JP2011240269A - Atomizing mechanism - Google Patents

Atomizing mechanism Download PDF

Info

Publication number
JP2011240269A
JP2011240269A JP2010115272A JP2010115272A JP2011240269A JP 2011240269 A JP2011240269 A JP 2011240269A JP 2010115272 A JP2010115272 A JP 2010115272A JP 2010115272 A JP2010115272 A JP 2010115272A JP 2011240269 A JP2011240269 A JP 2011240269A
Authority
JP
Japan
Prior art keywords
collision member
gap
flow path
flow
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010115272A
Other languages
Japanese (ja)
Inventor
Yasutaka Sakamoto
泰孝 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK
Original Assignee
MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK filed Critical MAINDOREI GIJUTSU KAGAKU KENKYUSHO KK
Priority to JP2010115272A priority Critical patent/JP2011240269A/en
Publication of JP2011240269A publication Critical patent/JP2011240269A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an atomizing mechanism in which the atomizing effect of liquid droplets is drastically improved and the atomization thereof is sufficiently achieved even when generating the liquid droplets in concentrated amount.SOLUTION: A collision member 22 is provided to protrude from the inner face of a flow path wall part 25, and a gap-forming part 23 is provided to face a top of the collision member 22 in a protruding direction in a flow path FP. A bypass 251 is formed between the outer peripheral face of the collision member 22 and the inner face of the flow path wall part 25, and a squeezing gap 21G for allowing passage of flow while squeezing is formed so as to become lower in flow volume and higher in flow rate than the bypass 251 between the collision member 22 and the gap-forming part 23. A suction hole 226 is formed in the collision member 22 in such a form as to penetrate the collision member 22 as well as the flow path wall part 25. The suction hole has, at one end being the tip end of the member 22, and an opening as a liquid jetting port in the squeezing gap 21G, and has an opening as a liquid intake port on the outer face of the wall part at the other end penetrating the flow path wall part 25.

Description

本発明は噴霧機構に関するものである。   The present invention relates to a spray mechanism.

液体を霧化する方法は種々存在するが、その一つとして、絞り部を有した霧化ノズルに気体と液体とを混合して供給し、ノズル先端から霧として噴出する方式が知られている(例えば、特許文献1,2)。   There are various methods for atomizing a liquid, and as one of them, a method is known in which a gas and a liquid are mixed and supplied to an atomizing nozzle having a constricted portion and ejected as a mist from the nozzle tip. (For example, Patent Documents 1 and 2).

特開2004−16846号公報JP 2004-16846 A 特開2006−175358号公報JP 2006-175358 A

しかし、上記従来の霧化ノズルは絞り孔の通過抵抗が大きく、微細な液滴が得にくい欠点がある。   However, the conventional atomizing nozzle has a drawback that the passage resistance of the aperture hole is large and it is difficult to obtain fine droplets.

本発明の課題は、液滴の微細化効果が劇的に向上し、高濃度の液滴を発生させる場合においても、その微細化を十分に達成できる噴霧機構を提供することにある。   It is an object of the present invention to provide a spray mechanism that can sufficiently achieve the miniaturization even when the droplet miniaturization effect is dramatically improved and a high-concentration droplet is generated.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の噴霧機構の第一の構成は、
気体又は気液混合流体を導入するための流体入口と噴霧出口とを有し、流体入口から噴霧出口に向かう流路が内部に形成された中空の流路形成部材と、
流路形成部材の流路壁部の内面から突出する衝突部材と、
流路内にて衝突部材の突出方向先端部と対向するギャップ形成部とを有し、
衝突部材の外周面と流路壁部の内面との間に迂回流路部が形成されるとともに、衝突部材と絞りギャップ形成部との間には、迂回流路部よりも低流量かつ高流速となるように気液混合流を絞りつつ通過させる絞りギャップが形成され、
衝突部材には、流路壁部とともに該衝突部材を突出方向に貫通する形にて、一端側が該衝突部材の先端側にて絞りギャップ内に液体噴出口を開口し、他端側が流路壁部を貫通して壁部外面に液体取入口を開口する吸引孔が形成され、
絞りギャップ内に発生する流体負圧にて液体取入口から吸引孔を介して絞りギャップ内に液体を吸引して液滴化するとともに、衝突部材に衝突し迂回流路部を経て該衝突部材の下流側に回り込む回り込み乱流に巻き込むことにより液滴を粉砕し、噴霧出口より噴霧するようにしたことを特徴とする。
In order to solve the above problems, the first configuration of the spray mechanism of the present invention is:
A hollow flow path forming member having a fluid inlet and a spray outlet for introducing a gas or gas-liquid mixed fluid and having a flow path from the fluid inlet toward the spray outlet formed therein;
A collision member protruding from the inner surface of the flow path wall of the flow path forming member;
Having a gap forming portion facing the leading end of the collision member in the flow path in the flow path;
A detour channel portion is formed between the outer peripheral surface of the collision member and the inner surface of the channel wall portion, and a lower flow rate and a higher flow velocity are provided between the collision member and the throttle gap forming portion than the detour channel portion. A throttle gap that allows the gas-liquid mixed flow to pass while being throttled is formed,
The collision member has a flow passage wall portion and a projection wall that penetrates the collision member in the projecting direction. One end side opens a liquid outlet in the throttle gap at the front end side of the collision member, and the other end side is the flow path wall. A suction hole is formed in the outer surface of the wall portion to open the liquid intake through the portion,
Liquid is sucked into the narrowing gap from the liquid inlet through the suction hole by the negative fluid pressure generated in the throttling gap to form liquid droplets, collides with the collision member, passes through the detour channel section, and the collision member It is characterized in that the droplets are pulverized by being involved in the wrapping turbulent flow that wraps around the downstream side and sprayed from the spray outlet.

また、本発明の噴霧機構の第二の構成は、気液混合流体を導入するための流体入口と噴霧出口とを有し、流体入口から噴霧出口に向かう流路が内部に形成された中空の流路形成部材と、
流路形成部材の流路壁部の内面から突出する衝突部材と、
流路内にて衝突部材の突出方向先端部と対向するギャップ形成部とを有し、
衝突部材の外周面と流路壁部の内面との間に迂回流路部が形成されるとともに、衝突部材と絞りギャップ形成部との間には、迂回流路部よりも低流量かつ高流速となるように気液混合流を絞りつつ通過させる絞りギャップが形成され、絞りギャップを通過する気液混合流体に含まれる液滴を、衝突部材に衝突し迂回流路部を経て該衝突部材の下流側に回り込む回り込み乱流に巻き込むことにより粉砕し、噴霧出口より噴霧するようにしたことを特徴とする。
Further, the second configuration of the spray mechanism of the present invention has a fluid inlet and a spray outlet for introducing a gas-liquid mixed fluid, and a hollow passage formed inside from the fluid inlet to the spray outlet. A flow path forming member;
A collision member protruding from the inner surface of the flow path wall of the flow path forming member;
Having a gap forming portion facing the leading end of the collision member in the flow path in the flow path;
A detour channel portion is formed between the outer peripheral surface of the collision member and the inner surface of the channel wall portion, and a lower flow rate and a higher flow velocity are provided between the collision member and the throttle gap forming portion than the detour channel portion. A throttle gap that allows the gas-liquid mixed flow to pass while being throttled is formed so that the droplets contained in the gas-liquid mixed fluid that passes through the throttle gap collide with the collision member and pass through the detour flow path section. It is characterized in that it is pulverized by being entrained in a wraparound turbulent flow that circulates downstream and sprayed from the spray outlet.

上記本発明の第一の構成によると、流路形成部材の流路壁部の内面から突出する形で衝突部材を設け、また、該流路内にて衝突部材の突出方向先端部と対向するギャップ形成部を設ける。そして、衝突部材の外周面と流路壁部の内面との間に迂回流路部を形成するとともに、衝突部材と絞りギャップ形成部との間には、迂回流路部よりも低流量かつ高流速となるように流れを絞りつつ通過させる絞りギャップを形成する。このような構造の噴霧機構に気体又は気液混合流体よりなる流れを供給すると、流れは絞りギャップにて絞られ流速が増加する。その結果、絞りギャップ内に負圧が発生し、該絞りギャップに連通する衝突部材の吸引孔を経て絞りギャップに液体が吸引・供給される。吸引された液体は、流体入口から供給され高速の絞りギャップ流に巻き込まれて粉砕され液滴化する。   According to the first configuration of the present invention, the collision member is provided so as to protrude from the inner surface of the flow path wall portion of the flow path forming member, and is opposed to the front end in the protrusion direction of the collision member in the flow path. A gap forming part is provided. A bypass flow path is formed between the outer peripheral surface of the collision member and the inner surface of the flow path wall, and a lower flow rate and a higher flow rate than the bypass flow path between the collision member and the throttle gap forming section. A throttling gap is formed to allow the flow to pass while throttling so as to achieve a flow velocity. When a flow composed of a gas or a gas-liquid mixed fluid is supplied to the spray mechanism having such a structure, the flow is throttled by the throttle gap and the flow velocity is increased. As a result, negative pressure is generated in the throttle gap, and liquid is sucked and supplied to the throttle gap through the suction hole of the collision member communicating with the throttle gap. The sucked liquid is supplied from the fluid inlet, is entrapped in a high-speed throttle gap flow, and is pulverized to form droplets.

また、本発明の第二の構成は、衝突部材に吸引孔が形成されず、流体入口から気液混合流体が絞りギャップに供給される。その以外は第一の構成と同じであり、気液混合流体に含まれる液滴は高速の絞りギャップ流に巻き込まれて粉砕される。   In the second configuration of the present invention, the suction hole is not formed in the collision member, and the gas-liquid mixed fluid is supplied to the throttle gap from the fluid inlet. The rest is the same as in the first configuration, and the droplets contained in the gas-liquid mixed fluid are pulverized by being caught in a high-speed throttle gap flow.

そして、第一及び第二の構成のいずれにおいても、流体入口から供給される流れの一部は絞りギャップを形成している衝突部材に衝突するが、絞りギャップを形成する衝突部材と流路壁部との間には、衝突部材に衝突した流れを迂回させる迂回流路部が形成されている。これにより、絞りギャップを通過する流体の抵抗が過度に増加せず、結果として該絞りギャップは従来よりもはるかに高速の流れが通過し、その流れに含まれる液滴の微粉砕化が進行しやすくなる。また、絞りギャップの通過流速が高速化することで、その下流側に立体広角的に拡がりながら形成される三次元的な負圧域の全体にわたって微小な渦流が多数形成される。さらに、これとは別に、衝突部材にぶつかって迂回流路部を通過した流れが衝突部材の下流側に回りこみ、より大流量で激しい乱流が上記の負圧域に重畳して流れ込む。液滴を含む絞りギャップの通過流は、これら2系統の乱流により三次元的に激しくランダムに撹拌されるとともに、液滴を取り囲む多数の微小渦流がそれぞれ液滴を自身に引き込もうとする結果、液滴の微粉砕が効率的に進行し、高濃度で粒径の小さい液滴を容易に得ることができる。   In both the first and second configurations, a part of the flow supplied from the fluid inlet collides with the collision member forming the throttle gap, but the collision member and the flow path wall forming the throttle gap A detour channel section that detours the flow that collides with the collision member is formed between the two sections. As a result, the resistance of the fluid passing through the throttle gap does not increase excessively, and as a result, a much faster flow passes through the throttle gap and the pulverization of the droplets contained in the flow proceeds. It becomes easy. In addition, since the passage flow velocity of the throttle gap is increased, a large number of minute vortices are formed over the entire three-dimensional negative pressure region that is formed in a three-dimensional wide-angle area on the downstream side. Further, separately from this, the flow that collides with the collision member and passes through the detour channel portion flows around the downstream side of the collision member, and a violent turbulent flow with a larger flow rate is superimposed on the negative pressure region. The flow through the constriction gap containing the droplets is vigorously and randomly stirred three-dimensionally by these two turbulences, and as a result of the large number of micro vortices surrounding the droplets trying to draw the droplets into themselves, The fine pulverization of the droplets proceeds efficiently, and droplets having a high concentration and a small particle diameter can be easily obtained.

例えば、円柱状断面の衝突部材を流れ中に配置したとき、衝突部材の外径をD、流速をU及び水の動粘性係数をνとしてレイノルズ数Reは、
Re=UD/ν(無次元数) ‥ (1)
にて表され、該円柱状断面の衝突部材周囲の流れはレイノルズ数Reが1500以上で乱流化することが知られており、特にReが10000以上のとき、回り込み乱流による液滴の微粉砕効果は飛躍的に高められる。
For example, when a collision member having a cylindrical cross section is arranged in the flow, the Reynolds number Re is given by assuming that the outer diameter of the collision member is D, the flow velocity is U, and the kinematic viscosity coefficient of water is ν.
Re = UD / ν (Dimensionless number) (1)
It is known that the flow around the collision member having a cylindrical cross section is turbulent when the Reynolds number Re is 1500 or more. The crushing effect is greatly improved.

以下、本発明の噴霧機構の構成に付加することができる種々の要件について説明する。
まず、迂回流路部は、流路内にて流れ方向から見て衝突部材の突出方向に関しその片側だけに形成することもできるが、流れ方向から見て衝突部材の突出方向に関しその両側に迂回流路部を形成しておけば、絞りギャップ下流側の負圧域に向け、衝突部材の両側から回り込み乱流が合流するので液滴粉砕効果が一層高められ、微細液滴をより効率的に発生することができる。
Hereinafter, various requirements that can be added to the configuration of the spray mechanism of the present invention will be described.
First, the detour channel portion can be formed only on one side of the collision member in the flow direction when viewed from the flow direction, but the detour channel section is detoured on both sides of the collision member as viewed from the flow direction. If the flow path is formed, the turbulent flow wraps around from both sides of the collision member toward the negative pressure area downstream of the narrowing gap, so that the droplet crushing effect is further enhanced and fine droplets are more efficiently Can be generated.

流体入口と噴霧機構との間には、流体入口からの流れを増速して噴霧機構に導く準備絞り機構を設けることができる。このような準備絞り機構を設けることで、絞りギャップ及びその周囲における流速をさらに高めることができ、液滴の更なる微細化及び高濃度化を測ることができる。   Between the fluid inlet and the spray mechanism, a preparation throttle mechanism that accelerates the flow from the fluid inlet and guides it to the spray mechanism can be provided. By providing such a preparation throttle mechanism, it is possible to further increase the flow velocity in the throttle gap and its surroundings, and to measure further miniaturization and higher concentration of the droplets.

次に、衝突部材及びギャップ形成部との絞りギャップを形成する各対向面の少なくともいずれかに減圧空洞を形成することができる。減圧空洞を流れ中で共振させれば、該共振により超音波帯共鳴波が発生し、共鳴振動により液滴粉砕をさらに促進できる。   Next, a decompression cavity can be formed in at least one of the opposing surfaces that form the aperture gap between the collision member and the gap forming portion. If the decompression cavity is resonated in the flow, an ultrasonic band resonance wave is generated by the resonance, and the droplet crushing can be further promoted by the resonance vibration.

次に、衝突部材及びギャップ形成部の絞りギャップを形成する各対向面の少なくともいずれかを、流入側にて該絞りギャップの間隔を上流側から下流側に向けて漸次縮小させる絞り傾斜面として形成することができる。これにより、絞りギャップの対向間隔が絞りギャップ入口からギャップ奥に向かうほど連続的に縮小するので、ギャップ奥に向けて流れをスムーズに絞ることができ、ギャップ通過時の流量損失を低減して流速を高めることができる。また、衝突部材及びギャップ形成部の絞りギャップを形成する各対向面の少なくともいずれかは、流出側にて該絞りギャップの間隔を上流側から下流側に向けて漸次拡大させる拡大傾斜面として形成することもできる。   Next, at least one of the opposing surfaces forming the aperture gap of the collision member and the gap forming portion is formed as an aperture inclined surface that gradually reduces the interval of the aperture gap from the upstream side to the downstream side on the inflow side. can do. As a result, the opposing gap of the throttle gap decreases continuously as it goes from the throttle gap inlet to the back of the gap, so that the flow can be smoothly throttled toward the back of the gap, reducing the flow loss when passing through the gap and reducing the flow velocity. Can be increased. Further, at least one of the opposing surfaces forming the aperture gap of the collision member and the gap forming portion is formed as an enlarged inclined surface that gradually expands the interval of the aperture gap from the upstream side toward the downstream side on the outflow side. You can also.

本発明の噴霧機構において絞りギャップの間隔を縮小すればギャップ通過流量は減少する一方、迂回流路部の流量は増大する。従って、絞りギャップの通過流速が過度に減少しない範囲内で絞りギャップ間隔を縮小すれば、絞りギャップで発生した微小液滴の回り込み乱流による微細化効果が高められ、より細径の液滴を発生できる。他方、絞りギャップの間隔を拡大すれば、絞りギャップ内の流通抵抗が減少するので、迂回流路部も合わせ流路断面全体で得られる噴射流量を増やすことができる(この場合、ギャップ間隔の設定値によっては、絞りギャップ内の流速がやや不足傾向となる場合もあるが、噴射流量の確保が優先される場合には有利となる)。そこで、本発明の噴霧機構に、絞りギャップの間隔を変更可能に調整する絞りギャップ間隔調整機構を設けておけば、液滴細径化と噴射流量との要求レベルに応じて絞りギャップの間隔を適宜調整できる。   If the gap of the throttle gap is reduced in the spray mechanism of the present invention, the flow rate through the gap decreases while the flow rate in the bypass channel increases. Therefore, if the aperture gap interval is reduced within a range where the flow velocity of the aperture gap does not decrease excessively, the effect of miniaturization due to the turbulent flow of micro droplets generated in the aperture gap is enhanced, and droplets with a smaller diameter are Can occur. On the other hand, if the gap between the narrowing gaps is increased, the flow resistance in the narrowing gap is reduced, so that the flow rate of the injection can be increased over the entire cross-section of the bypass channel (in this case, the gap interval is set). Depending on the value, the flow velocity in the throttle gap may tend to be slightly insufficient, but it is advantageous when priority is given to securing the injection flow rate). Therefore, if the spray gap mechanism of the present invention is provided with a throttle gap interval adjustment mechanism that adjusts the gap of the throttle gap so that it can be changed, the aperture gap interval can be set according to the required level of droplet diameter reduction and jet flow rate. It can be adjusted as appropriate.

次に、ギャップ形成部は、流路の断面中心に関して衝突部材と反対側にて壁部内面から衝突部材に向けて突出する対向衝突部材として形成することができ、絞りギャップを衝突部材の突出方向先端部と対向衝突部材の突出方向先端部との間に形成することができる。例えば、衝突部材の先端面を流路壁部内周面と対向させて絞りギャップを形成してもよく、この場合は流路壁部の衝突部材との対向部分がギャップ形成部を構成することとなる。しかし、この構成では、壁面摩擦による流量損失の大きい流路軸断面の外周縁領域に絞りギャップが位置するので、絞りギャップの通過流速も小さくなりがちである。しかし、対向衝突部材を設けることで絞りギャップの形成位置を流速の大きい断面中心側に近づけることができ、絞りギャップの通過流速が増大するので、微細液滴をより効率的に発生させることができる。   Next, the gap forming portion can be formed as an opposing collision member that protrudes from the inner surface of the wall portion toward the collision member on the side opposite to the collision member with respect to the cross-sectional center of the flow path. It can form between a front-end | tip part and the protrusion direction front-end | tip part of an opposing collision member. For example, the narrowing gap may be formed by making the front end surface of the collision member face the inner peripheral surface of the flow channel wall. In this case, the portion of the flow channel wall facing the collision member constitutes the gap forming portion. Become. However, in this configuration, since the throttle gap is located in the outer peripheral region of the cross section of the flow path shaft where the flow loss due to wall friction is large, the flow velocity through the throttle gap tends to be small. However, by providing the opposing collision member, the formation position of the narrowing gap can be brought closer to the center of the cross section where the flow velocity is large, and the passage flow velocity of the narrowing gap increases, so that fine droplets can be generated more efficiently. .

また、衝突部材と対向衝突部材との少なくとも一方の絞りギャップに臨む先端部分には、先端に向かうほど径小となるテーパ状の周側面を有した縮径部を形成することができる。このような縮径部を設けることにより、次のような効果が達成される。
・衝突部材ないし対向衝突部材の縮径部の外周面先端付近においては、流れの衝突迂回長が外周面基端付近よりも短くなり流速が増大する。また、縮径部外周面の流れ方向上流側に位置する部分は前述の絞り傾斜面を形成する。これにより、絞りギャップ付近の乱流発生効果がさらに高められ、微細液滴の発生効率がさらに向上する。
・衝突部材と対向衝突部材とに対し、流れの衝突迂回による渦流ないし乱流の発生効果が、それらの対向方向と直交する面内だけでなく、対向方向と平行は面内(つまり、縮径部を絞りギャップ側に乗り越える方向)にも生じ、三次元的な液滴の微粉砕効果が一層高められる。
In addition, a reduced diameter portion having a tapered peripheral side surface that decreases in diameter toward the distal end can be formed at a distal end portion facing at least one throttle gap between the collision member and the opposing collision member. By providing such a reduced diameter portion, the following effects are achieved.
-In the vicinity of the outer peripheral surface tip of the reduced diameter portion of the collision member or the opposing collision member, the flow detour length of the flow is shorter than the vicinity of the outer peripheral surface proximal end, and the flow velocity increases. Further, the portion located on the upstream side in the flow direction of the outer peripheral surface of the reduced diameter portion forms the above-described throttle inclined surface. As a result, the effect of generating turbulent flow in the vicinity of the narrowing gap is further enhanced, and the generation efficiency of fine droplets is further improved.
・ For the impact member and the opposing impact member, the effect of generating vortex or turbulent flow due to the detour of the flow is not only in the plane perpendicular to the opposing direction but also in parallel to the opposing direction (that is, the diameter is reduced). This also occurs in the direction over the constriction gap side), and the three-dimensional droplet pulverization effect is further enhanced.

対向衝突部材を設ける場合には、衝突部材及び対向衝突部材の一方又は双方に、絞りギャップに臨む先端面にギャップ形成方向に引っ込む前述の減圧空洞を形成できる。特に衝突部材及び対向衝突部材の一方に減圧空洞を形成し、他方には、その先端が減圧空洞の開口に臨む位置関係にて縮径部を形成する構成を採用すると、絞りギャップ内の流れは該縮径部により大幅に速度を高めることができる。そして、その増速された流れが減圧空洞内の淀み部分と接することで極めて大きな流速差が生じる。また、縮径部を乗り越える際に減圧空洞側に流れが屈曲形態で迂回することで、該流速差の生ずる区間長も増大する(この効果は、縮径部の先端側の一部が減圧空洞の内部に入り込むように位置調整されている場合により顕著となる)。さらに、後述のごとく、この縮径部の形成により減圧空洞の共鳴効果をより顕著にできる可能性がある。いずれも、液滴の更なる微細化に有効に貢献する。   In the case where the opposing collision member is provided, the above-described decompression cavity that retracts in the gap forming direction can be formed on one or both of the collision member and the opposing collision member at the tip surface facing the throttle gap. In particular, if a configuration in which a reduced pressure cavity is formed in one of the collision member and the opposing collision member and a reduced diameter portion is formed on the other side in such a positional relationship that the tip thereof faces the opening of the reduced pressure cavity, the flow in the throttle gap is The speed can be greatly increased by the reduced diameter portion. The increased flow is brought into contact with the stagnation portion in the decompression cavity, resulting in a very large flow velocity difference. In addition, when the diameter of the reduced diameter portion is overcome, the flow is diverted to the reduced pressure cavity side in a bent form, so that the section length in which the flow velocity difference occurs is also increased (this effect is caused by a portion of the reduced diameter portion on the tip side being the reduced pressure cavity) This is more noticeable when the position is adjusted so as to enter the interior of the head). Furthermore, as will be described later, there is a possibility that the resonance effect of the decompression cavity can be made more conspicuous by forming this reduced diameter portion. Both contribute effectively to further miniaturization of droplets.

具体的には、絞りギャップは、衝突部材の先端面にて減圧空洞の開口周縁部をなす周縁領域と縮径部のテーパ状の周側面とが対向することにより楔状断面を有し、かつ空間外周側が迂回流路部に開放する円環状のギャップ周縁空間と減圧空洞とが、減圧空洞の開口内周縁と縮径部の周側面との対向位置に形成される円環状のくびれギャップ部を介して互いに連通した構造をなすように構成できる。これにより、縮径部外周面の流れ方向に関し絞りギャップの両側に位置する部分も補助的なギャップとして機能し、流速が向上することにより、微細液滴の発生効率向上に寄与する。   Specifically, the narrowing gap has a wedge-shaped cross section when a peripheral region forming an opening peripheral portion of the decompression cavity and a tapered peripheral side surface of the reduced diameter portion are opposed to each other at the front end surface of the collision member, and An annular gap peripheral space whose outer peripheral side opens to the detour channel portion and a decompression cavity are formed via an annular constriction gap portion formed at a position opposed to the inner peripheral edge of the opening of the decompression cavity and the peripheral side surface of the reduced diameter portion. Therefore, it can be configured to communicate with each other. Thereby, the portions located on both sides of the narrowing gap in the flow direction of the outer peripheral surface of the reduced diameter portion also function as auxiliary gaps, and the flow velocity is improved, thereby contributing to the improvement in the generation efficiency of fine droplets.

なお、対向衝突部材を設ける場合、迂回流路部を衝突部材の外周面と対向衝突部材の外周面とにまたがる形で形成するとよい。これにより、衝突部材と対向衝突部材との双方が回り込み乱流の発生に寄与し、析出液滴の微粉砕効果が一層向上する。   In addition, when providing an opposing collision member, it is good to form a detour channel part in the form spanning the outer peripheral surface of a collision member and the outer peripheral surface of an opposing collision member. As a result, both the collision member and the counter collision member wrap around and contribute to the generation of turbulent flow, and the effect of finely pulverizing the deposited droplets is further improved.

本発明の噴霧機構を用いた霧発生装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the fog generator using the spray mechanism of this invention. 本発明の噴霧機構の第一の構成を具現した噴霧ノズルの平面図及び横断面図。The top view and cross-sectional view of the spray nozzle which embodyed the 1st structure of the spray mechanism of this invention. 衝突部材を用いて形成する絞りギャップ構造の拡大軸断面図。The expanded-axis sectional view of the aperture gap structure formed using a collision member. 図2の噴霧ノズルの要部を拡大して示す横断面図。The cross-sectional view which expands and shows the principal part of the spray nozzle of FIG. 衝突部材による乱流形成作用を模式的に示す説明図。Explanatory drawing which shows typically the turbulent flow formation effect | action by a collision member. 複数の渦流により液滴が引き裂かれて微小化する概念を説明する図。The figure explaining the concept by which a droplet is torn and micronized by a some eddy current. 絞りギャップの第一の変形例を示す軸断面図。The axial sectional view showing the 1st modification of an aperture gap. 同じく第二の変形例を示す軸断面図。The axial sectional view which shows the 2nd modification similarly. 同じく第三の変形例を示す軸断面図。The axial sectional view which shows a 3rd modification similarly. 同じく第四の変形例を示す軸断面図。The axial sectional view which shows the 4th modification similarly. 同じく第五の変形例を示す軸断面図。The axial sectional view which shows the 5th modification similarly. 同じく第六の変形例を示す軸断面図。Similarly, an axial sectional view showing a sixth modification. 同じく第七の変形例を示す軸断面図及び横断面図。Similarly, an axial sectional view and a transverse sectional view showing a seventh modification. 同じく第八の変形例を示す軸断面図及び横断面図。Similarly, an axial sectional view and a transverse sectional view showing an eighth modification. 本発明の噴霧機構の第二の構成を具現した噴霧ノズルの要部を拡大して示す横断面図。The cross-sectional view which expands and shows the principal part of the spray nozzle which embodied 2nd structure of the spray mechanism of this invention. 本発明の噴霧機構の第一の構成を具現した噴霧ノズルと、第二の構成を具現した噴霧ノズルとを併用した霧発生装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the fog generating apparatus which used together the spray nozzle which embodied the 1st structure of the spray mechanism of this invention, and the spray nozzle which implemented the 2nd structure.

以下、本発明を実施するための形態を添付の図面を用いて説明する。
図1は、本発明の噴霧機構を用いた霧発生装置の概略構成を示すブロック図である。装置の要部をなすのは本発明の噴霧機構の第一にかかる要件を具備する噴霧ノズル21であり、流体入口31(後述)に気流供給管304が接続される一方、衝突部材22に形成される吸引孔(後述)に液体供給管305が接続される。気流供給管304にはコンプレッサー300が接続され、加圧された気体がバルブ303により圧力調整されつつ供給される一方、液体供給管305には液体タンク301から噴霧対象となる液体が供給され、噴霧ノズル21内で気体と混合されつつ液滴となり、噴霧出口106から霧MSTとなって噴霧される。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a schematic configuration of a fog generating apparatus using the spray mechanism of the present invention. The main part of the apparatus is a spray nozzle 21 having the first requirement of the spray mechanism of the present invention, and an air flow supply pipe 304 is connected to a fluid inlet 31 (described later), while formed on the collision member 22. The liquid supply pipe 305 is connected to a suction hole (described later). A compressor 300 is connected to the airflow supply pipe 304, and pressurized gas is supplied while the pressure is adjusted by the valve 303, while a liquid to be sprayed is supplied from the liquid tank 301 to the liquid supply pipe 305, and sprayed. While being mixed with gas in the nozzle 21, it becomes droplets and is sprayed as mist MST from the spray outlet 106.

気体は例えば空気であるが、これに特に限定されず、酸素、炭酸ガス、窒素、不活性ガス(アルゴン、ヘリウムなど)、水素、オゾン(空気、酸素、炭酸ガス、不活性ガス等により希釈されていてもよい)等の種々の気体を採用できる。また、液体は、例えば水であるが、これに特に限定されず、アルコールのほか、ガソリン、化石燃料(軽油、重油など)を採用してもよい。   The gas is, for example, air, but is not particularly limited thereto, and diluted with oxygen, carbon dioxide, nitrogen, inert gas (argon, helium, etc.), hydrogen, ozone (air, oxygen, carbon dioxide, inert gas, etc.) Various gases can be employed. Further, the liquid is, for example, water, but is not particularly limited thereto, and in addition to alcohol, gasoline, fossil fuel (light oil, heavy oil, etc.) may be employed.

図2は、噴霧ノズル21の構造の一例を示すものである。また、図3及び図4は、その要部を拡大して示す断面図である。噴霧ノズル21は流体入口31と噴霧出口106を備えた流路形成部材20と、流路形成部材20内にて流路壁部25よりも半径方向内側に配置された衝突部材22と、流路FP内にて衝突部材22の突出方向先端部と対向する絞りギャップ形成部23とを有する。流路壁部25は、金属、セラミックあるいは樹脂にて構成される。図3に示すように、噴霧ノズル21において衝突部材22の外周面と流路壁部25の内面との間には迂回流路部251が形成される。また、衝突部材22と絞りギャップ形成部23との間には、迂回流路部251よりも低流量かつ高流速となるように流れを絞りつつ通過させる絞りギャップ21Gが形成されている。   FIG. 2 shows an example of the structure of the spray nozzle 21. 3 and 4 are cross-sectional views showing an enlarged main part thereof. The spray nozzle 21 includes a flow path forming member 20 having a fluid inlet 31 and a spray outlet 106, a collision member 22 disposed inside the flow path forming member 20 in a radial direction from the flow path wall 25, and a flow path In the FP, there is a diaphragm gap forming portion 23 facing the front end portion of the collision member 22 in the protruding direction. The channel wall 25 is made of metal, ceramic or resin. As shown in FIG. 3, a detour channel portion 251 is formed between the outer peripheral surface of the collision member 22 and the inner surface of the channel wall portion 25 in the spray nozzle 21. In addition, a constriction gap 21G is formed between the collision member 22 and the constriction gap forming portion 23 to allow the flow to flow while constricting the flow so as to have a lower flow rate and a higher flow velocity than the bypass flow path portion 251.

また、衝突部材22には吸引孔226が形成されている。吸引孔226は、流路壁部25とともに該衝突部材22を、その流路内への突出方向に貫通する形で、一端側が該衝突部材22の先端側にて絞りギャップ21G内に液体噴出口226dを開口し、他端側が流路壁部25を貫通して壁部外面に液体取入口226eを開口する形で形成されている(後述の工具係合孔226eと減圧空洞221が吸引孔の一部を構成している)。   Further, a suction hole 226 is formed in the collision member 22. The suction hole 226 penetrates the collision member 22 together with the flow path wall portion 25 in the protruding direction into the flow path, and one end side of the suction hole 226 is located at the distal end side of the collision member 22 in the throttle gap 21G. 226d is opened, and the other end side is formed so as to pass through the flow path wall portion 25 and open a liquid inlet 226e on the outer surface of the wall portion (a tool engagement hole 226e and a decompression cavity 221 to be described later are suction holes). Part of it).

図4及び図5に示すように、絞りギャップ形成部23は、流路FPの断面中心Oに関して衝突部材22と反対側にて壁部内面から衝突部材22に向けて突出する対向衝突部材(以下、対向衝突部材23ともいう)として形成され、絞りギャップ21Gは衝突部材22の突出方向先端部と対向衝突部材23の突出方向先端部との間に形成されている。   As shown in FIGS. 4 and 5, the narrowing gap forming portion 23 is an opposing collision member (hereinafter referred to as “projecting”) that projects from the inner surface of the wall portion toward the collision member 22 on the side opposite to the collision member 22 with respect to the cross-sectional center O of the flow path FP. The constriction gap 21G is formed between the front end of the collision member 22 in the protruding direction and the front end of the opposing collision member 23 in the protruding direction.

図2に示すように、流路形成部材20の上流側端部外周面には、流通経路接続部として接続用雄ねじ部274が形成され、その基端部272の外周にOリング273が嵌着されている。接続用雄ねじ部274にて、流路形成部材20は気流供給管304(図1)に対し螺合により接続される。なお、流通経路接続部はねじ部に限らず、必要な耐圧を確保できるものであれば、例えばワンタッチ継手など、周知の他の配管接続構造を採用してもよい。   As shown in FIG. 2, a connecting male screw portion 274 is formed as a flow path connecting portion on the outer peripheral surface of the upstream end portion of the flow path forming member 20, and an O-ring 273 is fitted on the outer periphery of the base end portion 272. Has been. The flow path forming member 20 is connected to the air flow supply pipe 304 (FIG. 1) by screwing at the connecting male screw portion 274. Note that the flow path connecting portion is not limited to the threaded portion, and other known pipe connecting structures such as a one-touch joint may be adopted as long as the necessary pressure resistance can be secured.

流路形成部材20には、流体入口31と絞りギャップ21Gとの間に、流体入口31からの流れを増速して絞りギャップ21Gに導く準備絞り機構30が形成されている。該準備絞り機構30は、具体的には流体入口31を形成する円筒状の導入部31Aと、その導入部31Aの下流側にテーパ状に縮径する縮径部32と、該縮径部32の下流側に連通一体化された円筒状の径小部30Sとを有する。また、径小部30Sに続く形で絞りギャップ21G側には、径小部30Sよりも径大の準備拡大部30Aが円筒面状に形成されている。また、絞りギャップ21Gの下流側に開口する噴霧出口106はテーパ状に拡径する形で形成されている。   The flow path forming member 20 is formed with a preliminary throttle mechanism 30 between the fluid inlet 31 and the throttle gap 21G to accelerate the flow from the fluid inlet 31 and guide it to the throttle gap 21G. Specifically, the preparation throttle mechanism 30 includes a cylindrical introduction portion 31A that forms a fluid inlet 31, a reduced diameter portion 32 that is tapered toward the downstream side of the introduction portion 31A, and the reduced diameter portion 32. And a cylindrical small-diameter portion 30 </ b> S integrated in communication with the downstream side. Further, a preparatory enlarged portion 30A having a larger diameter than the small diameter portion 30S is formed in a cylindrical surface on the narrowing gap 21G side following the small diameter portion 30S. Further, the spray outlet 106 opened to the downstream side of the narrowing gap 21G is formed so as to expand in a tapered shape.

衝突部材22及び対向衝突部材23はいずれも金属製(例えばステンレス鋼製:例えば、SUS316材)のねじ部材として構成され、流路壁部25に対し先端側が流路FP内に突出し、後端側が流路壁部25の外周面に露出するように該流路壁部25を貫通する形態にて配置されている。衝突部材22の外周面には雄ねじ部22tが形成され、流路壁部25に貫通形成された雌ねじ孔22uにねじ込まれている。該雌ねじ孔22u内における該衝突部材22の螺進量に応じて絞りギャップ21Gの間隔が調整可能である。また、対向衝突部材23の外周面にも雄ねじ部23tが形成され、流路壁部25に貫通形成された雌ねじ孔23uにねじ込まれている。該雌ねじ孔23u内における該対向衝突部材23の螺進量に応じて絞りギャップ21Gの間隔が調整可能である。以上、絞りギャップ21Gの間隔を変更可能に調整する絞りギャップ間隔調整機構が実現されていることが明らかである。なお、衝突部材22と対向衝突部材23との双方を同一方向に螺進させれば、絞りギャップ21Gの、流路FPの軸断面半径方向における位置を変更することも可能である。これらの部材の螺進調整を容易にするために、流路壁部25外に突出する衝突部材22と対向衝突部材23との各頭部端面には六角レンチなどの工具を係合させる工具係合孔222,232がそれぞれ形成されている。なお、絞りギャップ21Gの間隔ないし位置を固定として調整を特に行なわない場合には、衝突部材22及び対向衝突部材23を流路壁部25に対し、インサート成型等により螺進不能に固定・一体化する構成も可能である。さらに、衝突部材22及び対向衝突部材23の一方のみを螺進操作可能として、他方を流路壁部25に螺進不能に固定一体化することもできる。   Each of the collision member 22 and the counter collision member 23 is configured as a screw member made of metal (for example, stainless steel: for example, SUS316), and the front end side protrudes into the flow path FP with respect to the flow path wall portion 25, and the rear end side is It arrange | positions in the form which penetrates this flow-path wall part 25 so that it may be exposed to the outer peripheral surface of the flow-path wall part 25. FIG. A male threaded portion 22t is formed on the outer peripheral surface of the collision member 22, and is screwed into a female threaded hole 22u formed through the flow path wall 25. The interval of the aperture gap 21G can be adjusted according to the amount of screwing of the collision member 22 in the female screw hole 22u. A male threaded portion 23t is also formed on the outer peripheral surface of the opposing collision member 23, and is screwed into a female threaded hole 23u formed through the flow path wall 25. The interval of the throttle gap 21G can be adjusted according to the amount of screwing of the opposing collision member 23 in the female screw hole 23u. As described above, it is clear that the aperture gap interval adjusting mechanism that adjusts the interval of the aperture gap 21G so as to be changeable is realized. If both the collision member 22 and the opposing collision member 23 are screwed in the same direction, the position of the throttle gap 21G in the radial direction of the axial section of the flow path FP can be changed. In order to facilitate the adjustment of the screwing of these members, a tool mechanism that engages a tool such as a hexagon wrench with each head end surface of the collision member 22 and the opposing collision member 23 that protrudes outside the flow path wall portion 25. Joint holes 222 and 232 are respectively formed. When adjustment is not particularly performed with the interval or position of the aperture gap 21G being fixed, the collision member 22 and the opposing collision member 23 are fixed and integrated with the flow path wall 25 so as not to be screwed by insert molding or the like. It is also possible to configure. Furthermore, only one of the collision member 22 and the opposing collision member 23 can be screwed, and the other can be fixed and integrated with the flow path wall portion 25 so as not to be screwed.

次に、図3に示すように、衝突部材22には、絞りギャップ21Gに臨む先端面にギャップ形成方向に引っ込む減圧空洞221が形成されている。また、対向衝突部材23には先端が減圧空洞221の開口に臨む位置関係にて縮径部23kが形成されている(ただし、対向衝突部材23に減圧空洞を形成し、衝突部材22に縮径部を形成してもよい)。対向衝突部材23に形成された縮径部23kは、先端に向かうほど径小となるテーパ状の周側面231(具体的には円錐面)を有している。該テーパ状の周側面231の流入側(流れ上流側)に位置する部分は、該絞りギャップ21Gの間隔を上流側から下流側に向けて漸次縮小させる絞り傾斜面を構成する。また、流出側(流れ下流側)に位置する部分は、絞りギャップ21Gの間隔を上流側から下流側に向けて漸次拡大させる拡大傾斜面を構成する。   Next, as shown in FIG. 3, the collision member 22 is formed with a decompression cavity 221 that is retracted in the gap formation direction at the tip surface facing the throttle gap 21 </ b> G. Further, the opposing collision member 23 is formed with a reduced diameter portion 23k in such a positional relationship that the tip faces the opening of the decompression cavity 221 (however, the opposing collision member 23 is formed with a reduced pressure cavity and the collision member 22 has a reduced diameter. Part may be formed). The reduced diameter portion 23k formed on the opposing collision member 23 has a tapered peripheral side surface 231 (specifically, a conical surface) that decreases in diameter toward the tip. A portion located on the inflow side (flow upstream side) of the tapered peripheral side surface 231 forms a throttle inclined surface that gradually reduces the interval of the throttle gap 21G from the upstream side toward the downstream side. Further, the portion located on the outflow side (downstream side of the flow) constitutes an enlarged inclined surface that gradually expands the gap of the throttle gap 21G from the upstream side toward the downstream side.

衝突部材22と対向衝突部材23とは同心的に配置されている。また、減圧空洞221は衝突部材22の外周面と同心的な位置関係にある円筒面状の内周面を有する。縮径部23kは先端側の一部が減圧空洞221の内部に入り込むように軸線方向の位置が調整されている。図3に示すように、絞りギャップ21Gは、衝突部材22の先端面にて減圧空洞221の開口周縁部をなす周縁領域224と縮径部23kのテーパ状の周側面231とが対向することにより楔状断面を有する円環状のギャップ周縁空間251nが形成されている。該ギャップ周縁空間251nの空間外周側は迂回流路部251に開放するとともに、減圧空洞221の開口内周縁と縮径部23kの周側面との対向位置に形成される円環状のくびれギャップ部21nを介して減圧空洞221と互いに連通した構造をなす。迂回流路部251は、流路FP内にて流れ方向から見て衝突部材22の突出方向に関しその両側に、それぞれ衝突部材22の外周面と対向衝突部材23の外周面とにまたがる形で形成されている。   The collision member 22 and the opposing collision member 23 are disposed concentrically. The decompression cavity 221 has a cylindrical inner peripheral surface that is concentric with the outer peripheral surface of the collision member 22. The position of the reduced diameter portion 23k is adjusted in the axial direction so that a part of the distal end side enters the inside of the decompression cavity 221. As shown in FIG. 3, the narrowing gap 21G is formed by the peripheral region 224 forming the opening peripheral portion of the decompression cavity 221 and the tapered peripheral side surface 231 of the reduced diameter portion 23k facing each other at the front end surface of the collision member 22. An annular gap peripheral space 251n having a wedge-shaped cross section is formed. The space outer peripheral side of the gap peripheral space 251n is opened to the bypass flow path portion 251, and an annular constriction gap portion 21n formed at an opposing position between the inner peripheral edge of the decompression cavity 221 and the peripheral side surface of the reduced diameter portion 23k. And a structure communicating with the decompression cavity 221 through each other. The bypass flow path portion 251 is formed on both sides of the collision member 22 in the flow path FP in the flow direction so as to straddle the outer peripheral surface of the collision member 22 and the outer peripheral surface of the opposing collision member 23. Has been.

本発明では、衝突部材22を用いて絞りギャップ21Gを形成することにより、絞りギャップ21Gにて負圧を発生させるにとどまらず、衝突部材22に高速で気流を衝突させ下流側に回り込ませることで激しい乱流を三次元的に発生させる。それによって、絞りギャップ21Gの直下流域に多数の小渦流を密集して形成することができる。すなわち、図4に示すように、準備絞り機構30の通過により、気流GSは増速された形で絞りギャップ21Gに向けて流れ込む。他方、図3に示すように、絞りギャップ21Gを形成する衝突部材22及び対向衝突部材23は、流路壁部25との間に、ぶつかった流れWFを迂回させる迂回流路部251を形成している。つまり、絞りギャップ21Gの外周縁が迂回流路部251に開放していることで、ギャップ通過時の流体抵抗が過度に増加せず、結果として、絞りギャップ21Gを流れは高速で通過することができ、絞りギャップ21G内及びその下流の広い領域にわたって強い負圧域が発生する。このとき、図4に示すように、吸引孔226の液体取入口226eに液体LQが供給されると、絞りギャップ21G内に発生する流体負圧により、液体LQは該吸引孔226を経て効率よく吸引され、絞りギャップ21G内に噴出しつつ直下流域に形成される小渦流に巻き込まれて液滴に粉砕される。   In the present invention, by forming the throttle gap 21G using the collision member 22, not only the negative pressure is generated in the throttle gap 21G but also the collision member 22 is caused to collide with the air flow at a high speed and circulate downstream. Intense turbulence is generated in three dimensions. Thereby, a large number of small vortices can be formed densely in the region immediately downstream of the restricting gap 21G. That is, as shown in FIG. 4, the airflow GS flows toward the throttle gap 21 </ b> G in an accelerated form by passing through the preliminary throttle mechanism 30. On the other hand, as shown in FIG. 3, the collision member 22 and the opposing collision member 23 that form the throttle gap 21 </ b> G form a detour channel portion 251 that detours the flow WF that has collided with the channel wall portion 25. ing. That is, since the outer peripheral edge of the throttle gap 21G is open to the bypass flow path portion 251, the fluid resistance at the time of passing through the gap does not increase excessively, and as a result, the flow can pass through the throttle gap 21G at high speed. In other words, a strong negative pressure region is generated in a wide region in the throttle gap 21G and downstream thereof. At this time, as shown in FIG. 4, when the liquid LQ is supplied to the liquid intake port 226e of the suction hole 226, the liquid LQ efficiently passes through the suction hole 226 due to the negative fluid pressure generated in the throttle gap 21G. It is sucked and squeezed into droplets by being entrained in a small vortex formed in the immediate downstream region while being ejected into the throttle gap 21G.

一方、図5に示すように、衝突部材22にぶつかって迂回流路部251を通過した流れWFは衝突部材22の下流側に回りこみ、大流量で激しい乱流CFを形成する。これにより、衝突部材22の下流側では、その全域にわたって微小な渦流SWE(乱流)が極めて高密度に形成される。また、渦流SWEの発生密度が高くなることで、負圧域は、絞りギャップ21G内部のみでなくその下流側にも立体広角的に大きく拡がって形成される。従って、形成された液滴はギャップ下流側でさらに多数の渦流により微粉砕を受けることとなる。また、絞りギャップ21Gの周縁領域は迂回流路部251に開放する円環状のギャップ周縁空間251nを形成し、縮径部23kの外周面の、流れ方向に関し絞りギャップ21Gの両側に位置する部分も補助的なギャップとして機能するので、液滴の粉砕効率がさらに向上する。   On the other hand, as shown in FIG. 5, the flow WF that has collided with the collision member 22 and has passed through the detour channel portion 251 turns downstream of the collision member 22 and forms a violent turbulent flow CF at a large flow rate. Thereby, on the downstream side of the collision member 22, a minute vortex SWE (turbulent flow) is formed at a very high density over the entire area. Further, since the generation density of the eddy current SWE is increased, the negative pressure region is formed not only inside the throttle gap 21G but also on the downstream side thereof so as to widen in a three-dimensional wide angle. Therefore, the formed droplets are finely pulverized by a larger number of vortexes on the downstream side of the gap. Further, the peripheral region of the narrowing gap 21G forms an annular gap peripheral space 251n that opens to the detour channel portion 251, and portions of the outer peripheral surface of the reduced diameter portion 23k located on both sides of the narrowing gap 21G in the flow direction are also included. Since it functions as an auxiliary gap, the droplet crushing efficiency is further improved.

乱流化により発生する個々の渦流SWEは、渦外周よりも中心のほうが圧力が低いので、渦流SWEの周囲の流れを渦中心に引き込むように作用する。乱流下では上記のごとく、細かい多数の渦流SWEが三次元的に密集して形成されるので、図6の上に示すように、液滴BMは、複数の渦流SWEによる立体的な配位を常に受けた状態となる。各渦流SWEは液滴BMに対し、それぞれ自身の中心に向けて吸引力を作用させるので、図6の下に示すように、液滴BMはそれら周囲の渦流SWEにより四方八方に吸い込まれていわば「八つ裂き」状態となり、微小液滴BFへの粉砕が促進されるとともに液滴径の平均化が進行する。つまり、液滴BM同士を衝突させて粉砕するというよりは、各々吸引力を有した多数の小渦流SWEにより取り囲み、互いに異なる複数方向に引きちぎるイメージである。   The individual vortex flow SWE generated by turbulent flow has a lower pressure at the center than at the outer periphery of the vortex, and therefore acts to draw the flow around the vortex flow SWE into the vortex center. Under the turbulent flow, as described above, a large number of fine eddy currents SWE are densely formed in a three-dimensional manner, and as shown in the upper part of FIG. 6, the droplet BM has a three-dimensional configuration by a plurality of eddy currents SWE. It will always be in the received state. Since each vortex SWE applies a suction force to the droplet BM toward its center, as shown in the lower part of FIG. 6, the droplet BM is sucked in all directions by the surrounding vortex SWE. In an “eight tear” state, crushing into microdroplets BF is promoted and droplet diameter averaging proceeds. That is, rather than colliding the droplets BM with each other and pulverizing them, the image is surrounded by a large number of small eddy currents SWE each having a suction force, and is torn in a plurality of different directions.

また、衝突部材22の先端に絞りギャップ21Gに面する形で減圧空洞221が形成されているが、該減圧空洞221の形成により次のような作用・効果が期待できる。
・減圧空洞221内は全域が高負圧域となり、液体吸引効率のさらなる向上に寄与する。
・減圧空洞221が流れ中で共振することにより超音波帯共鳴波が発生し、共鳴振動による液滴粉砕が促進される。
Further, the pressure reducing cavity 221 is formed at the tip of the collision member 22 so as to face the throttle gap 21G. The formation of the pressure reducing cavity 221 can be expected to have the following functions and effects.
-The whole area in the decompression cavity 221 becomes a high negative pressure region, which contributes to further improvement of the liquid suction efficiency.
An ultrasonic band resonance wave is generated by the resonance of the decompression cavity 221 in the flow, and droplet crushing due to resonance vibration is promoted.

以下、本発明にて使用した噴霧ノズルの種々の変形例について説明する(すでに説明済みの部分と共通する要素には同一の符号を付与して詳細な説明は省略する)。図7は、衝突部材22に形成する減圧空洞221内の流れをより滑らかにするために、空洞底部を湾曲面状に形成した例を示す。また、図8は、減圧空洞221の開口内周縁面を、対向衝突部材23の先端部のテーパ状周側面231に対応する座ぐり状のテーパ面224とした例を示す。このテーパ面224の形成により、対向衝突部材23の先端側に流れを導く効果が高められる。   Hereinafter, various modified examples of the spray nozzle used in the present invention will be described (elements common to those already described are given the same reference numerals and detailed description thereof will be omitted). FIG. 7 shows an example in which the bottom of the cavity is formed in a curved surface in order to make the flow in the decompression cavity 221 formed in the collision member 22 smoother. FIG. 8 shows an example in which the opening inner peripheral surface of the decompression cavity 221 is a counterbore tapered surface 224 corresponding to the tapered peripheral side surface 231 of the tip of the opposing collision member 23. The formation of the tapered surface 224 enhances the effect of guiding the flow toward the distal end side of the opposing collision member 23.

図9は、衝突部材22から減圧空洞221を省略し、先端面を平坦に形成した例を示す。対向衝突部材23の先端部にはテーパ状周側面231が形成されているが、衝突部材22と対向する先端面は平坦に形成されている。図10は、対向衝突部材23の先端面に浅い減圧空洞232を形成した例を示す。衝突部材22には減圧空洞が形成されず、その先端部外周縁がテーパ状周側面225とされている。   FIG. 9 shows an example in which the decompression cavity 221 is omitted from the collision member 22 and the tip surface is formed flat. A tapered peripheral side surface 231 is formed at the distal end portion of the opposing collision member 23, but the distal end surface facing the collision member 22 is formed flat. FIG. 10 shows an example in which a shallow decompression cavity 232 is formed on the front end surface of the opposing collision member 23. The collision member 22 is not formed with a decompression cavity, and the outer peripheral edge of the tip is a tapered peripheral side surface 225.

図11は、吸引孔226を形成する場合の減圧空洞221の形成形態に係る変形例を示すものであり、該減圧空洞221の内周面を、対向衝突部材23の先端部のテーパ状周側面231に対応する座ぐり状のテーパ面224とした例を示す。一方、図12は、減圧空洞を省略した構成を示すものである。   FIG. 11 shows a modified example related to the formation form of the decompression cavity 221 when the suction hole 226 is formed. The inner peripheral surface of the decompression cavity 221 is the tapered peripheral side surface at the tip of the opposing collision member 23. An example of a counterbore tapered surface 224 corresponding to H.231 is shown. On the other hand, FIG. 12 shows a configuration in which the decompression cavity is omitted.

図13は、対向衝突部材を廃止し、衝突部材22を流路形成部材20の壁部内面を絞りギャップ形成部20cとして、これに対向させる形で絞りギャップ21Gを形成した例である。衝突部材22の先端面は、流路形成部材20の壁部内面に対応する凸湾曲面状とされている。また、図14は、対向衝突部材123を衝突部材22よりも広幅に形成することで、対向衝突部材123の側方に迂回流路部251が生じないように構成した例を示すものである。   FIG. 13 is an example in which the opposing collision member is eliminated, and the collision gap 22G is formed in such a manner that the collision member 22 faces the inner surface of the flow path forming member 20 as the restriction gap forming portion 20c. The front end surface of the collision member 22 has a convex curved surface corresponding to the inner surface of the wall portion of the flow path forming member 20. FIG. 14 shows an example in which the opposing collision member 123 is formed wider than the collision member 22 so that the detour channel portion 251 does not occur on the side of the opposing collision member 123.

なお、図15に示すように、衝突部材22に形成されていた吸引孔を廃止すれば、本発明の噴霧機構の第二の構成にかかる噴霧ノズル121を具現することができる。この場合、絞りギャップ21Gへの衝突部材22を経由した液体供給はできなくなるので、周知の気液混合ノズル(図示せず)を用いて気体と液滴とを混合した気液混合流体MFをあらかじめ形成し、流体入口側から絞りギャップ21Gに直接供給することとなる。気液混合流体MFに含まれる液滴は、絞りギャップ21G及びその直下流域にて、図4の第一の構成の噴霧ノズル21と同じ作用により粉砕され、霧MSTとなって噴霧出口106から噴霧される。   In addition, as shown in FIG. 15, if the suction hole formed in the collision member 22 is abolished, the spray nozzle 121 concerning the 2nd structure of the spray mechanism of this invention can be embodied. In this case, since the liquid cannot be supplied to the aperture gap 21G via the collision member 22, the gas-liquid mixed fluid MF obtained by mixing gas and liquid droplets using a known gas-liquid mixing nozzle (not shown) is preliminarily provided. It is formed and supplied directly to the throttle gap 21G from the fluid inlet side. Droplets contained in the gas-liquid mixed fluid MF are pulverized by the same action as the spray nozzle 21 having the first configuration shown in FIG. Is done.

図1の構成における第一の構成の噴霧ノズル21の下流側に、図16に示すように、中継配管306を介して、さらに上記第二の構成にかかる噴霧ノズル121を接続することも可能である。この場合、第一の構成の噴霧ノズル21の噴霧出口側には、流体入口側と同様に、接続用雄ねじ部などの流通経路接続部を形成することで中継配管306の接続が可能となる。これにより、噴霧ノズル21で形成された霧が気液混合流体として中継配管306を介して第二の構成にかかる噴霧ノズル121に供給され、最終的に噴霧される霧MSTの液滴をさらに細かくすることが可能となる。この構成では、第一の構成の噴霧ノズル21を、第二の構成にかかる噴霧ノズル121に気液混合流体を供給するための気液混合ノズルとして活用している。   As shown in FIG. 16, the spray nozzle 121 according to the second configuration can be further connected to the downstream side of the spray nozzle 21 of the first configuration in the configuration of FIG. 1 via a relay pipe 306. is there. In this case, the relay pipe 306 can be connected to the spray outlet side of the spray nozzle 21 having the first configuration by forming a flow path connecting part such as a male screw part for connection in the same manner as the fluid inlet side. As a result, the mist formed by the spray nozzle 21 is supplied as a gas-liquid mixed fluid to the spray nozzle 121 according to the second configuration via the relay pipe 306, and the droplets of the mist MST to be finally sprayed are further finely divided. It becomes possible to do. In this configuration, the spray nozzle 21 having the first configuration is used as a gas-liquid mixing nozzle for supplying a gas-liquid mixed fluid to the spray nozzle 121 according to the second configuration.

また、図4の第一の構成の噴霧ノズル21に対して、気流GSの代わりに気液混合流体MFを供給し、さらに、その吸引孔226から新たな液体を供給しつつ噴霧するように構成してもよい。   In addition, the gas-liquid mixed fluid MF is supplied to the spray nozzle 21 having the first configuration shown in FIG. 4 instead of the air flow GS, and spraying is performed while supplying a new liquid from the suction hole 226. May be.

1 霧発生装置
21 噴霧ノズル(噴霧機構)
21J 絞り部
21G 絞りギャップ
21n くびれギャップ部
22 衝突部材
23 対向衝突部材(絞りギャップ形成部)
23k 縮径部
30 準備縮径部
FP 流路
31 流体入口
106 噴霧出口
221 減圧空洞
226 吸引孔
251 迂回流路部
1 Fog generator 21 Spray nozzle (spray mechanism)
21J Aperture part 21G Aperture gap 21n Neck gap part 22 Colliding member 23 Opposing collision member (aperture gap forming part)
23k Reduced diameter part 30 Preparation reduced diameter part FP flow path 31 Fluid inlet 106 Spray outlet 221 Depressurization cavity 226 Suction hole 251 Detour flow path part

Claims (11)

気体又は気液混合流体を導入するための流体入口と噴霧出口とを有し、前記流体入口から前記噴霧出口に向かう流路が内部に形成された中空の流路形成部材と、
前記流路形成部材の流路壁部の内面から突出する衝突部材と、
前記流路内にて前記衝突部材の突出方向先端部と対向するギャップ形成部とを有し、
前記衝突部材の外周面と前記流路壁部の内面との間に迂回流路部が形成されるとともに、前記衝突部材と絞りギャップ形成部との間には、前記迂回流路部よりも低流量かつ高流速となるように前記気液混合流を絞りつつ通過させる絞りギャップが形成され、
前記衝突部材には、前記流路壁部とともに該衝突部材を突出方向に貫通する形にて、一端側が該衝突部材の先端側にて前記絞りギャップ内に液体噴出口を開口し、他端側が前記流路壁部を貫通して壁部外面に液体取入口を開口する吸引孔が形成され、
前記絞りギャップ内に発生する流体負圧にて前記液体取入口から前記吸引孔を介して前記絞りギャップ内に液体を吸引して液滴化するとともに、前記衝突部材に衝突し前記迂回流路部を経て該衝突部材の下流側に回り込む回り込み乱流に巻き込むことにより前記液滴を粉砕し、前記噴霧出口より噴霧するようにしたことを特徴とする噴霧機構。
A hollow flow path forming member having a fluid inlet and a spray outlet for introducing a gas or gas-liquid mixed fluid, and having a flow path from the fluid inlet toward the spray outlet formed therein;
A collision member protruding from the inner surface of the flow path wall of the flow path forming member;
A gap forming portion facing the leading end portion in the protruding direction of the collision member in the flow path;
A bypass channel portion is formed between the outer peripheral surface of the collision member and the inner surface of the channel wall portion, and is lower than the bypass channel portion between the collision member and the throttle gap forming portion. A throttle gap that allows the gas-liquid mixed flow to pass while being throttled to have a flow rate and a high flow rate is formed,
The collision member penetrates the collision member in the protruding direction together with the flow path wall portion, and one end side opens a liquid ejection port in the throttle gap at the front end side of the collision member, and the other end side is A suction hole is formed in the outer surface of the wall portion through the flow path wall portion to open a liquid intake port,
A liquid negative pressure generated in the throttle gap draws liquid into the throttle gap from the liquid inlet through the suction hole to form droplets, and collides with the collision member and the bypass flow path portion. A spray mechanism characterized in that the liquid droplets are pulverized by being entrained in a wraparound turbulent flow that goes downstream of the impingement member via the above and sprayed from the spray outlet.
気液混合流体を導入するための流体入口と噴霧出口とを有し、流体入口から前記噴霧出口に向かう流路が内部に形成された中空の流路形成部材と、
前記流路形成部材の流路壁部の内面から突出する衝突部材と、
前記流路内にて前記衝突部材の突出方向先端部と対向するギャップ形成部とを有し、
前記衝突部材の外周面と前記流路壁部の内面との間に迂回流路部が形成されるとともに、前記衝突部材と絞りギャップ形成部との間には、前記迂回流路部よりも低流量かつ高流速となるように前記気液混合流を絞りつつ通過させる絞りギャップが形成され、前記絞りギャップを通過する前記気液混合流体に含まれる液滴を、前記衝突部材に衝突し前記迂回流路部を経て該衝突部材の下流側に回り込む回り込み乱流に巻き込むことにより粉砕し、前記噴霧出口より噴霧するようにしたことを特徴とする噴霧機構。
A hollow flow path forming member having a fluid inlet and a spray outlet for introducing a gas-liquid mixed fluid and having a flow path from the fluid inlet toward the spray outlet formed therein;
A collision member protruding from the inner surface of the flow path wall of the flow path forming member;
A gap forming portion facing the leading end portion in the protruding direction of the collision member in the flow path;
A bypass channel portion is formed between the outer peripheral surface of the collision member and the inner surface of the channel wall portion, and is lower than the bypass channel portion between the collision member and the throttle gap forming portion. A throttle gap is formed to allow the gas-liquid mixed flow to pass while being throttled so as to have a flow rate and a high flow velocity, and a liquid droplet contained in the gas-liquid mixed fluid passing through the throttle gap collides with the collision member to cause the detour. A spray mechanism characterized in that it is pulverized by being entrained in a wraparound turbulent flow that goes around to the downstream side of the collision member through a flow path portion, and sprayed from the spray outlet.
前記迂回流路部は、前記流路内にて流れ方向から見て前記衝突部材の突出方向に関しその両側に形成されている請求項1又は請求項2に記載の噴霧機構。 3. The spray mechanism according to claim 1, wherein the bypass flow path portion is formed on both sides of the collision member in a protruding direction of the collision member when viewed from the flow direction in the flow path. 前記衝突部材及び前記ギャップ形成部との前記絞りギャップを形成する各対向面の少なくともいずれかに減圧空洞が形成されている請求項1ないし請求項3のいずれか1項に記載の噴霧機構。 The spray mechanism according to any one of claims 1 to 3, wherein a decompression cavity is formed in at least one of the opposing surfaces that form the throttle gap with the collision member and the gap forming portion. 前記衝突部材及び前記ギャップ形成部の前記絞りギャップを形成する各対向面の少なくともいずれかが、流入側にて該絞りギャップの間隔を上流側から下流側に向けて漸次縮小させる絞り傾斜面として形成されている請求項1ないし請求項4のいずれか1項に記載の噴霧機構。 At least one of the opposing surfaces forming the aperture gap of the collision member and the gap forming portion is formed as an aperture inclined surface that gradually reduces the interval of the aperture gap from the upstream side to the downstream side on the inflow side. The spray mechanism according to any one of claims 1 to 4, wherein the spray mechanism is provided. 前記衝突部材及び前記ギャップ形成部の前記絞りギャップを形成する各対向面の少なくともいずれかが、流出側にて該絞りギャップの間隔を上流側から下流側に向けて漸次拡大させる拡大傾斜面として形成されている請求項1ないし請求項5のいずれか1項に記載の噴霧機構。 At least one of the opposing surfaces forming the aperture gap of the collision member and the gap forming portion is formed as an enlarged inclined surface that gradually expands the interval of the aperture gap from the upstream side to the downstream side on the outflow side. The spray mechanism according to any one of claims 1 to 5, wherein: 前記ギャップ形成部は、前記流路の断面中心に関して前記衝突部材と反対側にて前記壁部内面から前記衝突部材に向けて突出する対向衝突部材として形成され、前記絞りギャップが前記衝突部材の突出方向先端部と前記対向衝突部材の突出方向先端部との間に形成されている請求項1ないし請求項6のいずれか1項に記載の噴霧機構。 The gap forming portion is formed as an opposing collision member that protrudes from the inner surface of the wall portion toward the collision member on the side opposite to the collision member with respect to the cross-sectional center of the flow path, and the throttle gap projects from the collision member. The spray mechanism according to any one of claims 1 to 6, wherein the spray mechanism is formed between a front end portion in the direction and a front end portion in the protruding direction of the opposing collision member. 前記衝突部材と前記対向衝突部材との少なくとも一方の前記絞りギャップに臨む先端部分が、先端に向かうほど径小となるテーパ状の周側面を有した縮径部が形成されてなる請求項7記載の噴霧機構。 8. A reduced diameter portion having a tapered peripheral side surface in which a tip portion facing at least one of the narrowing gaps of the collision member and the opposing collision member has a diameter that decreases toward the tip. Spraying mechanism. 前記衝突部材及び前記対向衝突部材の一方には、前記絞りギャップに臨む先端面にギャップ形成方向に引っ込む減圧空洞が形成され、他方には先端が前記減圧空洞の開口に臨む位置関係にて前記縮径部が形成されている請求項8記載の噴霧機構。 One of the collision member and the opposing collision member is formed with a decompression cavity that is retracted in a gap forming direction on a front end surface facing the throttle gap, and the other is contracted in a positional relationship in which a front end faces the opening of the decompression cavity. The spray mechanism according to claim 8, wherein a diameter portion is formed. 前記絞りギャップは、前記衝突部材の先端面にて前記減圧空洞の開口周縁部をなす周縁領域と前記縮径部のテーパ状の周側面の外周縁領域とが対向することにより楔状断面を有し、かつ空間外周側が前記迂回流路部に開放する円環状のギャップ周縁空間と前記減圧空洞とが、前記減圧空洞の開口内周縁と前記縮径部の前記周側面との対向位置に形成される円環状のくびれギャップ部を介して互いに連通した構造をなす請求項9記載の噴霧機構。 The narrowing gap has a wedge-shaped cross section when a peripheral region forming an opening peripheral portion of the decompression cavity and an outer peripheral region of a tapered peripheral side surface of the reduced diameter portion are opposed to each other at the front end surface of the collision member. An annular gap peripheral space whose outer peripheral side is open to the bypass flow path portion and the decompression cavity are formed at positions facing the inner peripheral edge of the decompression cavity opening and the peripheral side surface of the reduced diameter portion. The spray mechanism according to claim 9, wherein the spray mechanism is configured to communicate with each other via an annular constriction gap. 前記迂回流路部が、前記衝突部材の外周面と前記対向衝突部材の外周面とにまたがる形で形成されている請求項7ないし請求項10のいずれか1項に記載の噴霧機構。

















The spray mechanism according to any one of claims 7 to 10, wherein the bypass flow path portion is formed in a shape extending over an outer peripheral surface of the collision member and an outer peripheral surface of the opposing collision member.

















JP2010115272A 2010-05-19 2010-05-19 Atomizing mechanism Pending JP2011240269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115272A JP2011240269A (en) 2010-05-19 2010-05-19 Atomizing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115272A JP2011240269A (en) 2010-05-19 2010-05-19 Atomizing mechanism

Publications (1)

Publication Number Publication Date
JP2011240269A true JP2011240269A (en) 2011-12-01

Family

ID=45407491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115272A Pending JP2011240269A (en) 2010-05-19 2010-05-19 Atomizing mechanism

Country Status (1)

Country Link
JP (1) JP2011240269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172124A (en) * 2016-03-22 2017-09-28 Toto株式会社 Spray unit
KR102537806B1 (en) * 2022-05-17 2023-05-26 이희균 Road weed removal device with silt spraying structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172124A (en) * 2016-03-22 2017-09-28 Toto株式会社 Spray unit
KR102537806B1 (en) * 2022-05-17 2023-05-26 이희균 Road weed removal device with silt spraying structure

Similar Documents

Publication Publication Date Title
JP5669031B2 (en) Ultrafine bubble generator
JP5712292B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
US8991727B2 (en) Mist generating apparatus and method
WO2017179222A1 (en) Microbubble-generating device
JP6842249B2 (en) Fine bubble generation nozzle
JP2008086868A (en) Microbubble generator
KR100319431B1 (en) Atomizer
JP2017534443A (en) Atomizer nozzle
WO2018100915A1 (en) Microbubble generating nozzle
WO2013094522A1 (en) Liquid atomization device
CN104772242A (en) Atomization spray nozzle
JP5080789B2 (en) Nozzle device and method for forming atomization mechanism thereof
JP2011240269A (en) Atomizing mechanism
JP2011240268A (en) Mechanism for generating microbubbles
JP2011240210A (en) Mechanism for generating microbubble
JP2011240270A (en) Emulsifying/mixing mechanism
JP2019166493A (en) Fine bubble generation nozzle
JP7092358B2 (en) Ultra-fine bubble generator and ultra-fine bubble generator
US20130334342A1 (en) Liquid atomizing device and liquid atomizing method
US20130181063A1 (en) Liquid Atomizing Device and Liquid Atomizing Method
JP2018089610A (en) Fine bubble generation nozzle
JP2011240211A (en) Mechanism for generating microbubbles
CN110801950A (en) Nozzle with partially twisted narrow slit type spray holes
JP2019141791A (en) Spray device
JP2009178661A (en) Apparatus for discharging liquid