し、残部がAlと不可避的不純物からなり、
前記心材内部における粒径1.0μm以上のMg−Si系、Al−Mg−Cu系、Al−Cu−Mg−Si系金属間化合物の密度が5000個/mm未満であることを特徴とするアルミニウム合金ブレージングシート。
An aluminum alloy brazing sheet in which at least one surface of a core material is clad with an Al-Si-based or Al-Si-Zn-based brazing material,
The core material is Si: 0.3 to 1.0 mass%, Mn: 0.6 to 2.0 mass%, Cu: 0.3 to 1.0 mass%, Mg: 0.15 to 0.5 mass% %, Ti: 0.05 to 0.25% by mass, the balance is made of Al and inevitable impurities,
The density of Mg—Si, Al—Mg—Cu, and Al—Cu—Mg—Si intermetallic compounds having a particle size of 1.0 μm or more inside the core is less than 5000 / mm 2. Aluminum alloy brazing sheet.
心材の一方の面にAl−Si系もしくはAl−Si−Zn系ろう材をクラッドし、前記心材の他方の面に犠牲陽極材をクラッドしたアルミニウム合金ブレージングシートであって、
前記心材は、Si:0.3〜1.0質量%、Mn:0.6〜2.0質量%、Cu:0.3〜1.0質量%、Mg:0.15〜0.5質量%、Ti:0.05〜0.25質量%を含有し、残部がAlと不可避的不純物からなり、
前記心材内部における粒径1.0μm以上のMg−Si系、Al−Mg−Cu系、Al−Cu−Mg−Si系金属間化合物の密度が5000個/mm未満であることを特徴とするアルミニウム合金ブレージングシート。
An aluminum alloy brazing sheet in which an Al-Si or Al-Si-Zn brazing material is clad on one surface of a core material and a sacrificial anode material is clad on the other surface of the core material,
The core material is Si: 0.3 to 1.0 mass%, Mn: 0.6 to 2.0 mass%, Cu: 0.3 to 1.0 mass%, Mg: 0.15 to 0.5 mass% %, Ti: 0.05 to 0.25% by mass, the balance is made of Al and inevitable impurities,
The density of Mg—Si, Al—Mg—Cu, and Al—Cu—Mg—Si intermetallic compounds having a particle size of 1.0 μm or more inside the core is less than 5000 / mm 2. Aluminum alloy brazing sheet.
JP2010113950A 2010-05-18 2010-05-18 Aluminum alloy brazing sheet Expired - Fee Related JP5466080B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010113950A JP5466080B2 (en) 2010-05-18 2010-05-18 Aluminum alloy brazing sheet
US13/099,590 US8247083B2 (en) 2010-05-18 2011-05-03 Aluminium alloy brazing sheet
CN2011101346446A CN102251155B (en) 2010-05-18 2011-05-16 Aluminum alloy brazing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113950A JP5466080B2 (en) 2010-05-18 2010-05-18 Aluminum alloy brazing sheet

Publications (2)

Publication Number Publication Date
JP2011241435A true JP2011241435A (en) 2011-12-01
JP5466080B2 JP5466080B2 (en) 2014-04-09

Family

ID=45408403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113950A Expired - Fee Related JP5466080B2 (en) 2010-05-18 2010-05-18 Aluminum alloy brazing sheet

Country Status (1)

Country Link
JP (1) JP5466080B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234376A (en) * 2012-05-11 2013-11-21 Furukawa-Sky Aluminum Corp High strength aluminum alloy brazing sheet and method for manufacturing the same
WO2014157116A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Brazed structure
JP2023511790A (en) * 2020-04-08 2023-03-22 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング High-strength solder-plated Al-Mg-Si aluminum material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483396A (en) * 1987-09-22 1989-03-29 Furukawa Aluminium Brazing sheet made of aluminum
JPH03281761A (en) * 1990-03-29 1991-12-12 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy brazing sheet excellent in brazability and corrosion resistance
JP2008246525A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Brazing sheet made of aluminum alloy and its manufacturing method
JP2009024221A (en) * 2007-07-19 2009-02-05 Furukawa Sky Kk Aluminum alloy brazing sheet having high-strength
JP2009022981A (en) * 2007-07-19 2009-02-05 Furukawa Sky Kk Aluminum alloy brazing sheet having high-strength and production method therefor
JP2010095769A (en) * 2008-10-17 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483396A (en) * 1987-09-22 1989-03-29 Furukawa Aluminium Brazing sheet made of aluminum
JPH03281761A (en) * 1990-03-29 1991-12-12 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy brazing sheet excellent in brazability and corrosion resistance
JP2008246525A (en) * 2007-03-29 2008-10-16 Kobe Steel Ltd Brazing sheet made of aluminum alloy and its manufacturing method
JP2009024221A (en) * 2007-07-19 2009-02-05 Furukawa Sky Kk Aluminum alloy brazing sheet having high-strength
JP2009022981A (en) * 2007-07-19 2009-02-05 Furukawa Sky Kk Aluminum alloy brazing sheet having high-strength and production method therefor
JP2010095769A (en) * 2008-10-17 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234376A (en) * 2012-05-11 2013-11-21 Furukawa-Sky Aluminum Corp High strength aluminum alloy brazing sheet and method for manufacturing the same
WO2014157116A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Brazed structure
JP2014198892A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Brazed joint structure
US10369665B2 (en) 2013-03-29 2019-08-06 Kobe Steel, Ltd. Brazed structure
JP2023511790A (en) * 2020-04-08 2023-03-22 スペイラ ゲゼルシャフト ミット ベシュレンクテル ハフツング High-strength solder-plated Al-Mg-Si aluminum material

Also Published As

Publication number Publication date
JP5466080B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US8247083B2 (en) Aluminium alloy brazing sheet
JP4473908B2 (en) Aluminum alloy clad material for heat exchanger and manufacturing method thereof
JP5793336B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP5466409B2 (en) Aluminum alloy clad material for heat exchanger
JP2019131890A (en) Strip having excellent corrosion resistance after blazing
JP5491927B2 (en) Aluminum alloy brazing sheet
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP6147470B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP2009024221A (en) Aluminum alloy brazing sheet having high-strength
JPWO2015107982A1 (en) Aluminum alloy material and manufacturing method thereof, and aluminum alloy clad material and manufacturing method thereof
JP6557476B2 (en) Aluminum alloy fin material
CN108884522B (en) Aluminum alloy clad material and method for producing aluminum alloy clad material
JP6154645B2 (en) Brazed joint structure
JP6047304B2 (en) High strength aluminum alloy brazing sheet and method for producing the same
JP2005232506A (en) Aluminum alloy clad material for heat exchanger
JP5462706B2 (en) Aluminum alloy brazing sheet
JP6219770B2 (en) Aluminum alloy laminate
JP5537256B2 (en) Aluminum alloy brazing sheet
JP2011068933A (en) Aluminum alloy clad material for heat exchanger
JP5466080B2 (en) Aluminum alloy brazing sheet
JP2005232507A (en) Aluminum alloy clad material for heat exchanger
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP5823899B2 (en) Aluminum alloy brazing sheet
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP2010270387A (en) Aluminum alloy fin material for heat exchanger and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5466080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees