JP2011237189A - Exhaust smoke sensor - Google Patents

Exhaust smoke sensor Download PDF

Info

Publication number
JP2011237189A
JP2011237189A JP2010106423A JP2010106423A JP2011237189A JP 2011237189 A JP2011237189 A JP 2011237189A JP 2010106423 A JP2010106423 A JP 2010106423A JP 2010106423 A JP2010106423 A JP 2010106423A JP 2011237189 A JP2011237189 A JP 2011237189A
Authority
JP
Japan
Prior art keywords
exhaust
throttle valve
exhaust throttle
opening
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010106423A
Other languages
Japanese (ja)
Inventor
Eiichiro Ohata
英一郎 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2010106423A priority Critical patent/JP2011237189A/en
Priority to PCT/JP2011/060529 priority patent/WO2011138945A1/en
Publication of JP2011237189A publication Critical patent/JP2011237189A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Silencers (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in which in a translucent smoke sensor disposed on the passage of engine exhaust, a reduced pressure part whose opening degree is fixed suffers a shortage of the quantity of air taken from the atmosphere into an optical element and a resultant smear of optical faces when the exhaust flow rate is small, while an increased pressure loss invites a deterioration in the fuel consumption of the engine when the exhaust flow rate is great.SOLUTION: The target opening degree of an exhaust throttle valve 102 is determined by comparing the differential pressure between the atmospheric pressure measured with an outside air pressure/intra-pipe exhaust pressure sensor 107 and the exhaust pressure near the exhaust throttle valve 102 with a prescribed value. The opening degree of the exhaust throttle valve 102 is so controlled as to make the opening degree of the exhaust throttle valve 102 measured with a valve opening degree sensor 103 equal to the target opening degree thereby to restrain the smear and overheating of optical faces of a light emitting element 105 and a light receiving element 106 due to taken air in an air channel and at the same time to restrain the pressure loss of exhaust attributable to the exhaust throttle valve 102, and further to determine the target opening degree of the exhaust throttle valve 102 on the basis of measured temperatures from temperature sensors 108 of the light emitting element and the light receiving element to similarly control the opening degree of the exhaust throttle valve 102.

Description

本発明は、エンジンの排気通路に設けた光透過式のスモークセンサにおいて、光学面の汚れと過熱を抑える技術に関するものであり、特に排気流量が多くなった場合の圧力損失を低減させる技術に関するものである。   The present invention relates to a technology for suppressing dirt and overheating of an optical surface in a light transmission type smoke sensor provided in an exhaust passage of an engine, and particularly to a technology for reducing pressure loss when an exhaust flow rate increases. It is.

従来、エンジンの排気通路に設けた光透過式のスモークセンサは、光学面の汚れによる検出感度の低下に加え、排気熱による光学面への熱伝達により光学面の耐用温度上限を超える場合がある。そこで、スモークセンサの光学面の汚れと過熱に影響されることなく安定した分析を行う従来技術として、例えば、特許文献1に開示の技術が知られている。この特許文献1によると、ガス流路内に、流路を狭くし流れを速くしてその流れに沿った固定開度の減圧部を形成し、この減圧部の内部に光学系の光学面を設けるとともに、ガス流路外から空気を光学面経由で取り込むことが開示されている。   Conventionally, the light transmission type smoke sensor provided in the exhaust passage of the engine may exceed the upper limit of the service temperature of the optical surface due to heat transfer to the optical surface due to exhaust heat in addition to a decrease in detection sensitivity due to contamination of the optical surface. . Therefore, for example, a technique disclosed in Patent Document 1 is known as a conventional technique for performing stable analysis without being affected by contamination and overheating of the optical surface of the smoke sensor. According to Patent Document 1, a pressure reducing portion with a fixed opening along the flow is formed by narrowing the flow path and speeding up the flow in the gas flow path, and the optical surface of the optical system is formed inside the pressure reducing section. And providing air from outside the gas flow path via an optical surface.

特開2004−264146号公報JP 2004-264146 A

しかしながら、上記特許文献1に開示された従来技術では、減圧部の通路面積が固定であるため、排気流量が小さくなると吸入空気流量が不足し、排気流量が大きくなると圧力損失の増大によりエンジンの燃費が悪化するという課題があった。   However, in the prior art disclosed in Patent Document 1, since the passage area of the pressure reducing portion is fixed, the intake air flow rate becomes insufficient when the exhaust flow rate decreases, and the fuel consumption of the engine increases due to the increase in pressure loss when the exhaust flow rate increases. There was a problem of getting worse.

本発明は、エンジンの排気通路に設けた光透過式のスモークセンサにおいて、光学系の光学面の汚れと過熱を抑え、特に排気流量が多くなった場合の圧力損失を低減させることができるスモークセンサを提供することを目的とする。   The present invention relates to a light-transmitting smoke sensor provided in an exhaust passage of an engine, which can suppress dirt and overheating of an optical surface of an optical system and reduce pressure loss particularly when an exhaust flow rate increases. The purpose is to provide.

前記課題を解決するために、本発明は主として次のような構成を採用する。
エンジンの排気通路に設けた光透過式の発光素子と受光素子をもつスモークセンサであって、前記排気通路を減圧させる排気絞り弁と、前記排気絞り弁の近傍に設置され、前記排気通路の外部の空気を前記発光素子と受光素子の光学面経由で前記排気通路に取り込む空気通路と、前記排気絞り弁の開度を測定する排気絞り弁開度検出手段と、前記排気絞り弁の近傍の減圧した排気圧を測定する排気圧検出手段と、前記排気通路の外部の大気圧を測定する大気圧検出手段と、前記排気絞り弁開度検出手段、前記排気圧検出手段、前記大気圧検出手段からの測定値を演算し、前記排気絞り弁の開度を制御する演算制御手段と、を備え、
前記演算制御手段は、前記測定した排気圧と大気圧の差である差圧と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度を決定し、さらに、前記排気絞り弁開度検出手段で測定した排気絞り弁の開度が前記決定した目標開度となるように前記排気絞り弁の開度を制御して、前記空気通路の取り込み空気による前記光学面の汚れと過熱を抑止するとともに前記排気絞り弁による排気の圧力損失を抑制する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A smoke sensor having a light-transmitting light-emitting element and a light-receiving element provided in an exhaust passage of an engine, the exhaust throttle valve for depressurizing the exhaust passage, and installed in the vicinity of the exhaust throttle valve, outside the exhaust passage An air passage for taking the air into the exhaust passage via the optical surfaces of the light emitting element and the light receiving element, an exhaust throttle valve opening degree detecting means for measuring the opening degree of the exhaust throttle valve, and a pressure reduction in the vicinity of the exhaust throttle valve Exhaust pressure detection means for measuring the exhaust pressure, atmospheric pressure detection means for measuring the atmospheric pressure outside the exhaust passage, exhaust throttle valve opening detection means, exhaust pressure detection means, and atmospheric pressure detection means Calculation control means for calculating the measured value of, and controlling the opening of the exhaust throttle valve,
The arithmetic control means determines a target opening of the exhaust throttle valve by comparing a differential pressure, which is a difference between the measured exhaust pressure and atmospheric pressure, with a predetermined value, and further, The opening of the exhaust throttle valve measured by the throttle valve opening detection means is controlled so that the opening degree of the exhaust throttle valve becomes the determined target opening degree, and the optical surface is contaminated by the intake air of the air passage. And overheating and the pressure loss of the exhaust by the exhaust throttle valve.

また、エンジンの排気通路に設けた光透過式の発光素子と受光素子をもつスモークセンサであって、前記排気通路を減圧させる排気絞り弁と、前記排気絞り弁の近傍に設置され、前記排気通路の外部の空気を前記発光素子と受光素子の光学面経由で前記排気通路に取り込む空気通路と、前記排気絞り弁の開度を測定する排気絞り弁開度検出手段と、前記発光素子と受光素子の光学面の温度を測定する光学面温度検出手段と、前記排気絞り弁開度検出手段からの測定値を演算するとともに、前記光学面温度検出手段からの前記発光素子と受光素子の光学面温度の測定値を演算し、前記排気絞り弁の開度を制御する演算制御手段と、を備え、
前記演算制御手段は、前記測定した発光素子の光学面温度と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度Aを算出するとともに、前記測定した受光素子の光学面温度と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度Bを算出し、さらに、前記目標開度Aと前記目標開度Bの内の小さい方の目標開度を選定し、前記排気絞り弁開度検出手段で測定した排気絞り弁の開度が前記選定した目標開度となるように前記排気絞り弁の開度を制御して、前記空気通路の取り込み空気による前記光学面の汚れと過熱を抑止するとともに前記排気絞り弁による排気の圧力損失を抑制する構成とする。
A smoke sensor having a light-transmitting light emitting element and a light receiving element provided in an exhaust passage of the engine, the exhaust throttle valve for reducing the pressure of the exhaust passage, and being installed in the vicinity of the exhaust throttle valve, An air passage for taking air outside the light passage into the exhaust passage via an optical surface of the light emitting element and the light receiving element, an exhaust throttle valve opening degree detecting means for measuring an opening degree of the exhaust throttle valve, the light emitting element and the light receiving element The optical surface temperature detecting means for measuring the temperature of the optical surface of the light source, and the measured values from the exhaust throttle valve opening degree detecting means are calculated, and the optical surface temperatures of the light emitting element and the light receiving element from the optical surface temperature detecting means Calculation control means for calculating the measured value of, and controlling the opening of the exhaust throttle valve,
The arithmetic control means calculates the target opening A of the exhaust throttle valve by comparing the measured optical surface temperature of the light emitting element with a predetermined value defined in advance, and the optical of the measured light receiving element. The target opening B of the exhaust throttle valve is calculated by comparing the surface temperature with a predetermined value, and the smaller target opening of the target opening A and the target opening B is calculated. The degree of opening of the exhaust throttle valve is controlled so that the opening degree of the exhaust throttle valve measured by the exhaust throttle valve opening degree detection means becomes the selected target opening degree, and the intake of the air passage is taken into account. The optical surface is prevented from being contaminated and overheated by air, and exhaust pressure loss due to the exhaust throttle valve is suppressed.

前記スモークセンサにおいて、前記排気絞り弁の近傍の減圧した排気圧を測定する排気圧検出手段と、前記排気通路の外部の大気圧を測定する大気圧検出手段と、前記排気絞り弁開度検出手段、前記排気圧検出手段、前記大気圧検出手段からの測定値を演算するとともに、前記発光素子と受光素子の光学面温度の測定値を演算し、前記排気絞り弁の開度を制御する演算制御手段と、を備え、
前記演算制御手段は、前記測定した排気圧と大気圧の差である差圧と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度Cを算出し、さらに、前記目標開度Aと前記目標開度Bと前記目標開度Cの内の最も小さい目標開度を選定し、前記排気絞り弁開度検出手段で測定した排気絞り弁の開度が前記選定した目標開度となるように前記排気絞り弁の開度を制御して、前記空気通路の取り込み空気による前記光学面の汚れと過熱を抑止するとともに前記排気絞り弁による排気の圧力損失を抑制する構成とする。
In the smoke sensor, an exhaust pressure detecting means for measuring a reduced exhaust pressure in the vicinity of the exhaust throttle valve, an atmospheric pressure detecting means for measuring an atmospheric pressure outside the exhaust passage, and an exhaust throttle valve opening degree detecting means Calculating the measured values from the exhaust pressure detecting means and the atmospheric pressure detecting means, calculating the measured values of the optical surface temperatures of the light emitting element and the light receiving element, and controlling the opening of the exhaust throttle valve Means, and
The arithmetic control means calculates a target opening degree C of the exhaust throttle valve by comparing a differential pressure that is a difference between the measured exhaust pressure and an atmospheric pressure with a predetermined value that is defined in advance. The smallest target opening among the target opening A, the target opening B, and the target opening C is selected, and the opening of the exhaust throttle valve measured by the exhaust throttle valve opening detecting means is the selected target. A configuration in which the opening of the exhaust throttle valve is controlled so as to have an opening, so that contamination and overheating of the optical surface due to the air taken in the air passage are suppressed, and pressure loss of exhaust by the exhaust throttle valve is suppressed. To do.

本発明によれば、排気流量に関わらず、排気通路外からの取り込み空気流量の過不足を最小限に抑えると共に、排気通路の減圧部による圧力損失を抑えることができる。これにより、光学面の汚れや過熱が抑えられ、スモーク検出感度の低下が抑えられると同時に、排気圧力損失に伴う燃費の悪化を抑えることができる。   According to the present invention, it is possible to minimize the excess and deficiency of the intake air flow rate from outside the exhaust passage regardless of the exhaust flow rate, and to suppress the pressure loss due to the decompression portion of the exhaust passage. As a result, contamination and overheating of the optical surface can be suppressed, a decrease in smoke detection sensitivity can be suppressed, and at the same time, deterioration of fuel consumption due to exhaust pressure loss can be suppressed.

本発明の実施形態に係るスモークセンサの全体構成とその接続構成を示す図である。It is a figure which shows the whole smoke sensor structure which concerns on embodiment of this invention, and its connection structure. 本実施形態に係るスモークセンサとこれを用いたエンジン廻りの構成を示す図である。It is a figure which shows the structure around the engine which used the smoke sensor which concerns on this embodiment, and this. 本発明の実施形態に係るスモークセンサの第1の動作手順を示すフローチャートである。It is a flowchart which shows the 1st operation | movement procedure of the smoke sensor which concerns on embodiment of this invention. 本発明の実施形態に係るスモークセンサの第2の動作手順を示すフローチャートである。It is a flowchart which shows the 2nd operation | movement procedure of the smoke sensor which concerns on embodiment of this invention. 本発明の実施形態に係るスモークセンサの第3の動作手順を示すフローチャートである。It is a flowchart which shows the 3rd operation | movement procedure of the smoke sensor which concerns on embodiment of this invention. 本実施形態に関する排気絞り弁開度と受光素子または発光素子の光学面温度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the exhaust throttle valve opening degree regarding this embodiment, and the optical surface temperature of a light receiving element or a light emitting element. 本実施形態に関する排気絞り弁開度と圧力損失との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the exhaust throttle valve opening degree regarding this embodiment, and a pressure loss. 本実施形態に関する排気絞り弁開度の補正についてゲージ圧との関係で算出する具体例を示すグラフである。It is a graph which shows the specific example calculated by the relationship with a gauge pressure about the correction | amendment of the exhaust throttle valve opening degree regarding this embodiment. 本実施形態に関する排気絞り弁開度の補正について受光素子または発光素子の光学面温度との関係で算出する具体例を示すグラフである。It is a graph which shows the specific example calculated about the correction | amendment of the exhaust throttle valve opening degree regarding this embodiment by relationship with the optical surface temperature of a light receiving element or a light emitting element. 本実施形態に関する排気絞り弁の弁開度を排気処理装置と光学面の汚れ・過熱からの要求を基に決定する手法を説明する図である。It is a figure explaining the method of determining the valve opening degree of the exhaust throttle valve regarding this embodiment based on the request | requirement from the exhaust treatment apparatus and the dirt and overheating of an optical surface.

本発明の実施形態に係るスモークセンサとこれに関連する周辺の構成について、まず、図1と図2を参照しながら以下説明する。図2は、本発明の実施形態に係るスモークセンサとこれを用いたエンジン廻りの構成を示す図であり、エンジン19の上流からエアクリーナ17、エアフローセンサ2、吸気絞り弁28、過給器のコンプレッサ6(b)、インタークーラ16、吸気圧力および吸気温度センサ30(a),(b)、吸入空気量を調整するスロットル13、吸気圧力および吸気温度センサ14、吸気管20(a),(b)、燃料噴射弁(以下、インジェクタ)5が配置されている。スロットル13は電子制御スロットルであることが好ましく、電気式アクチュエータによってスロットルバルブを駆動するものである。   A smoke sensor according to an embodiment of the present invention and a peripheral configuration related thereto will be described first with reference to FIGS. 1 and 2. FIG. 2 is a view showing a smoke sensor according to an embodiment of the present invention and a configuration around the engine using the smoke sensor. From the upstream side of the engine 19, an air cleaner 17, an air flow sensor 2, an intake throttle valve 28, a turbocharger compressor. 6 (b), intercooler 16, intake pressure and intake temperature sensors 30 (a), (b), throttle 13 for adjusting the intake air amount, intake pressure / intake temperature sensor 14, intake pipes 20 (a), (b ), A fuel injection valve (hereinafter referred to as an injector) 5 is disposed. The throttle 13 is preferably an electronically controlled throttle, and the throttle valve is driven by an electric actuator.

排気管23には、排気圧力および排気温度センサ3と、排気浄化装置7の前後の圧力と温度を測定するセンサ21(a),(b)と、排気絞り弁を付設したスモークセンサ27とが配されており、吸気管20(a),(b)へ排気ガスを再循環する排気ガス再循環ガス通路9,26には、排気ガス再循環ガス熱交換器10,31と、排気ガス再循環ガス流量制御弁11,29とが設置されている。   The exhaust pipe 23 includes an exhaust pressure and exhaust temperature sensor 3, sensors 21 (a) and (b) for measuring pressures and temperatures before and after the exhaust purification device 7, and a smoke sensor 27 provided with an exhaust throttle valve. The exhaust gas recirculation gas passages 9 and 26 for recirculating the exhaust gas to the intake pipes 20 (a) and (b) are disposed in the exhaust gas recirculation gas heat exchangers 10 and 31 and the exhaust gas recirculation. Circulating gas flow control valves 11 and 29 are installed.

本実施形態に関連する吸気量制御手段は、吸気絞り弁28、排気絞り弁を付設したスモークセンサ27、排気ガス再循環ガス流量制御弁11,29、コンプレッサ6(b)、インタークーラ16、スロットル13からなり、吸気量検出手段は、エアフローセンサ2、吸気圧力および吸気温度センサ30(a),(b)、吸気圧力および吸気温度センサ14からなる。図2に示す構成において、排気ガス再循環ガス圧力および温度センサ12、排気圧力および排気温度センサ3、エアフローセンサ2は、排気ガス再循環ガス流量を測定する際に用いられる。   The intake air amount control means related to the present embodiment includes an intake throttle valve 28, a smoke sensor 27 provided with an exhaust throttle valve, exhaust gas recirculation gas flow control valves 11 and 29, a compressor 6 (b), an intercooler 16, a throttle. 13, the intake air amount detection means includes an air flow sensor 2, intake air pressure and intake air temperature sensors 30 (a) and (b), and intake air pressure and intake air temperature sensor 14. In the configuration shown in FIG. 2, the exhaust gas recirculation gas pressure and temperature sensor 12, the exhaust pressure and exhaust temperature sensor 3, and the air flow sensor 2 are used when measuring the exhaust gas recirculation gas flow rate.

インジェクタ5は燃焼室18に直接燃料噴射する形式のものである。インジェクタ5からは、アクセル開度センサ1の開度信号αなどから演算される目標エンジントルクに応じて所定の燃料量が噴射され、その燃料量は、スロットル13の開度信号θtp、排気ガス再循環ガス流量制御弁11の開度信号θegr、コンプレッサ6(b)の過給圧Ptinの出力値などに応じて適宜補正する。エンジンコントロールユニット(以下、ECU)8は、アクセル開度α、ブレーキ状態などのユーザ要求、車速などの車両状態、エンジン冷却水温および排気温度などのエンジン運転条件に応じて、エンジン19の燃焼モードや制御量などを決定するものである。   The injector 5 is of a type in which fuel is directly injected into the combustion chamber 18. A predetermined amount of fuel is injected from the injector 5 in accordance with a target engine torque calculated from the opening degree signal α of the accelerator opening degree sensor 1, and the fuel amount is determined based on the opening degree signal θtp of the throttle 13, the exhaust gas recycle. Correction is appropriately made according to the opening signal θegr of the circulating gas flow control valve 11, the output value of the supercharging pressure Ptin of the compressor 6 (b), and the like. The engine control unit (hereinafter referred to as ECU) 8 determines the combustion mode of the engine 19 according to the engine opening conditions α, the user request such as the brake state, the vehicle state such as the vehicle speed, the engine cooling water temperature and the exhaust gas temperature. The control amount is determined.

次に、図2に示す排気絞り弁を付設したスモークセンサ27の構成例について、図1を参照しながら以下説明する。ここで、スモークセンサ27は、図1に示す発光素子105、光学通路104、受光素子106のみを指称するものではなくて、排気絞り弁102、排気絞り弁102の弁開度検出手段、排気絞り弁102付近の排気圧検出手段107、大気圧の検出手段107、発光素子及び受光素子の光学面の温度検出手段108、外部空気を光学面経由で排気通路に取り込む取り込み空気通路、種々の検出手段からの測定値を演算して排気絞り弁の弁開度を制御する演算制御手段、などの一群の構成要素からなるものを指称する。すなわち、スモークセンサ27は、発光・受光素子に関連する一群の構成からなるものとして定義する。   Next, a configuration example of the smoke sensor 27 provided with the exhaust throttle valve shown in FIG. 2 will be described below with reference to FIG. Here, the smoke sensor 27 does not refer only to the light emitting element 105, the optical passage 104, and the light receiving element 106 shown in FIG. 1, but the exhaust throttle valve 102, the valve opening degree detecting means of the exhaust throttle valve 102, and the exhaust throttle. Exhaust pressure detecting means 107 in the vicinity of the valve 102, atmospheric pressure detecting means 107, temperature detecting means 108 for the optical surfaces of the light emitting element and the light receiving element, an intake air passage for taking external air into the exhaust passage via the optical surface, and various detecting means The control unit means a group of components such as a calculation control means for calculating the measured value from the above and controlling the valve opening of the exhaust throttle valve. That is, the smoke sensor 27 is defined as a group of configurations related to the light emitting / receiving elements.

排気絞り弁102はモータを付設した弁開度センサ103により駆動される。排気管101に備えた排気絞り弁102付近に光学通路104を設け、両端に発光素子105と受光素子106を配している。すなわち、光学通路104は排気管101の排気通路を横断するように構成される。発光素子105から発した光は光学通路104を通り、排気を透過して受光素子106に送られる。受光素子106に送られる受光量は排気濃度に応じて変化する。受光素子106は受光量に応じて出力電圧を変化させることで、外部へ排気濃度を出力する。   The exhaust throttle valve 102 is driven by a valve opening sensor 103 provided with a motor. An optical passage 104 is provided in the vicinity of the exhaust throttle valve 102 provided in the exhaust pipe 101, and a light emitting element 105 and a light receiving element 106 are disposed at both ends. That is, the optical passage 104 is configured to cross the exhaust passage of the exhaust pipe 101. Light emitted from the light emitting element 105 passes through the optical path 104, passes through the exhaust, and is sent to the light receiving element 106. The amount of light received sent to the light receiving element 106 changes according to the exhaust concentration. The light receiving element 106 outputs the exhaust concentration to the outside by changing the output voltage according to the amount of received light.

発光素子105と受光素子106の周囲には隙間を設け、排気絞り弁102による減圧により隙間と光学面と光学通路104を介して外気を取り込むようになっている(不図示)。発光素子105と受光素子106の光学面近傍には温度センサ108(a),(b)が設けられ、発光素子105と受光素子106の温度測定に用いられる。排気管101の光学通路104近傍には外気圧および排気管内圧センサ107が設けられ(外気圧と内圧をそれぞれ測定する2つの検出器から構成される)、光学通路104内の通気方向の判定に用いられる(外気圧と内圧の大小を比較して通気の方向を判定する)。なお、発光素子105と受光素子106の代わりにフォトリフレクタやフォトインタラプタを用いても良い。   A gap is provided between the light emitting element 105 and the light receiving element 106, and outside air is taken in via the gap, the optical surface, and the optical passage 104 by pressure reduction by the exhaust throttle valve 102 (not shown). Temperature sensors 108 (a) and (b) are provided in the vicinity of the optical surfaces of the light emitting element 105 and the light receiving element 106, and are used for measuring the temperature of the light emitting element 105 and the light receiving element 106. An external air pressure and an exhaust pipe internal pressure sensor 107 are provided in the vicinity of the optical passage 104 of the exhaust pipe 101 (consisting of two detectors for measuring the external air pressure and the internal pressure, respectively). It is used (the direction of ventilation is determined by comparing the external pressure and the internal pressure). Note that a photo reflector or a photo interrupter may be used instead of the light emitting element 105 and the light receiving element 106.

次に、本発明の実施形態に係るスモークセンサの第1の動作手順について、図3に示すフローチャートを参照しながら、以下説明する。図示するスモークセンサの動作は、周期的に測定と演算と制御出力を繰り返すものである。   Next, a first operation procedure of the smoke sensor according to the embodiment of the present invention will be described below with reference to the flowchart shown in FIG. The operation of the smoke sensor shown in the figure repeats measurement, calculation and control output periodically.

最初に、排気管101に取り付けられた外気圧および排気管内圧センサ107によって大気圧を検出する(ブロック1001)。次に、排気管101に取り付けられた外気圧および排気管内圧センサ107より排気圧を検出する(ブロック1002)。そして、ブロック1001とブロック1002にて測定した圧力の差分を排気ゲージ圧(排気圧−大気圧)として算出する(ブロック1004)。   First, the atmospheric pressure is detected by the external air pressure and the exhaust pipe internal pressure sensor 107 attached to the exhaust pipe 101 (block 1001). Next, the exhaust pressure is detected by the external pressure and the exhaust pipe internal pressure sensor 107 attached to the exhaust pipe 101 (block 1002). Then, the difference between the pressures measured in the block 1001 and the block 1002 is calculated as the exhaust gauge pressure (exhaust pressure-atmospheric pressure) (block 1004).

次に、ブロック1004にて算出した排気ゲージ圧と所定値を比較し、排気絞り弁102開度の過不足を算出する(ブロック1005)。さらに、モータを付設した弁開度センサ103により排気絞り弁102の開度を検出する(ブロック1003)。   Next, the exhaust gauge pressure calculated in block 1004 is compared with a predetermined value to calculate the excess or deficiency of the exhaust throttle valve 102 opening (block 1005). Further, the opening degree of the exhaust throttle valve 102 is detected by a valve opening degree sensor 103 provided with a motor (block 1003).

続いて、ブロック1003にて検出した排気絞り弁102の開度にブロック1005にて算出した排気絞り弁102開度の過不足分を加算して排気絞り弁102の目標開度を算出する(ブロック1006)。次に、排気絞り弁102の開度がブロック1006にて算出した目標開度となるようにモータを付設した弁開度センサ103を駆動する(ブロック1007)。このような手順の実行によって、排気絞り弁102による圧力損失を過大にすることなく、排気スモークを検出可能となる。換言すると、例えば、排気絞り弁102を絞って(通路の絞り態様が固定ではなくて可変である)圧力損失を大にするとスモークセンサ設置箇所の管内圧力が小となって外気からの取り込み空気量が増加し、光学面の汚れと過熱を抑止することができるのである。なお、排気と外気の通過量をみると、外気量をほとんど無視できる程度の多量の排気であるので、スモークセンサとしての排気濃度の検出機能には影響を及ぼさない。   Subsequently, the target opening of the exhaust throttle valve 102 is calculated by adding the excess or deficiency of the exhaust throttle valve 102 calculated in block 1005 to the opening of the exhaust throttle valve 102 detected in block 1003 (block). 1006). Next, the valve opening sensor 103 provided with a motor is driven so that the opening of the exhaust throttle valve 102 becomes the target opening calculated in block 1006 (block 1007). By executing such a procedure, exhaust smoke can be detected without excessive pressure loss due to the exhaust throttle valve 102. In other words, for example, if the exhaust throttle valve 102 is throttled (the throttle mode of the passage is not fixed but variable) and the pressure loss is increased, the pressure in the pipe at the smoke sensor installation location is reduced and the amount of intake air from the outside air As a result, the contamination of the optical surface and overheating can be suppressed. Note that the amount of exhaust gas and the amount of outside air that passes through is a large amount of exhaust gas that can almost ignore the outside air amount, and therefore does not affect the exhaust concentration detection function as a smoke sensor.

次に、本発明の実施形態に係るスモークセンサの第2の動作手順について、図4に示すフローチャートを参照しながら、以下説明する。図示するスモークセンサの動作は、周期的に測定と演算と制御出力を繰り返すものである。   Next, the second operation procedure of the smoke sensor according to the embodiment of the present invention will be described below with reference to the flowchart shown in FIG. The operation of the smoke sensor shown in the figure repeats measurement, calculation and control output periodically.

最初に、モータを付設した弁開度センサ103によって排気絞り弁102の開度を検出する(ブロック1104)。さらに、光学通路104に取り付けられた温度センサ108(a)により発光素子105の光学面温度を検出する(ブロック1101)。次に、ブロック1101にて算出した発光素子105の光学面温度と所定値を比較し、排気絞り弁102開度の過不足を算出する(ブロック1102)。続いて、ブロック1104にて検出した排気絞り弁102の開度にブロック1102にて算出した排気絞り弁102開度の過不足分を加算して排気絞り弁102の目標開度Aを算出する(ブロック1103)。   First, the opening degree of the exhaust throttle valve 102 is detected by the valve opening degree sensor 103 provided with a motor (block 1104). Further, the optical surface temperature of the light emitting element 105 is detected by the temperature sensor 108 (a) attached to the optical path 104 (block 1101). Next, the optical surface temperature of the light emitting element 105 calculated in block 1101 is compared with a predetermined value to calculate the excess or deficiency of the exhaust throttle valve 102 opening (block 1102). Subsequently, the target opening A of the exhaust throttle valve 102 is calculated by adding the excess or deficiency of the exhaust throttle valve 102 calculated in block 1102 to the opening of the exhaust throttle valve 102 detected in block 1104 ( Block 1103).

次に、光学通路104に取り付けられた温度センサ108(b)により受光素子106の光学面温度を検出する(ブロック1105)。さらに、ブロック1105にて算出した受光素子105の光学面温度と所定値を比較し、排気絞り弁102開度の過不足を算出する(ブロック1106)。続いて、ブロック1104にて検出した排気絞り弁102の開度にブロック1106にて算出した排気絞り弁102開度の過不足分を加算して排気絞り弁102の目標開度Bを算出する(ブロック1107)。   Next, the optical surface temperature of the light receiving element 106 is detected by the temperature sensor 108 (b) attached to the optical path 104 (block 1105). Further, the optical surface temperature of the light receiving element 105 calculated in the block 1105 is compared with a predetermined value to calculate the excess or deficiency of the exhaust throttle valve 102 opening (block 1106). Subsequently, the target opening B of the exhaust throttle valve 102 is calculated by adding the excess or deficiency of the exhaust throttle valve 102 calculated in block 1106 to the opening of the exhaust throttle valve 102 detected in block 1104 ( Block 1107).

次に、ブロック1103で算出した排気絞り弁102の目標開度Aとブロック1107で算出した排気絞り弁102の目標開度Bを比較し、小さい方(目標弁開度をより絞る方)を目標開度として選出する(ブロック1108)。小さい方を選出する理由は、弁開度をより絞って取り込み空気量を多くし光学面の温度をより低下させる際に、発光素子と受光素子の内で光学面の温度をより低下させる必要のある方の素子を選択することにある(いずれか一方の素子の光学面温度の上昇を避けるように安全サイドを選択する)。   Next, the target opening A of the exhaust throttle valve 102 calculated in block 1103 is compared with the target opening B of the exhaust throttle valve 102 calculated in block 1107, and the smaller one (the one that further throttles the target valve opening) is targeted. An opening is selected (block 1108). The reason for selecting the smaller one is that when the valve opening is further narrowed to increase the intake air volume and lower the temperature of the optical surface, it is necessary to lower the temperature of the optical surface among the light emitting element and the light receiving element. One element is to be selected (the safe side is selected to avoid an increase in the optical surface temperature of either element).

次に、排気絞り弁102の開度がブロック1008にて選出した目標開度となるようにモータを付設した弁開度センサ103を駆動する(ブロック1009)。このようにして、排気絞り弁102を絞ることで排気圧力を下げ大気からの取り込み量を多くして光学面温度を低下させるのであるが、その際、排気絞り弁102を適宜に調節することで(固定の絞りではなくて)、排気絞り弁102による圧力損失を過大にすることなく、排気スモークの濃度検出が可能となる。   Next, the valve opening degree sensor 103 provided with a motor is driven so that the opening degree of the exhaust throttle valve 102 becomes the target opening degree selected in the block 1008 (block 1009). In this way, the exhaust pressure is lowered by lowering the exhaust throttle valve 102 to increase the amount of intake from the atmosphere to lower the optical surface temperature. At that time, the exhaust throttle valve 102 is adjusted appropriately. The exhaust smoke concentration can be detected without excessive pressure loss due to the exhaust throttle valve 102 (instead of a fixed throttle).

次に、本発明の実施形態に係るスモークセンサの第3の動作手順について、図5に示すフローチャートを参照しながら、以下説明する。図示するスモークセンサの動作は、周期的に測定と演算と制御出力を繰り返すものである。   Next, a third operation procedure of the smoke sensor according to the embodiment of the present invention will be described below with reference to the flowchart shown in FIG. The operation of the smoke sensor shown in the figure repeats measurement, calculation and control output periodically.

最初に、モータを付設した弁開度センサ103により排気絞り弁102の開度を検出する(ブロック1204)。次に、光学通路104に取り付けられた温度センサ108(a)により発光素子105の光学面温度を検出する(ブロック1201)。続いて、ブロック1201にて算出した発光素子105の光学面温度と所定値を比較し、排気絞り弁102開度の過不足を算出する(ブロック1202)。そして、ブロック1204にて検出した排気絞り弁102の開度にブロック1202にて算出した排気絞り弁102開度の過不足分を加算して排気絞り弁102の目標開度Aを算出する(ブロック1203)。   First, the opening degree of the exhaust throttle valve 102 is detected by the valve opening degree sensor 103 provided with a motor (block 1204). Next, the optical surface temperature of the light emitting element 105 is detected by the temperature sensor 108 (a) attached to the optical path 104 (block 1201). Subsequently, the optical surface temperature of the light emitting element 105 calculated in block 1201 is compared with a predetermined value to calculate the excess or deficiency of the exhaust throttle valve 102 opening (block 1202). Then, the target opening A of the exhaust throttle valve 102 is calculated by adding the excess or deficiency of the exhaust throttle valve 102 calculated in block 1202 to the opening of the exhaust throttle valve 102 detected in block 1204 (block). 1203).

次に、光学通路104に取り付けられた温度センサ108(b)により受光素子106の光学面温度を検出する(ブロック1205)。そして、ブロック1205にて算出した受光素子105の光学面温度と所定値を比較し、排気絞り弁102開度の過不足を算出する(ブロック1206)。続いて、ブロック1204にて検出した排気絞り弁102の開度にブロック1206にて算出した排気絞り弁102開度の過不足分を加算して排気絞り弁102の目標開度Bを算出する(ブロック1207)。   Next, the optical surface temperature of the light receiving element 106 is detected by the temperature sensor 108 (b) attached to the optical path 104 (block 1205). Then, the optical surface temperature of the light receiving element 105 calculated in the block 1205 is compared with a predetermined value to calculate the excess or deficiency of the exhaust throttle valve 102 opening (block 1206). Subsequently, the target opening B of the exhaust throttle valve 102 is calculated by adding the excess or deficiency of the exhaust throttle valve 102 calculated in block 1206 to the opening of the exhaust throttle valve 102 detected in block 1204 ( Block 1207).

また、排気管101に取り付けられた外気圧および排気管内圧センサ107により大気圧を検出する(ブロック1212)。そして、排気管101に取り付けられた外気圧および排気管内圧センサ107により排気圧を検出する(ブロック1208)。続いて、ブロック1212とブロック1208にて測定した圧力の差分を排気ゲージ圧(排気圧−大気圧)として算出する(ブロック1209)。さらに、ブロック1209にて算出した排気ゲージ圧と所定値を比較し、排気絞り弁102開度の過不足を算出する(ブロック1210)。続いて、ブロック1204にて検出した排気絞り弁102の開度にブロック1210にて算出した排気絞り弁102開度の過不足分を加算して排気絞り弁102の目標開度Cを算出する(ブロック1211)。   Further, the atmospheric pressure is detected by the external pressure and the exhaust pipe internal pressure sensor 107 attached to the exhaust pipe 101 (block 1212). Then, the exhaust pressure is detected by the external air pressure and the exhaust pipe internal pressure sensor 107 attached to the exhaust pipe 101 (block 1208). Subsequently, the difference in pressure measured in block 1212 and block 1208 is calculated as the exhaust gauge pressure (exhaust pressure-atmospheric pressure) (block 1209). Further, the exhaust gauge pressure calculated in block 1209 is compared with a predetermined value to calculate the excess or deficiency of the exhaust throttle valve 102 opening (block 1210). Subsequently, the target opening C of the exhaust throttle valve 102 is calculated by adding the excess or deficiency of the exhaust throttle valve 102 calculated in block 1210 to the opening of the exhaust throttle valve 102 detected in block 1204 ( Block 1211).

次に、ブロック1203で算出した排気絞り弁102の目標開度Aとブロック1207で算出した排気絞り弁102の目標開度Bとブロック1211で算出した排気絞り弁102の目標開度Cを比較し、小さい方を目標開度として選出する(ブロック1213)。目標弁開度の小さい方を選出することで、発光素子と受光素子のいずれかの素子の光学面温度が上昇して破損することを避けるように安全サイドを選出する。   Next, the target opening A of the exhaust throttle valve 102 calculated in block 1203 is compared with the target opening B of the exhaust throttle valve 102 calculated in block 1207 and the target opening C of the exhaust throttle valve 102 calculated in block 1211. The smaller one is selected as the target opening (block 1213). By selecting the smaller target valve opening, the safety side is selected so as to prevent the optical surface temperature of either the light emitting element or the light receiving element from rising and being damaged.

次に、排気絞り弁102の開度がブロック1213にて選出した目標開度となるようにモータを付設した弁開度センサ103を駆動する(ブロック1214)。このように、上述した第1と第2の手順と同様に、排気絞り弁102による圧力損失を過大にすることなく、排気スモークの濃度検出が可能となる。   Next, the valve opening sensor 103 provided with a motor is driven so that the opening of the exhaust throttle valve 102 becomes the target opening selected in block 1213 (block 1214). As described above, the exhaust smoke concentration can be detected without excessive pressure loss caused by the exhaust throttle valve 102, as in the first and second procedures described above.

次に、本実施形態に係るスモークセンサの特徴の1つである、絞り弁による排気通路での圧力損失が増大することによりエンジンの燃費が悪化(排気通路を絞ることでエンジンへの吸気空気量が低減して燃費が低下する)することを抑制する機能について、図6と図7を参照しながら以下説明する。   Next, as one of the features of the smoke sensor according to the present embodiment, the fuel loss of the engine deteriorates due to an increase in pressure loss in the exhaust passage due to the throttle valve (the amount of intake air to the engine by restricting the exhaust passage) Will be described below with reference to FIGS. 6 and 7. FIG.

図6は本実施形態における排気絞り弁開度の変化に伴う受光素子光学面または発光素子光学面の温度変化の一例を示したものであり、図7は本実施形態における排気絞り弁開度と排気流量の変化に伴う圧力損失との関係の一例を示したものである。   FIG. 6 shows an example of the temperature change of the light receiving element optical surface or the light emitting element optical surface in accordance with the change of the exhaust throttle valve opening in the present embodiment, and FIG. 7 shows the exhaust throttle valve opening in the present embodiment. An example of the relationship with the pressure loss accompanying the change of the exhaust flow rate is shown.

排気絞り弁の開度を小さくすることで排気圧が低下し取り込み空気量が多くなって受光素子光学面または発光素子光学面の温度が降下するが、同時に圧力損失が増大し、エンジン出力や燃費など、基本性能へ悪影響が及ぶことになる。このため、必要な測定精度を確保できる範囲内で、出来るだけ排気絞り弁の開度を大きくすることが必要とされる。   By reducing the opening of the exhaust throttle valve, the exhaust pressure decreases and the amount of intake air increases, causing the temperature of the light receiving element optical surface or light emitting element optical surface to decrease. At the same time, however, pressure loss increases, resulting in engine output and fuel consumption. The basic performance will be adversely affected. For this reason, it is necessary to increase the opening of the exhaust throttle valve as much as possible within a range in which necessary measurement accuracy can be ensured.

しかしながら、図7の符号2001に示すように、排気絞り弁の開度が固定の場合(上記特許文献1の場合、図示例で弁開度P1)は、排気流量が小さい場合でも必要な減圧を得られる様にするため、排気絞り弁の開度を小さくする必要があり、排気流量の増加に伴い、必要以上の圧力損失が生じることになる(図7で、排気流量大のときに、圧力損失は排気流量小に比べて大きくなる)。そこで、図7の符号2002に示す適切な圧力損失値が保てるように、図7の符号2003に従い排気流量に応じて排気弁開度を調節(図示例で、排気流量中のときに弁開度P2、排気流量大のときに弁開度P3)することが、圧力損失の増大(エンジン燃費の悪化)を避ける上で有効となる。   However, as indicated by reference numeral 2001 in FIG. 7, when the opening of the exhaust throttle valve is fixed (in the case of Patent Document 1, the valve opening P1 in the illustrated example), the necessary pressure reduction is performed even when the exhaust flow rate is small. In order to achieve this, it is necessary to reduce the opening of the exhaust throttle valve, and as the exhaust flow rate increases, a pressure loss more than necessary occurs. The loss is larger than the small exhaust flow). Therefore, the exhaust valve opening is adjusted according to the exhaust flow rate according to reference numeral 2003 in FIG. 7 so that an appropriate pressure loss value indicated by reference numeral 2002 in FIG. It is effective to avoid an increase in pressure loss (deterioration of engine fuel consumption) when P2 and the exhaust flow rate are large.

図8は、図3に示す第1の動作手におけるブロック1005における排気絞り弁開度の過不足算出の一例である。ゲージ圧(排気圧−大気圧)がゼロより小さい場合は、圧力差により外気が排気管内に取り込まれることになり、発光素子と受光素子は冷却されていると考えられ、排気絞り弁開度はより開く方向にする。   FIG. 8 is an example of excess / deficiency calculation of the exhaust throttle valve opening in the block 1005 in the first operating hand shown in FIG. When the gauge pressure (exhaust pressure-atmospheric pressure) is smaller than zero, the outside air is taken into the exhaust pipe due to the pressure difference, and the light emitting element and the light receiving element are considered to be cooled. Make it open more.

しかし、実際には排気温度や外気温度の上昇により、発光素子と受光素子の使用上限温度を超える場合がある。また、排気スモークセンサ自体の熱容量により、発光素子と受光素子の冷却には時間遅れが生じることがある。また、排気ガス圧の脈動の内でそのガス圧瞬時値が小のときに排気が光学面を介して大気に出る場合があり、すなわち排気の一部が逆流して光学面を汚すことがある。これらを考慮し、排気絞り弁の開閉切り替えはゲージ圧がゼロとなる状態ではなく、より小さなゲージ圧を基準とすることが好ましい。   However, in actuality, there are cases where the upper limit temperatures of the light emitting element and the light receiving element are exceeded due to an increase in the exhaust temperature and the outside air temperature. Further, due to the heat capacity of the exhaust smoke sensor itself, there may be a time delay in cooling the light emitting element and the light receiving element. Further, when the instantaneous value of the gas pressure is small in the pulsation of the exhaust gas pressure, the exhaust gas may go out to the atmosphere via the optical surface, that is, a part of the exhaust gas may flow backward to contaminate the optical surface. . Considering these, it is preferable that the opening / closing switching of the exhaust throttle valve is based on a smaller gauge pressure rather than a state where the gauge pressure becomes zero.

図9は、図4に示す第2の動作手順におけるブロック1106における排気絞り弁開度の過不足算出の一例である。受光素子または発光素子の光学面温度が所定値より小さい場合は、発光素子または受光素子の耐熱性能に余裕があると考えられ、排気絞り弁開度はより開く方向にする。   FIG. 9 is an example of excess / deficiency calculation of the exhaust throttle valve opening in block 1106 in the second operation procedure shown in FIG. When the optical surface temperature of the light receiving element or the light emitting element is lower than a predetermined value, it is considered that the light emitting element or the light receiving element has a sufficient heat resistance performance, and the exhaust throttle valve opening is set to be more open.

しかし、排気スモークセンサ自体の熱容量により、発光素子と受光素子の冷却には時間遅れが生じることがある。これを考慮して、排気絞り弁の開閉切り替えは発光素子または受光素子の使用上限温度となる状態ではなく、より小さな温度を基準とすることが好ましい。   However, due to the heat capacity of the exhaust smoke sensor itself, there may be a time delay in cooling the light emitting element and the light receiving element. In consideration of this, it is preferable that the opening / closing switching of the exhaust throttle valve is not based on the upper limit temperature of the light emitting element or the light receiving element, but based on a smaller temperature.

なお、エンジン始動時は始動性優先のため、空燃比が濃くなる上、A/Fセンサの測定精度が低い。このため、エンジン始動から一定時間が経過するまでは排気が増大し、排気スモークセンサの光学面を汚す可能性が高くなる。このため、エンジン始動から一定時間は上述した排気絞り弁の目標開度よりも更に小さく目標開度を設定することで、取り込み空気量を多くして汚れを防止することができる。   Note that since the startability is prioritized when the engine is started, the air-fuel ratio becomes dark and the measurement accuracy of the A / F sensor is low. For this reason, exhaust gas increases until a certain time has elapsed from the start of the engine, which increases the possibility of contaminating the optical surface of the exhaust smoke sensor. For this reason, by setting the target opening smaller than the target opening of the exhaust throttle valve described above for a certain period of time after the engine is started, it is possible to increase the amount of intake air and prevent contamination.

図10は、排気絞り弁102の弁開度決定方法の一例を示したものである。排気絞り弁は、上述したように光学素子の光学面の汚れと過熱を抑える手段であるとともに(図10に示す横軸初期のエンジン始動時に、排気絞り弁目標開度よりも開度をさらに小にして取り込み空気量を多くし汚れと過熱を抑止する。図10に示す破線3002)、図2に示す排気処理装置(例えば、触媒)7の効率を高めることに応用され、排気音を低減することにも応用される(図10に示す横軸初期のエンジン始動時に排気絞り弁102の開度を大きくして、触媒を通る排気ガスの流れを円滑にし、排気音を低減する。図10に示す一点鎖線3001)。このように、光学面の汚れと過熱、触媒効率と排気音低減の観点で、排気絞り弁に対するそれぞれの弁開度要求値が異なる場合に、安全サイドを見込んで最も小さな値を適用することが必要である(図10に示す実線3003)。   FIG. 10 shows an example of a method for determining the valve opening degree of the exhaust throttle valve 102. The exhaust throttle valve is a means for suppressing the contamination and overheating of the optical surface of the optical element as described above (when the engine is started at the initial stage of the horizontal axis shown in FIG. 10, the opening is further smaller than the target opening of the exhaust throttle valve. In this way, the intake air amount is increased to suppress dirt and overheating, which is applied to increase the efficiency of the exhaust treatment device (for example, catalyst) 7 shown in FIG. (The opening of the exhaust throttle valve 102 is increased when the engine is started at the initial stage of the horizontal axis shown in FIG. 10 to smooth the flow of exhaust gas through the catalyst and reduce the exhaust noise. Dash-dot line 3001) shown. In this way, from the viewpoint of contamination and overheating of the optical surface, catalyst efficiency, and exhaust noise reduction, when the respective valve opening requirement values for the exhaust throttle valve are different, the smallest value can be applied in anticipation of the safety side. Necessary (solid line 3003 shown in FIG. 10).

1:アクセル開度センサ、2:吸入空気流量センサ、3:排気圧力および排気温度センサ、5:インジェクタ、6(a) :コンプレッサ、6(b):タービン、7:排気処理装置、8:ECU、9:排気ガス再循環ガス通路A、10:熱交換器、11:排気ガス再循環ガス流量制御弁、12:排気ガス再循環ガス圧力および温度センサ、13:スロットル、14:吸気圧センサ、15:燃料ポンプ、16:インタークーラ、17:エアクリーナ、18:燃焼室、19:エンジン、
20:吸気管、21(a):触媒診断用センサ(上流側)、21(b):触媒診断用センサ(下流側)、22:燃料配管、23:排気管、24:吸入空気流量、25:排気ガス再循環ガス流量、26:排気ガス再循環ガス通路B、27:排気絞り弁および排気スモークセンサ、28:吸気絞り弁、29:排気ガス再循環ガス流量制御弁、30:吸気圧力および吸気温度センサ、31:排気ガス再循環ガス熱交換器、
101:排気管、102:排気絞り弁、103:モータおよび弁開度センサ、104:光学通路、105:発光素子、106:受光素子、107:外気圧および排気管内圧センサ、108:温度センサ
1: accelerator opening sensor, 2: intake air flow sensor, 3: exhaust pressure and exhaust temperature sensor, 5: injector, 6 (a): compressor, 6 (b): turbine, 7: exhaust treatment device, 8: ECU , 9: exhaust gas recirculation gas passage A, 10: heat exchanger, 11: exhaust gas recirculation gas flow control valve, 12: exhaust gas recirculation gas pressure and temperature sensor, 13: throttle, 14: intake pressure sensor, 15: Fuel pump, 16: Intercooler, 17: Air cleaner, 18: Combustion chamber, 19: Engine,
20: intake pipe, 21 (a): catalyst diagnostic sensor (upstream side), 21 (b): catalyst diagnostic sensor (downstream side), 22: fuel pipe, 23: exhaust pipe, 24: intake air flow rate, 25 : Exhaust gas recirculation gas flow rate, 26: exhaust gas recirculation gas passage B, 27: exhaust throttle valve and exhaust smoke sensor, 28: intake throttle valve, 29: exhaust gas recirculation gas flow control valve, 30: intake pressure and Intake temperature sensor, 31: exhaust gas recirculation gas heat exchanger,
101: exhaust pipe, 102: exhaust throttle valve, 103: motor and valve opening sensor, 104: optical passage, 105: light emitting element, 106: light receiving element, 107: external pressure and exhaust pipe internal pressure sensor, 108: temperature sensor

Claims (4)

エンジンの排気通路に設けた光透過式の発光素子と受光素子をもつスモークセンサであって、
前記排気通路を減圧させる排気絞り弁と、
前記排気絞り弁の近傍に設置され、前記排気通路の外部の空気を前記発光素子と受光素子の光学面経由で前記排気通路に取り込む空気通路と、
前記排気絞り弁の開度を測定する排気絞り弁開度検出手段と、
前記排気絞り弁の近傍の減圧した排気圧を測定する排気圧検出手段と、
前記排気通路の外部の大気圧を測定する大気圧検出手段と、
前記排気絞り弁開度検出手段、前記排気圧検出手段、前記大気圧検出手段からの測定値を演算し、前記排気絞り弁の開度を制御する演算制御手段と、を備え、
前記演算制御手段は、前記測定した排気圧と大気圧の差である差圧と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度を決定し、さらに、前記排気絞り弁開度検出手段で測定した排気絞り弁の開度が前記決定した目標開度となるように前記排気絞り弁の開度を制御して、前記空気通路の取り込み空気による前記光学面の汚れと過熱を抑止するとともに前記排気絞り弁による排気の圧力損失を抑制する
ことを特徴とするスモークセンサ。
A smoke sensor having a light-transmitting light emitting element and a light receiving element provided in an exhaust passage of an engine,
An exhaust throttle valve for depressurizing the exhaust passage;
An air passage installed in the vicinity of the exhaust throttle valve and taking air outside the exhaust passage into the exhaust passage via an optical surface of the light emitting element and the light receiving element;
Exhaust throttle valve opening degree detecting means for measuring the opening degree of the exhaust throttle valve;
An exhaust pressure detecting means for measuring a reduced exhaust pressure in the vicinity of the exhaust throttle valve;
Atmospheric pressure detection means for measuring the atmospheric pressure outside the exhaust passage;
Calculation control means for calculating a measured value from the exhaust throttle valve opening detection means, the exhaust pressure detection means, and the atmospheric pressure detection means, and controlling the opening of the exhaust throttle valve;
The arithmetic control means determines a target opening of the exhaust throttle valve by comparing a differential pressure, which is a difference between the measured exhaust pressure and atmospheric pressure, with a predetermined value, and further, The opening of the exhaust throttle valve measured by the throttle valve opening detection means is controlled so that the opening degree of the exhaust throttle valve becomes the determined target opening degree, and the optical surface is contaminated by the intake air of the air passage. A smoke sensor that suppresses overheating and suppresses exhaust pressure loss due to the exhaust throttle valve.
エンジンの排気通路に設けた光透過式の発光素子と受光素子をもつスモークセンサであって、
前記排気通路を減圧させる排気絞り弁と、
前記排気絞り弁の近傍に設置され、前記排気通路の外部の空気を前記発光素子と受光素子の光学面経由で前記排気通路に取り込む空気通路と、
前記排気絞り弁の開度を測定する排気絞り弁開度検出手段と、
前記発光素子と受光素子の光学面の温度を測定する光学面温度検出手段と、
前記排気絞り弁開度検出手段からの測定値を演算するとともに、前記光学面温度検出手段からの前記発光素子と受光素子の光学面温度の測定値を演算し、前記排気絞り弁の開度を制御する演算制御手段と、を備え、
前記演算制御手段は、前記測定した発光素子の光学面温度と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度Aを算出するとともに、前記測定した受光素子の光学面温度と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度Bを算出し、さらに、前記目標開度Aと前記目標開度Bの内の小さい方の目標開度を選定し、前記排気絞り弁開度検出手段で測定した排気絞り弁の開度が前記選定した目標開度となるように前記排気絞り弁の開度を制御して、前記空気通路の取り込み空気による前記光学面の汚れと過熱を抑止するとともに前記排気絞り弁による排気の圧力損失を抑制する
ことを特徴とするスモークセンサ。
A smoke sensor having a light-transmitting light emitting element and a light receiving element provided in an exhaust passage of an engine,
An exhaust throttle valve for depressurizing the exhaust passage;
An air passage installed in the vicinity of the exhaust throttle valve and taking air outside the exhaust passage into the exhaust passage via an optical surface of the light emitting element and the light receiving element;
Exhaust throttle valve opening degree detecting means for measuring the opening degree of the exhaust throttle valve;
Optical surface temperature detecting means for measuring the temperature of the optical surface of the light emitting element and the light receiving element;
Calculate the measured value from the exhaust throttle valve opening detecting means, calculate the measured optical surface temperature of the light emitting element and the light receiving element from the optical surface temperature detecting means, and calculate the opening of the exhaust throttle valve. Arithmetic control means for controlling,
The arithmetic control means calculates the target opening A of the exhaust throttle valve by comparing the measured optical surface temperature of the light emitting element with a predetermined value defined in advance, and the optical of the measured light receiving element. The target opening B of the exhaust throttle valve is calculated by comparing the surface temperature with a predetermined value, and the smaller target opening of the target opening A and the target opening B is calculated. The degree of opening of the exhaust throttle valve is controlled so that the opening degree of the exhaust throttle valve measured by the exhaust throttle valve opening degree detection means becomes the selected target opening degree, and the intake of the air passage is taken into account. A smoke sensor that suppresses contamination and overheating of the optical surface by air and suppresses pressure loss of exhaust gas by the exhaust throttle valve.
請求項2において、
前記排気絞り弁の近傍の減圧した排気圧を測定する排気圧検出手段と、
前記排気通路の外部の大気圧を測定する大気圧検出手段と、
前記排気絞り弁開度検出手段、前記排気圧検出手段、前記大気圧検出手段からの測定値を演算するとともに、前記発光素子と受光素子の光学面温度の測定値を演算し、前記排気絞り弁の開度を制御する演算制御手段と、を備え、
前記演算制御手段は、前記測定した排気圧と大気圧の差である差圧と、予め規定された所定値と、を比較して前記排気絞り弁の目標開度Cを算出し、さらに、前記目標開度Aと前記目標開度Bと前記目標開度Cの内の最も小さい目標開度を選定し、前記排気絞り弁開度検出手段で測定した排気絞り弁の開度が前記選定した目標開度となるように前記排気絞り弁の開度を制御して、前記空気通路の取り込み空気による前記光学面の汚れと過熱を抑止するとともに前記排気絞り弁による排気の圧力損失を抑制する
ことを特徴とするスモークセンサ。
In claim 2,
An exhaust pressure detecting means for measuring a reduced exhaust pressure in the vicinity of the exhaust throttle valve;
Atmospheric pressure detection means for measuring the atmospheric pressure outside the exhaust passage;
The exhaust throttle valve opening degree detection means, the exhaust pressure detection means, and the atmospheric pressure detection means are calculated, and the measured values of the optical surface temperatures of the light emitting element and the light receiving element are calculated. And an arithmetic control means for controlling the opening degree of
The arithmetic control means calculates a target opening degree C of the exhaust throttle valve by comparing a differential pressure that is a difference between the measured exhaust pressure and an atmospheric pressure with a predetermined value that is defined in advance. The smallest target opening among the target opening A, the target opening B, and the target opening C is selected, and the opening of the exhaust throttle valve measured by the exhaust throttle valve opening detecting means is the selected target. The opening of the exhaust throttle valve is controlled so that the opening becomes the same, and the contamination and overheating of the optical surface due to the air taken in the air passage are suppressed, and the pressure loss of the exhaust due to the exhaust throttle valve is suppressed. A featured smoke sensor.
請求項1、2または3において、
前記演算制御手段は、エンジンの始動時から一定時間経過時までの空燃比の濃い期間において、前記決定した目標開度又は前記選定した目標開度よりもさらに小さい目標開度を設定し、前記排気絞り弁開度検出手段で測定した排気絞り弁の開度が前記設定した目標開度となるように前記排気絞り弁の開度を制御して、前記空気通路の取り込み空気による前記光学面の汚れを抑止する
ことを特徴とするスモークセンサ。
In claim 1, 2 or 3,
The calculation control means sets the determined target opening or a target opening that is smaller than the selected target opening in a period in which the air-fuel ratio is high from when the engine starts to when a certain time elapses, The opening of the exhaust throttle valve measured by the throttle valve opening detection means is controlled so that the opening of the exhaust throttle valve becomes the set target opening, and the optical surface is contaminated by the air taken in the air passage. Smoke sensor characterized by suppressing
JP2010106423A 2010-05-06 2010-05-06 Exhaust smoke sensor Pending JP2011237189A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010106423A JP2011237189A (en) 2010-05-06 2010-05-06 Exhaust smoke sensor
PCT/JP2011/060529 WO2011138945A1 (en) 2010-05-06 2011-05-02 Exhaust smoke sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106423A JP2011237189A (en) 2010-05-06 2010-05-06 Exhaust smoke sensor

Publications (1)

Publication Number Publication Date
JP2011237189A true JP2011237189A (en) 2011-11-24

Family

ID=44903796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106423A Pending JP2011237189A (en) 2010-05-06 2010-05-06 Exhaust smoke sensor

Country Status (2)

Country Link
JP (1) JP2011237189A (en)
WO (1) WO2011138945A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200037A (en) * 2017-05-29 2018-12-20 マツダ株式会社 Intake temperature sensor attachment structure of engine with supercharger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870168B (en) * 2015-12-10 2020-09-11 光阳工业股份有限公司 Engine throttle valve body structure
DE102016101622B4 (en) * 2016-01-29 2021-10-21 Pierburg Gmbh Emission control device for an internal combustion engine
CN115235963B (en) * 2022-05-25 2024-07-19 中国船舶重工集团公司第七0三研究所 Self-correcting linear air suction type smoke detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280032A (en) * 1989-04-20 1990-11-16 Agency Of Ind Science & Technol Continuous evaluation device for exhaust smoke processor
JPH0528956U (en) * 1991-08-06 1993-04-16 日野自動車工業株式会社 Light transmission type smoke meter
JPH10115210A (en) * 1996-10-09 1998-05-06 Saginomiya Seisakusho Inc Mist detecting device for engine
JP2004184119A (en) * 2002-11-29 2004-07-02 Riken Keiki Co Ltd Opacimeter
JP2004264146A (en) * 2003-02-28 2004-09-24 Horiba Ltd Optical device and analyzer having simple functions for preventing contamination and for correction
JP2008051709A (en) * 2006-08-25 2008-03-06 Horiba Ltd Direct insertion type optical measuring device
JP5038923B2 (en) * 2008-01-25 2012-10-03 トヨタ自動車株式会社 Exhaust gas analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200037A (en) * 2017-05-29 2018-12-20 マツダ株式会社 Intake temperature sensor attachment structure of engine with supercharger
US10788001B2 (en) 2017-05-29 2020-09-29 Mazda Motor Corporation Structure of mounting intake air temperature sensor of engine with supercharger

Also Published As

Publication number Publication date
WO2011138945A1 (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP4713437B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4877205B2 (en) Control device for internal combustion engine
JP6259246B2 (en) Control device for internal combustion engine
JP5360307B2 (en) Control device for internal combustion engine
JP4821247B2 (en) Cooling water control device for internal combustion engine
JP2006316708A (en) Engine control device
JP2010084519A (en) Engine
JP2018155235A (en) Controller for internal combustion engine
JP2012149575A (en) Cooling apparatus of internal combustion engine
US20160169168A1 (en) Exhaust system state detection device
WO2011138945A1 (en) Exhaust smoke sensor
JP5376051B2 (en) Abnormality detection apparatus and abnormality detection method for EGR system
JP2012241664A (en) Intake air leakage diagnostic device for internal-combustion engine
JP6860313B2 (en) Engine control method and engine
JP2008144719A (en) Throttle valve control device for internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JP5168379B2 (en) Cooling water control device for internal combustion engine
WO2018142510A1 (en) Intake control method and intake control device for internal combustion engine
JP5434685B2 (en) Air-fuel ratio detection device
JP5480048B2 (en) Control device for internal combustion engine
WO2015053172A1 (en) Engine
JP2011179425A (en) Exhaust recirculation device of internal combustion engine
US20100211286A1 (en) Device for limiting output of internal combustion engine when the engine has abnormality
JP2011226438A (en) Abnormality detection apparatus and method for egr system
JP2013076364A (en) Air cleaner device of internal combustion engine, and control device of internal combustion engine