JP2011240241A - Spray type raw water desalination device - Google Patents

Spray type raw water desalination device Download PDF

Info

Publication number
JP2011240241A
JP2011240241A JP2010114036A JP2010114036A JP2011240241A JP 2011240241 A JP2011240241 A JP 2011240241A JP 2010114036 A JP2010114036 A JP 2010114036A JP 2010114036 A JP2010114036 A JP 2010114036A JP 2011240241 A JP2011240241 A JP 2011240241A
Authority
JP
Japan
Prior art keywords
raw water
heated air
spray
air
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010114036A
Other languages
Japanese (ja)
Inventor
Katsushige Nakamura
勝重 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2010114036A priority Critical patent/JP2011240241A/en
Publication of JP2011240241A publication Critical patent/JP2011240241A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PROBLEM TO BE SOLVED: To provide a spray type raw water desalination device without previously heating raw water.SOLUTION: Since raw water S such as salt water is heated to be evaporated by heated air b when sprayed into a vapor chamber 16, scale is not generated. Since the sprayed salt water S and the heated air b are made to countercurrently flow, the sea water S and the heated air b sufficiently come into contact with each other, and the salt water S can be efficiently evaporated.

Description

本発明はスプレー式原水淡水化装置に関するものである。   The present invention relates to a spray-type raw water desalination apparatus.

海水、汽水等の原水を淡水化する方法としてスプレー式の蒸発法が知られている。すなわち、蒸発室内で加熱した海水をノズルの先端からスプレー状に噴射して蒸発させ、その蒸発した水蒸気を凝縮室内に導いて凝縮させて淡水を得る構造である。凝縮室内での水蒸気の冷却源としては加熱する前の原水が使用される(例えば、特許文献1参照)。   A spray-type evaporation method is known as a method for desalinating raw water such as seawater and brackish water. That is, it is a structure in which seawater heated in the evaporation chamber is sprayed from the tip of the nozzle to evaporate, and the evaporated water vapor is guided into the condensation chamber and condensed to obtain fresh water. Raw water before heating is used as a cooling source of water vapor in the condensing chamber (see, for example, Patent Document 1).

特開平9−108653号公報JP-A-9-108653

しかしながら、このような従来の技術にあっては、加熱海水をノズルの先端からスプレー状に噴射するため、スケールなどによりノズルの先端が目詰まりを起こしやすい。スケールが一度付着すると除去作業がとても面倒である。   However, in such a conventional technique, since the heated seawater is sprayed from the tip of the nozzle in a spray form, the tip of the nozzle is likely to be clogged by a scale or the like. Once the scale is attached, the removal work is very troublesome.

特に昨今では環境問題から海水を蒸発させるための熱源として太陽熱を利用する技術が多く提案され、このような分野の技術発展にも前記スケールの問題は解決しなければならない課題である。   In particular, in recent years, many technologies using solar heat as a heat source for evaporating seawater have been proposed due to environmental problems, and the problem of scale has to be solved for technological development in such fields.

本発明は、このような従来の技術に着目してなされたものであり、海水等の原水を予め加熱しないスプレー式原水淡水化装置を提供することを目的としている。   This invention is made paying attention to such a prior art, and it aims at providing the spray-type raw | natural water desalination apparatus which does not heat raw water, such as seawater, beforehand.

請求項1記載の発明は、熱源により加熱空気を発生させる加熱空気発生部と、加熱空気を充満させると共に上部から原水をスプレー状に噴射する蒸発室と、蒸発室内の水蒸気を導いて冷源により淡水に凝縮させる凝縮室と、を備えていることを特徴とする。   According to the first aspect of the present invention, there is provided a heated air generating section that generates heated air by a heat source, an evaporation chamber that fills the heated air and sprays raw water from the upper portion in a spray form, and guides water vapor in the evaporation chamber from a cold source. And a condensing chamber for condensing into fresh water.

請求項2記載の発明は、加熱空気に上向きに流れを付与し、下向きに噴射された海水と向流させることを特徴とする。   The invention according to claim 2 is characterized in that a flow is imparted upward to the heated air and counterflowed with seawater jetted downward.

請求項3記載の発明は、加熱空気発生部における熱源が太陽熱によるものであることを特徴とする。   The invention according to claim 3 is characterized in that the heat source in the heated air generating section is solar heat.

請求項4記載の発明は、凝縮室における冷源が、蒸発室に噴射する前の原水であることを特徴とする。   The invention according to claim 4 is characterized in that the cold source in the condensing chamber is raw water before being injected into the evaporation chamber.

請求項1記載の発明によれば、原水が蒸発室内に噴射された時に加熱空気により加熱されて水蒸気化するためスケールが発生しない。   According to the first aspect of the present invention, since the raw water is heated by the heated air when it is injected into the evaporation chamber, the scale is not generated.

請求項2記載の発明によれば、噴射した原水と加熱空気を向流させるため、原水と加熱空気とが十分に接触して、原水を効率良く蒸発させることができる。   According to the second aspect of the present invention, since the injected raw water and the heated air are counter-flowed, the raw water and the heated air are sufficiently in contact with each other, and the raw water can be efficiently evaporated.

請求項3記載の発明によれば、加熱空気発生部における熱源として太陽熱による加熱空気を利用すため、温室効果ガスの原因となる化石燃料を使用せずに済む。   According to the third aspect of the present invention, since heated air by solar heat is used as a heat source in the heated air generating section, it is not necessary to use fossil fuel that causes greenhouse gases.

請求項4記載の発明によれば、凝縮室に供給する前の原水を冷源として使用するため、凝縮室に供給される原水の温度が凝縮室内で水蒸気により温められ、原水淡水化装置全体の熱効率を高めることができる。   According to invention of Claim 4, since the raw | natural water before supplying to a condensation chamber is used as a cold source, the temperature of the raw | natural water supplied to a condensation chamber is warmed with water vapor | steam in a condensation chamber, and the whole raw | natural water desalination apparatus is Thermal efficiency can be increased.

スプレー式原水淡水化装置を示す概略断面図。The schematic sectional drawing which shows a spray-type raw | natural water desalination apparatus. スプレー式原水淡水化装置を示す概略平面図。The schematic plan view which shows a spray-type raw | natural water desalination apparatus. スプレー式原水淡水化装置を示す構造図。FIG. 2 is a structural diagram showing a spray-type raw water desalination apparatus. 空気加熱部を示す断面図。Sectional drawing which shows an air heating part. 筒型集光鏡を示す平面図。The top view which shows a cylindrical collector mirror. 空気加熱部を示す平面図。The top view which shows an air heating part. 多貫通孔構造の熱交換部材を示す分解斜視図。The disassembled perspective view which shows the heat exchange member of a multiple through-hole structure.

図1〜図7は、本発明の好適な実施形態を示す図である。この実施形態では原水の典型として海水に着目し、太陽熱を利用したスプレー式海水淡水化装置を例に説明する。また、日本のような北半球の中緯度の地域の場合を例にして説明する。   1 to 7 are views showing a preferred embodiment of the present invention. In this embodiment, attention is focused on seawater as a typical raw water, and a spray-type seawater desalination apparatus using solar heat will be described as an example. In addition, the case of a mid-latitude region such as Japan will be described as an example.

まず、太陽熱を得るための太陽集光装置の説明をする。太陽集光装置はビームダウン式と言われているタイプのものである。中心にはセンターミラー1が図示せぬ3本のタワーにより支持されている。センターミラー1は、日中に太陽が存在する方角とは反対側が切欠かれた部分回転楕円形状をしている。センターミラー1は図1に示すように、断面が楕円に合致した湾曲面を有し、下方に第1焦点Aと第2焦点Bが存在する。   First, a solar condensing device for obtaining solar heat will be described. The solar concentrator is of the type that is said to be beam-down. At the center, a center mirror 1 is supported by three towers (not shown). The center mirror 1 has a partial spheroid shape in which the opposite side to the direction in which the sun exists during the day is cut out. As shown in FIG. 1, the center mirror 1 has a curved surface whose cross section matches an ellipse, and a first focal point A and a second focal point B exist below.

センターミラー1は図2に示すように、平面視で、半円よりも東側及び西側に所定の角度範囲だけ張り出した状態になっている。センターミラー1の北側及び東西両側には複数のヘリオスタット2が放射状に設置されている。   As shown in FIG. 2, the center mirror 1 is in a state of projecting by a predetermined angle range to the east side and the west side from the semicircle in a plan view. A plurality of heliostats 2 are radially arranged on the north side and the east and west sides of the center mirror 1.

ヘリオスタット2は図示せぬセンサーにより太陽の動きに連動して向きを変化させる構造となっており、常に太陽光Lを第1焦点Aへ向けて反射するように制御される。第1焦点Aを通過した太陽光Lはセンターミラー1で反射され第2焦点Bに集光する。   The heliostat 2 has a structure that changes its direction in conjunction with the movement of the sun by a sensor (not shown), and is always controlled to reflect the sunlight L toward the first focus A. The sunlight L that has passed through the first focal point A is reflected by the center mirror 1 and collected at the second focal point B.

第2焦点Bには筒型集光鏡3が設置されている。筒型集光鏡3は上部開口よりも下部開口が狭い概略テーパー筒形状で、内面はマルチミラー式の複数のセグメントにより構成された鏡面になっている。ヘリオスタット2の反射光は、センターミラー1で反射された後に、すべてこの筒型集光鏡3内に導入される。筒型集光鏡3の下側には空気加熱部4が設けられ、そこで空気aを1000℃程度の加熱空気bにすることができる。   A cylindrical condenser mirror 3 is installed at the second focal point B. The cylindrical condenser mirror 3 has a generally tapered cylindrical shape in which the lower opening is narrower than the upper opening, and the inner surface is a mirror surface constituted by a plurality of multi-mirror segments. All the reflected light of the heliostat 2 is reflected by the center mirror 1 and then introduced into the cylindrical condenser mirror 3. An air heating unit 4 is provided on the lower side of the cylindrical condenser mirror 3, and the air a can be changed to heated air b of about 1000 ° C.

次に、図4〜図7に基づいて、加熱空気の製造について説明する。   Next, the production of heated air will be described with reference to FIGS.

筒型集光鏡3は周囲が角型のハウジング5により覆われていて、筒型集光鏡3とハウジング5との間には中空部6が存在する。ハウジング5の上部には中空部6への空気取入口7が形成されている。   The cylindrical condenser mirror 3 is covered with a rectangular housing 5, and a hollow portion 6 exists between the cylindrical condenser mirror 3 and the housing 5. An air inlet 7 to the hollow portion 6 is formed in the upper portion of the housing 5.

筒型集光鏡3の下側の空気加熱部4は下部が細くなったロート状のハウジング8を有し、多数の熱交換部材9により上部空間10と下部空間11に区画されている。上部空間10と、筒型集光鏡3の中空部6とは、通気路12を介して連結されている。筒型集光鏡3の下部開口に臨むハウジング8の上面には透明窓13が形成されている。この透明窓13は耐熱性を有する石英硝子で形成されている。   The air heating unit 4 on the lower side of the cylindrical condenser 3 has a funnel-shaped housing 8 whose lower part is thin, and is divided into an upper space 10 and a lower space 11 by a large number of heat exchange members 9. The upper space 10 and the hollow portion 6 of the cylindrical condenser mirror 3 are connected via an air passage 12. A transparent window 13 is formed on the upper surface of the housing 8 facing the lower opening of the cylindrical collector mirror 3. The transparent window 13 is made of quartz glass having heat resistance.

熱交換部材9は黒色で炭化珪素膜(SiC)製の多貫通孔構造で1000℃以上の耐熱性を有している。この熱交換部材9は通過空気を均一化するためのロート状のカバー14(図7)内に収納されている。この熱交換部材9を複数並べて設置することで、空気加熱部4の上部空間10と下部空間11を区画している。   The heat exchange member 9 is black and has a multiple through-hole structure made of a silicon carbide film (SiC) and has heat resistance of 1000 ° C. or higher. The heat exchange member 9 is accommodated in a funnel-shaped cover 14 (FIG. 7) for making the passing air uniform. By installing a plurality of the heat exchange members 9 side by side, the upper space 10 and the lower space 11 of the air heating unit 4 are partitioned.

次に加熱空気bが製造される過程を説明する。   Next, the process for producing the heated air b will be described.

センターミラー1で反射された太陽光Lは全て筒型集光鏡3内に導入され、その内面で反射されて集光されるが、反射の際に筒型集光鏡3も吸収熱により加熱されるため筒型集光鏡3が高温になる。そのため、空気取入口7から取り入れられた空気aは中空部6内で筒型集光鏡3の裏面と接して予備的に加熱される。   All the sunlight L reflected by the center mirror 1 is introduced into the cylindrical collector mirror 3 and reflected and collected by the inner surface of the cylindrical collector mirror 3, but the cylindrical collector mirror 3 is also heated by the absorbed heat during reflection. Therefore, the cylindrical condenser mirror 3 becomes high temperature. Therefore, the air a taken in from the air intake 7 is preliminarily heated in contact with the back surface of the cylindrical condenser mirror 3 in the hollow portion 6.

ある程度加熱された空気aは通気路12を介して空気加熱部4の上部空間10に導入される。上部空間10に導入された空気aは熱交換部材9を通過して下部空間11に至る。この際、熱交換部材9には筒型集光鏡3の下部開口から透明窓13を経て高エネルギーの太陽光Lが集光された状態で照射され、熱交換部材9がきわめて高い効率で太陽熱を吸収するため大変な高温になっているので、空気aが熱交換部材9を通過することにより加熱空気bとなる。   The air a heated to some extent is introduced into the upper space 10 of the air heating unit 4 through the air passage 12. The air a introduced into the upper space 10 passes through the heat exchange member 9 and reaches the lower space 11. At this time, the heat exchanging member 9 is irradiated from the lower opening of the cylindrical condenser mirror 3 in a state where high energy sunlight L is condensed through the transparent window 13, so that the heat exchanging member 9 is solar heat with extremely high efficiency. Therefore, the air a passes through the heat exchange member 9 and becomes heated air b.

加熱空気bはファン15により吸引されて空気パイプ17を介して蒸発室16へ送られる。空気パイプ17は蒸発室16の下部に接続され、加熱空気bを蒸発室16の下側から供給する。蒸発室16の上部にはノズル部18が設けられている。ノズル部18には海水Sが供給される。海水Sは、蒸発室16に隣接する凝縮室19に設置された凝縮パイプ20を通過してノズル部18へ供給される。   The heated air b is sucked by the fan 15 and sent to the evaporation chamber 16 through the air pipe 17. The air pipe 17 is connected to the lower portion of the evaporation chamber 16 and supplies heated air b from the lower side of the evaporation chamber 16. A nozzle portion 18 is provided in the upper portion of the evaporation chamber 16. Seawater S is supplied to the nozzle unit 18. The seawater S passes through the condensation pipe 20 installed in the condensation chamber 19 adjacent to the evaporation chamber 16 and is supplied to the nozzle unit 18.

ノズル部18に導入された海水Sは、蒸気パイプ20から下向きにスプレー状に噴射される。蒸発室16と凝縮室19の隔壁の上部にはデミスタ21が設けられている。デミスタ19は通気性はあるが微細な水分飛沫(ミスト)の通過は防止する性能を有している。従って、加熱空気bは蒸発室16の下側から導入された後、上側のデミスタ19へ向けて上向きの流れとなる。   Seawater S introduced into the nozzle unit 18 is sprayed downward from the steam pipe 20 in a spray form. A demister 21 is provided above the partition walls of the evaporation chamber 16 and the condensation chamber 19. Although the demister 19 is air permeable, it has the performance of preventing the passage of fine water droplets (mist). Therefore, the heated air b is introduced from the lower side of the evaporation chamber 16 and then flows upward toward the upper demister 19.

このような高温の加熱空気bが上向きの流れをもった状態で蒸発室16内に充満しているため、そこにノズル部18から下向きに海水Sが霧状に噴射されると、海水Sは加熱空気bとの接触により蒸発して水蒸気cが発生する。加熱空気bと噴射された海水Sとが向流で接触するため、海水Sを効率よく蒸発させることができる。蒸発せずに残った一部の濃縮海水S’は蒸発室16の下部の排出口22から海に戻される。   Since the evaporation chamber 16 is filled in such a state that the high-temperature heated air b has an upward flow, when the seawater S is sprayed downward from the nozzle portion 18 to the seawater S, Water vapor c is generated by evaporation due to contact with the heated air b. Since the heated air b and the injected seawater S come in countercurrent, the seawater S can be efficiently evaporated. A part of the concentrated seawater S ′ remaining without being evaporated is returned to the sea from the discharge port 22 at the bottom of the evaporation chamber 16.

蒸発室16で蒸発した水蒸気cはデミスタ21を通過して凝縮室19へ送られる。凝縮室19内には前記凝縮パイプ20がコイル状に設置され、そこに加熱前の海水Sが供給されるため、そこが冷源となって水蒸気cを凝縮させる。凝縮された淡水Wは凝縮室19の下部に溜められる。海水Sは水蒸気cの凝縮の際に若干温められてノズル部18へ送られるため、スプレー噴射時の蒸発を促進する。海水Sは若干温められるだけでスケールを発生させるほどの加熱ではない。   The water vapor c evaporated in the evaporation chamber 16 passes through the demister 21 and is sent to the condensation chamber 19. In the condensing chamber 19, the condensing pipe 20 is installed in a coil shape, and the seawater S before heating is supplied to the condensing chamber 19, so that it serves as a cold source to condense the water vapor c. The condensed fresh water W is stored in the lower part of the condensation chamber 19. Since the seawater S is slightly warmed during the condensation of the water vapor c and sent to the nozzle portion 18, it promotes evaporation during spray injection. The seawater S is only heated slightly and not heated enough to generate scale.

この実施形態では、海水Sを直接加熱せず、加熱空気bとの接触により蒸発させているため、ノズル部18にスケールが発生しない。従ってメンテナンスが容易である。   In this embodiment, since the seawater S is not directly heated but evaporated by contact with the heated air b, no scale is generated in the nozzle portion 18. Therefore, maintenance is easy.

3 筒型集光鏡
4 空気加熱部
9 熱交換部材
16 蒸発室
19 凝縮室
L 太陽光
a 空気
b 加熱空気
c 水蒸気
W 淡水
S 海水
DESCRIPTION OF SYMBOLS 3 Cylindrical condensing mirror 4 Air heating part 9 Heat exchange member 16 Evaporating chamber 19 Condensing chamber L Sunlight a Air b Heated air c Water vapor W Fresh water S Sea water

Claims (4)

熱源により加熱空気を発生させる加熱空気発生部と、
加熱空気を充満させると共に上部から原水をスプレー状に噴射する蒸発室と、
蒸発室内の水蒸気を導いて冷源により淡水に凝縮させる凝縮室と、
を備えていることを特徴とするスプレー式原水淡水化装置。
A heated air generator for generating heated air by a heat source;
An evaporation chamber that is filled with heated air and sprays raw water in a spray form from above,
A condensing chamber that guides water vapor in the evaporation chamber and condenses it into fresh water by a cold source;
A spray-type raw water desalination apparatus characterized by comprising:
加熱空気に上向きに流れを付与し、下向きに噴射された原水と向流させることを特徴とする請求項1記載のスプレー式原水淡水化装置。   The spray-type raw water desalination apparatus according to claim 1, wherein a flow is imparted upward to the heated air and the raw air jetted downward is counterflowed. 加熱空気発生部における熱源が太陽熱によるものであることを特徴とする請求項1又は請求項2記載のスプレー式原水淡水化装置。   The spray-type raw water desalination apparatus according to claim 1 or 2, wherein the heat source in the heated air generation unit is solar heat. 凝縮室における冷源が、蒸発室に噴射する前の原水であることを特徴とする請求項1〜3のいずれか1項に記載のスプレー式原水淡水化装置。   The spray-type raw water desalination apparatus according to any one of claims 1 to 3, wherein the cold source in the condensing chamber is raw water before being injected into the evaporation chamber.
JP2010114036A 2010-05-18 2010-05-18 Spray type raw water desalination device Pending JP2011240241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114036A JP2011240241A (en) 2010-05-18 2010-05-18 Spray type raw water desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114036A JP2011240241A (en) 2010-05-18 2010-05-18 Spray type raw water desalination device

Publications (1)

Publication Number Publication Date
JP2011240241A true JP2011240241A (en) 2011-12-01

Family

ID=45407466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114036A Pending JP2011240241A (en) 2010-05-18 2010-05-18 Spray type raw water desalination device

Country Status (1)

Country Link
JP (1) JP2011240241A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103193285A (en) * 2013-03-12 2013-07-10 张英华 Spraying type multi-stage flash-evaporation sea-water desalination equipment
CN103332756A (en) * 2013-06-08 2013-10-02 河海大学 Solar-pump atomizing seawater desalination device
JP5667722B1 (en) * 2014-07-31 2015-02-12 鈴木 洋一 Drinking water plant
KR101500627B1 (en) * 2012-11-20 2015-03-09 한국기계연구원 Solar seawater distiller feeding with seawater liquid film
CN104418397A (en) * 2013-08-21 2015-03-18 莫少民 Solar energy double-effect seawater desalination device and seawater desalination method
CN108862441A (en) * 2017-05-11 2018-11-23 中国石油化工股份有限公司 The processing system of high salinity Produced Water In Oil-gas Fields, Ngi
WO2022150510A1 (en) * 2021-01-06 2022-07-14 Effluent Free Desalination Corporation Sustainable and circular water demineralization with zero waste discharge
CN115159609A (en) * 2022-07-06 2022-10-11 哈尔滨工业大学(深圳) Gas-collecting solar seawater desalination device
ES2928026A1 (en) * 2021-05-11 2022-11-14 Water Challenge S L EQUIPMENT AND PROCEDURE FOR THE EXTRACTION OF SOLIDS IN CONTAMINATED FLUIDS (Machine-translation by Google Translate, not legally binding)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500627B1 (en) * 2012-11-20 2015-03-09 한국기계연구원 Solar seawater distiller feeding with seawater liquid film
CN103193285A (en) * 2013-03-12 2013-07-10 张英华 Spraying type multi-stage flash-evaporation sea-water desalination equipment
CN103332756A (en) * 2013-06-08 2013-10-02 河海大学 Solar-pump atomizing seawater desalination device
CN104418397A (en) * 2013-08-21 2015-03-18 莫少民 Solar energy double-effect seawater desalination device and seawater desalination method
CN104418397B (en) * 2013-08-21 2017-02-08 莫少民 Solar energy double-effect seawater desalination device and seawater desalination method
JP5667722B1 (en) * 2014-07-31 2015-02-12 鈴木 洋一 Drinking water plant
CN108862441A (en) * 2017-05-11 2018-11-23 中国石油化工股份有限公司 The processing system of high salinity Produced Water In Oil-gas Fields, Ngi
CN108862441B (en) * 2017-05-11 2021-07-20 中国石油化工股份有限公司 Treatment system for produced water of high-salinity oil-gas field
WO2022150510A1 (en) * 2021-01-06 2022-07-14 Effluent Free Desalination Corporation Sustainable and circular water demineralization with zero waste discharge
US11667544B2 (en) 2021-01-06 2023-06-06 Effluent Free Desalination Corporation Sustainable and circular water demineralization with zero waste discharge
ES2928026A1 (en) * 2021-05-11 2022-11-14 Water Challenge S L EQUIPMENT AND PROCEDURE FOR THE EXTRACTION OF SOLIDS IN CONTAMINATED FLUIDS (Machine-translation by Google Translate, not legally binding)
WO2022238594A1 (en) * 2021-05-11 2022-11-17 Water Challenge, S.L. Equipment and method for extracting solids in contaminated fluids
CN115159609A (en) * 2022-07-06 2022-10-11 哈尔滨工业大学(深圳) Gas-collecting solar seawater desalination device

Similar Documents

Publication Publication Date Title
JP2011240241A (en) Spray type raw water desalination device
Abdelmoez et al. Water desalination using humidification/dehumidification (HDH) technique powered by solar energy: a detailed review
US9884265B2 (en) Multi-effect solar distiller with multiple heat sources
Elminshawy et al. Development of a desalination system driven by solar energy and low grade waste heat
CN105129891B (en) A kind of solar energy sea water desalination apparatus seethed with excitement based on extinction and method
Chen et al. On the thermodynamic analysis of a novel low-grade heat driven desalination system
WO2009090785A1 (en) Energy saving fresh water production equipment
WO2006138516A2 (en) Air heated diffusion driven water purification system
CN204873910U (en) Solar seawater desalination device based on extinction boiling
JP2011240240A (en) Spray type raw water desalination device
CN202688029U (en) Solar photo-thermal sea water desalting device
JP2004160301A (en) Desalination system
CN102989180A (en) Solar concentration device for high concentration electrolyte and concentration method thereof
JP6033405B2 (en) Solar heat collection system
RU2609811C1 (en) Plant for fresh water producing from atmosphere air
JP5907340B2 (en) Fresh water production apparatus and fresh water production method
RU2582031C1 (en) Aerodynamic cooling tower with external heat exchange
JP2010279893A (en) Seawater desalting apparatus with power generation function
JP2010269211A (en) Seawater desalination apparatus
KR101232829B1 (en) Simultaneous producing system of electric power and distilled water
CN207632539U (en) A kind of groove type solar desalination plant based on film distillation
CN205216607U (en) Reverse osmosis membrane concentrate evaporimeter
Mahmoud et al. Utilization of fresnel lens solar collector in water heating for desalination by humidification-dehumidification process
Mahmoud Enhancement of solar desalination by humidification-dehumidification technique
Farrag et al. Experimental Validation for Two Stages Humidification-Dehumidification (HDH) Water Desalination Unit