JP2011237057A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011237057A
JP2011237057A JP2010106542A JP2010106542A JP2011237057A JP 2011237057 A JP2011237057 A JP 2011237057A JP 2010106542 A JP2010106542 A JP 2010106542A JP 2010106542 A JP2010106542 A JP 2010106542A JP 2011237057 A JP2011237057 A JP 2011237057A
Authority
JP
Japan
Prior art keywords
outdoor unit
expansion valve
refrigerant
opening degree
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010106542A
Other languages
Japanese (ja)
Other versions
JP5533209B2 (en
Inventor
Hideyuki Suehiro
秀行 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2010106542A priority Critical patent/JP5533209B2/en
Publication of JP2011237057A publication Critical patent/JP2011237057A/en
Application granted granted Critical
Publication of JP5533209B2 publication Critical patent/JP5533209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner wherein a plurality of individually operable indoor machines are connected to an outdoor machine and wherein occurrence of liquid back can be suppressed in advance when the number of the used indoor machines increases during cooling operation.SOLUTION: A controller 41 acquires a temperature difference of a refrigerant between the upstream side and the downstream side of an outdoor machine electronic expansion valve 21 in cooling operation, and performs opening control of the outdoor machine electronic expansion valve 21 to reduce the acquired temperature difference. When the number of the operated indoor machines 30 increases, the controller 41 stops the opening control of the outdoor machine electronic expansion valve 21 for a prescribed time.

Description

本発明は、室外機に個別運転可能な複数の室内機が接続された空気調和装置に関するものである。   The present invention relates to an air conditioner in which a plurality of indoor units that can be individually operated are connected to an outdoor unit.

従来、室外機に個別運転可能な複数の室内機が接続された、いわゆるマルチタイプの空気調和装置が知られている。こうした空気調和装置では、冷房運転中に、使用する室内機の台数が増加すると、過渡的に液冷媒が室外機に流入する現象(いわゆる液バック)が発生し、圧縮機で液圧縮状態となってその性能を劣化させる場合がある。これは、室内機が運転を開始すると、
(1)室内機の電子膨張弁が開く。
(2)電子膨張弁の2次側冷媒圧力(冷媒温度)が上昇する。
(3)室内温度との温度差が小さいために室内機熱交換器内での冷媒が完全には蒸発できない。
(4)蒸発しきれなかった液冷媒が室外機(圧縮機)に流入する。
ためである。
Conventionally, a so-called multi-type air conditioner in which a plurality of indoor units that can be individually operated is connected to an outdoor unit is known. In such an air conditioner, when the number of indoor units to be used increases during cooling operation, a phenomenon in which liquid refrigerant transiently flows into the outdoor unit (so-called liquid back) occurs, and the compressor enters a liquid compression state. May degrade its performance. This is because when the indoor unit starts operation,
(1) The electronic expansion valve of the indoor unit opens.
(2) The secondary side refrigerant pressure (refrigerant temperature) of the electronic expansion valve increases.
(3) Since the temperature difference from the room temperature is small, the refrigerant in the indoor unit heat exchanger cannot be completely evaporated.
(4) Liquid refrigerant that could not be evaporated flows into the outdoor unit (compressor).
Because.

一方、こうした液バックの対処に適用し得る種々のものが提案されている。例えば特許文献1に記載の空気調和装置は、起動時に、冷媒回路に設けられた室外膨張弁又は室内膨張弁を閉じ気味の状態にして、時間の経過とともに、弁開度を開く初期弁開度制御を行う。   On the other hand, various things that can be applied to deal with such a liquid bag have been proposed. For example, in the air conditioner described in Patent Document 1, the initial valve opening degree that opens the valve opening as time elapses when the outdoor expansion valve or the indoor expansion valve provided in the refrigerant circuit is closed during start-up. Take control.

また、特許文献2に記載の空気調和装置は、冷凍サイクルを構成する圧縮機の吸入冷媒温度と蒸発器の熱交温度との温度差((S−H)量)を所定時間ごとに検出するとともに、該検出(S−H)量に応じた動作パルス数により冷凍サイクルを構成する膨張弁の開閉度を調節し、(S−H)量を目標値に合わせるようにスーパーヒート制御を行う。そして、圧縮機の回転数が所定値以下と低く、且つ、検出した(S−H)量が所定範囲内に連続して所定回数留まったときのみ、電子膨張弁を調節するための動作パルス数を通常時より大きくするようにしている。   In addition, the air conditioner described in Patent Literature 2 detects a temperature difference ((S−H) amount) between the intake refrigerant temperature of the compressor constituting the refrigeration cycle and the heat exchange temperature of the evaporator every predetermined time. At the same time, the opening / closing degree of the expansion valve constituting the refrigeration cycle is adjusted by the number of operation pulses corresponding to the detected (SH) amount, and superheat control is performed so that the (SH) amount matches the target value. And the number of operation pulses for adjusting the electronic expansion valve only when the number of rotations of the compressor is as low as a predetermined value or less and the detected (SH) amount stays within a predetermined range continuously for a predetermined number of times. Is made larger than usual.

特開2001−355933号公報JP 2001-355933 A 特開2000−74504号公報JP 2000-74504 A

ところで、特許文献1の空気調和装置では、冷房で運転を開始する場合、室内膨張弁を閉じ気味の状態で運転を開始することで液バックを防止しようとしているが、室内機の個別運転が可能なマルチタイプの空気調和装置では、許容している室内機の接続台数(即ち室内膨張弁数)が多く、あるいは室内機の容量やタイプごとに細かく初期の開度を設定しなければならない。さらに、外気温度や室内温度によっても液バックの状態は変化するため、各室内機ごとに室内膨張弁の初期開度を適切に設定することは開発の長期化を余儀なくされ、非現実的である。   By the way, in the air conditioning apparatus of patent document 1, when starting an operation by cooling, it is trying to prevent a liquid back by closing the indoor expansion valve and starting the operation in an airy state, but the individual operation of the indoor unit is possible. In such a multi-type air conditioner, the permitted number of indoor units connected (that is, the number of indoor expansion valves) is large, or the initial opening must be set finely for each capacity and type of indoor unit. Furthermore, since the liquid back state also changes depending on the outside air temperature and the room temperature, it is impractical to set the initial opening of the indoor expansion valve appropriately for each indoor unit, which necessitates prolonged development. .

また、特許文献2に記載の空気調和装置では、液バックが実際に発生した後の状態から抜け出す手段としては有効であるが、過渡的に発生する液バック自体を先行的に防止することはできない。   In addition, the air conditioner described in Patent Document 2 is effective as a means for getting out of the state after the liquid back has actually occurred, but cannot prevent the liquid back itself that occurs transiently in advance. .

本発明の目的は、室外機に個別運転可能な複数の室内機が接続された空気調和装置において、冷房運転中に、使用する室内機の台数が増加した際の液バックの発生を先行的に抑えることができる空気調和装置を提供することにある。   An object of the present invention is to provide an air conditioner in which a plurality of indoor units that can be individually operated are connected to an outdoor unit, in advance of occurrence of liquid back when the number of indoor units to be used increases during cooling operation. It is in providing the air conditioning apparatus which can be suppressed.

上記問題点を解決するために、請求項1に記載の発明は、冷媒を圧縮する圧縮機及び冷房運転時に冷媒の凝縮器として機能する室外機熱交換器を有する室外機と、室内機膨張弁及び冷房運転時は冷媒の蒸発器として機能する室内機熱交換器を有する個別運転可能な複数の室内機とを備えた空気調和装置において、冷房運転時において、前記室外機熱交換器よりも下流側となり、且つ、前記複数の室内機膨張弁への分岐部よりも上流側となる位置に設けられた室外機膨張弁と、前記室外機膨張弁の上流側及び下流側の冷媒の温度差を取得する取得手段と、前記取得された温度差が減少するように前記室外機膨張弁を開度制御する開度制御手段と、運転する前記室内機の台数が増加したときに、前記室外機膨張弁の開度制御を一定時間停止する開度制御停止手段とを備えたことを要旨とする。   In order to solve the above problems, an invention according to claim 1 is directed to an outdoor unit having a compressor that compresses refrigerant, an outdoor unit heat exchanger that functions as a refrigerant condenser during cooling operation, and an indoor unit expansion valve. And an air conditioner including a plurality of individually operable indoor units having an indoor unit heat exchanger functioning as a refrigerant evaporator during cooling operation, and in downstream of the outdoor unit heat exchanger during cooling operation And the temperature difference between the outdoor unit expansion valve provided at a position upstream of the branching portion to the plurality of indoor unit expansion valves and the refrigerant on the upstream side and the downstream side of the outdoor unit expansion valve. An acquisition unit for acquiring, an opening degree control unit for controlling the opening degree of the outdoor unit expansion valve so that the acquired temperature difference decreases, and the expansion of the outdoor unit when the number of the indoor units to be operated increases. Open to stop valve opening control for a certain period of time And summarized in that and a control stop unit.

同構成によれば、前記開度制御手段により、前記室外機膨張弁の上流側及び下流側の冷媒の温度差が減少するように、即ち冷房負荷に応じて前記複数の室内機に流れる冷媒(液冷媒)の流量が好適に確保されるように前記室外機膨張弁が開度制御される。一方、運転する前記室内機の台数が増加したときは、前記開度制御停止手段により、前記開度制御手段による前記室外機膨張弁の開度制御が一定時間停止される。従って、前記室内機の運転開始に伴い前記室内機膨張弁が開作動し始めても、前記室外機膨張弁により冷媒の流量が制限されたままとなって、液バックの発生を先行的に抑えることができる。また、前記複数の室内機膨張弁への分岐部よりも上流側に配置された前記室外機膨張弁により一括して冷媒の流量を制限できるため、該制御を比較的容易に実現することができる。   According to this configuration, the opening degree control means reduces the temperature difference between the refrigerant on the upstream side and the downstream side of the outdoor unit expansion valve, that is, the refrigerant flowing through the plurality of indoor units according to the cooling load ( The opening degree of the outdoor unit expansion valve is controlled so that the flow rate of the liquid refrigerant is suitably secured. On the other hand, when the number of the indoor units to be operated increases, the opening control of the outdoor unit expansion valve by the opening control means is stopped for a certain time by the opening control stop means. Therefore, even if the indoor unit expansion valve starts to open with the start of the operation of the indoor unit, the flow rate of the refrigerant remains restricted by the outdoor unit expansion valve, and the occurrence of liquid back is suppressed in advance. Can do. In addition, since the flow rate of the refrigerant can be collectively limited by the outdoor unit expansion valve disposed upstream of the branch portions to the plurality of indoor unit expansion valves, the control can be realized relatively easily. .

請求項2に記載の発明は、冷媒を圧縮する圧縮機及び冷房運転時に冷媒の凝縮器として機能する室外機熱交換器を有する室外機と、室内機膨張弁及び冷房運転時は冷媒の蒸発器として機能する室内機熱交換器を有する個別運転可能な複数の室内機とを備えた空気調和装置において、冷房運転時において、前記室外機熱交換器よりも下流側となり、且つ、前記複数の室内機膨張弁への分岐部よりも上流側となる位置に設けられた室外機膨張弁と、前記圧縮機の回転速度を検出する検出手段と、運転する前記室内機の台数が増加したときに、前記室外機膨張弁の開度を前記圧縮機の回転速度に基づく開度まで絞る開度抑制手段と、前記絞られた開度を漸増させる開度増加手段とを備えたことを要旨とする。   According to a second aspect of the present invention, there is provided an outdoor unit having a compressor for compressing refrigerant and an outdoor unit heat exchanger functioning as a refrigerant condenser during cooling operation, an indoor unit expansion valve, and a refrigerant evaporator during cooling operation. An air conditioner including a plurality of individually operable indoor units having an indoor unit heat exchanger that functions as a downstream side of the outdoor unit heat exchanger during cooling operation, and the plurality of indoor units When the number of the indoor unit to be operated increases, the outdoor unit expansion valve provided at a position upstream from the branch to the unit expansion valve, the detection means for detecting the rotational speed of the compressor, The gist of the invention is that it includes an opening degree suppression means for reducing the opening degree of the outdoor unit expansion valve to an opening degree based on the rotational speed of the compressor, and an opening degree increasing means for gradually increasing the reduced opening degree.

同構成によれば、運転する前記室内機の台数が増加したときは、前記開度抑制制御手段により、前記室外機膨張弁の開度が自動的に絞られる。従って、前記室内機の運転開始に伴い前記室内機膨張弁が開作動し始めても、前記室外機膨張弁により冷媒の流量が制限されることになり、液バックの発生を先行的に抑えることができる。その後、前記開度増加手段により、前記室外機膨張弁の開度が徐々に増加されて冷媒の流量が確保される。また、前記複数の室内機膨張弁への分岐部よりも上流側に配置された前記室外機膨張弁により一括して冷媒の流量を制限できるため、該制御を比較的容易に実現することができる。   According to this configuration, when the number of the indoor units to be operated increases, the opening degree of the outdoor unit expansion valve is automatically throttled by the opening degree suppression control means. Therefore, even if the indoor unit expansion valve starts to open with the start of the operation of the indoor unit, the flow rate of the refrigerant is limited by the outdoor unit expansion valve, and the occurrence of liquid back can be suppressed in advance. it can. Thereafter, the opening degree of the outdoor unit expansion valve is gradually increased by the opening degree increasing means to ensure the flow rate of the refrigerant. In addition, since the flow rate of the refrigerant can be collectively limited by the outdoor unit expansion valve disposed upstream of the branch portions to the plurality of indoor unit expansion valves, the control can be realized relatively easily. .

請求項3に記載の発明は、冷媒を圧縮する圧縮機及び冷房運転時に冷媒の凝縮器として機能する室外機熱交換器を有する室外機と、室内機膨張弁及び冷房運転時は冷媒の蒸発器として機能する室内機熱交換器を有する個別運転可能な複数の室内機とを備えた空気調和装置において、冷房運転時において、前記室外機熱交換器よりも下流側となり、且つ、前記複数の室内機膨張弁への分岐部よりも上流側となる位置に設けられた室外機膨張弁と、前記室外機膨張弁の上流側及び下流側の冷媒の温度差を取得する取得手段と、前記取得された温度差が減少するように前記室外機膨張弁を開度制御する開度制御手段と、前記圧縮機の回転速度を検出する検出手段と、運転する前記室内機の台数が増加したときに、前記室外機膨張弁の開度を前記圧縮機の回転速度に基づく開度まで絞る開度抑制手段とを備えたことを要旨とする。   According to a third aspect of the present invention, there is provided an outdoor unit having a compressor for compressing refrigerant and an outdoor unit heat exchanger functioning as a refrigerant condenser during cooling operation, and an indoor unit expansion valve and a refrigerant evaporator during cooling operation. An air conditioner including a plurality of individually operable indoor units having an indoor unit heat exchanger that functions as a downstream side of the outdoor unit heat exchanger during cooling operation, and the plurality of indoor units An outdoor unit expansion valve provided at a position upstream of the branching portion to the expansion unit, an acquisition unit for acquiring a temperature difference between the upstream and downstream refrigerants of the outdoor unit expansion valve, and the acquired When the number of the indoor units to be operated increases, the opening control means for controlling the opening degree of the outdoor unit expansion valve so that the temperature difference decreases, the detection means for detecting the rotational speed of the compressor, Compress the opening degree of the outdoor unit expansion valve And gist that a degree of opening suppressing means to narrow to the opening based on the rotation speed of the.

同構成によれば、前記開度制御手段により、前記室外機膨張弁の上流側及び下流側の冷媒の温度差が減少するように、即ち冷房負荷に応じて前記複数の室内機に流れる冷媒(液冷媒)の流量が好適に確保されるように前記室外機膨張弁が開度制御される。一方、運転する前記室内機の台数が増加したときは、前記開度抑制制御手段により、前記室外機膨張弁の開度が自動的に絞られる。従って、前記室内機の運転開始に伴い前記室内機膨張弁が開作動し始めても、前記室外機膨張弁により冷媒の流量が制限されることになり、液バックの発生を先行的に抑えることができる。その後、前記開度制御手段による前記室外機膨張弁の開度制御が開始(再開)される。また、前記複数の室内機膨張弁への分岐部よりも上流側に配置された前記室外機膨張弁により一括して冷媒の流量を制限できるため、該制御を比較的容易に実現することができる。   According to this configuration, the opening degree control means reduces the temperature difference between the refrigerant on the upstream side and the downstream side of the outdoor unit expansion valve, that is, the refrigerant flowing through the plurality of indoor units according to the cooling load ( The opening degree of the outdoor unit expansion valve is controlled so that the flow rate of the liquid refrigerant is suitably secured. On the other hand, when the number of indoor units to be operated increases, the opening degree of the outdoor unit expansion valve is automatically throttled by the opening degree suppression control means. Therefore, even if the indoor unit expansion valve starts to open with the start of the operation of the indoor unit, the flow rate of the refrigerant is limited by the outdoor unit expansion valve, and the occurrence of liquid back can be suppressed in advance. it can. Thereafter, opening control of the outdoor unit expansion valve by the opening control means is started (resumed). In addition, since the flow rate of the refrigerant can be collectively limited by the outdoor unit expansion valve disposed upstream of the branch portions to the plurality of indoor unit expansion valves, the control can be realized relatively easily. .

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の空気調和装置において、前記室外機は、前記室内機から送信される始動又は停止状態を表す運転状態信号に基づいて前記室内機の台数を検出する台数検出手段を備えることを要旨とする。   Invention of Claim 4 is an air conditioning apparatus as described in any one of Claims 1-3. WHEREIN: The said outdoor unit is based on the driving | running state signal showing the start or stop state transmitted from the said indoor unit. The gist of the present invention is to provide a number detecting means for detecting the number of the indoor units.

同構成によれば、前記室外機(台数検出手段)は、前記室内機から送信される始動又は停止状態を表す運転状態信号に基づいて、該室内機の台数を容易に検出することができる。   According to this configuration, the outdoor unit (number detection unit) can easily detect the number of the indoor units based on the operation state signal indicating the start or stop state transmitted from the indoor unit.

本発明では、室外機に個別運転可能な複数の室内機が接続された空気調和装置において、冷房運転中に、使用する室内機の台数が増加した際の液バックの発生を先行的に抑えることができる空気調和装置を提供することができる。   In the present invention, in an air conditioner in which a plurality of indoor units that can be individually operated are connected to an outdoor unit, the occurrence of liquid back when the number of indoor units to be used increases during cooling operation is suppressed in advance. It is possible to provide an air conditioner capable of

本発明の第1の実施形態を示す回路図。1 is a circuit diagram showing a first embodiment of the present invention. 温度差と制御量との関係を示すマップ。A map showing the relationship between temperature difference and control amount. 同実施形態の制御態様を示すフローチャート。The flowchart which shows the control aspect of the embodiment. 本発明の第2の実施形態を示す回路図。The circuit diagram which shows the 2nd Embodiment of this invention. 回転速度と開度との関係を示すマップ。A map showing the relationship between rotation speed and opening. 同実施形態の制御態様を示すフローチャート。The flowchart which shows the control aspect of the embodiment.

(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図面に従って説明する。
図1は、本実施形態に係るヒートポンプ式の空気調和装置1を示す回路図である。同図に示されるように、空気調和装置1は、室外機10と、個別運転可能な複数の室内機30とを備えて構成されている。なお、複数の室内機30の各々は、その設置される空間(部屋)のサイズ等に合わせてその容量が選択・設定されており、少なくとも一つの室内機30の容量がその他の室内機30の容量と異なっていてもよい。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a heat pump type air conditioner 1 according to the present embodiment. As shown in the figure, the air conditioner 1 includes an outdoor unit 10 and a plurality of indoor units 30 that can be individually operated. Note that the capacity of each of the plurality of indoor units 30 is selected and set according to the size of the space (room) in which they are installed, and the capacity of at least one indoor unit 30 is that of the other indoor units 30. It may be different from the capacity.

室外機10には、回転に伴い冷媒を圧縮する圧縮機12が設置されている。この圧縮機12は、その吸入管12aから吸入した冷媒(ガス冷媒)を圧縮するとともに、その吐出管12bに冷媒配管13aを介して接続された四方弁14に冷媒を送り出す。四方弁14は、冷媒配管13bを介して室外機熱交換器15に接続されるとともに、冷媒配管13dを介して各室内機30(室内機熱交換器31)に接続されている。また、四方弁14は、冷媒配管13fを介してアキュームレータ18に接続されるとともに、該アキュームレータ18は、冷媒配管13gを介して圧縮機12の吸入管12aに接続されている。   The outdoor unit 10 is provided with a compressor 12 that compresses the refrigerant as it rotates. The compressor 12 compresses the refrigerant (gas refrigerant) sucked from the suction pipe 12a and sends the refrigerant to the four-way valve 14 connected to the discharge pipe 12b via the refrigerant pipe 13a. The four-way valve 14 is connected to the outdoor unit heat exchanger 15 through the refrigerant pipe 13b, and is connected to each indoor unit 30 (indoor unit heat exchanger 31) through the refrigerant pipe 13d. The four-way valve 14 is connected to an accumulator 18 through a refrigerant pipe 13f, and the accumulator 18 is connected to the suction pipe 12a of the compressor 12 through a refrigerant pipe 13g.

前記室外機熱交換器15は、冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能するもので、冷媒配管13hを介して室内機30(室内機電子膨張弁32)に接続されている。そして、冷媒配管13hには、室外機10側で室外機膨張弁としての室外機電子膨張弁21が配置されている。   The outdoor unit heat exchanger 15 functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation. The outdoor unit heat exchanger 15 is connected to the indoor unit 30 (indoor unit electronic expansion valve 32) via a refrigerant pipe 13h. )It is connected to the. In the refrigerant pipe 13h, an outdoor unit electronic expansion valve 21 as an outdoor unit expansion valve is arranged on the outdoor unit 10 side.

各室内機30に設置された室内機熱交換器31は、前記冷媒配管13dに接続されるとともに、室内機膨張弁としての室内機電子膨張弁32に接続されている。そして、室内機電子膨張弁32は、前記冷媒配管13hに接続されている。室内機熱交換器31は、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する。   The indoor unit heat exchanger 31 installed in each indoor unit 30 is connected to the refrigerant pipe 13d and to an indoor unit electronic expansion valve 32 as an indoor unit expansion valve. The indoor unit electronic expansion valve 32 is connected to the refrigerant pipe 13h. The indoor unit heat exchanger 31 functions as a refrigerant evaporator during cooling operation and functions as a refrigerant condenser during heating operation.

なお、圧縮機12等は、冷媒配管13a〜13hとともに冷媒回路Lを構成する。
次に、空気調和装置1の空気調和に係る動作について説明する。なお、冷房及び暖房の各運転時における冷媒の流れを実線矢印及び破線矢印にて表している。
The compressor 12 and the like constitute a refrigerant circuit L together with the refrigerant pipes 13a to 13h.
Next, the operation | movement which concerns on the air conditioning of the air conditioning apparatus 1 is demonstrated. In addition, the flow of the refrigerant | coolant at the time of each operation | movement of cooling and heating is represented by the solid line arrow and the broken line arrow.

まず、冷房運転時において、圧縮機12の吐出管12bを出た冷媒は、四方弁14を通過した後、凝縮器として機能する室外機熱交換器15に導かれる。室外機熱交換器15において、冷媒は室外の空気(外気)により熱を奪われ、凝縮・液化する。その後、室外機電子膨張弁21を通過した冷媒は、各室内機30の室内機電子膨張弁32において減圧されるとともに、蒸発器として機能する室内機熱交換器31において、室内の空気の熱を奪い気化する。その後、冷媒は、四方弁14及びアキュームレータ18を介して圧縮機12の吸入管12aに戻る。以上の過程を経ることで、室内が冷房される。   First, during the cooling operation, the refrigerant that has exited the discharge pipe 12b of the compressor 12 passes through the four-way valve 14, and is then guided to the outdoor unit heat exchanger 15 that functions as a condenser. In the outdoor unit heat exchanger 15, the refrigerant is deprived of heat by outdoor air (outside air), and condensed and liquefied. Thereafter, the refrigerant that has passed through the outdoor unit electronic expansion valve 21 is depressurized in the indoor unit electronic expansion valve 32 of each indoor unit 30, and in the indoor unit heat exchanger 31 that functions as an evaporator, Steal and vaporize. Thereafter, the refrigerant returns to the suction pipe 12 a of the compressor 12 through the four-way valve 14 and the accumulator 18. Through the above process, the room is cooled.

なお、室外機10側で冷媒配管13hに設けられた室外機電子膨張弁21、即ち冷房運転時に室内機熱交換器31よりも下流側となり且つ冷媒配管13hの複数の室内機電子膨張弁32への分岐部よりも上流側となる位置に設けられた室外機電子膨張弁21は、基本的にその上流側及び下流側の冷媒の温度差(大きさ)が減少するように、即ち僅少な一定範囲(所定範囲)に収まるようにその開度が調整される。これは、例えば冷房運転時に室外機電子膨張弁21の上流側の温度よりも下流側の温度の方が低くなったときに、該下流側で冷媒(液冷媒)の流量不足に起因する蒸発(気化)が発生していると見なし、その分、室外機電子膨張弁21の開度を増加して不足分を補うためである。これにより、例えば外気温度の上昇などで冷房負荷が増加した場合であっても、必要な冷媒流量が確保される。   It should be noted that the outdoor unit electronic expansion valve 21 provided in the refrigerant pipe 13h on the outdoor unit 10 side, that is, the downstream side of the indoor unit heat exchanger 31 during the cooling operation and the plurality of indoor unit electronic expansion valves 32 of the refrigerant pipe 13h. The outdoor electronic expansion valve 21 provided at a position upstream of the branch portion of the refrigerant is basically such that the temperature difference (size) between the refrigerant on the upstream side and the downstream side is reduced, that is, slightly constant. The opening degree is adjusted so as to be within a range (predetermined range). This is because, for example, when the temperature on the downstream side is lower than the temperature on the upstream side of the outdoor unit electronic expansion valve 21 during the cooling operation, evaporation due to insufficient flow rate of the refrigerant (liquid refrigerant) on the downstream side ( This is because it is assumed that vaporization has occurred, and the opening degree of the outdoor unit electronic expansion valve 21 is increased correspondingly to compensate for the shortage. Thereby, for example, even when the cooling load is increased due to an increase in the outside air temperature or the like, a necessary refrigerant flow rate is ensured.

一方、暖房運転時において、圧縮機12の吐出管12bを出た冷媒は、四方弁14を通過した後、室内機30に導かれる。そして、冷媒は、凝縮器として機能する室内機熱交換器31において、室内の空気に熱を放出し、凝縮・液化する。その後、室内機電子膨張弁32において減圧された冷媒は、室外機電子膨張弁21において更に減圧されて室外機熱交換器15に導かれる。そして、冷媒は、蒸発器として機能する室外機熱交換器15において、室外の空気の熱を吸収・気化する。その後、室外機熱交換器15からの四方弁14を介した冷媒が、アキュームレータ18を介して圧縮機12の吸入管12aに戻る。以上の過程を経ることで、室内が暖房される。   On the other hand, during the heating operation, the refrigerant that has exited the discharge pipe 12 b of the compressor 12 passes through the four-way valve 14 and is then guided to the indoor unit 30. The refrigerant releases heat into the indoor air in the indoor unit heat exchanger 31 functioning as a condenser, and condenses and liquefies. Thereafter, the refrigerant depressurized in the indoor unit electronic expansion valve 32 is further depressurized in the outdoor unit electronic expansion valve 21 and guided to the outdoor unit heat exchanger 15. The refrigerant absorbs and vaporizes the heat of the outdoor air in the outdoor unit heat exchanger 15 that functions as an evaporator. Thereafter, the refrigerant from the outdoor unit heat exchanger 15 through the four-way valve 14 returns to the suction pipe 12 a of the compressor 12 through the accumulator 18. Through the above process, the room is heated.

次に、本実施形態の電気的構成について更に説明する。
図1に示されるように、室外機10には、圧縮機12、四方弁14及び室外機電子膨張弁21等を駆動制御する制御装置41が設けられている。この制御装置41は、マイコンを主体に構成されており、室外機電子膨張弁21の室外機熱交換器15側(冷房運転時における上流側)の冷媒温度T1及び室内機電子膨張弁32側(冷房運転時における下流側)の冷媒温度T2を検出する第1温度センサ42及び第2温度センサ43にそれぞれ電気的に接続されている。制御装置41は、これら第1及び第2温度センサ42,43により検出された冷媒温度T1,T2に基づいて、冷房運転時における室外機電子膨張弁21の上流側及び下流側の冷媒の温度差ΔT(=T1−T2)を演算・取得する。
Next, the electrical configuration of this embodiment will be further described.
As shown in FIG. 1, the outdoor unit 10 is provided with a control device 41 that drives and controls the compressor 12, the four-way valve 14, the outdoor unit electronic expansion valve 21, and the like. The control device 41 is mainly composed of a microcomputer, and the refrigerant temperature T1 on the outdoor unit heat exchanger 15 side (upstream side during the cooling operation) of the outdoor unit electronic expansion valve 21 and the indoor unit electronic expansion valve 32 side ( The first temperature sensor 42 and the second temperature sensor 43 that detect the refrigerant temperature T2 on the downstream side during the cooling operation are electrically connected to each other. Based on the refrigerant temperatures T1 and T2 detected by the first and second temperature sensors 42 and 43, the control device 41 determines the temperature difference between the refrigerant on the upstream side and the downstream side of the outdoor unit electronic expansion valve 21 during the cooling operation. ΔT (= T1−T2) is calculated and acquired.

一方、各室内機30には、室内機電子膨張弁32等を駆動制御する制御装置46が設けられている。この制御装置46は、マイコンを主体に構成されており、当該室内機30を始動又は停止させる操作スイッチ47に電気的に接続されている。この操作スイッチ47は、例えば室内機30の操作パネルやリモコン等に設置される。また、各制御装置46は、室外機10の制御装置41に電気的に接続されており、該制御装置41に当該室内機30の始動又は停止状態を表す運転状態信号を送信する。制御装置41(室外機10)は、各制御装置46(室内機30)から送信される運転状態信号に基づいて、運転中の室内機30の台数を検出する(台数検出手段)。   On the other hand, each indoor unit 30 is provided with a control device 46 that drives and controls the indoor unit electronic expansion valve 32 and the like. The control device 46 is mainly composed of a microcomputer, and is electrically connected to an operation switch 47 that starts or stops the indoor unit 30. The operation switch 47 is installed, for example, on the operation panel of the indoor unit 30 or a remote controller. Each control device 46 is electrically connected to the control device 41 of the outdoor unit 10, and transmits an operation state signal indicating the start or stop state of the indoor unit 30 to the control device 41. The control device 41 (the outdoor unit 10) detects the number of indoor units 30 in operation based on the operation state signal transmitted from each control device 46 (the indoor unit 30) (number detection means).

このような構成にあって、制御装置41は、通常、冷房運転時に冷媒の温度差ΔTが僅少な一定範囲に収まるように室外機電子膨張弁21の開度を調整する。図2は、温度差ΔTと、室外機電子膨張弁21の現在の開度Aに加算する制御量ΔAとの関係を示すマップである。同図に示されるように、この制御量ΔAは、基本的に温度差ΔTが正側に大きいほど正側に大きくなるように設定されている。これは、温度差ΔTが正側に大きいほど、即ち室外機電子膨張弁21の下流側で冷媒の流量不足に起因する蒸発(気化)の発生度合いが著しいほど、現在の開度A(i)に対し補正後の開度A(i+1)(=A(i)+ΔA)を急激に大きくしてより多くの冷媒(液冷媒)を迅速に送り出すためである。また、制御量ΔAは、温度差ΔTの大きさが僅少な一定範囲にあるときに零に設定されている。つまり、温度差ΔTの大きさが僅少な一定範囲は、現在の開度Aに対する補正が行われない、いわゆる不感帯となっている。この結果、温度差ΔTは一定範囲に収まるように調整される。なお、この僅少な一定範囲は、温度センサの検出誤差と見られる範囲に基づき設定されている。   With such a configuration, the control device 41 normally adjusts the opening degree of the outdoor unit electronic expansion valve 21 so that the temperature difference ΔT of the refrigerant is within a small fixed range during the cooling operation. FIG. 2 is a map showing the relationship between the temperature difference ΔT and the control amount ΔA to be added to the current opening degree A of the outdoor unit electronic expansion valve 21. As shown in the figure, the control amount ΔA is basically set so as to increase toward the positive side as the temperature difference ΔT increases toward the positive side. This is because the greater the temperature difference ΔT is on the positive side, that is, the more the degree of occurrence of evaporation (vaporization) due to insufficient refrigerant flow on the downstream side of the outdoor unit electronic expansion valve 21, the more the current opening degree A (i). In contrast, the corrected opening degree A (i + 1) (= A (i) + ΔA) is rapidly increased to more rapidly deliver more refrigerant (liquid refrigerant). Further, the control amount ΔA is set to zero when the temperature difference ΔT is in a small fixed range. That is, a certain range in which the temperature difference ΔT is very small is a so-called dead zone in which correction for the current opening degree A is not performed. As a result, the temperature difference ΔT is adjusted to be within a certain range. Note that this small fixed range is set based on a range that seems to be a detection error of the temperature sensor.

そして、制御装置41は、所定時間tごとに、温度差ΔTを取得するとともに(取得手段)、該温度差ΔTに基づく制御量ΔAの演算及び開度Aの補正を行う(開度制御手段)。制御装置41は、このように設定された開度Aに基づいて室外機電子膨張弁21を駆動制御する。以下では、このような温度差ΔTに基づく開度Aの補正等を「室外機電子膨張弁通常制御」ともいう。   The control device 41 acquires the temperature difference ΔT at every predetermined time t (acquisition means), calculates the control amount ΔA based on the temperature difference ΔT, and corrects the opening A (opening control means). . The control device 41 drives and controls the outdoor unit electronic expansion valve 21 based on the opening degree A thus set. Hereinafter, such correction of the opening degree A based on the temperature difference ΔT is also referred to as “outdoor unit electronic expansion valve normal control”.

一方、制御装置41は、運転状態信号に基づき、運転中の室内機30の台数増加が検出されたときに、上述の室外機電子膨張弁通常制御を一定時間tLだけ停止して、室外機電子膨張弁21の開度Aを現在の開度Aに固定する(開度制御停止手段)。これは、室内機30の運転開始に伴い室内機電子膨張弁32が開作動し始めても、室外機電子膨張弁21による冷媒の流量制限を継続して、即ち室内機電子膨張弁32の開作動に伴って室外機電子膨張弁21が開いていくことを防止して、液バックの発生を先行的に抑えるためである。そして、制御装置41は、運転中の室内機30の台数増加が検出されてから一定時間tLの経過を待って、室外機電子膨張弁通常制御を再開する。   On the other hand, when the increase in the number of indoor units 30 in operation is detected based on the operation state signal, the control device 41 stops the above-described outdoor unit electronic expansion valve normal control for a certain time tL, and The opening A of the expansion valve 21 is fixed to the current opening A (opening control stop means). This is because, even when the indoor unit electronic expansion valve 32 starts to open with the start of the operation of the indoor unit 30, the refrigerant flow rate restriction by the outdoor unit electronic expansion valve 21 is continued, that is, the indoor unit electronic expansion valve 32 opens. This is to prevent the outdoor unit electronic expansion valve 21 from being opened along with the occurrence of liquid back in advance. And the control apparatus 41 waits for progress of the fixed time tL after the increase in the number of the indoor units 30 in operation is detected, and restarts outdoor unit electronic expansion valve normal control.

次に、制御装置41による本実施形態の制御態様について図3のフローチャートに基づき総括して説明する。この処理は、所定時間ごとの定時割り込みにより繰り返し実行される。同図に示されるように、処理がこのルーチンに移行すると、まず、室内機30の台数増加があるか否かが判断される(S1)。そして、室内機30の台数増加があると判断されると、室外機電子膨張弁21の開度Aが現在の開度Aに固定される(S2)。   Next, the control mode of the present embodiment by the control device 41 will be described collectively based on the flowchart of FIG. This process is repeatedly executed by a scheduled interruption every predetermined time. As shown in the figure, when the process proceeds to this routine, it is first determined whether or not there is an increase in the number of indoor units 30 (S1). When it is determined that there is an increase in the number of indoor units 30, the opening degree A of the outdoor unit electronic expansion valve 21 is fixed to the current opening degree A (S2).

続いて、室内機30の台数増加後、一定時間tLだけ経過したか否かが判断され(S3)、該一定時間tLを経過するまで室外機電子膨張弁21の開度Aの固定が継続される。そして、室内機30の台数増加後、一定時間tLだけ経過したと判断されると、室外機電子膨張弁通常制御が実行(再開)され(S4)、その後の処理が一旦終了する。なお、S4の処理に移行する直前には温度差ΔTが大きくなっており、S4の処理が実行されることで温度差ΔTが一定範囲に収まるように制御される。   Subsequently, after the number of indoor units 30 is increased, it is determined whether or not a predetermined time tL has elapsed (S3), and the opening degree A of the outdoor unit electronic expansion valve 21 is continuously fixed until the predetermined time tL has elapsed. The When it is determined that the fixed time tL has elapsed after the increase in the number of indoor units 30, the outdoor unit electronic expansion valve normal control is executed (restarted) (S4), and the subsequent processing is temporarily ended. Note that the temperature difference ΔT is increased immediately before the transition to the process of S4, and the temperature difference ΔT is controlled to be within a certain range by executing the process of S4.

一方、S1において室内機30の台数増加がないと判断されると、室外機電子膨張弁通常制御が実行され、その後の処理が一旦終了する。
以上詳述したように、本実施形態によれば、以下に示す効果が得られるようになる。
On the other hand, if it is determined in S1 that there is no increase in the number of indoor units 30, outdoor unit electronic expansion valve normal control is executed, and the subsequent processing is temporarily terminated.
As described above in detail, according to the present embodiment, the following effects can be obtained.

(1)本実施形態では、室外機電子膨張弁通常制御において、室外機電子膨張弁21の上流側及び下流側の冷媒の温度差ΔTが減少するように、即ち冷房負荷に応じて室内機30に流れる冷媒(液冷媒)の流量が好適に確保されるように室外機電子膨張弁21が開度制御される。一方、運転する室内機30の台数が増加したときは、室外機電子膨張弁通常制御が一定時間tL停止される。従って、室内機30の運転開始に伴い室内機電子膨張弁32が開作動し始めても、室外機電子膨張弁21により冷媒の流量が制限されたままとなって、液バックの発生を先行的に抑えることができる。また、複数の室内機電子膨張弁32への分岐部よりも上流側に配置された室外機電子膨張弁21により一括して冷媒の流量を制限できるため、該制御を比較的容易に実現することができる。   (1) In this embodiment, in the outdoor unit electronic expansion valve normal control, the indoor unit 30 so that the temperature difference ΔT between the upstream and downstream refrigerants of the outdoor unit electronic expansion valve 21 decreases, that is, according to the cooling load. The opening degree of the outdoor electronic expansion valve 21 is controlled so that the flow rate of the refrigerant (liquid refrigerant) flowing through On the other hand, when the number of indoor units 30 to be operated increases, the outdoor unit electronic expansion valve normal control is stopped for a predetermined time tL. Therefore, even if the indoor unit electronic expansion valve 32 starts to open with the start of the operation of the indoor unit 30, the flow rate of the refrigerant remains restricted by the outdoor unit electronic expansion valve 21, and the occurrence of liquid back is preceded. Can be suppressed. In addition, since the flow rate of the refrigerant can be collectively limited by the outdoor unit electronic expansion valve 21 arranged upstream of the branching portion to the plurality of indoor unit electronic expansion valves 32, the control can be realized relatively easily. Can do.

(2)本実施形態では、室外機10の制御装置41は、室内機30から送信される始動又は停止状態を表す運転状態信号(オン・オフ信号)に基づいて、該室内機30の台数を容易に検出することができる。   (2) In the present embodiment, the control device 41 of the outdoor unit 10 determines the number of the indoor units 30 based on the operation state signal (ON / OFF signal) indicating the start or stop state transmitted from the indoor unit 30. It can be easily detected.

(第2の実施形態)
以下、本発明を具体化した第2の実施形態を図面に従って説明する。なお、第2の実施形態は、第1の実施形態の温度差ΔTに基づく室外機電子膨張弁通常制御に代えて、基本的に室外機電子膨張弁21を全開状態に保持するように変更した構成であるため、同様の部分についてはその詳細な説明は省略する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In the second embodiment, instead of the normal control of the outdoor unit electronic expansion valve based on the temperature difference ΔT of the first embodiment, basically the outdoor unit electronic expansion valve 21 is changed to be held in a fully opened state. Since it is a structure, the detailed description of the same part is omitted.

図4は、本実施形態に係るヒートポンプ式の空気調和装置1を示す回路図である。同図に示されるように、本実施形態では、第1及び第2温度センサ42,43が割愛されている。そして、制御装置41は、圧縮機12の回転速度Nを検出する回転速度センサ44に電気的に接続されている。   FIG. 4 is a circuit diagram showing the heat pump type air conditioner 1 according to the present embodiment. As shown in the figure, in this embodiment, the first and second temperature sensors 42 and 43 are omitted. The control device 41 is electrically connected to a rotation speed sensor 44 that detects the rotation speed N of the compressor 12.

このような構成にあって、制御装置41は、通常、冷房運転時に室外機電子膨張弁21の開度A(%)を、100%(全開)を上限に、所定時間tごとに所定の変化量Δ(%)だけ漸増する(開度増加手段)。以下では、このような室外機電子膨張弁21の開度Aの補正等を「室外機電子膨張弁通常制御」ともいう。なお、室外機電子膨張弁通常制御は、基本的に長時間に亘って継続されることになり、従って室外機電子膨張弁21の開度Aは過渡期以外は100%に保持されるように制御されている。   In such a configuration, the control device 41 normally changes the opening degree A (%) of the outdoor unit electronic expansion valve 21 during the cooling operation to a predetermined change every predetermined time t with 100% (fully open) as an upper limit. It gradually increases by an amount Δ (%) (opening increasing means). Hereinafter, such correction of the opening degree A of the outdoor unit electronic expansion valve 21 is also referred to as “outdoor unit electronic expansion valve normal control”. The normal control of the outdoor electronic expansion valve is basically continued for a long time, so that the opening degree A of the outdoor electronic expansion valve 21 is maintained at 100% except during the transition period. It is controlled.

そして、制御装置41は、運転状態信号に基づき、運転中の室内機30の台数増加が検出されたときに、室外機電子膨張弁21を回転速度Nに基づく開度ANまで一気に絞る(開度抑制手段)。これは、室内機30の運転開始に伴い室内機電子膨張弁32が開作動し始めたときに、室外機電子膨張弁21による冷媒の流量制限を開始して、液バックの発生を先行的に抑えるためである。   Then, when the increase in the number of indoor units 30 in operation is detected based on the operation state signal, the control device 41 throttles the outdoor unit electronic expansion valve 21 to the opening degree AN based on the rotational speed N (opening degree). Suppression means). This is because when the indoor unit electronic expansion valve 32 starts to open along with the start of the operation of the indoor unit 30, the outdoor unit electronic expansion valve 21 starts restricting the flow rate of the refrigerant, leading to the occurrence of liquid back. This is to suppress.

図5は、回転速度Nと、対応する室外機電子膨張弁21の開度AN(%)との関係を示すマップである。同図に示されるように、開度ANは、100%(全開)を上限に回転速度Nが大きいほど大きくなるように設定されている。これは、回転速度Nが小さいほど、即ち圧縮機12による冷媒の吐出量が少ないほど室外機電子膨張弁21の開度Aを急激に絞って冷媒(液冷媒)の送り出しを迅速に抑えるためである。   FIG. 5 is a map showing the relationship between the rotational speed N and the opening degree AN (%) of the corresponding outdoor unit electronic expansion valve 21. As shown in the figure, the opening degree AN is set so as to increase as the rotational speed N increases with the upper limit being 100% (fully open). This is because the lower the rotational speed N, that is, the smaller the amount of refrigerant discharged from the compressor 12, the more rapidly the opening degree A of the outdoor unit electronic expansion valve 21 is reduced, thereby quickly suppressing the delivery of the refrigerant (liquid refrigerant). is there.

そして、制御装置41は、室外機電子膨張弁21の開度Aを開度ANに絞った後、室外機電子膨張弁通常制御に移行して、所定時間tごとに、室外機電子膨張弁21の開度Aを所定の変化量Δだけ漸増していく。これにより、室外機電子膨張弁21の開度Aの絞りによる冷媒の流量抑制が徐々に解消されて必要な流量が確保されるようになる。   Then, after the opening degree A of the outdoor unit electronic expansion valve 21 is reduced to the opening degree AN, the control device 41 shifts to the outdoor unit electronic expansion valve normal control, and at every predetermined time t, the outdoor unit electronic expansion valve 21. Is gradually increased by a predetermined change amount Δ. Thereby, the restriction | limiting of the flow volume of the refrigerant | coolant by the aperture_diaphragm | restriction of the opening degree A of the outdoor unit electronic expansion valve 21 is gradually eliminated, and a required flow volume comes to be ensured.

次に、制御装置41による本実施形態の制御態様について図6のフローチャートに基づき総括して説明する。この処理は、所定時間ごとの定時割り込みにより繰り返し実行される。同図に示されるように、処理がこのルーチンに移行すると、まず、室内機30の台数増加があるか否かが判断される(S11)。そして、室内機30の台数増加があると判断されると、室外機電子膨張弁21の開度Aが回転速度Nに基づく開度ANに設定される(S12)。   Next, the control mode of the present embodiment by the control device 41 will be described collectively based on the flowchart of FIG. This process is repeatedly executed by a scheduled interruption every predetermined time. As shown in the figure, when the process proceeds to this routine, it is first determined whether or not there is an increase in the number of indoor units 30 (S11). When it is determined that there is an increase in the number of indoor units 30, the opening degree A of the outdoor unit electronic expansion valve 21 is set to the opening degree AN based on the rotational speed N (S12).

続いて、室外機電子膨張弁通常制御が実行され(S13)、その後の処理が一旦終了する。一方、S11において室内機30の台数増加がないと判断されると、そのまま室外機電子膨張弁通常制御が実行され、その後の処理が一旦終了する。   Subsequently, outdoor unit electronic expansion valve normal control is executed (S13), and the subsequent processing is temporarily ended. On the other hand, if it is determined in S11 that there is no increase in the number of indoor units 30, the outdoor unit electronic expansion valve normal control is executed as it is, and the subsequent processing is temporarily ended.

以上詳述したように、本実施形態によれば、以下に示す効果が得られるようになる。
(1)本実施形態では、運転する室内機30の台数が増加したときは、室外機電子膨張弁21の開度Aが回転速度Nに基づく開度ANに自動的に絞られる。従って、室内機30の運転開始に伴い室内機電子膨張弁32が開作動し始めても、室外機電子膨張弁21により冷媒の流量が制限されることになり、液バックの発生を先行的に抑えることができる。また、複数の室内機電子膨張弁32への分岐部よりも上流側に配置された室外機電子膨張弁21により一括して冷媒の流量を制限できるため、該制御を比較的容易に実現することができる。
As described above in detail, according to the present embodiment, the following effects can be obtained.
(1) In this embodiment, when the number of indoor units 30 to be operated increases, the opening degree A of the outdoor unit electronic expansion valve 21 is automatically reduced to the opening degree AN based on the rotational speed N. Therefore, even if the indoor unit electronic expansion valve 32 starts to open with the start of the operation of the indoor unit 30, the flow rate of the refrigerant is limited by the outdoor unit electronic expansion valve 21, and the occurrence of liquid back is suppressed in advance. be able to. In addition, since the flow rate of the refrigerant can be collectively limited by the outdoor unit electronic expansion valve 21 arranged upstream of the branching portion to the plurality of indoor unit electronic expansion valves 32, the control can be realized relatively easily. Can do.

(2)本実施形態では、室外機10の制御装置41は、室内機30から送信される始動又は停止状態を表す運転状態信号(オン・オフ信号)に基づいて、該室内機30の台数を容易に検出することができる。   (2) In the present embodiment, the control device 41 of the outdoor unit 10 determines the number of the indoor units 30 based on the operation state signal (ON / OFF signal) indicating the start or stop state transmitted from the indoor unit 30. It can be easily detected.

(3)本実施形態では、既存の回転速度センサ44を利用して液バックの発生を抑えることができ、例えば室外機電子膨張弁21の上流側及び下流側の冷媒の温度差ΔTを取得等する場合に比べてその構成を簡易化することができる。   (3) In the present embodiment, the occurrence of liquid back can be suppressed using the existing rotation speed sensor 44. For example, the temperature difference ΔT between the refrigerant on the upstream side and the downstream side of the outdoor unit electronic expansion valve 21 is acquired. The configuration can be simplified as compared with the case of doing so.

なお、上記実施形態は以下のように変更してもよい。
・前記第1の実施形態において、制御量ΔAが零となる温度差ΔTの範囲はなくてもよい。また、温度差ΔTに対し制御量ΔAをステップ状に段階的に変化させてもよい。
In addition, you may change the said embodiment as follows.
In the first embodiment, there may be no range of the temperature difference ΔT where the control amount ΔA is zero. Further, the control amount ΔA may be changed stepwise with respect to the temperature difference ΔT.

・前記第1の実施形態において、温度差ΔTと制御量ΔAとの関係(図2参照)は一例である。基本的に、温度差ΔTと制御量ΔAとは単調非減少の関係にあればよい。
・前記第1の実施形態において、運転する室内機30の台数が増加したときは、前記第2の実施形態と同様に、室外機電子膨張弁21の開度Aを回転速度Nに基づく開度ANに一気に絞るようにしてもよい。
In the first embodiment, the relationship between the temperature difference ΔT and the control amount ΔA (see FIG. 2) is an example. Basically, the temperature difference ΔT and the control amount ΔA may be in a monotonous non-decreasing relationship.
In the first embodiment, when the number of indoor units 30 to be operated increases, the opening degree A of the outdoor unit electronic expansion valve 21 is set based on the rotational speed N as in the second embodiment. You may make it narrow down to AN at a stretch.

・前記第2の実施形態において、回転速度Nと開度ANとの関係(図5参照)は一例である。基本的に、回転速度Nと開度ANとは単調非減少の関係にあればよい。
・前記各実施形態において、複数の室内機30に接続される室外機10は複数台であってもよい。
In the second embodiment, the relationship between the rotational speed N and the opening degree AN (see FIG. 5) is an example. Basically, the rotational speed N and the opening degree AN need only be in a monotonous non-decreasing relationship.
In each of the above embodiments, a plurality of outdoor units 10 connected to the plurality of indoor units 30 may be provided.

・前記第2の実施形態において、第1の実施形態と同様に温度センサを設け、所定の変化量Δだけ漸増する部分を、温度差ΔTに基づいた制御量にしてもよい。
次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
In the second embodiment, a temperature sensor may be provided as in the first embodiment, and a portion that gradually increases by a predetermined change amount Δ may be a control amount based on the temperature difference ΔT.
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.

・請求項1又は3に記載の空気調和装置において、
前記室外機膨張弁の上流側及び下流側の冷媒の温度をそれぞれ検出する第1温度センサ及び第2温度センサを備え、
前記取得手段は、前記第1及び第2温度センサにより検出された冷媒の温度に基づき前記温度差を取得することを特徴とする空気調和装置。
In the air conditioner according to claim 1 or 3,
A first temperature sensor and a second temperature sensor for detecting the temperatures of the refrigerant on the upstream side and the downstream side of the outdoor unit expansion valve, respectively;
The air conditioner characterized in that the acquisition means acquires the temperature difference based on the temperature of the refrigerant detected by the first and second temperature sensors.

1…空気調和装置、10…室外機、12…圧縮機、15…室外機熱交換器、21…室外機電子膨張弁(室外機膨張弁)、30…室内機、31…室内機熱交換器、32…室内機電子膨張弁(室内機膨張弁)、41…制御装置(取得手段、開度制御手段、開度制御停止手段、開度抑制手段、開度増加手段、台数検出手段)、42…第1温度センサ、43…第2温度センサ、44…回転速度センサ(検出手段)。   DESCRIPTION OF SYMBOLS 1 ... Air conditioning apparatus, 10 ... Outdoor unit, 12 ... Compressor, 15 ... Outdoor unit heat exchanger, 21 ... Outdoor unit electronic expansion valve (outdoor unit expansion valve), 30 ... Indoor unit, 31 ... Indoor unit heat exchanger , 32 ... indoor unit electronic expansion valve (indoor unit expansion valve), 41 ... control device (acquisition means, opening degree control means, opening degree control stop means, opening degree suppression means, opening degree increasing means, number detection means), 42 ... 1st temperature sensor, 43 ... 2nd temperature sensor, 44 ... Rotational speed sensor (detection means).

Claims (4)

冷媒を圧縮する圧縮機及び冷房運転時に冷媒の凝縮器として機能する室外機熱交換器を有する室外機と、室内機膨張弁及び冷房運転時は冷媒の蒸発器として機能する室内機熱交換器を有する個別運転可能な複数の室内機とを備えた空気調和装置において、
冷房運転時において、前記室外機熱交換器よりも下流側となり、且つ、前記複数の室内機膨張弁への分岐部よりも上流側となる位置に設けられた室外機膨張弁と、
前記室外機膨張弁の上流側及び下流側の冷媒の温度差を取得する取得手段と、
前記取得された温度差が減少するように前記室外機膨張弁を開度制御する開度制御手段と、
運転する前記室内機の台数が増加したときに、前記室外機膨張弁の開度制御を一定時間停止する開度制御停止手段とを備えたことを特徴とする空気調和装置。
An outdoor unit having a compressor that compresses refrigerant and an outdoor unit heat exchanger that functions as a refrigerant condenser during cooling operation, and an indoor unit heat exchanger that functions as an indoor unit expansion valve and a refrigerant evaporator during cooling operation. In an air conditioner including a plurality of individually operable indoor units,
During the cooling operation, an outdoor unit expansion valve provided at a position downstream of the outdoor unit heat exchanger and upstream of a branching portion to the plurality of indoor unit expansion valves;
An acquisition means for acquiring a temperature difference between the refrigerant on the upstream side and the downstream side of the outdoor unit expansion valve;
An opening degree control means for controlling the opening degree of the outdoor unit expansion valve so that the acquired temperature difference decreases;
An air conditioner comprising: an opening control stop unit that stops the opening control of the outdoor unit expansion valve for a predetermined time when the number of the indoor units to be operated increases.
冷媒を圧縮する圧縮機及び冷房運転時に冷媒の凝縮器として機能する室外機熱交換器を有する室外機と、室内機膨張弁及び冷房運転時は冷媒の蒸発器として機能する室内機熱交換器を有する個別運転可能な複数の室内機とを備えた空気調和装置において、
冷房運転時において、前記室外機熱交換器よりも下流側となり、且つ、前記複数の室内機膨張弁への分岐部よりも上流側となる位置に設けられた室外機膨張弁と、
前記圧縮機の回転速度を検出する検出手段と、
運転する前記室内機の台数が増加したときに、前記室外機膨張弁の開度を前記圧縮機の回転速度に基づく開度まで絞る開度抑制手段と、
前記絞られた開度を漸増させる開度増加手段とを備えたことを特徴とする空気調和装置。
An outdoor unit having a compressor that compresses refrigerant and an outdoor unit heat exchanger that functions as a refrigerant condenser during cooling operation, and an indoor unit heat exchanger that functions as an indoor unit expansion valve and a refrigerant evaporator during cooling operation. In an air conditioner including a plurality of individually operable indoor units,
During the cooling operation, an outdoor unit expansion valve provided at a position downstream of the outdoor unit heat exchanger and upstream of a branching portion to the plurality of indoor unit expansion valves;
Detecting means for detecting the rotational speed of the compressor;
When the number of the indoor units to be operated increases, the opening degree suppression means for reducing the opening degree of the outdoor unit expansion valve to the opening degree based on the rotation speed of the compressor,
An air conditioner comprising an opening increasing means for gradually increasing the throttled opening.
冷媒を圧縮する圧縮機及び冷房運転時に冷媒の凝縮器として機能する室外機熱交換器を有する室外機と、室内機膨張弁及び冷房運転時は冷媒の蒸発器として機能する室内機熱交換器を有する個別運転可能な複数の室内機とを備えた空気調和装置において、
冷房運転時において、前記室外機熱交換器よりも下流側となり、且つ、前記複数の室内機膨張弁への分岐部よりも上流側となる位置に設けられた室外機膨張弁と、
前記室外機膨張弁の上流側及び下流側の冷媒の温度差を取得する取得手段と、
前記取得された温度差が減少するように前記室外機膨張弁を開度制御する開度制御手段と、
前記圧縮機の回転速度を検出する検出手段と、
運転する前記室内機の台数が増加したときに、前記室外機膨張弁の開度を前記圧縮機の回転速度に基づく開度まで絞る開度抑制手段とを備えたことを特徴とする空気調和装置。
An outdoor unit having a compressor that compresses refrigerant and an outdoor unit heat exchanger that functions as a refrigerant condenser during cooling operation, and an indoor unit heat exchanger that functions as an indoor unit expansion valve and a refrigerant evaporator during cooling operation. In an air conditioner including a plurality of individually operable indoor units,
During the cooling operation, an outdoor unit expansion valve provided at a position downstream of the outdoor unit heat exchanger and upstream of a branching portion to the plurality of indoor unit expansion valves;
An acquisition means for acquiring a temperature difference between the refrigerant on the upstream side and the downstream side of the outdoor unit expansion valve;
An opening degree control means for controlling the opening degree of the outdoor unit expansion valve so that the acquired temperature difference decreases;
Detecting means for detecting the rotational speed of the compressor;
An air conditioner comprising: opening degree suppression means for reducing an opening degree of the outdoor unit expansion valve to an opening degree based on a rotation speed of the compressor when the number of the indoor units to be operated increases. .
請求項1〜3のいずれか一項に記載の空気調和装置において、
前記室外機は、前記室内機から送信される始動又は停止状態を表す運転状態信号に基づいて前記室内機の台数を検出する台数検出手段を備えることを特徴とする空気調和装置。
In the air harmony device according to any one of claims 1 to 3,
The air conditioner is characterized in that the outdoor unit includes a number detection means for detecting the number of the indoor units based on an operation state signal indicating a start or stop state transmitted from the indoor unit.
JP2010106542A 2010-05-06 2010-05-06 Air conditioner Expired - Fee Related JP5533209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106542A JP5533209B2 (en) 2010-05-06 2010-05-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106542A JP5533209B2 (en) 2010-05-06 2010-05-06 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011237057A true JP2011237057A (en) 2011-11-24
JP5533209B2 JP5533209B2 (en) 2014-06-25

Family

ID=45325240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106542A Expired - Fee Related JP5533209B2 (en) 2010-05-06 2010-05-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP5533209B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062680A (en) * 2012-09-21 2014-04-10 Sharp Corp Radiation type air conditioner
WO2019087408A1 (en) * 2017-11-06 2019-05-09 ダイキン工業株式会社 Air conditioning device
CN113339951A (en) * 2021-05-31 2021-09-03 青岛海信日立空调系统有限公司 Multi-online operation and maintenance system
CN114087741A (en) * 2021-11-29 2022-02-25 珠海格力电器股份有限公司 Control method and device of electronic throttling element, storage medium and air conditioner
CN114135973A (en) * 2021-11-15 2022-03-04 珠海格力电器股份有限公司 Multi-split air conditioner control method and device and multi-split air conditioner
CN114608180A (en) * 2022-03-15 2022-06-10 广东开利暖通空调股份有限公司 Control method of outdoor unit electronic expansion valve
CN114674063A (en) * 2022-04-22 2022-06-28 宁波奥克斯电气股份有限公司 Air conditioner control method and device and air conditioner system
CN115523599A (en) * 2022-08-30 2022-12-27 宁波奥克斯电气股份有限公司 Control method and control device of multi-connected air conditioner, air conditioner and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305272A (en) * 1988-05-31 1989-12-08 Daikin Ind Ltd Air conditioner
JPH0328676A (en) * 1989-06-26 1991-02-06 Daikin Ind Ltd Refrigerant recovery equipment
JPH08200845A (en) * 1995-01-31 1996-08-06 Zexel Corp Control apparatus for heat pump type air conditioner
JPH0960988A (en) * 1995-08-28 1997-03-04 Sanyo Electric Co Ltd Refrigerating device
JPH1089792A (en) * 1996-09-12 1998-04-10 Mitsubishi Electric Corp Motor driven valve controller for multifunctional heat pump system
JP2000329415A (en) * 1999-05-14 2000-11-30 Sanyo Electric Co Ltd Method of controlling degree of superheat of refrigerator unit, refrigerator unit and air conditioner
JP2001255024A (en) * 2000-03-10 2001-09-21 Mitsubishi Heavy Ind Ltd Air conditioner and its control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305272A (en) * 1988-05-31 1989-12-08 Daikin Ind Ltd Air conditioner
JPH0328676A (en) * 1989-06-26 1991-02-06 Daikin Ind Ltd Refrigerant recovery equipment
JPH08200845A (en) * 1995-01-31 1996-08-06 Zexel Corp Control apparatus for heat pump type air conditioner
JPH0960988A (en) * 1995-08-28 1997-03-04 Sanyo Electric Co Ltd Refrigerating device
JPH1089792A (en) * 1996-09-12 1998-04-10 Mitsubishi Electric Corp Motor driven valve controller for multifunctional heat pump system
JP2000329415A (en) * 1999-05-14 2000-11-30 Sanyo Electric Co Ltd Method of controlling degree of superheat of refrigerator unit, refrigerator unit and air conditioner
JP2001255024A (en) * 2000-03-10 2001-09-21 Mitsubishi Heavy Ind Ltd Air conditioner and its control method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014062680A (en) * 2012-09-21 2014-04-10 Sharp Corp Radiation type air conditioner
WO2019087408A1 (en) * 2017-11-06 2019-05-09 ダイキン工業株式会社 Air conditioning device
CN113339951A (en) * 2021-05-31 2021-09-03 青岛海信日立空调系统有限公司 Multi-online operation and maintenance system
CN114135973A (en) * 2021-11-15 2022-03-04 珠海格力电器股份有限公司 Multi-split air conditioner control method and device and multi-split air conditioner
CN114135973B (en) * 2021-11-15 2023-02-03 珠海格力电器股份有限公司 Multi-split air conditioner control method and device and multi-split air conditioner
CN114087741A (en) * 2021-11-29 2022-02-25 珠海格力电器股份有限公司 Control method and device of electronic throttling element, storage medium and air conditioner
CN114608180A (en) * 2022-03-15 2022-06-10 广东开利暖通空调股份有限公司 Control method of outdoor unit electronic expansion valve
CN114674063A (en) * 2022-04-22 2022-06-28 宁波奥克斯电气股份有限公司 Air conditioner control method and device and air conditioner system
CN114674063B (en) * 2022-04-22 2023-10-20 宁波奥克斯电气股份有限公司 Air conditioner control method and device and air conditioner system
CN115523599A (en) * 2022-08-30 2022-12-27 宁波奥克斯电气股份有限公司 Control method and control device of multi-connected air conditioner, air conditioner and storage medium

Also Published As

Publication number Publication date
JP5533209B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5533209B2 (en) Air conditioner
JP5100416B2 (en) Reheat dehumidifier and air conditioner
JP6370545B2 (en) Heat pump system
US10527330B2 (en) Refrigeration cycle device
EP1826513A1 (en) Refrigerating air conditioner
JP5976333B2 (en) Air conditioner and four-way valve control method for air conditioner
JP2013178046A (en) Air conditioner
JP5173857B2 (en) Air conditioner
JP2013019619A (en) Refrigerating cycle device
JP3208923B2 (en) Operation control device for air conditioner
JP2015117847A (en) Air conditioner
JP6755396B2 (en) Air conditioner
KR102500807B1 (en) Air conditioner and a method for controlling the same
US20110192183A1 (en) Refrigerant system
JP2011007482A (en) Air conditioner
JP2018159520A (en) Air conditioner
KR20070089507A (en) Apparatus and method for controlling electronic expansion apparatus of air conditioning system
JP5754627B2 (en) Fluid cooling method and fluid cooling device
JP6551437B2 (en) air conditioner
JP2007101177A (en) Air conditioner or refrigerating cycle device
JP4823131B2 (en) Air conditioner
JPWO2003083380A1 (en) Refrigeration equipment
JP6554903B2 (en) Air conditioner
JP6300393B2 (en) Air conditioner
JP2020148405A (en) Refrigeration cycle device and abnormality determination method for four-way changeover valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5533209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

LAPS Cancellation because of no payment of annual fees