JP2011241433A - Resin-coated aluminum alloy sheet and method for production thereof - Google Patents

Resin-coated aluminum alloy sheet and method for production thereof Download PDF

Info

Publication number
JP2011241433A
JP2011241433A JP2010113709A JP2010113709A JP2011241433A JP 2011241433 A JP2011241433 A JP 2011241433A JP 2010113709 A JP2010113709 A JP 2010113709A JP 2010113709 A JP2010113709 A JP 2010113709A JP 2011241433 A JP2011241433 A JP 2011241433A
Authority
JP
Japan
Prior art keywords
mass
less
aluminum alloy
cold rolling
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113709A
Other languages
Japanese (ja)
Other versions
JP5697895B2 (en
Inventor
Takeho Oba
大場建穂
Satoru Suzuki
鈴木覚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2010113709A priority Critical patent/JP5697895B2/en
Publication of JP2011241433A publication Critical patent/JP2011241433A/en
Application granted granted Critical
Publication of JP5697895B2 publication Critical patent/JP5697895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin-coated aluminum alloy sheet desirable for a beverage can body, which is subjected to DI processing and subsequent coating and baking and is excellent in strength and formability, and to provide a method for the production thereof.SOLUTION: The resin-coated aluminum alloy sheet includes: an aluminum alloy sheet constituted from an Al alloy comprising 0.4-0.8 mass% Mg, more than 0.5 to 1.5 mass% Si, 0.01-0.4 mass% Cu, and 0.01 to less than 0.4 mass% Mn, with the balance comprising Al and unavoidable impurities; and a resin film applied on the surface of the aluminum alloy sheet; and is characterized in that its proof strength after being subjected to a heat treatment at 200°C for 10 min is 260 MPa or higher. The method for the production thereof is also provided.

Description

本発明は、飲料缶胴などに好適に用いられる樹脂被覆アルミニウム合金板及びその製造方法に関する。   The present invention relates to a resin-coated aluminum alloy plate suitably used for beverage can bodies and the like and a method for producing the same.

飲料缶等には、アルミニウム合金板に塗油を施し、カッピング、DI(Drawingand Ironing:深絞りとしごき)成形を施して缶胴とし、トリミング、洗浄、乾燥、外面及び内面の塗装焼付処理、ネッキング、ならびに、フランジ加工を行い、これに飲料を充填し、缶蓋の巻き締めを行った2ピ−ス缶が多く用いられている。また、最近では、生産性向上及び作業環境改善を目的として、DI成形前のアルミニウム合金板に樹脂フィルムを被覆し、DI成形後の洗浄、乾燥、外面及び内面の塗装焼付処理工程を省略する方法がとられるようになっている。前述のアルミニウム合金板はアルミニウム合金鋳塊を均質化処理後に熱間圧延を行い、必要に応じて焼鈍を施し、次いで冷間圧延を行うことで製造される。   For beverage cans, etc., oil is applied to an aluminum alloy plate, cupping and DI (Drawing and Ironing) molding is performed to form a can body, trimming, washing, drying, exterior and interior coating baking treatment, necking In addition, two-piece cans that have been subjected to flange processing, filled with a beverage, and wound with a can lid are often used. Also, recently, for the purpose of improving productivity and working environment, a resin film is coated on an aluminum alloy plate before DI molding, and cleaning, drying, and exterior and inner surface coating baking processes after DI molding are omitted. Is to be taken. The above-mentioned aluminum alloy sheet is manufactured by performing hot rolling after homogenizing the aluminum alloy ingot, annealing as necessary, and then performing cold rolling.

近年、飲料缶のコストダウンの必要性から、飲料缶胴用アルミニウム合金板については薄肉化と高強度化が進んでいる。加えて、成形加工時には成形加工性が良好で、さらに塗装焼付処理時における加熱による強度低下がない等の特性が要求されている。   In recent years, due to the need to reduce the cost of beverage cans, the aluminum alloy plates for beverage can bodies are becoming thinner and stronger. In addition, characteristics such as good moldability at the time of the molding process and no reduction in strength due to heating during the baking process are required.

従来、飲料缶胴の用途には、Al−Mn−Mg系のJIS3004合金等の非熱処理型アルミニウム合金が用いられていた。しかしながら、JIS3004合金では塗装焼付処理時の加熱により強度低下が生じるという欠点があった。   Conventionally, non-heat-treatable aluminum alloys such as Al-Mn-Mg JIS3004 alloys have been used for beverage can bodies. However, the JIS 3004 alloy has a drawback in that strength is reduced by heating during the baking process.

このため、時効硬化により塗装焼付処理後の強度向上を図ることができるAl−Mg−Si系合金を使用した飲料缶胴用アルミニウム合金板とその製造方法が、例えば、特許文献1に提案されている。この製造方法では、アルミニウム合金板の必須元素としてのMg、Si、Cu、Mn、Znの各含有量を規定するとともに、最終の冷間圧延の温度、ならびに、中間焼鈍後から最終の冷間圧延前までの冷間圧延温度を規定することが記載されている。しかしながら、最終の冷間圧延温度が100〜200℃と高く、塗装焼付処理後の強度に優れるアルミニウム合金板を製造する点では未だ不十分であり改善の余地を残していた。   For this reason, for example, Patent Document 1 proposes an aluminum alloy plate for a beverage can body using an Al-Mg-Si alloy that can improve the strength after the baking process by age hardening. Yes. In this production method, the contents of Mg, Si, Cu, Mn, and Zn as essential elements of the aluminum alloy sheet are specified, the temperature of the final cold rolling, and the final cold rolling after the intermediate annealing It is described that the cold rolling temperature up to now is specified. However, the final cold rolling temperature is as high as 100 to 200 ° C., and it is still inadequate in terms of producing an aluminum alloy sheet that is excellent in strength after paint baking treatment, leaving room for improvement.

特許文献2には、従来のAl−Mn−Mg系のアルミニウム合金を通常のDI缶胴用材料として使用する場合、DI成形時の成形性向上のために伸び率を確保する目的で、アルミニウム合金板の回復が進むように冷間圧延後の温度を規定することが記載されている。   In Patent Document 2, when a conventional Al-Mn-Mg-based aluminum alloy is used as an ordinary DI can body material, an aluminum alloy is used for the purpose of securing elongation for improving formability during DI molding. It describes that the temperature after cold rolling is regulated so that the plate recovers.

しかしながら、本発明のような樹脂被覆アルミニウム合金板においては、樹脂フィルムをアルミニウム合金板に被覆する際に加熱処理が施されることが多く、そのため冷間圧延後の温度による回復が進まなくとも、樹脂被覆の際の加熱により回復が進み、DI成形時の成形性は十分に確保できる。むしろ、DI成形時の成形性向上を目的としてアルミニウム合金板の回復が進むような温度に冷間圧延後の温度を制御した場合、塗装焼付処理前に時効し、本来の塗装焼付処理時の時効硬化による強度向上が不十分となる問題が生じてしまう。   However, in the resin-coated aluminum alloy plate as in the present invention, heat treatment is often performed when the resin film is coated on the aluminum alloy plate, and therefore, even if recovery due to temperature after cold rolling does not proceed, Recovery proceeds by heating during resin coating, and the moldability during DI molding can be sufficiently secured. Rather, if the temperature after cold rolling is controlled so that the recovery of the aluminum alloy sheet progresses for the purpose of improving the formability during DI forming, it is aged before the coating baking process, and the aging during the original coating baking process. The problem that the strength improvement by hardening becomes inadequate arises.

特開昭61−261466号公報JP-A-61-261466 特開2004−300537号公報JP 2004-3000537 A

本願発明は、上記従来技術における問題に鑑み、DI成形後に塗装焼付処理を施す飲料缶胴用に好適な、強度及び成形性に優れた樹脂被覆アルミニウム合金板及びその製造方法を提供することを目的とする。   In view of the above problems in the prior art, the present invention aims to provide a resin-coated aluminum alloy plate excellent in strength and formability and suitable for a beverage can body subjected to paint baking after DI molding, and a method for producing the same. And

発明者らは、上記目的を達成するために鋭意研究の結果、Al−Mg−Si系の熱処理型アルミニウム合金を用い、溶体化処理を施した後の冷間圧延後の温度履歴を適正化することにより、強度及び成形性に優れ、更に従来の合金よりも塗装焼付処理後の強度に優れる樹脂被覆アルミニウム合金板とその製造方法を見出し、本願発明を完成するに至ったものである。   As a result of intensive studies to achieve the above object, the inventors use an Al—Mg—Si heat-treatable aluminum alloy and optimize the temperature history after cold rolling after solution treatment. Thus, the present inventors have found a resin-coated aluminum alloy plate excellent in strength and formability, and more excellent in strength after paint baking than conventional alloys, and a method for producing the same, and has completed the present invention.

すなわち、本発明は請求項1において、Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金から構成されるアルミニウム合金板と、当該アルミニウム合金板の少なくとも一方の表面に被覆された樹脂フィルムとを備え、200℃で10分間の熱処理を施した後の耐力が260MPa以上であることを特徴とする樹脂被覆アルミニウム合金板とした。   That is, the present invention relates to claim 1, wherein Mg is 0.4 mass% to 0.8 mass%, Si is more than 0.5 mass% to 1.5 mass%, Cu is 0.01 mass% to 0.4 mass% and An aluminum alloy plate containing Mn in an amount of 0.01 mass% to less than 0.4 mass% and composed of an Al alloy composed of the balance Al and inevitable impurities, and a resin film coated on at least one surface of the aluminum alloy plate And having a proof stress of 260 MPa or more after heat treatment at 200 ° C. for 10 minutes.

本発明は請求項2において、前記Al合金が、Tiを0.0001%以上0.1%以下、或いは、Tiを0.0001%以上0.1%以下及びBを0.0001%以上0.01%以下のいずれかを更に含有するものとした。また、本発明は請求項3において、前記樹脂フィルムをポリエステル系樹脂とした。   The present invention according to claim 2, wherein the Al alloy has a Ti content of 0.0001% or more and 0.1% or less, or a Ti content of 0.0001% or more and 0.1% or less and a B content of 0.0001% or more and 0.001% or less. Any one of 01% or less was further contained. In the present invention, the resin film is a polyester resin.

本発明は請求項4において、Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に1パス以上の第1の冷間圧延を施す工程と、当該第1の冷間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の第2の冷間圧延を施す工程と、当該第2の冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記第2の冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃未満としその少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法とした。   The present invention according to claim 4, wherein Mg is 0.4 mass% or more and 0.8 mass% or less, Si is 0.5 mass% or more and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is Containing 0.01 mass% or more and less than 0.4 mass%, a step of homogenizing the ingot of the Al alloy composed of the remaining Al and inevitable impurities, and a step of performing hot rolling after the homogenization processing step; A step of performing a first cold rolling of 1 pass or more after the hot rolling step, a step of performing a solution treatment after the first cold rolling step, and a second of one pass or more after the solution treatment step. And a step of coating a resin film on at least one surface of the aluminum alloy plate having a final thickness in the second cold rolling step, the second cold rolling process And as the manufacturing method of the resin-coated aluminum alloy sheet, characterized in that the delivery temperature of the aluminum alloy sheet after cold rolling is less than 100 ° C. In each pass covering the resin film on at least one surface of.

本発明は請求項5において、Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に1パス以上の第1の冷間圧延を施す工程と、当該第1の冷間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の第2の冷間圧延を施す工程と、当該第2の冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記第2の冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃以上140℃以下とし2時間以内の間に100℃未満まで冷却した後に、その少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法とした。   The present invention according to claim 5, wherein Mg is 0.4 mass% or more and 0.8 mass% or less, Si is 0.5 mass% or more and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is Containing 0.01 mass% or more and less than 0.4 mass%, a step of homogenizing the ingot of the Al alloy composed of the remaining Al and inevitable impurities, and a step of performing hot rolling after the homogenization processing step; A step of performing a first cold rolling of 1 pass or more after the hot rolling step, a step of performing a solution treatment after the first cold rolling step, and a second of one pass or more after the solution treatment step. And a step of coating a resin film on at least one surface of the aluminum alloy plate having a final thickness in the second cold rolling step, the second cold rolling process In each pass, the outlet temperature of the aluminum alloy sheet after cold rolling is set to 100 ° C. or higher and 140 ° C. or lower and cooled to less than 100 ° C. within 2 hours, and then coated with a resin film on at least one surface thereof A method for producing a resin-coated aluminum alloy plate characterized by

本発明は請求項6において、Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の冷間圧延を施す工程と、当該冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃未満としその少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法とした。   The present invention according to claim 6, wherein Mg is 0.4 mass% or more and 0.8 mass% or less, Si is 0.5 mass% or more and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is Containing 0.01 mass% or more and less than 0.4 mass%, a step of homogenizing the ingot of the Al alloy composed of the remaining Al and inevitable impurities, and a step of performing hot rolling after the homogenization processing step; At least one of a step of performing a solution treatment after the hot rolling step, a step of performing cold rolling of one pass or more after the solution treatment step, and an aluminum alloy plate having a final thickness in the cold rolling step Covering the surface with a resin film, and in each pass of the cold rolling step, the exit temperature of the aluminum alloy sheet after cold rolling is less than 100 ° C. And also a method for producing a resin-coated aluminum alloy sheet, which comprises coating a resin film on one surface.

本発明は請求項7において、Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の冷間圧延を施す工程と、当該冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃以上140℃以下とし2時間以内の間に100℃未満まで冷却した後に、その少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法とした。   The present invention according to claim 7, wherein Mg is 0.4 mass% or more and 0.8 mass% or less, Si is 0.5 mass% or more and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is Containing 0.01 mass% or more and less than 0.4 mass%, a step of homogenizing the ingot of the Al alloy composed of the remaining Al and inevitable impurities, and a step of performing hot rolling after the homogenization processing step; At least one of a step of performing a solution treatment after the hot rolling step, a step of performing cold rolling of one pass or more after the solution treatment step, and an aluminum alloy plate having a final thickness in the cold rolling step Covering the surface with a resin film, and in each pass of the cold rolling step, the outlet temperature of the aluminum alloy sheet after cold rolling is 100 ° C. or higher and 140 ° C. or lower. After cooling to less than 100 ° C. during two hours, and was the manufacturing method of the resin-coated aluminum alloy sheet, which comprises coating a resin film on at least one surface.

本発明は請求項8において、前記Al合金が、Tiを0.0001%以上0.1%以下、或いは、Tiを0.0001%以上0.1%以下及びBを0.0001%以上0.01%以下のいずれかを更に含有するものとした。また、本発明は請求項9において、前記樹脂フィルムをポリエステル系樹脂とした。   The present invention according to claim 8, wherein the Al alloy has a Ti content of 0.0001% to 0.1%, or a Ti content of 0.0001% to 0.1%, and a B content of 0.0001% to 0.1%. Any one of 01% or less was further contained. In the present invention, the resin film is a polyester resin.

本発明に用いるアルミニウム合金は、Mg、Si及びCuを適量含有することにより、DI成形後の塗装焼付処理によりMg−Si系化合物やMg−Cu系化合物をアルミニウム合金板中に微細析出させ、塗装焼付処理後における強度の優れた缶胴とすることができる。また、本発明では最終板厚まで冷間圧延を行い、その後樹脂フィルムを被覆したアルミニウム合金板に熱処理を施したときの耐力、ならびに、溶体化処理を施した後の冷間圧延後の温度履歴を規定することにより、DI成形時における成形性に優れ、塗装焼付処理後に所望の強度を具備する樹脂被覆アルミニウム合金板が得られる。   The aluminum alloy used in the present invention contains Mg, Si, and Cu in appropriate amounts, so that the Mg-Si compound or Mg-Cu compound is finely precipitated in the aluminum alloy plate by the coating baking process after DI molding. It can be set as the can body excellent in strength after baking treatment. Further, in the present invention, cold rolling to the final plate thickness, and then the proof stress when the aluminum alloy plate coated with the resin film is heat treated, and the temperature history after cold rolling after the solution treatment By defining the above, a resin-coated aluminum alloy plate having excellent formability at the time of DI molding and having a desired strength after the paint baking treatment can be obtained.

A.樹脂被覆アルミニウム合金板
本発明に係る樹脂被覆アルミニウム合金板は、所定の合金組成を有するアルミニウム合金板とその表面に被覆された樹脂フィルムとを備え、熱処理後において所定の耐力を有する。以下に、樹脂被覆アルミニウム合金板について詳述する。
A. Resin-coated aluminum alloy plate The resin-coated aluminum alloy plate according to the present invention includes an aluminum alloy plate having a predetermined alloy composition and a resin film coated on the surface thereof, and has a predetermined yield strength after heat treatment. Hereinafter, the resin-coated aluminum alloy plate will be described in detail.

A−1.Al合金の組成
Al合金は、Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなる。以下において、「mass%」を単に「%」と記す。各成分の限定理由について説明する。
A-1. Composition of Al alloy The Al alloy has Mg of 0.4 mass% to 0.8 mass%, Si of more than 0.5 mass% to 1.5 mass%, Cu of 0.01 mass% to 0.4 mass% and Mn It is contained in an amount of 0.01 mass% or more and less than 0.4 mass%, and consists of the balance Al and inevitable impurities. In the following, “mass%” is simply referred to as “%”. The reason for limitation of each component will be described.

Mg:Mg含有量は、0.4%以上0.8%以下とする。MgはAlマトリックス中に固溶し強度を高めるとともに、Si及びCuとの共存によりMg−Si系化合物あるいはMg−Cu系化合物を析出し、析出硬化による強度向上が図られる。本発明のように塗装焼付処理を施す用途においては、塗装焼付処理前の成形時には軟らかく、成形後の塗装焼付処理による加熱によりMg−Si系化合物やMg−Cu系化合物が微細に析出し強度を高める。Mgの含有量が0.4%未満では強度を高める効果が十分ではなく、0.8%を超えると強度が高くなり過ぎるとともに、加工硬化が強くなり過ぎて成形性が低下する。 Mg: The Mg content is 0.4% or more and 0.8% or less. Mg is dissolved in the Al matrix to increase the strength, and Mg—Si based compounds or Mg—Cu based compounds are precipitated by coexistence with Si and Cu, thereby improving the strength by precipitation hardening. In applications where the coating baking treatment is performed as in the present invention, it is soft at the time of molding before the coating baking treatment, and the Mg-Si based compound and Mg-Cu based compound are finely precipitated by heating by the coating baking treatment after the molding. Increase. If the Mg content is less than 0.4%, the effect of increasing the strength is not sufficient, and if it exceeds 0.8%, the strength becomes too high and the work-hardening becomes too strong and the moldability is lowered.

Si:Si含有量は、0.5%より多く1.5%以下とする。SiはMgとともにMg−Si系化合物を析出させて強度を向上させる効果がある。Siの含有量が0.5%以下では強度を向上させる効果が十分ではなく、1.5%を超えると強度が高くなり過ぎるとともに、Mg−Si系化合物に加えて、化合物を形成しない単体のSiの析出が多くなり過ぎて成形性が低下する。 Si: Si content is more than 0.5% and 1.5% or less. Si has the effect of improving the strength by precipitating a Mg—Si compound together with Mg. If the Si content is 0.5% or less, the effect of improving the strength is not sufficient, and if it exceeds 1.5%, the strength becomes too high, and in addition to the Mg—Si based compound, a simple substance that does not form a compound. Si precipitates too much and the formability decreases.

Cu:Cu含有量は、0.01%以上0.4%以下とする。CuはMgとの共存によりMg−Cu系化合物を析出させて強度を向上させる効果がある。Cuの含有量が0.01%未満では、強度を向上させる効果が不十分である。一方、0.4%を超えると、強度が高くなり過ぎて成形性を阻害するとともに耐食性が劣化する。 Cu: Cu content is 0.01% or more and 0.4% or less. Cu has the effect of improving the strength by precipitating a Mg-Cu compound by coexistence with Mg. If the Cu content is less than 0.01%, the effect of improving the strength is insufficient. On the other hand, if it exceeds 0.4%, the strength becomes too high to inhibit the moldability and deteriorate the corrosion resistance.

Mn:Mn含有量は、0.01%以上0.4%未満とする。Mnは強度向上に寄与するとともに、再結晶粒の微細化により成形性を向上させるのに有効な元素である。Mnの含有量が0.01%未満では、強度向上や成形性向上の効果が不十分である。一方、0.4%以上では、晶析出物が多くなり過ぎて成形性を阻害するとともに、晶析出物を形成するためにSiが消費され、マトリックス中に固溶するSi量が減少するため時効硬化による強度の向上が図れない。 Mn: Mn content is 0.01% or more and less than 0.4%. Mn contributes to strength improvement and is an effective element for improving moldability by recrystallized grain refinement. If the Mn content is less than 0.01%, the effect of improving the strength and improving the moldability is insufficient. On the other hand, if the content is 0.4% or more, the amount of crystal precipitates increases so that the formability is impaired, and Si is consumed to form crystal precipitates, and the amount of Si dissolved in the matrix decreases, so that aging The strength cannot be improved by curing.

一般のアルミニウム合金では、鋳造組織を微細化するためにTi、或いは、Ti及びBを微量添加することがあり、本発明においても微量のTi、或いは、Ti及びBを含有していてもよい。但し、Tiの含有量が0.0001%未満では、鋳造組織の微細化効果が得られず、0.1%を超えると粗大なTiAl晶出物が生じて成形性を阻害する。したがって、Ti含有量は0.0001%以上0.1%以下の範囲内とすることが好ましい。また、結晶粒微細化効果向上のためにTiとともにBを添加する場合、Bの含有量が0.0001%未満では鋳造組織の微細化効果が得られず、0.01%を超えるとTiBの粗大粒子が混入して成形性を阻害する。従って、Bの含有量は0.0001%以上0.01%以下の範囲内とすることが好ましい。 In a general aluminum alloy, a small amount of Ti or Ti and B may be added in order to make the cast structure finer. In the present invention, a small amount of Ti or Ti and B may be contained. However, if the Ti content is less than 0.0001%, the effect of refining the cast structure cannot be obtained, and if it exceeds 0.1%, coarse TiAl 3 crystallized matter is generated and formability is impaired. Therefore, the Ti content is preferably in the range of 0.0001% to 0.1%. Further, when B is added together with Ti for improving the crystal grain refining effect, if the content of B is less than 0.0001%, the effect of refining the cast structure cannot be obtained, and if it exceeds 0.01%, TiB 2 Coarse particles are mixed to impair moldability. Therefore, the B content is preferably in the range of 0.0001% to 0.01%.

なお、本発明において、Feが含有される場合は0.01〜0.5%とする。0.5%を超えると、晶出物が多くなりすぎて成形性を阻害するとともに、晶析出物を形成するためにSiが消費され、マトリックス中に固溶するSi量が減少するため時効硬化による強度の向上が不十分となるからである。Ti、B、及びFeの他に、Cr、Znなどの不可避的不純物元素を、それぞれ0.1%以下でかつ合計で0.5%以下含有していてもよい。   In the present invention, when Fe is contained, the content is set to 0.01 to 0.5%. If it exceeds 0.5%, the amount of crystallized substances increases and the moldability is impaired, and Si is consumed to form crystal precipitates, and the amount of Si dissolved in the matrix decreases, so age hardening. This is because the improvement in strength due to this becomes insufficient. In addition to Ti, B, and Fe, unavoidable impurity elements such as Cr and Zn may be contained at 0.1% or less and 0.5% or less in total.

A−2.樹脂フィルム
最終板厚まで冷間圧延を行ったアルミニウム合金板に、樹脂フィルムが被覆される。本発明に用いる樹脂フィルムは、ビスフェノールAなどの有害な環境ホルモンの放出の少ないポリエステル系樹脂が望ましい。ポリエステル系樹脂フィルムは、優れた加工性を有しているため、缶胴成形前のアルミニウム合金板に予め施すことが可能であり、DI成形性の向上も期待できる。また、缶胴成形後に防食性の保護塗装を施す場合に比して、塗装工程の能率化及び簡略化が可能となり、生産性の向上の点からも望ましい。なお、本発明において、ポリエステル系樹脂以外の樹脂フィルムとしては、ポリオレフィン系樹脂及びポリアミド系樹脂の1種又は2種以上を含んでいてもよい。
樹脂フィルムの厚さは、10〜30μmとするのが好ましい。樹脂フィルムの厚さが10μm未満では、薄過ぎて成形加工時に破損するおそれがある。一方、30μmを超えるとコスト高になってしまう。
A-2. Resin film A resin film is coated on an aluminum alloy plate that has been cold-rolled to the final thickness. The resin film used in the present invention is desirably a polyester-based resin that releases less harmful environmental hormones such as bisphenol A. Since the polyester-based resin film has excellent processability, it can be applied in advance to an aluminum alloy plate before can body molding, and an improvement in DI moldability can also be expected. In addition, compared with the case where anticorrosive protective coating is applied after can body molding, the efficiency and simplification of the coating process can be achieved, which is desirable from the viewpoint of improving productivity. In the present invention, the resin film other than the polyester-based resin may include one or more of a polyolefin-based resin and a polyamide-based resin.
The thickness of the resin film is preferably 10 to 30 μm. If the thickness of the resin film is less than 10 μm, the resin film is too thin and may be damaged during molding. On the other hand, if it exceeds 30 μm, the cost becomes high.

A−3.熱処理後における耐力
本願発明の樹脂被覆アルミニウム合金板は、前記合金組成のみならず、熱処理を施した後の耐力によっても規定される。
A-3. Strength after heat treatment The resin-coated aluminum alloy sheet of the present invention is defined not only by the alloy composition but also by the strength after heat treatment.

樹脂被覆アルミニウム合金板を缶胴材として使用する際の缶体強度(耐圧強度)としては、樹脂被覆アルミニウム合金板に対して塗装焼付処理を施す際の熱処理条件に相当する200℃で10分間の熱処理を施した後の耐力が重要な指標となる。すなわち、樹脂被覆アルミニウム合金板にこのような熱処理を施したときの耐力が260MPa未満では、缶胴材の缶体強度が不足する。従って、本発明に係る樹脂被覆アルミニウム合金板では、200℃で10分間の熱処理を施した後における耐力を260MPa以上と規定する。   The strength of the can body (pressure strength) when using the resin-coated aluminum alloy plate as a can body material is 10 minutes at 200 ° C., which corresponds to the heat treatment conditions when the resin-coated aluminum alloy plate is subjected to paint baking treatment. Yield strength after heat treatment is an important indicator. That is, if the proof stress when such a heat treatment is applied to the resin-coated aluminum alloy plate is less than 260 MPa, the can body strength of the can body material is insufficient. Therefore, in the resin-coated aluminum alloy plate according to the present invention, the yield strength after heat treatment at 200 ° C. for 10 minutes is defined as 260 MPa or more.

B.樹脂被覆アルミニウム合金板の製造方法
次に、本発明に係る樹脂被覆アルミニウム合金板の製造方法について詳述する。まず、上述の合金組成を有するアルミニウム合金溶湯は、常法に従ってDC鋳造(半連続鋳造)される。
B. Next, a method for producing a resin-coated aluminum alloy plate according to the present invention will be described in detail. First, a molten aluminum alloy having the above-described alloy composition is DC cast (semi-continuous casting) according to a conventional method.

B−1.均質化処理工程
DC鋳造により得られた鋳塊は、均質化処理が施される。均質化処理は、鋳塊の偏析を均質化する目的で行なわれる。本発明における均質化処理工程では、Mg、Si、Cuの固溶を促進させ、後工程の溶体化処理工程における溶体化を容易にする。均質化処理条件は特に規定されるものではないが、均質化処理温度が500℃未満では、前述のMg、Si、Cuの固溶が不十分となるとともに、これら元素の粗大化合物が析出する。その結果、固溶しきれないこれら元素やその化合物により、後工程の溶体化処理工程において十分な溶体化効果が得られない。一方、均質化処理温度が560℃を超えると、鋳塊内部に局部的な共晶溶融が生じるので好ましくない。均質化処理工程での保持時間については、1時間未満では鋳塊偏析を均質化することができず、48時間を超えるとコストの点で好ましくない。したがって、均質化処理条件は、500℃以上560℃以下の温度範囲で、1時間以上48時間以内、好ましくは3時間以上6時間以内の保持時間が好ましい。
B-1. Homogenization process The ingot obtained by DC casting is subjected to a homogenization process. The homogenization treatment is performed for the purpose of homogenizing the segregation of the ingot. In the homogenization treatment step in the present invention, solid solution of Mg, Si, and Cu is promoted, and solutionization in the subsequent solution treatment step is facilitated. Although the homogenization treatment conditions are not particularly defined, when the homogenization treatment temperature is less than 500 ° C., the aforementioned solid solution of Mg, Si, and Cu becomes insufficient, and coarse compounds of these elements precipitate. As a result, a sufficient solution effect cannot be obtained in the subsequent solution treatment step due to these elements and their compounds that cannot be completely dissolved. On the other hand, when the homogenization temperature exceeds 560 ° C., local eutectic melting occurs in the ingot, which is not preferable. Regarding the holding time in the homogenization treatment step, if less than 1 hour, ingot segregation cannot be homogenized, and if it exceeds 48 hours, it is not preferable in terms of cost. Accordingly, the homogenization treatment conditions are a temperature range of 500 ° C. or more and 560 ° C. or less and a holding time of 1 hour or more and 48 hours or less, preferably 3 hours or more and 6 hours or less is preferable.

B−2.熱間圧延工程
均質化処理工程の後に引き続いて、熱間圧延が施される。熱間圧延工程は、リバース式の圧延機により粗圧延を行う工程と、その後に、シングルリバース式又はタンデム式の圧延機により、コイル状に巻き取るまでの仕上げ圧延を行う工程とからなる。本発明では、設備や条件を特に規定するものではない。しかしながら、熱間圧延工程の終了温度が300℃以上では、熱間圧延終了時において余熱によりMg−Si系化合物やMg−Cu系化合物の粗大化合物が析出する。その結果、これら粗大化合物が後工程の溶体化処理工程において固溶しきれずに十分な溶体化効果が得られない。一方、熱延性を考慮すると200℃以上とすることが好ましい。したがって、熱間圧延工程の終了温度は、200℃以上300℃以下とするのが好ましい。なお、このような温度範囲は、潤滑油の使用量、クーラントと各圧下率の配分、圧延速度等を調整することによって達成される。また、熱間圧延上がりの板厚は、巻取性を考慮すると10mm以下とするのが好ましい。
B-2. Hot rolling process A hot rolling is performed following a homogenization process process. A hot rolling process consists of the process of rough-rolling with a reverse type rolling mill, and the process of performing final rolling until it winds up in a coil shape with a single reverse type or tandem type rolling mill after that. In the present invention, equipment and conditions are not particularly specified. However, when the end temperature of the hot rolling process is 300 ° C. or higher, a coarse compound of Mg—Si based compound or Mg—Cu based compound precipitates due to residual heat at the end of hot rolling. As a result, these coarse compounds are not completely dissolved in the subsequent solution treatment step, and a sufficient solution effect cannot be obtained. On the other hand, considering the hot ductility, it is preferably 200 ° C. or higher. Therefore, the end temperature of the hot rolling process is preferably 200 ° C. or higher and 300 ° C. or lower. Such a temperature range is achieved by adjusting the amount of lubricating oil used, the distribution of coolant and each rolling reduction, the rolling speed, and the like. Further, the plate thickness after hot rolling is preferably 10 mm or less in consideration of the winding property.

B−3.溶体化処理工程
熱間圧延されたアルミニウム合金板は、後述する冷間圧延工程にかけられる。ここで、冷間圧延工程の途中の段階、或いは、冷間圧延工程の前段階において溶体化処理が施される。溶体化処理方法は急速加熱、急速冷却する連続焼鈍が、コイル状の板を効率よく溶体化でき、結晶粒微細化による成形性向上の点と生産性向上の点から望ましい。溶体化処理条件を特に規定するものではないが、溶体化処理は合金中へのMg、Si及びCuの固溶促進のため、加熱温度を450℃以上580℃以下とするのが好ましい。450℃未満ではMg、Si及びCuの固溶が十分に行われず強度向上に寄与しなくなるとともに、塗装焼付処理時の時効硬化性が低下する。一方、580℃を超える温度ではバーニングによるMgの局部的な溶融が起こるとともに、強度が高くなり過ぎ成形性が低下してしまう。加熱保持時間は2分間以内が好ましい。2分間を超える保持を行っても、溶体化処理の効果が飽和してしまうため不経済となる。また、過度に長い時間の保持を行うと結晶粒の粗大化によって最終板の外観劣化、或いは、成形性が低下する等の不具合が発生する場合がある。溶体化加熱後の冷却過程でのMg−Si系化合物やMg−Cu系化合物の析出を防止し最終板の強度を確保する見地から、1℃/秒以上の冷却速度で100℃以下まで冷却することが好ましい。
B-3. Solution Treatment Process The hot-rolled aluminum alloy sheet is subjected to a cold rolling process described later. Here, the solution treatment is performed in the middle of the cold rolling process or in the previous stage of the cold rolling process. As the solution treatment method, continuous annealing with rapid heating and rapid cooling is desirable from the viewpoints of improving the formability and improving the productivity by refining crystal grains because the coiled plate can be efficiently solutionized. Although the solution treatment conditions are not particularly specified, the solution treatment is preferably performed at a heating temperature of 450 ° C. or higher and 580 ° C. or lower in order to promote solid solution of Mg, Si and Cu in the alloy. If it is less than 450 degreeC, Mg, Si, and Cu do not fully dissolve, it does not contribute to strength improvement, and age-hardening property at the time of a paint baking process falls. On the other hand, when the temperature exceeds 580 ° C., local melting of Mg occurs due to burning, and the strength becomes too high and the moldability deteriorates. The heating and holding time is preferably within 2 minutes. Even holding for more than 2 minutes is uneconomical because the effect of solution treatment is saturated. Further, if the holding time is excessively long, defects such as deterioration of the appearance of the final plate or deterioration of formability may occur due to the coarsening of crystal grains. From the standpoint of preventing the precipitation of Mg—Si compounds and Mg—Cu compounds in the cooling process after solution heat treatment and ensuring the strength of the final plate, cooling to 100 ° C. or less at a cooling rate of 1 ° C./second or more. It is preferable.

B−4.冷間圧延工程
上述のように、冷間圧延工程としては、その途中の段階において溶体化処理が施される態様(以下、「第1の態様」と記す)と、その前段階において溶体化処理が施される態様(以下、「第2の態様」と記す)が採用される。第1の態様では、溶体化処理工程の前の冷間圧延工程を第1の冷間圧延工程とし、溶体化処理工程の後の冷間圧延工程を第2の冷間圧延工程とする。第1の態様では、第1及び第2の冷間圧延工程のそれぞれにおいて1パス以上の冷間圧延が行なわれる。第1の態様の第1及び第2の冷間圧延工程を合わせて、3パス程度の冷間圧延を行なうのが好ましい。一方、第2の態様では、溶体化処理工程後に1パス以上の冷間圧延工程が施される。第2の態様においても、全部で3パス程度の冷間圧延を行なうのが好ましい。
B-4. Cold Rolling Process As described above, the cold rolling process includes a mode in which solution treatment is performed in the middle stage (hereinafter referred to as “first mode”) and a solution treatment in the previous stage. A mode in which is applied (hereinafter referred to as “second mode”) is employed. In the first aspect, the cold rolling process before the solution treatment process is the first cold rolling process, and the cold rolling process after the solution treatment process is the second cold rolling process. In the first aspect, one or more passes of cold rolling are performed in each of the first and second cold rolling steps. It is preferable to perform cold rolling of about 3 passes by combining the first and second cold rolling processes of the first aspect. On the other hand, in a 2nd aspect, the cold rolling process of 1 pass or more is given after a solution treatment process. Also in the second aspect, it is preferable to perform cold rolling of about 3 passes in total.

第1の態様における第1の冷間圧延工程では、各パスにおける冷間圧延の出側温度は
80〜140℃である。80℃未満では、圧延速度が異常に遅くなり生産性を阻害するため工業的に好ましくなく、140℃を超えるとMg−Si系化合物やMg−Cu系化合物が析出し、後工程の溶体化処理工程において固溶しきれずに十分な溶体化効果が得られない。各パスにおける冷間圧延の出側温度が100℃以上の場合には、2時間以内に100℃未満まで冷却するのが好ましい。
In the 1st cold rolling process in the 1st mode, the outgoing temperature of cold rolling in each pass is 80-140 ° C. If it is less than 80 ° C., the rolling speed becomes abnormally slow and inhibits productivity, which is not industrially preferable. If it exceeds 140 ° C., a Mg—Si compound or a Mg—Cu compound is precipitated, and a solution treatment in a subsequent step. In the process, the solution cannot be completely dissolved, and a sufficient solution effect cannot be obtained. In the case where the outlet temperature of cold rolling in each pass is 100 ° C. or higher, it is preferable to cool to less than 100 ° C. within 2 hours.

次に、第1の態様における第2の冷間圧延工程、ならびに、第2の態様における冷間圧延工程では、各パスにおける冷間圧延後のアルミニウム合金板の出側温度が100℃以上となると、冷間圧延後に前記Mg−Si系化合物やMg−Cu系化合物が析出してしまい、塗装焼付処理時の時効硬化性に劣り、十分な強度向上が図れない。また、成形前にこれら化合物の析出量が多くなると成形性が低下する場合もある。したがって、各パスにおける冷間圧延の出側温度は100℃未満とする。但し、出側温度が100℃以上140℃以下の場合には、100℃未満に至るまでの冷却時間が2時間以内であれば、上記Mg−Si系化合物やMg−Cu系化合物の析出が抑制できる。一方、冷却時間が2時間を超えると、塗装焼付処理時の時効硬化性が劣り十分な強度向上が図れない。なお、各パスにおける冷間圧延の出側温度が80℃未満では、圧延速度が異常に遅くなり生産性を阻害するため工業的に好ましくない。このため、本発明では、第1の態様における第2の冷間圧延工程、ならびに、第2の態様における冷間圧延工程では、各パスでの冷間圧延後のアルミニウム合金板の出側温度を100℃未満とし、或いは、出側温度が100℃以上140℃以下の場合は、100℃未満に至るまでの冷却時間を2時間以内とする。このように冷間圧延後の出側温度を適性に制御することにより、前記Mg−Si系化合物やMg−Cu系化合物の析出を抑制することが可能となり、塗装焼付処理時の良好な時効硬化性と成形性を確保することができる。
なお、第1の態様における第2の冷間圧延工程、ならびに、第2の態様における冷間圧延工程では、最終板厚までの最終圧延率を30%以上とするのが好ましい。30%未満では十分な加工硬化が得られず強度を確保できないからである。
Next, in the second cold rolling step in the first aspect and the cold rolling step in the second aspect, the outlet temperature of the aluminum alloy sheet after cold rolling in each pass is 100 ° C. or higher. The Mg—Si compound and the Mg—Cu compound are precipitated after cold rolling, resulting in inferior age-hardening properties during the coating baking process, and sufficient strength cannot be improved. Moreover, if the amount of precipitation of these compounds increases before molding, the moldability may decrease. Therefore, the outgoing temperature of the cold rolling in each pass is set to less than 100 ° C. However, when the outlet side temperature is 100 ° C. or more and 140 ° C. or less, the precipitation of the Mg—Si compound or Mg—Cu compound is suppressed if the cooling time to reach less than 100 ° C. is within 2 hours. it can. On the other hand, if the cooling time exceeds 2 hours, the age hardening at the time of the coating baking treatment is inferior and sufficient strength cannot be improved. In addition, when the exit side temperature of the cold rolling in each pass is less than 80 ° C., the rolling speed is abnormally slow and the productivity is hindered, which is not industrially preferable. For this reason, in this invention, in the 2nd cold rolling process in a 1st aspect, and the cold rolling process in a 2nd aspect, the exit side temperature of the aluminum alloy plate after the cold rolling in each pass is set. When it is less than 100 ° C. or the outlet temperature is 100 ° C. or more and 140 ° C. or less, the cooling time until it reaches less than 100 ° C. is set within 2 hours. By appropriately controlling the outlet temperature after cold rolling in this way, it becomes possible to suppress the precipitation of the Mg—Si compound and Mg—Cu compound, and good age hardening during paint baking treatment. And moldability can be ensured.
In the second cold rolling step in the first aspect and the cold rolling step in the second aspect, it is preferable that the final rolling ratio up to the final thickness is 30% or more. If it is less than 30%, sufficient work hardening cannot be obtained and the strength cannot be secured.

B−5.前処理
樹脂フィルムの密着性を向上させるため、アルミニウム合金板に前処理を施すのが好ましい。前処理としては、化成処理や陽極酸化処理が挙げられる。化成処理又は陽極酸化処理によって化成皮膜又は陽極酸化皮膜を形成することで、樹脂フィルムの密着性向上が図られる。特に化成皮膜は、簡略な設備で形成できコスト的にも有利なため、工業上特に望ましい。化成皮膜は、リン酸亜鉛法、ベーマイト法、MBV法又はEW法(アルカリ−クロム酸塩系)、アロヂン法(クロム酸塩系、リン酸−クロム酸塩系)などの各化成処理により形成される。陽極酸化皮膜は、硫酸、シュウ酸、クロム酸、有機酸などの電解液を用いた陽極酸化処理により形成される。
B-5. Pretreatment In order to improve the adhesion of the resin film, it is preferable to pretreat the aluminum alloy plate. Examples of the pretreatment include chemical conversion treatment and anodizing treatment. By forming the chemical conversion film or the anodic oxide film by chemical conversion treatment or anodizing treatment, the adhesion of the resin film can be improved. In particular, the chemical conversion film is particularly desirable industrially because it can be formed with simple equipment and is advantageous in terms of cost. The chemical conversion film is formed by chemical conversion treatment such as zinc phosphate method, boehmite method, MBV method or EW method (alkali-chromate system), allodyne method (chromate system, phosphate-chromate system). The The anodized film is formed by an anodizing process using an electrolytic solution such as sulfuric acid, oxalic acid, chromic acid, or organic acid.

B−6.樹脂フィルムの被覆
樹脂フィルムの被覆方法としては、樹脂フィルムをその融点以上に加熱してアルミニウム合金板に熱圧着する方法が好適に用いられる。熱圧着温度が200℃未満では十分な密着性が得られず、DI成形時に剥離が生じるおそれがある。一方、熱圧着温度が300℃を超える温度では、樹脂フィルムが変質してしまう。したがって、樹脂フィルムを熱圧着する温度は、200℃以上300℃以下が好ましい。
B-6. Coating of Resin Film As a method of coating the resin film, a method of heating the resin film above its melting point and thermocompression bonding to the aluminum alloy plate is suitably used. If the thermocompression bonding temperature is less than 200 ° C., sufficient adhesion cannot be obtained, and peeling may occur during DI molding. On the other hand, when the thermocompression bonding temperature exceeds 300 ° C., the resin film is deteriorated. Therefore, the temperature for thermocompression bonding the resin film is preferably 200 ° C. or higher and 300 ° C. or lower.

本発明においては、樹脂フィルムを熱圧着する際の加熱により、前記Mg−Si系化合物やMg−Cu系化合物の微細な析出物が生じる。しかしながら、前述のように第1の態様における第2の冷間圧延工程、ならびに、第2の態様における冷間圧延工程での出側温度や冷却時間を規定することにより、塗装焼付処理時の時効硬化性は損なわれない。なお、樹脂フィルムを被覆する際の加熱により、DI成形前にMg−Si系化合物やMg−Cu系化合物の析出量が多少多くなっても、上述の通り樹脂フィルムを被覆することによってDI成形時の成形性が向上するため、樹脂被覆アルミニウム合金板をDI成形する際に成形性が損なわれることはない。   In this invention, the fine deposit of the said Mg-Si type compound or Mg-Cu type compound arises by the heating at the time of thermocompression-bonding a resin film. However, by prescribing the outlet temperature and the cooling time in the second cold rolling step in the first aspect and the cold rolling step in the second aspect as described above, the aging at the coating baking process is performed. Curability is not impaired. Even when the amount of precipitation of the Mg-Si compound or Mg-Cu compound is slightly increased before DI molding due to heating when coating the resin film, the resin film is coated as described above during DI molding. Therefore, the moldability is not impaired when the resin-coated aluminum alloy plate is DI molded.

B−7.塗装焼付処理
飲料缶等では、DI成形後に150℃以上250℃以下で3〜10分間程度加熱する塗装焼付処理を行うのが通常である。前記溶体化処理によりMg、Si及びCuが十分に固溶されているため、塗装焼付処理によってMg−Si系化合物やMg−Cu系化合物の微細析出が起こり、時効硬化による強度の向上が図られる。
B-7. Paint baking process In beverage cans and the like, it is usual to perform a paint baking process of heating at 150 ° C. or higher and 250 ° C. or lower for about 3 to 10 minutes after DI molding. Since Mg, Si and Cu are sufficiently dissolved by the solution treatment, fine precipitation of Mg-Si compounds and Mg-Cu compounds occurs by the coating baking process, and the strength is improved by age hardening. .

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに制限されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, this invention is not restrict | limited to these.

実施例1〜16及び比較例17〜34
表1に示す組成のアルミニウム合金をDC鋳造法により厚さ500mmの鋳塊とした。なお、表1に示す組成において、成分の含有量が0.001mass%未満の場合は「−」と表記した。
Examples 1 to 16 and Comparative Examples 17 to 34
An aluminum alloy having a composition shown in Table 1 was formed into an ingot having a thickness of 500 mm by a DC casting method. In addition, in the composition shown in Table 1, when the content of the component was less than 0.001 mass%, it was described as “−”.

Figure 2011241433
Figure 2011241433

製造工程a(第1の態様)
製造工程aでは、上記合金鋳塊を560℃で6時間の均質化処理工程にかけた後に熱間圧延の終了温度を280℃とし、厚さ2mmのアルミニウム合金板に圧延した。次いで、表2に示す第1の冷間圧延工程で1パス目とそれに続く2パス目の冷間圧延を施し、厚さ0.56mmのアルミニウム合金板に圧延した。次いで、連続焼鈍炉により表2に示す条件で溶体化処理を施した。次いで、溶体化処理を施したアルミニウム合金板を室温で空冷した後に、表2に示す第2の冷間圧延工程で3パス目の冷間圧延を施し、最終板厚0.28mmのアルミニウム合金板に圧延した。次いで、アルミニウム合金板の両面に前処理としてアルカリエッチングを施した。更に、アルカリエッチング面に化成処理としてリン酸クロメート処理を施して、Cr含有量15mg/cmの厚さの化成皮膜を形成した。最後に、化成処理を施したアルミニウム合金板の両面に、樹脂フィルムとして厚さ15μmのポリエステル系樹脂フィルムを270℃で熱圧着し、樹脂被覆アルミニウム合金板を作製した。
Production process a (first aspect)
In the manufacturing process a, the alloy ingot was subjected to a homogenization treatment process at 560 ° C. for 6 hours, and then the hot rolling end temperature was set to 280 ° C., and the alloy ingot was rolled into an aluminum alloy plate having a thickness of 2 mm. Next, in the first cold rolling step shown in Table 2, the first pass and the subsequent second pass were subjected to cold rolling and rolled into an aluminum alloy plate having a thickness of 0.56 mm. Subsequently, the solution treatment was performed by the continuous annealing furnace under the conditions shown in Table 2. Next, after the solution-treated aluminum alloy sheet was air-cooled at room temperature, the third cold rolling was performed in the second cold rolling process shown in Table 2 to obtain an aluminum alloy sheet having a final thickness of 0.28 mm. Rolled into. Next, alkali etching was performed as a pretreatment on both surfaces of the aluminum alloy plate. Further, a phosphoric acid chromate treatment was applied to the alkali etched surface as a chemical conversion treatment to form a chemical conversion film having a Cr content of 15 mg / cm 2 . Finally, a polyester resin film having a thickness of 15 μm as a resin film was thermocompressed at 270 ° C. on both surfaces of the aluminum alloy plate subjected to chemical conversion treatment to produce a resin-coated aluminum alloy plate.

Figure 2011241433
Figure 2011241433

製造工程b(第2の態様)
製造工程bでは、上記合金鋳塊を560℃で6時間の均質化処理工程にかけた後に熱間圧延の終了温度を280℃とし、厚さ2mmのアルミニウム合金板に圧延した。次いで、連続焼鈍炉により表2に示す条件で溶体化処理を施した。次いで、溶体化処理を施したアルミニウム合金板を室温で空冷した後に、表2に示す冷間圧延工程で1パス目〜3パス目の冷間圧延を施し、最終板厚0.28mmのアルミニウム合金板に圧延した。次いで、アルミニウム合金板の両面に前処理としてアルカリエッチングを施した。更に、アルカリエッチング面に化成処理としてリン酸クロメート処理を施して、Cr含有量15mg/cmの厚さの化成皮膜を形成した。最後に、化成処理を施したアルミニウム合金板の両面に、樹脂フィルムとして厚さ15μmのポリエステル系樹脂フィルムを270℃で熱圧着し、樹脂被覆アルミニウム合金板を作製した。
Manufacturing step b (second aspect)
In the production step b, the alloy ingot was subjected to a homogenization treatment step at 560 ° C. for 6 hours, and then the hot rolling finish temperature was set to 280 ° C., and the alloy ingot was rolled into an aluminum alloy plate having a thickness of 2 mm. Subsequently, the solution treatment was performed by the continuous annealing furnace under the conditions shown in Table 2. Next, after the solution-treated aluminum alloy sheet was air-cooled at room temperature, it was cold-rolled in the first pass to the third pass in the cold rolling process shown in Table 2 to obtain an aluminum alloy having a final thickness of 0.28 mm. Rolled to plate. Next, alkali etching was performed as a pretreatment on both surfaces of the aluminum alloy plate. Further, a phosphoric acid chromate treatment was applied to the alkali etched surface as a chemical conversion treatment to form a chemical conversion film having a Cr content of 15 mg / cm 2 . Finally, a polyester resin film having a thickness of 15 μm as a resin film was thermocompressed at 270 ° C. on both surfaces of the aluminum alloy plate subjected to chemical conversion treatment to produce a resin-coated aluminum alloy plate.

製造工程c
製造工程cは、本発明の比較例としての製造工程である。すなわち、最終板厚に冷間圧延を行うまでは製造工程aと同様であるが、その後の樹脂フィルム被覆工程を備えていない。
Manufacturing process c
The manufacturing process c is a manufacturing process as a comparative example of the present invention. That is, the process is the same as the manufacturing process a until cold rolling is performed to the final thickness, but the subsequent resin film coating process is not provided.

製造工程a、cでの第1及び第2の冷間圧延工程における各パスの出側温度、ならびに、製造工程bでの冷間圧延工程における各パスの出側温度を表2に示した。更に、製造工程a、cでの第1及び第2の冷間圧延工程における出側温度が100℃以上の場合、ならびに、製造工程bでの冷間圧延工程における各パスの出側温度が100℃以上の場合には、100℃未満までの冷却時間も表2に示した。なお、表2において、冷間圧延の出側温度が100℃未満の場合は、100℃未満までの冷却は行なわないので冷却時間を「−」で表した。   Table 2 shows the outlet temperature of each pass in the first and second cold rolling steps in the manufacturing steps a and c, and the outlet temperature of each pass in the cold rolling step in the manufacturing step b. Furthermore, when the delivery temperature in the first and second cold rolling steps in the production steps a and c is 100 ° C. or higher, and the delivery temperature of each pass in the cold rolling step in the production step b is 100. Table 2 also shows the cooling time to less than 100 ° C when the temperature is higher than or equal to ° C. In Table 2, when the cold rolling outlet temperature is less than 100 ° C., cooling to less than 100 ° C. is not performed, so the cooling time is represented by “−”.

上記のようにして作製した樹脂被覆アルミニウム合金板試料について、熱処理後の強度、しごき成形性及び耐圧強度を下記のように評価した。結果を表3に示す。   About the resin-coated aluminum alloy sheet sample produced as described above, the strength after heat treatment, the iron formability and the pressure resistance were evaluated as follows. The results are shown in Table 3.

Figure 2011241433
Figure 2011241433

熱処理後の耐力
上記のようにして作製した樹脂被覆アルミニウム合金板試料に、200℃で10分間の塗装焼付処理相当の熱処理を施した。次いで、JIS5号試験方法の引張試験に基づいて、熱処理後の樹脂被覆アルミニウム合金板試料の耐力を測定した。耐力が260MPa以上を合格(○)とし、260MPa未満を不合格(×)とした。
Strength after heat treatment The resin-coated aluminum alloy plate sample produced as described above was subjected to a heat treatment equivalent to a coating baking process at 200 ° C. for 10 minutes. Next, the yield strength of the resin-coated aluminum alloy sheet sample after heat treatment was measured based on the tensile test of JIS No. 5 test method. Yield strength of 260 MPa or more was judged as acceptable (O), and less than 260 MPa was judged as unacceptable (x).

しごき成形性
DI成形性の代替評価として、しごき成形性を評価した。樹脂被覆アルミニウム合金板試料について、第一しごき及び第二しごきのダイス内径を変化させることで、第三しごきのしごき率を変化させていき、成形できる最大のしごき率を限界しごき率とした。具体的には、しごき率(%)={1−(第三しごき後の缶胴側壁厚さ)/(第二しごき後の缶胴側壁厚さ)}×100を求め、このしごき率の最大値を限界しごき率とした。限界しごき率が46.5%以上を合格(○)とし、46.5%未満を不合格(×)とした。
Iron moldability As an alternative evaluation of DI moldability, iron moldability was evaluated. With respect to the resin-coated aluminum alloy plate sample, the ironing rate of the third ironing was changed by changing the die inner diameter of the first ironing and the second ironing iron, and the maximum ironing rate that could be formed was limited to the ironing rate. Specifically, the ironing rate (%) = {1- (can barrel side wall thickness after third ironing) / (can barrel side wall thickness after second ironing)} × 100, and the maximum ironing rate is obtained. The value was limited to the ironing rate. A limit ironing rate of 46.5% or more was regarded as acceptable (◯), and less than 46.5% was regarded as unacceptable (x).

熱処理後の耐圧強度
樹脂被覆アルミニウム合金板試料をDI成形した缶に対し、200℃で10分間の塗装焼付処理相当の熱処理を施した。次いで、エアー式の耐圧試験機にてドーム成形したボトムがバックリングする圧力を測定して耐圧強度とした。耐圧強度が6.3kgf/cm以上のものを合格(○)とし、6.3kgf/cm未満のものを不合格(×)とした。
Pressure resistance after heat treatment A can formed by DI molding of a resin-coated aluminum alloy plate sample was subjected to a heat treatment equivalent to a coating baking process at 200 ° C for 10 minutes. Subsequently, the pressure at which the bottom formed by the dome was buckled by an air pressure tester was measured to obtain the pressure resistance. Pressure resistance passed 6.3kgf / cm 2 or more of the (○), it was judged as unsatisfactory those less than 6.3kgf / cm 2 (×).

表3から明らかなように、実施例1〜16では、熱処理後の耐力、しごき成形性及び熱処理後の耐圧強度の全てが合格であった。   As apparent from Table 3, in Examples 1 to 16, all of the proof stress after heat treatment, the iron formability, and the pressure strength after heat treatment were acceptable.

これに対して、比較例17では、アルミニウム合金板のMg含有量が少な過ぎたため、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例18では、アルミニウム合金板のMg含有量が多過ぎたため、しごき成形性が不合格であった。
比較例19では、アルミニウム合金板のSi含有量が少な過ぎたため、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例20では、アルミニウム合金板のSi含有量が多過ぎたため、しごき成形性が不合格であった。
比較例21では、アルミニウム合金板のCu含有量が少な過ぎたため、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例22では、アルミニウム合金板のCu含有量が多過ぎたため、しごき成形性が不合格であった。
比較例23では、アルミニウム合金板のMn含有量が少な過ぎたため、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例24では、アルミニウム合金板のMn含有量が多過ぎたため、しごき成形性が不合格であった。
比較例25では、アルミニウム合金板のTi含有量が多過ぎたため、粗大な晶出物が生成し、しごき成形性が不合格であった。
比較例26では、アルミニウム合金板のB含有量が多過ぎたため、粗大な晶出物が生成し、しごき成形性が不合格であった。
比較例27では、第2の冷間圧延工程での3パス目の冷間圧延における出側温度が140℃を超え、100℃までの冷却時間が2時間を超えたため時効硬化性が劣り、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例28では、第2の冷間圧延工程での3パス目の冷間圧延における出側温度が140℃以下であるが、100℃までの冷却時間が2時間を越えたため時効硬化性が劣り、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例29では、冷間圧延工程での1パス目の冷間圧延における出側温度が140℃を超え、100℃までの冷却時間が2時間を超えたため時効硬化性が劣り、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例30では、冷間圧延工程での2パス目の冷間圧延における出側温度が140℃を超え、100℃までの冷却時間が2時間を超えたため時効硬化性が劣り、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例31では、冷間圧延工程での3パス目の冷間圧延における出側温度が140℃を超え、100℃までの冷却時間が2時間を超えたため時効硬化性が劣り、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例32では、冷間圧延工程での1〜3パス目の冷間圧延における出側温度が140℃以下であるが、3パス目における100℃までの冷却時間が2時間を越えたため時効硬化性が劣り、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例33では、冷間圧延工程での1〜3パス目の冷間圧延における出側温度が140℃を超え、100℃までの冷却時間がそれぞれ2時間を超えたため時効硬化性が劣り、熱処理後の耐力と熱処理後の耐圧強度が不合格であった。
比較例34では、樹脂フィルムを被覆しなかったため、しごき成形性が不合格であった。
On the other hand, in Comparative Example 17, since the Mg content of the aluminum alloy plate was too small, the yield strength after the heat treatment and the pressure strength after the heat treatment were unacceptable.
In Comparative Example 18, the iron formability was unacceptable because the Mg content of the aluminum alloy plate was too large.
In Comparative Example 19, since the Si content of the aluminum alloy plate was too small, the yield strength after the heat treatment and the pressure strength after the heat treatment were unacceptable.
In Comparative Example 20, the iron formability was unacceptable because the Si content of the aluminum alloy plate was too large.
In Comparative Example 21, since the Cu content of the aluminum alloy plate was too small, the yield strength after the heat treatment and the pressure strength after the heat treatment were unacceptable.
In Comparative Example 22, the iron formability was unacceptable because the Cu content of the aluminum alloy plate was too large.
In Comparative Example 23, since the Mn content of the aluminum alloy plate was too small, the yield strength after the heat treatment and the pressure strength after the heat treatment were unacceptable.
In Comparative Example 24, the iron alloy formability was not acceptable because the Mn content of the aluminum alloy plate was too large.
In Comparative Example 25, since the Ti content of the aluminum alloy plate was too large, coarse crystallized products were generated and the ironing formability was unacceptable.
In Comparative Example 26, since the B content of the aluminum alloy plate was too much, a coarse crystallized product was generated, and the ironing formability was unacceptable.
In Comparative Example 27, the delivery temperature in the third cold rolling in the second cold rolling process exceeded 140 ° C., and the cooling time to 100 ° C. exceeded 2 hours. The later yield strength and the compressive strength after heat treatment were unacceptable.
In Comparative Example 28, the delivery temperature in the third cold rolling in the second cold rolling process was 140 ° C. or lower, but the age hardening was inferior because the cooling time to 100 ° C. exceeded 2 hours. The yield strength after heat treatment and the pressure strength after heat treatment were unacceptable.
In Comparative Example 29, the outlet temperature in the first cold rolling in the cold rolling process exceeded 140 ° C., and the cooling time to 100 ° C. exceeded 2 hours, so the age hardening was inferior, and the proof stress after heat treatment The pressure strength after heat treatment was unacceptable.
In Comparative Example 30, the delivery temperature in the cold rolling in the second pass in the cold rolling process exceeded 140 ° C., and the cooling time to 100 ° C. exceeded 2 hours, so the age hardening was inferior, and the proof stress after heat treatment The pressure strength after heat treatment was unacceptable.
In Comparative Example 31, the exit temperature in the cold rolling of the third pass in the cold rolling process exceeded 140 ° C., and the cooling time to 100 ° C. exceeded 2 hours, so the age hardening was inferior, and the proof stress after heat treatment The pressure strength after heat treatment was unacceptable.
In Comparative Example 32, the delivery temperature in the first to third pass cold rolling in the cold rolling process was 140 ° C. or lower, but the age-hardening was over 2 hours because the cooling time to 100 ° C. in the third pass exceeded 2 hours. The heat resistance after heat treatment and the pressure strength after heat treatment were unacceptable.
In Comparative Example 33, the exit temperature in the first to third cold rolling in the cold rolling process exceeded 140 ° C., and the cooling time to 100 ° C. exceeded 2 hours, respectively. The later yield strength and the compressive strength after heat treatment were unacceptable.
In Comparative Example 34, since the resin film was not coated, the iron moldability was unacceptable.

本発明に係る樹脂被覆アルミニウム合金板及びその製造方法により、塗装焼付処理後の強度と成形性に優れた飲料缶胴が製造可能となる。   By the resin-coated aluminum alloy plate and the manufacturing method thereof according to the present invention, it is possible to manufacture a beverage can body excellent in strength and formability after the baking process.

Claims (9)

Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金から構成されるアルミニウム合金板と、当該アルミニウム合金板の少なくとも一方の表面に被覆された樹脂フィルムとを備え、200℃で10分間の熱処理を施した後の耐力が260MPa以上であることを特徴とする樹脂被覆アルミニウム合金板。   Mg is 0.4 mass% or more and 0.8 mass% or less, Si is more than 0.5 mass% and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is 0.01 mass% or more and 0.4 mass% or less. % Of the aluminum alloy plate composed of an Al alloy composed of the balance Al and inevitable impurities, and a resin film coated on at least one surface of the aluminum alloy plate, and at 200 ° C. for 10 minutes. A resin-coated aluminum alloy plate characterized by having a proof stress of 260 MPa or more after heat treatment. 前記Al合金が、Tiを0.0001%以上0.1%以下、或いは、Tiを0.0001%以上0.1%以下及びBを0.0001%以上0.01%以下のいずれかを更に含有する、請求項1に記載の樹脂被覆アルミニウム合金板。   In the Al alloy, Ti is 0.0001% or more and 0.1% or less, or Ti is 0.0001% or more and 0.1% or less, and B is 0.0001% or more and 0.01% or less. The resin-coated aluminum alloy plate according to claim 1, which is contained. 前記樹脂フィルムがポリエステル系樹脂である、請求項1又は2に記載の樹脂被覆アルミニウム合金板。   The resin-coated aluminum alloy plate according to claim 1 or 2, wherein the resin film is a polyester resin. Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に1パス以上の第1の冷間圧延を施す工程と、当該第1の冷間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の第2の冷間圧延を施す工程と、当該第2の冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記第2の冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃未満としその少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法。   Mg is 0.4 mass% or more and 0.8 mass% or less, Si is more than 0.5 mass% and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is 0.01 mass% or more and 0.4 mass% or less. %, A step of homogenizing the ingot of the Al alloy consisting of the balance Al and inevitable impurities, a step of hot rolling after the homogenization step, and one pass after the hot rolling step A step of performing the first cold rolling, a step of performing a solution treatment after the first cold rolling step, and a step of performing a second cold rolling of one or more passes after the solution treatment step; And a step of coating a resin film on at least one surface of the aluminum alloy plate having the final thickness in the second cold rolling step, and cold rolling in each pass of the second cold rolling step The method of manufacturing the delivery temperature of the aluminum alloy sheet is less than 100 ° C. resin-coated aluminum alloy sheet, which comprises coating a resin film on at least one surface. Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に1パス以上の第1の冷間圧延を施す工程と、当該第1の冷間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の第2の冷間圧延を施す工程と、当該第2の冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記第2の冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃以上140℃以下とし2時間以内の間に100℃未満まで冷却した後に、その少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法。   Mg is 0.4 mass% or more and 0.8 mass% or less, Si is more than 0.5 mass% and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is 0.01 mass% or more and 0.4 mass% or less. %, A step of homogenizing the ingot of the Al alloy consisting of the balance Al and inevitable impurities, a step of hot rolling after the homogenization step, and one pass after the hot rolling step A step of performing the first cold rolling, a step of performing a solution treatment after the first cold rolling step, and a step of performing a second cold rolling of one or more passes after the solution treatment step; And a step of coating a resin film on at least one surface of the aluminum alloy plate having the final thickness in the second cold rolling step, and cold rolling in each pass of the second cold rolling step The resin-coated aluminum alloy is characterized in that the outlet temperature of the aluminum alloy plate is 100 ° C. or higher and 140 ° C. or lower and cooled to less than 100 ° C. within 2 hours, and then a resin film is coated on at least one surface thereof. A manufacturing method of a board. Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の冷間圧延を施す工程と、当該冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃未満としその少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法。   Mg is 0.4 mass% or more and 0.8 mass% or less, Si is more than 0.5 mass% and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is 0.01 mass% or more and 0.4 mass% or less. %, The step of homogenizing the ingot of the Al alloy consisting of the balance Al and inevitable impurities, the step of hot rolling after the homogenization step, and the solution after the hot rolling step A step of performing a treatment, a step of performing cold rolling of one or more passes after the solution treatment step, and a step of coating a resin film on at least one surface of an aluminum alloy plate having a final thickness in the cold rolling step In each pass of the cold rolling process, the outlet temperature of the aluminum alloy sheet after cold rolling is less than 100 ° C., and at least one surface thereof is coated with a resin film. The method for producing a resin-coated aluminum alloy sheet, which comprises coating the beam. Mgを0.4mass%以上0.8mass%以下、Siを0.5mass%より多く1.5mass%以下、Cuを0.01mass%以上0.4mass%以下及びMnを0.01mass%以上0.4mass%未満含有し、残部Alと不可避的不純物とからなるAl合金の鋳塊に均質化処理を施す工程と、当該均質化処理工程後に熱間圧延を施す工程と、当該熱間圧延工程後に溶体化処理を施す工程と、当該溶体化処理工程後に1パス以上の冷間圧延を施す工程と、当該冷間圧延工程において最終板厚としたアルミニウム合金板の少なくとも一方の表面に樹脂フィルムを被覆する工程とを含み、前記冷間圧延工程の各パスにおいて冷間圧延後のアルミニウム合金板の出側温度を100℃以上140℃以下とし2時間以内の間に100℃未満まで冷却した後に、その少なくとも一方の表面に樹脂フィルムを被覆することを特徴とする樹脂被覆アルミニウム合金板の製造方法。   Mg is 0.4 mass% or more and 0.8 mass% or less, Si is more than 0.5 mass% and 1.5 mass% or less, Cu is 0.01 mass% or more and 0.4 mass% or less, and Mn is 0.01 mass% or more and 0.4 mass% or less. %, The step of homogenizing the ingot of the Al alloy consisting of the balance Al and inevitable impurities, the step of hot rolling after the homogenization step, and the solution after the hot rolling step A step of performing a treatment, a step of performing cold rolling of one or more passes after the solution treatment step, and a step of coating a resin film on at least one surface of an aluminum alloy plate having a final thickness in the cold rolling step In each pass of the cold rolling step, the outlet temperature of the aluminum alloy sheet after cold rolling is set to 100 ° C. or higher and 140 ° C. or lower and is set to 100 within 2 hours. Until After cooling, the production method of the resin-coated aluminum alloy sheet, which comprises coating the at least one resin film on the surface below. 前記Al合金が、Tiを0.0001%以上0.1%以下、或いは、Tiを0.0001%以上0.1%以下及びBを0.0001%以上0.01%以下のいずれかを更に含有する、請求項4〜7のいずれか一項に記載の樹脂被覆アルミニウム合金板。   In the Al alloy, Ti is 0.0001% or more and 0.1% or less, or Ti is 0.0001% or more and 0.1% or less, and B is 0.0001% or more and 0.01% or less. The resin-coated aluminum alloy plate according to any one of claims 4 to 7, which is contained. 前記樹脂フィルムが、ポリエステル系樹脂であることを特徴とする、請求項4〜8のいずれか一項に記載の樹脂被覆アルミニウム合金板。   The resin-coated aluminum alloy plate according to any one of claims 4 to 8, wherein the resin film is a polyester-based resin.
JP2010113709A 2010-05-17 2010-05-17 Resin-coated aluminum alloy plate and method for producing the same Expired - Fee Related JP5697895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010113709A JP5697895B2 (en) 2010-05-17 2010-05-17 Resin-coated aluminum alloy plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113709A JP5697895B2 (en) 2010-05-17 2010-05-17 Resin-coated aluminum alloy plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011241433A true JP2011241433A (en) 2011-12-01
JP5697895B2 JP5697895B2 (en) 2015-04-08

Family

ID=45408401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113709A Expired - Fee Related JP5697895B2 (en) 2010-05-17 2010-05-17 Resin-coated aluminum alloy plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5697895B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139646A (en) * 1980-04-03 1981-10-31 Sukai Alum Kk Aging aluminum alloy for ironing
JPH05125505A (en) * 1991-10-31 1993-05-21 Furukawa Alum Co Ltd Manufacture of baking hardenability aluminum alloy plate for forming
JPH062090A (en) * 1992-06-16 1994-01-11 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JP2000309839A (en) * 1999-04-21 2000-11-07 Furukawa Electric Co Ltd:The Aluminum alloy for resin-coated can barrel and resin- coated aluminum alloy sheet for can barrel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139646A (en) * 1980-04-03 1981-10-31 Sukai Alum Kk Aging aluminum alloy for ironing
JPH05125505A (en) * 1991-10-31 1993-05-21 Furukawa Alum Co Ltd Manufacture of baking hardenability aluminum alloy plate for forming
JPH062090A (en) * 1992-06-16 1994-01-11 Sumitomo Light Metal Ind Ltd Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JP2000309839A (en) * 1999-04-21 2000-11-07 Furukawa Electric Co Ltd:The Aluminum alloy for resin-coated can barrel and resin- coated aluminum alloy sheet for can barrel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014027581; KOBELCO: NO.7 [圧延(板)]その2(やさしい技術読本1997年3月発行) , 199703, KOBELCO *

Also Published As

Publication number Publication date
JP5697895B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
US20130202477A1 (en) Damage Tolerant Aluminium Material Having a Layered Microstructure
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
JP2006265701A (en) Cold-rolled aluminum alloy sheet superior in high-temperature property for bottle-shaped can
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
US10704128B2 (en) High-strength corrosion-resistant aluminum alloys and methods of making the same
JP2000144294A (en) Aluminum alloy sheet excellent in press formability and hem workability
WO2016031938A1 (en) Aluminum alloy sheet
JP2010189730A (en) Method of producing aluminum alloy sheet for beverage can barrel
WO2014003074A1 (en) Aluminum alloy sheet for blow molding and production method therefor
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP5745364B2 (en) Aluminum can plate for can body and method for manufacturing the same, and resin-coated aluminum alloy plate for can body and method for manufacturing the same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2003105472A (en) Aluminum alloy sheet, and production method therefor
JP5421067B2 (en) Resin-coated aluminum alloy plate for beverage can body and method for producing the same
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP5697895B2 (en) Resin-coated aluminum alloy plate and method for producing the same
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JP4694770B2 (en) Aluminum alloy plate with excellent bending workability
JPH10237576A (en) Aluminum alloy sheet excellent in formability, baking finish hardenability, chemical conversion treatment property, and corrosion resistance and its production
JPH11256290A (en) Manufacture of aluminum alloy sheet for can body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5697895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees