JP2011236882A - Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine - Google Patents

Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine Download PDF

Info

Publication number
JP2011236882A
JP2011236882A JP2010123488A JP2010123488A JP2011236882A JP 2011236882 A JP2011236882 A JP 2011236882A JP 2010123488 A JP2010123488 A JP 2010123488A JP 2010123488 A JP2010123488 A JP 2010123488A JP 2011236882 A JP2011236882 A JP 2011236882A
Authority
JP
Japan
Prior art keywords
fuel
combustion
injection
cylinder
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010123488A
Other languages
Japanese (ja)
Inventor
Shigeru Onishi
繁 大西
Hiroko Shikinami
弘子 敷波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Clean Engine Laboratory Co
Original Assignee
Nippon Clean Engine Laboratory Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Clean Engine Laboratory Co filed Critical Nippon Clean Engine Laboratory Co
Priority to JP2010123488A priority Critical patent/JP2011236882A/en
Publication of JP2011236882A publication Critical patent/JP2011236882A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a knocking problem by forming a fuel-mixed air group in a cylinder central axial region by improving a matching condition of in-cylinder air and an injection fuel group by using a new fuel direct injection combustion method, and to achieve the improvement of machine heat efficiency and low environmental pollution by reducing a loss of an air supply pump by using a constitution of a layered air-supply combustion method.SOLUTION: A fuel injection valve 7 is arranged at an upper part in a conical cylindrical combustion part 6 which is arranged substantially in the center of a cylinder head, and a fuel spray group 13 which injects fuel toward the center of a lower piston face 12 is dividedly injected as a narrow-angled annular spray group via the conical cylindrical combustion part. The mixture, the evaporation and activation of the fuel caused by the contact of the fuel group and air resulting from the flying-time elongation of the injection fuel group and the utilization of air in the cylinder center are progressed, and the arrival of the fuel to a cylinder wall is prevented.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は内燃機関の燃焼技術に関する。The present invention relates to a combustion technique for an internal combustion engine.

文明社会構築の源動力として活躍してきたガソリンやディ−ゼルエンジン等の内燃機関は大きな利便性と同時に地球の資源を消費しており近時は地球資源の保護や大気汚染や温暖化防止のために更にCOの少ない高効率な燃焼技術や省エネ低公害技術の開発が国際的課題として緊急に求められている。Internal combustion engines such as gasoline and diesel engines that have played an active role in the creation of civilized societies are consuming the earth's resources at the same time as great convenience, and recently, to protect earth resources and prevent air pollution and global warming. In addition, the development of highly efficient combustion technology with less CO 2 and energy saving and low pollution technology is urgently required as an international issue.

しかしながら、石油系や水酸化系燃料による燃焼反応で動力を得る現在の火花点火式ガソリン機関や圧縮着火によるディ−ゼル機関は何れも既成概念や生産技術が優先され、燃焼技術の開発が遅れていることから新燃焼技術による抜本的技術改革が必要である。
本発明はその具体的な改革技術を提示する。
However, both the current spark ignition gasoline engine that obtains power by combustion reaction with petroleum-based or hydroxide-based fuel and the diesel engine by compression ignition give priority to the existing concept and production technology, and the development of combustion technology is delayed. Therefore, drastic technological reform by new combustion technology is necessary.
The present invention presents specific reform techniques.

参考論文Reference paper

SAE技術レポ−ト871689
SAE技術レポ−ト940667
自動車技術会学術講演前刷集No・114−08−2008年名古屋秋季大会(松岡信)
特開昭62−139921
SAE Technical Report 871689
SAE Technical Report 940667
Automobile Engineering Society Academic Lecture Preprint No. 114-08-2008 Nagoya Autumn Meeting (Shin Matsuoka)
JP-A-62-139921

ガソリン自動車エンジンで代表されるEFI方式では燃料が吸気と共に燃焼室の端域まで供給されるのでこれに因るエンドガスノッキング現象を避けることができない。従ってEFI方式では圧縮比を高めることがノッキングで制限され、更に軽負荷運転時には吸気を絞る必要性からポンプ損失で燃費消費率が大きく損なわれている。In the EFI system represented by a gasoline automobile engine, the fuel is supplied to the end region of the combustion chamber together with the intake air, so that an end gas knocking phenomenon due to this cannot be avoided. Therefore, in the EFI system, the increase in the compression ratio is limited by knocking, and the fuel consumption rate is greatly impaired due to the pump loss due to the necessity to throttle the intake air during light load operation.

また高い熱効率の動力源として使われている直噴ディ−ゼル機関も燃焼室中心域から多噴孔ノズルでピストンキャビテイ内に噴霧を拡散する燃焼方式を基本としており噴射系の超高圧化や噴流の分割技術等により燃焼の改善を図っているが、この気筒中心部から多噴孔で燃焼室端域に向けて燃料を噴射する方法では気筒中心域の空気利用率は必然的に低くピストン燃焼室端域での同時的燃焼反応によりピストン熱負荷が大となる。The direct-injection diesel engine, which is used as a power source with high thermal efficiency, is based on a combustion system that diffuses spray from the center of the combustion chamber into the piston cavity with a multi-hole nozzle. However, in this method of injecting fuel from the center of the cylinder toward the end of the combustion chamber with multiple injection holes, the air utilization rate in the center of the cylinder is inevitably low, and piston combustion is performed. The piston heat load is increased by the simultaneous combustion reaction in the chamber end region.

また多噴孔拡散燃焼では各噴孔よりの燃料噴流群は先行群がピストン端域で同時的に反応する現象は避けられなく、更に後続噴流群は先行燃料の燃焼反応により酸素が使われた高温の酸素不足雰囲気内に突入して燃焼する事となるので後続燃料群の燻蒸燃焼による炭化煤塵発生因が必然的に生ずるのである。また多噴孔燃焼域の同時的反応と急激な燃焼圧力上昇率やピストンの熱負荷対策として機関剛性を高める必要性から機関が重くなり価格が高価となる。In addition, in the multi-hole diffusion combustion, the fuel jet group from each nozzle hole inevitably reacts with the preceding group in the piston end region, and the subsequent jet group used oxygen due to the combustion reaction of the preceding fuel. Since it enters into a high-temperature oxygen-deficient atmosphere and burns, a cause of carbonization dust generation due to fumigation combustion of the following fuel group inevitably occurs. In addition, the engine becomes heavier and expensive because of the simultaneous reaction in the multi-hole combustion zone, the rapid increase in combustion pressure, and the need to increase the rigidity of the engine as a measure against piston heat load.

従来の多噴孔ノズルによる噴霧拡散燃焼方法では噴射燃料流の後続分が先行燃料噴流と同じル−トを辿る特性により酸素の減じた熱雰囲気中での反応により必然的に燻蒸化が進むことになる。従って排気中の炭化煤塵やPM2・5の始末も後処理技術に依存せざるをえないのが現在の直噴ディ−ゼルエンジンの解決すべき課題であるがディ−ゼルの開発以来150年以上経った現在でもこの排気煤麈やNOx低減問題は解決困難な課題として残されている。In the conventional spray-diffusion combustion method using a multi-hole nozzle, fumigation inevitably progresses due to a reaction in a hot atmosphere reduced in oxygen due to the characteristic that the subsequent portion of the injected fuel flow follows the same route as the preceding fuel jet. become. Therefore, the problem to be solved by the current direct injection diesel engine is that the carbonization dust in the exhaust gas and the treatment of PM2 · 5 must depend on the aftertreatment technology. Even now, these exhaust soot and NOx reduction problems remain difficult to solve.

従って本発明の目的は、新燃料直噴燃焼方式により気筒内空気と噴射燃料群との整合条件を改善する事により気筒中心軸域に燃料混合気群を形成する事とし、気筒中心域の空気利用率を高める燃料直噴方式で気筒壁に燃料の達する事を抑制してノッキング問題を解決する事とし、層状給気燃焼方式の構成により給気ポンプ損失を減じて機関熱効率の向上と低公害化を図る事を目的としている。Therefore, an object of the present invention is to form a fuel mixture group in the cylinder central axis region by improving the matching condition between the cylinder air and the injected fuel group by the new fuel direct injection combustion method, The fuel direct injection system that increases the utilization rate suppresses the fuel from reaching the cylinder wall and solves the knocking problem. The structure of the stratified charge air combustion system reduces the charge pump loss and improves the engine thermal efficiency and lower pollution. The purpose is to make it easier.

本発明による請求項1に記載の燃料直噴火花点火方式内燃機関は、シリンダ−ヘッド部の略中心域に円錐筒状の燃焼部を設け、その上部の燃料噴射弁から気筒中心域に燃料噴霧群を燃焼室内経由で飛翔させる時系条件を円錐燃焼部と狭角環状噴霧群を形成しうるノズルによって構成し、噴射燃料群の飛翔時間延伸と気筒中心部の空気利用による燃料群と空気との接触による燃料の混合・気化・活性化を促進する事を特徴としている。According to a first aspect of the present invention, there is provided a direct injection spark ignition type internal combustion engine having a conical cylindrical combustion portion in a substantially central region of a cylinder head portion, and a fuel spray from a fuel injection valve on the upper portion to a central region of the cylinder. The time system conditions for causing the group to fly through the combustion chamber are configured by a nozzle capable of forming a conical combustion part and a narrow angle annular spray group, and the fuel group and air by extending the flight time of the injected fuel group and using the air in the center of the cylinder It is characterized by promoting the mixing, vaporization and activation of fuel by contact.

また請求項2に記載の発明は請求項1に記載の直噴内燃機関において気筒中心部に燃料噴霧群を供給する噴射方法を用い、先ず燃焼室において反応の起点を構成すべく燃焼室や噴射条件を燃料噴射律則によって整合し均等的な火炎伝播燃焼条件を形成する事により燃焼期間の短縮を図り、燃料直噴層状給気条件の構成によって端域燃料に因るノッキング現象を排除して高圧縮比を採用する事と燃料群の層状給気燃焼方式による吸気絞りポンプ損失の低減による機関全負荷域の熱効率向上と低公害化を特徴としている。According to a second aspect of the present invention, the direct injection internal combustion engine according to the first aspect uses an injection method for supplying a fuel spray group to the center of a cylinder. By matching the conditions according to the fuel injection rules and forming uniform flame propagation combustion conditions, the combustion period is shortened, and the knocking phenomenon caused by the end region fuel is eliminated by the configuration of the fuel direct injection stratified charge condition It features high efficiency and low pollution in the entire engine load range by adopting a high compression ratio and reducing intake throttle pump loss by the stratified charge combustion system of the fuel group.

本発明による請求項3に記載の直噴ディ−ゼル方式機関においては、多噴孔拡散噴射ディ−ゼル燃焼方式に共通する気筒中心域空気利用率の不充分と、噴流の後続燃料が先行燃料の飛翔飛跡をたどり先行燃料の燃焼反応に因る高温酸素不足の端域で重合的な燃焼を余儀なくされる事により必然的に進行する後続燃料群の燻蒸燃焼問題を改善する手段として多噴孔拡散燃焼の問題点である空気利用率と燃料の気化混合条件を新しい燃料噴射燃焼方法により抜本的に改善し、燃焼反応域における酸素不足や燻蒸燃焼によるPM・煤塵の発生問題を解決しうる新ディ−ゼル機関燃焼技術を提示する事にある。In the direct injection diesel engine according to the third aspect of the present invention, the air utilization factor in the cylinder center region common to the multi-hole diffusion injection diesel combustion system is insufficient, and the subsequent fuel of the jet is the preceding fuel. As a means to improve the fumigation combustion problem of the following fuel group which inevitably progresses by forced to carry out the polymerization combustion in the end region of high temperature oxygen deficiency due to the combustion reaction of the preceding fuel A new fuel injection combustion method that drastically improves the air utilization rate and fuel vaporization and mixing conditions, which are problems of diffusion combustion, and can solve the problem of PM and soot generation due to oxygen shortage and fumigation combustion in the combustion reaction zone Presenting diesel engine combustion technology.

本発明による請求項1に記載の燃料直噴火花点火内燃機関の燃焼方式によれば、円錐筒状燃焼部と燃料群の狭角環状分割噴射条件との整合により火花点火方式EFI方式や多噴孔広角拡散燃焼方式では避ける事の出来ない端域燃料に因るノッキングの発生現象が解決されるので高い圧縮比の採用が可能となり機関の熱効率を高めることができる。According to the combustion system of a direct fuel injection spark ignition internal combustion engine according to claim 1 of the present invention, the spark ignition system EFI system and the multi-injection system are matched by matching the conical cylindrical combustion part and the narrow angle annular split injection condition of the fuel group. Since the phenomenon of knocking due to end-region fuel that cannot be avoided with the wide-angle diffusion combustion method is solved, a high compression ratio can be adopted, and the thermal efficiency of the engine can be increased.

また請求項2に記載の如くノッキングの抑制効果による高圧縮比化と層状給気燃焼方式により絞り作用に因るポンプ損失が軽減される相乗効果により機関全負荷範囲での燃費が改善されると共に機関の軽量化や信頼耐久性の向上と低公害化・コストの低減に効果がある。Further, the fuel efficiency in the full engine load range is improved by the synergistic effect that the pump loss due to the throttle action is reduced by the high compression ratio by the knocking suppression effect and the stratified charge combustion system as described in claim 2. It is effective in reducing the weight and reliability of the engine, reducing pollution and reducing costs.

直噴ディ−ゼル燃焼方式においても燃焼室中心域の空気利用率を高め中心域を起点とした拡散火炎燃焼条件の構成により超高圧噴射に必要な高動力や排気の後処理技術を用いる事なく燃焼室構造と燃料群の狭角環状分割噴射形態により気筒中心域空気の利用率を高める目的を燃料噴射制御条件と燃焼室構造との整合により実現し、燃焼方式の改善により比出力の向上と共に有害排気成分の低減を図り機関の軽量化並びに排気煤麈・NOxを低減した高熱効率ディ−ゼル機関の基本燃焼技術の開示により地球環境の改善と資源消費節減にもたらす作用効果は絶大である。Even in the direct-injection diesel combustion system, the high utilization of the high power and exhaust after-treatment technology required for ultra-high pressure injection are not required due to the configuration of the diffusion flame combustion conditions starting from the central region by increasing the air utilization rate in the central region of the combustion chamber. The purpose of increasing the utilization rate of air in the center of the cylinder by the combustion chamber structure and the narrow angle annular split injection mode of the fuel group is realized by matching the fuel injection control conditions with the combustion chamber structure, and with the improvement of the combustion system, with the improvement of the specific output The effects of reducing the harmful exhaust components, reducing the weight of the engine, and improving the global environment and reducing resource consumption by disclosing the basic combustion technology of the high thermal efficiency diesel engine with reduced exhaust soot and NOx are enormous.

以下、本発明の実施形態について、図1〜4を用いて説明する。本実施形態の燃料直噴式内燃機関は、エンジン本体1、はシリンダ−2、シリンダ−ヘッド3、給気通路4、排気通路5、燃焼部6、燃料噴射弁7、電子燃料制御部8、着火源9、ピストン10、ノズル11、円盤状ピストン容積部12、を備える。Hereinafter, embodiments of the present invention will be described with reference to FIGS. The fuel direct injection internal combustion engine of the present embodiment includes an engine main body 1, a cylinder-2, a cylinder-head 3, an air supply passage 4, an exhaust passage 5, a combustion portion 6, a fuel injection valve 7, an electronic fuel control portion 8, and a landing gear. A fire source 9, a piston 10, a nozzle 11, and a disk-shaped piston volume part 12 are provided.

図1の如くシリンダ−ヘッド3の略中心域に構成した燃焼部6は円錐筒状に構成され上部に燃料噴射弁7がピストン10との距離を延伸すべくに位置付けされており燃焼室内上部の燃料噴射弁近傍に着火源9が設けられている。As shown in FIG. 1, the combustion section 6 formed in the substantially central region of the cylinder-head 3 is configured in a conical cylinder shape, and the fuel injection valve 7 is positioned on the upper portion so as to extend the distance from the piston 10. An ignition source 9 is provided in the vicinity of the injection valve.

円錐筒状燃焼部6の上部より内部を経由してシリンダ−2の中心域に噴射弁7よりシリンダ−2内に噴射される燃料群はAの如くに狭角環状の噴霧群として構成されピストン10方向に燃料制御部8により機関の負荷に応じて分割的に噴射される仕組みである。The fuel group injected into the cylinder 2 from the injection valve 7 into the central region of the cylinder 2 via the inside from the upper part of the conical cylindrical combustion part 6 is configured as a narrow angle annular spray group as shown in A, and is a piston. This is a mechanism in which fuel is injected in ten directions in accordance with the engine load in ten directions.

図2の如く円錐筒状燃焼部6の構造とシリンダ−2の中心域に燃料群の噴射飛翔距離を延伸し、シリンダ−中心域での空気利用率と燃料群との接触で気化混合活性化の条件を促進する構成によれば必然的に燃焼部やシリンダ−中心域に燃料密度か濃く、シリンダ−壁や周端域に燃料の拡散を抑制した層状給気的燃焼条件が構成される事になる。As shown in FIG. 2, the injection flight distance of the fuel group is extended to the structure of the conical cylindrical combustion section 6 and the center area of the cylinder-2, and the vaporization and mixing are activated by contacting the air utilization rate and the fuel group in the center area of the cylinder. According to the configuration that promotes the above condition, the fuel density is inevitably high in the combustion part and the cylinder central region, and the stratified charge combustion condition that suppresses fuel diffusion is configured in the cylinder wall and the peripheral end region. .

従って吸気内にEFIで燃料を供給し予混合気化を図る既存の方式では解決出来なかった端域燃料に因るノッキング現象が解決される事になる。このため熱効率に有利な高圧縮比の採用が可能になる事と、更に自動車機関が多用する低負荷走行時の吸気絞りによるポンプ損失を減じうる層状給気燃焼との相乗効果により燃費が大きく改善される。Therefore, the knocking phenomenon caused by the end-region fuel, which could not be solved by the existing method of supplying the fuel into the intake air by EFI and premixed vaporization, is solved. For this reason, it is possible to adopt a high compression ratio that is advantageous for thermal efficiency, and fuel efficiency is greatly improved due to the synergistic effect of stratified charge combustion that can reduce pump loss due to the intake throttle during low load driving, which is frequently used by automobile engines. Is done.

次に本直噴燃料噴射方式による圧縮着火燃焼方式と従来の多噴孔拡散直噴ディ−ゼル燃焼方式との相違を説明する。Next, the difference between the compression ignition combustion system by the direct fuel injection system and the conventional multi-hole diffusion direct injection diesel combustion system will be described.

図4の如く燃焼室中心に多噴孔ノズルを配し燃焼室の端域に向けて燃料を多噴孔で拡散噴射する従来方式では如何に燃料噴射圧を超高圧化しノズルを細径多噴孔化しても液状燃料群が燃焼室端域に達し同時的に反応するまでの物理的条件は(高温雰囲気の液体燃料は高温に触れる外側から燃焼反応が始まる)変らずまた多端域同時的反応に因る急激な圧力上昇率から直噴ディ−ゼル機関は剛性高める必要で重くなり生産コストに不利となりNOxや燻状燃焼による排気煤塵問題と共に解決至難な問題となっている。As shown in FIG. 4, in the conventional system in which a multi-injection nozzle is arranged at the center of the combustion chamber and the fuel is diffused and injected through the multi-injection holes toward the end of the combustion chamber, the fuel injection pressure is increased to a very high pressure and the nozzle has a small diameter and multiple injections. The physical conditions until the liquid fuel group reaches the end of the combustion chamber and reacts at the same time even when it is made porous (the combustion reaction starts from the outside where the liquid fuel in the high temperature atmosphere is exposed to the high temperature) do not change, and the multi-end region simultaneous reaction Due to the rapid pressure increase rate caused by the above, the direct injection diesel engine is heavy because it is necessary to increase its rigidity, which is disadvantageous to the production cost, and it is difficult to solve together with the exhaust dust problem due to NOx and soot combustion.

この問題は近時の噴射燃料群のパイロット的分割噴射技術により改善されてはきたが直噴ディ−ゼルの多噴孔ノズルによる端域指向の拡散燃焼方法では根本的にシリンダ−中心域「図4」の空気利用率が低くい事と噴流群中の前後燃料群が同じル−トで端域に到達する特性により前後の燃料群が重合的に反応する現象は改善が困難な特性であり高圧高温の熱雰囲気に噴射され燃焼する後続の燃料群は到達端域でもその途中においても熱雰囲気での空気出会い条件は低くなり燃料粒子の気化活性条件は不利なのである。Although this problem has been improved by the pilot split injection technology of the recently injected fuel group, the end-point diffusive combustion method using the multi-hole nozzle of the direct injection diesel is basically the cylinder-center region "Fig. The phenomenon that the front and rear fuel groups react in a polymerizing manner is difficult to improve due to the low air utilization rate of 4 ”and the fact that the front and rear fuel groups in the jet group reach the end region at the same route. Subsequent fuel groups injected and burned into a high-pressure and high-temperature thermal atmosphere have a low air encounter condition in the thermal atmosphere both at the end and in the middle, and the fuel particle vaporization activation condition is disadvantageous.

後続燃料の燃焼条件に不利なこの特性により噴流内部の燃料燻蒸化は防ぐことが出来なく、着火遅れや同時反応で生ずるノッキングに近い急激な圧力上昇率は分割噴射技術により改善されてはきたが多噴孔拡散燃焼方式を基本としている現直噴ディ−ゼル燃焼方式では空気利用率や炭化煤麈発生原因を改善するのは無理であり、ピストン燃焼容積部端域に過濃に形成される燃料群の燃焼反応を促進するための空気導入には大きな空気流動条件が必要であり排気タ−ビンを利用した過給技術等によれば機関コストは更に高価格となります。Due to this characteristic, which is disadvantageous to the combustion conditions of the subsequent fuel, fuel fumigation inside the jet cannot be prevented, and the rapid pressure increase rate close to knocking caused by ignition delay or simultaneous reaction has been improved by the split injection technique. The current direct injection diesel combustion method based on the multi-hole diffusion combustion method cannot improve the air utilization rate and the cause of carbonization, and it is overly formed in the end of the piston combustion volume. Large air flow conditions are required to introduce air to promote the combustion reaction of the fuel group, and the engine cost will be higher due to the supercharging technology using the exhaust turbine.

従って直噴ディ−ゼルの機能を向上させ低公害化と価格低減を図るには先ず直噴ディ−ゼルエンジンの基本としている多噴孔ノズルよりピストン燃焼室の多端域に燃料を拡散噴射する従来の方法を改め、燃焼を支配する燃料と空気との混合条件や燃焼室形態を変える必要があります。燃料噴流群が各到達域で同時的に重合的に反応する事に因る圧力上昇率や排気低公害化対策で機関が複雑構造となり剛性を高める必要性がディ−ゼル機関を重くし価格も高くなり熱効率も限界的なのです。Therefore, in order to improve the function of the direct injection diesel, to reduce pollution and to reduce the price, first, the fuel is diffused and injected into the multi-end region of the piston combustion chamber from the multi-hole nozzle which is the basis of the direct injection diesel engine. It is necessary to change the method and change the mixing condition of the fuel and air that governs combustion and the combustion chamber configuration. It is necessary to increase the rigidity and the price of the diesel engine due to the complex structure of the engine due to the pressure increase rate due to the simultaneous polymerization reaction of the fuel jet group in each reach area and the measures to reduce exhaust pollution It becomes high and thermal efficiency is also limited.

本直噴ディ−ゼル燃焼方式は図1・2に示す如くシリンダ−ヘッド3の略中心部に円錐筒状燃焼部6を設け上部の燃料噴射弁7よりシリンダ−2内のピストン10との間に燃料群を噴射する事とし、飛翔させる燃料噴射群を図2Aの如くノズル11により狭角環状の噴霧群とし多分割的にピストン10に向けて噴射する作用を燃料噴射制御部8によって行なう仕組みである。In this direct injection diesel combustion system, as shown in FIGS. 1 and 2, a conical cylindrical combustion portion 6 is provided at a substantially central portion of the cylinder head 3, and an upper fuel injection valve 7 is connected between the piston 10 in the cylinder 2. The fuel injection group is injected into the fuel injection group, and the fuel injection control unit 8 performs the action of injecting the fuel injection group into the piston 10 in a multi-divided manner by the nozzle 11 as shown in FIG. It is.

この様な燃料噴射条件によれば図4に示す如く、従来の多噴孔拡散方式により生ずるシリンダ−中心域とノズル16近傍の空気利用率が改善されると共に、従来の多噴孔拡散ノズルによる各噴流先行の流れ中や反応中に追従する後続燃料群の重合的な反応による特性的な弊害で生ずる燻条や炭化煤塵の生成因を改善することが出来るのである。According to such a fuel injection condition, as shown in FIG. 4, the air utilization rate in the central region of the cylinder and the vicinity of the nozzle 16 produced by the conventional multi-hole diffusion system is improved, and the conventional multi-hole diffusion nozzle is used. It is possible to improve the cause of the streak and carbonized dust generated by the characteristic adverse effects of the polymerization reaction of the subsequent fuel group following the jet flow and the reaction.

すなわち円錐筒状燃焼部6の構成による燃料飛翔距離と時間の延伸効果に加えノズル11の狭角環状分割噴霧群との整合によればスワ−ル等の空気流動に頼ること少なく早期燃料噴射による燃料群の予混合気化条件の構成が自在となりシリンダ−2の端域に燃料の拡散を抑制する事が出来るのでノッキングの発生を制御して高圧縮比化が可能となる。In other words, in addition to the effect of extending the fuel flight distance and time due to the configuration of the conical cylindrical combustion section 6, the alignment with the narrow-angle annular divided spray group of the nozzle 11 makes it possible to perform early fuel injection with less reliance on air flow such as swirl. The configuration of the premixed vaporization conditions of the fuel group can be made flexible, and the diffusion of fuel can be suppressed in the end region of the cylinder-2, so that the occurrence of knocking can be controlled to achieve a high compression ratio.

特に円錐筒状燃焼部6と燃料の狭角環状分割噴射による燃料群の飛翔距離延伸とによる燃料噴霧群の気化混合活性化条件の促進効果は炭化煤塵・PM2.5の生成因の抑制に顕著な効果を発揮し後処理費用の軽減と共に機関コストの軽減に資するのである。In particular, the effect of promoting the vaporization and mixing activation conditions of the fuel spray group by the conical cylindrical combustion part 6 and the flight distance extension of the fuel group by the narrow-angle annular divided injection of fuel is remarkable in suppressing the generation factor of carbonized dust and PM2.5. It will help to reduce engine costs as well as reduce post-processing costs.

燃料噴射ノズルとピストン間との間隔を離し噴射燃料群の気化混合や燃焼条件の促進を図り噴霧流の側方向慣到性を抑制し、燃焼室中心軸域に濃い混合気群の層状展開を構成し端域に達する燃料を制御したことを特徴とした内燃機関の層状給気燃焼形態は燃焼室容積部の燃焼室構成と燃料噴霧律則との整合により構築される。Separate the gap between the fuel injection nozzle and the piston to promote vaporization and mixing of the injected fuel group and combustion conditions to suppress the lateral inertia of the spray flow, and to develop a layered development of the rich mixture group in the central axis of the combustion chamber The stratified charge combustion mode of the internal combustion engine, which is configured to control the fuel reaching the end region, is constructed by matching the combustion chamber configuration of the combustion chamber volume and the fuel spray rule.

内燃機関の熱効率向上と排気の低公害化を図りうる理想的燃焼条件の構築を可能とする層状給気燃焼方式を具現化するには燃料噴霧の拡散条件と燃焼室部との整合が不可欠である。如何に機械加工技術を駆使し噴孔を微細としても超高圧噴射技術を用いても多噴孔で拡散展開する燃料噴射ノズルでは同端域での燃焼重合反応は回避出来なく、これに因る燻蒸燃焼や炭化煤塵制御技術は困難とされ未だ後処理技術が必要とされている。Matching the fuel spray diffusion conditions with the combustion chamber is indispensable to realize the layered charge combustion system that enables the construction of ideal combustion conditions that can improve the thermal efficiency of the internal combustion engine and reduce the pollution of exhaust. is there. The fuel injection nozzle that diffuses and expands with multiple injection holes, regardless of how fine the injection holes are made using the machining technology, or the ultra-high pressure injection technology, cannot avoid the combustion polymerization reaction in the same end region. Fumigation combustion and carbonization dust control technology is considered difficult, and post-treatment technology is still needed.

円筒又は円推筒状の上部燃焼容積頂部の燃料ノズルから中空の狭角環状拡散噴霧とした燃料噴霧群の供給を制御する手段は、噴射ノズルの開閉作動やタイミングを燃料噴射制御8により行なう事とし、軽負荷時においても給気を絞る事少なく運転しノッキングを折曲した高圧縮比よる多種燃料の使用を可能とし、機関の高過給化やポンプ損失の軽減効果により内燃機関の省エネと低公害化の目的が低コストで実現されるのである。The means for controlling the supply of the fuel spray group, which is a hollow narrow-angle annular diffusion spray, from the fuel nozzle at the top of the upper combustion volume in a cylindrical or circular cylinder shape, performs the opening / closing operation and timing of the injection nozzle by the fuel injection control 8. It is possible to use various types of fuel with a high compression ratio that is operated with little air supply restriction and bent knocking even at light loads, and it is possible to save energy of the internal combustion engine by increasing the supercharging of the engine and reducing pump loss. The purpose of low pollution is realized at low cost.

燃料噴射系に高動力を要し高価な超高圧噴射技術を必要としなく直噴ディ−ゼルの欠点とされて来た空気利用率の改善により内燃機関の諸機能が改善・解決される本技術は電化社会においても便利な動力源として地球と人類の未来に大きな役割を果たす内燃機関の燃焼技術である。This technology that improves and solves various functions of an internal combustion engine by improving the air utilization rate, which has been regarded as a drawback of direct injection diesel, without requiring high power and high cost injection technology for the fuel injection system. Is a combustion technology for internal combustion engines that plays a major role in the future of the earth and mankind as a convenient power source in the electrified society.

第1図は本発明による内燃機関の斜視図による燃焼部と噴霧形態を示し、FIG. 1 shows a combustion part and a spray form according to a perspective view of an internal combustion engine according to the present invention, 第2図はシリンダ−とヘッド部と噴霧パタ−ンを示す断面図、FIG. 2 is a sectional view showing a cylinder, a head portion, and a spray pattern; 第3図のa、b、c、dは燃焼部内の種々な層状給気パタ−ンを示す断面図、3, a, b, c and d are cross-sectional views showing various layered air supply patterns in the combustion section; 第4図は中心空気利用率の低い多噴孔拡散燃焼方式の特性を示すピストン焼室内燃焼写真の模写図である。FIG. 4 is a copy of a piston chamber combustion photograph showing the characteristics of the multi-hole diffusion combustion system having a low central air utilization rate.

1はエンジン本体、2はシリンダ−、3はシリンダ−ヘッド、4は吸気路、5は排気路、6は円錐筒状燃焼部、7は燃料噴射弁、8は電子燃料制御部、9は着火源、10はピストン、11はノズル、1.2は円盤状ピストン容積部、13Aは噴射燃料の狭角環状中空噴霧拡散形態、14はピストンスキッシュ域、15は動弁バネ、16は従来6噴孔拡散ノズル、17は噴流と火炎域を斜線で、18は中心空気域、小矢印は空気や残ガスの流動方向・大矢印は空気、排気の流動方向、を示す。1 is an engine main body, 2 is a cylinder, 3 is a cylinder head, 4 is an intake passage, 5 is an exhaust passage, 6 is a conical cylindrical combustion section, 7 is a fuel injection valve, 8 is an electronic fuel control section, and 9 is a landing position. Fire source, 10 is a piston, 11 is a nozzle, 1.2 is a disk-shaped piston volume part, 13A is a narrow angle annular hollow spray diffusion form of injected fuel, 14 is a piston squish area, 15 is a valve spring, 16 is a conventional 6 An injection hole diffusion nozzle, 17 is an oblique line between a jet and a flame region, 18 is a central air region, a small arrow indicates a flow direction of air and residual gas, and a large arrow indicates a flow direction of air and exhaust.

次に本直噴燃料噴射方式のピン型ノズルによる狭角環状噴射圧縮着火燃焼方式と従来の多噴孔拡散直噴ディ−ゼル燃焼方式との混合気形成の相違を説明する。Next, the difference in the mixture formation between the narrow-angle annular injection compression ignition combustion system using the pin type nozzle of this direct injection fuel injection system and the conventional multi-hole diffusion direct injection diesel combustion system will be described.

円筒又は円錐筒状の上部燃焼容積部のピン型燃料ノズルから中空の狭角環状拡散噴霧とした燃料噴霧群の供給を制御する手段は、噴射ノズルの開閉作動やタイミングを燃料噴射制御8により行なう事とし、軽負荷時においても給気を絞る事少なく運転しノッキングを抑制した高圧縮比による多種燃料の使用を可能とし、機関の高過給化やポンプ損失の軽減効果により内燃機関の省エネと低公害化の目的が低コストで実現されるのである。The means for controlling the supply of the fuel spray group from the pin type fuel nozzle of the cylindrical or conical cylindrical upper combustion volume to the hollow narrow-angle annular diffusion spray performs the opening / closing operation and timing of the injection nozzle by the fuel injection control 8 This makes it possible to use various types of fuel with a high compression ratio that operates with less throttle and suppresses knocking even at light loads. The purpose of low pollution is realized at low cost.

従って本発明の目的は、燃料の直噴燃焼方式による噴射燃料群の燃焼を円錐筒状燃焼容積部と燃料噴射技術との整合により改善する事にある。具体的には燃料と空気との混合気化条件の促進手段を噴射燃料群と気筒内空気との衝突接触により燃料粒子の更なる分裂を図り微細化による空気との混合気化条件により燃料の完全燃焼化を図り機関の省エネ化と低公害化を目的としている。液滴燃料粒子は熱に触れる外側から燃え始め炎に包まれる内部は燻蒸燃焼となり煤が生成される事は物理によって知られている。
この点において高圧熱雰囲気中に近接したホ−ルノズルより高圧で液滴燃料群を噴射する現ディ−ゼル直噴燃焼方式では液滴燃料粒子により炭化煤塵の生成される事は当然であり、吸気内に燃料を噴射して予混合気化を図るガソリン機関のEFI燃焼方式のエンドガスノッキング発生因も燃料の拡散展開に物理に反する原因があり当然の結果が機関性能に現れている
Accordingly, an object of the present invention is to improve the combustion of an injected fuel group by the direct injection combustion system of fuel by matching the conical cylindrical combustion volume with the fuel injection technology. Specifically, as a means of promoting the vaporization condition of fuel and air, the fuel particles are further divided by collision contact between the injected fuel group and the air in the cylinder, and the fuel is completely combusted by the gasification condition of the air by micronization The purpose is to reduce energy consumption and reduce pollution. It is known by physics that droplet fuel particles start to burn from the outside in contact with heat, and the inside surrounded by flame is fumigated and generates soot.
In this regard, in the current diesel direct injection combustion system in which the droplet fuel group is injected at a higher pressure than the hole nozzle adjacent to the high-pressure thermal atmosphere, it is natural that droplet fuel particles generate carbonized dust. The cause of the end gas knocking in the EFI combustion system of a gasoline engine that injects fuel into the gas and premixes and vaporizes is also contrary to the physical diffusion and expansion of the fuel, and a natural result appears in the engine performance .

本発明による請求項1に記載の燃料直噴火花点火方式内燃機関は、シリンダ−ヘッド部の略中心域に円錐筒状の燃焼部を設け、その上部の燃料噴射弁から気筒中心域に燃料噴霧群を狭角環状に燃焼室内経由で飛翔させる手段を、円錐筒状燃焼容積部と狭角環状噴霧群を噴射するピン型ノズルによって構成し噴射燃料群の飛翔距離の延伸と気筒中心軸域部の空気との衝突や接触による燃料と空気との混合・気化条件を燃料粒子の分裂化や分子化により促進する事を特徴としている。
その主な作用は燃料噴射ノズルより狭角環状で噴射され飛翔する液滴燃料群の微粒子を気筒中心域の空気との衝突や接触条件をピストン面に指向的とし飛翔距離と時間を延伸する事で空気との混合気化条件の構成を促進する手段として燃料飛翔距離と時間要素とにより気化混合条件を高めた事にある
According to a first aspect of the present invention, there is provided a direct injection spark ignition type internal combustion engine having a conical cylindrical combustion portion in a substantially central region of a cylinder head portion, and a fuel spray from a fuel injection valve on the upper portion to a central region of the cylinder. means for flying the combustion through chamber groups in a narrow angle annular, stretching and the cylinder center axis region part of the flying distance of the conical tubular combustion volume and constituted by a pin-type nozzle for injecting a narrow angle annular spray group was injected fuel group It is characterized by promoting the mixing and vaporization conditions of fuel and air by collision and contact with air by fragmentation and molecularization of fuel particles .
Its main effect is to extend the flight distance and time by directing the droplet fuel group of fine particles of the fuel droplets injected and flying in a narrow angle ring from the fuel injection nozzle to the piston surface with the collision and contact conditions with the air in the center of the cylinder. Therefore, as a means for promoting the composition of the gas mixture condition with air, the gas mixture condition is increased by the fuel flight distance and the time factor .

又請求項2記載の発明は請求項1記載の直噴内燃機関において気筒中心部に燃料噴霧混合気群を負荷に応じて層状的に供給することを燃料噴射制御部の噴射律則制御により実施し点火栓電極部を燃焼反応の起点とする火炎伝播燃焼による層状給気燃焼条件の構成によりエンドガスノッキングを排除して高圧縮比化と吸気絞りを必要としない層状燃焼条件を構成し機関の全負荷範域での熱効率向上と排気低公害化の目的を達成する事を特徴としている。According to a second aspect of the present invention, in the direct injection internal combustion engine according to the first aspect , the fuel spray mixture is supplied to the center of the cylinder in a layered manner according to the load by the injection rule control of the fuel injection control unit. With the configuration of the stratified charge combustion by flame propagation combustion with the spark plug electrode as the starting point of the combustion reaction, the end gas knocking is eliminated, and the stratified combustion condition that does not require a high compression ratio and intake throttle is configured . It is characterized by achieving the objectives of improving thermal efficiency and reducing exhaust pollution in the entire load range.

本発明による請求項3に記載の直噴ディ−ゼル方式機関に於いては、多噴孔ホ−ル拡散ディ−ゼル燃焼方式に共通する気筒中心域空気の利用率低下の改善手段と、ホ−ル噴流の後続燃料が先行燃料の飛翔飛跡をたどり近接したピストン容積部内で先行燃料の反応により高温となり酸素の少ない熱雰囲気での重合的な燃焼を余儀なくされ必然的に進行する後続燃料群の酸素不足に因る燻蒸燃焼での炭化煤塵生成因を燃料早期噴射手段や予混合手段の構成により改善して圧縮着火方式に於けるPM炭化煤塵の生成因を減じうるディ−ゼル機関の燃焼技術を提示する事にある。In the direct injection diesel engine according to the third aspect of the present invention, there is provided means for improving the reduction in the utilization ratio of the air in the center of the cylinder common to the multi-hole hole diffusion diesel combustion system. - subsequent fuel group subsequent fuel le jet progresses reaction by forced polymerized specific combustion in less heat atmosphere of oxygen heated to a high temperature inevitably prior fuel in the piston volume proximate follow the flying trajectory of the prior fuel Of a diesel engine that can improve the cause of carbonized dust generation in fumigation combustion due to oxygen deficiency by the configuration of fuel early injection means and premixing means, and reduce the cause of PM carbonized dust generation in compression ignition system Presenting technology.

本発明による請求項1記載の燃料直噴式火花点火内燃機関の燃焼方法によれば、円錐筒状燃焼室部と燃料群の狭角環状燃料噴射群との整合により火花点火方式のEFI方式や多噴孔広角拡散方式では避ける事の出来なかった端域燃料に因るエンドガスノッキングの発生原因が解決され高圧縮比の採用が可能となり機関の熱効率を高めることが出来る。According to the combustion method of a direct fuel injection type spark ignition internal combustion engine according to the first aspect of the present invention, the spark ignition type EFI method and the multi-firing method are achieved by matching the conical cylindrical combustion chamber portion with the narrow angle annular fuel injection group of the fuel group. The cause of the occurrence of end gas knocking due to the end-region fuel, which could not be avoided by the wide-angle diffusion method of the nozzle hole, is solved, and a high compression ratio can be adopted, so that the thermal efficiency of the engine can be increased.

以下本発明実施形態について、図1〜4を用いて説明する。本実施形態の燃料直噴式内燃機関は、エンジン本体1、シリンダ−2、シリンダ−ヘッド3、吸気通路4、排気通路5、円錐筒状燃焼部6、狭角環状燃料噴射弁7、電子燃料制御部8、点火着火源9、ピストン10、ピン型ノズル11、円盤状ピストン容積部12、を備える。Hereinafter, embodiments of the present invention will be described with reference to FIGS. The fuel direct injection internal combustion engine of the present embodiment includes an engine body 1, a cylinder-2, a cylinder-head 3, an intake passage 4, an exhaust passage 5, a conical cylindrical combustion portion 6, a narrow angle annular fuel injection valve 7, and an electronic fuel control. A portion 8, an ignition ignition source 9, a piston 10, a pin type nozzle 11, and a disk-shaped piston volume portion 12.

図1の如くシリンダ−ヘッド3の略中心域に構成した燃焼部6は円錐筒状に形成され上部に燃料噴射弁7がピストン10との距離を延伸すべく従来の半球状燃焼室とは異なる縦長形状に構成され上部の燃料噴射ノズル11近傍に点火源9が設けられている。As shown in FIG. 1, the combustion section 6 formed in the substantially central region of the cylinder head 3 is formed in a conical cylinder shape, and the fuel injection valve 7 is different from the conventional hemispherical combustion chamber in order to extend the distance from the piston 10. An ignition source 9 is provided in the vicinity of the upper fuel injection nozzle 11 having a vertically long shape .

この円錐筒状燃焼部6の上部より内部を経由してシリンダ−2の中心域に噴射弁7よりシリンダ−2内に噴射される燃料噴射群は図1Aや図3の如くに狭角環状の噴霧群としてピストン10の方向に指向的に電子燃料制御部8の指示により機関の負荷に応じた燃料が複数の分割噴射などにより噴射供給される仕組みである。 The fuel injection group injected into the cylinder 2 from the injection valve 7 into the central region of the cylinder 2 via the inside from the upper part of the conical cylindrical combustion part 6 is a narrow angle annular as shown in FIG . 1A and FIG. This is a mechanism in which fuel corresponding to the load of the engine is injected and supplied by a plurality of divided injections or the like in the direction of the piston 10 as a spray group in accordance with an instruction from the electronic fuel control unit 8.

図2の如く円錐筒状燃焼部6の構造とシリンダ−2の中心域に燃料群の噴射飛翔距離を延伸しシリンダ−中心域での空気利用率と燃料群と空気との衝突接触を促進し燃料群の気化混合条件の促進を図る狭角環状燃料噴射条件を電子制御により行なえば燃焼部やシリンダ−中心域に燃料密度が濃く,シリンダ−壁や周端域部に燃料の拡散を抑制した層状給気燃焼条件が構成される事になる。As shown in FIG. 2, the injection flight distance of the fuel group is extended to the structure of the conical cylindrical combustion section 6 and the center area of the cylinder-2 to promote the air utilization rate in the cylinder center area and the collision contact between the fuel group and air. If the narrow-angle annular fuel injection condition that promotes the vaporization and mixing conditions of the fuel group is controlled by electronic control , the fuel density is high in the combustion area and the center of the cylinder, and the layered supply that suppresses the diffusion of fuel to the cylinder wall and the peripheral edge area. The combustion condition will be configured.

図4の如くシリンダ−ヘッド中心域より近接するピストン燃焼容積部に多噴孔ホ−ルノズルで燃料群を広角拡散する従来の燃焼方式では如何に燃料噴射圧を超高圧化しノズル噴孔を微細化しても液滴燃料の気化も空気との混合条件の構成もホ−ルノズルと燃焼室との近接と噴流特性により物理的に不可能であり高温熱雰囲気の燃料粒子でも熱に触れる外側から燃え始める物理の原則により内部燃料は酸素不足の燻蒸燃焼で微粒煤塵の生成を回避する事が出来ないまた多噴孔より近接の多端域で同時的に反応する高い燃焼圧に耐え得るピストン等の剛性強化で機関が重くなり熱効率も煤塵問題も改善の目途が立たないのです。 As shown in FIG. 4, in the conventional combustion method in which the fuel group is wide-angle diffused by a multi-hole hole nozzle in the piston combustion volume portion closer to the center of the cylinder-head, the fuel injection pressure is made extremely high and the nozzle hole is made finer. However, the vaporization of the droplet fuel and the composition of the mixing conditions with the air are physically impossible due to the proximity of the hole nozzle and the combustion chamber and the jet characteristics , and even fuel particles in a high temperature hot atmosphere start to burn from the outside in contact with heat. Due to physical principles, the internal fuel cannot avoid the generation of fine dust by fumigation with oxygen shortage . Also, the rigidity of pistons and other components that can withstand high combustion pressures that react simultaneously in the multi-end region closer to the multi-holes makes the engine heavier and there is no way to improve thermal efficiency or dust problems.

NOxの生成因でもある急劇な燃焼圧力上昇率の問題はパイロット的分割噴射技術で少し改善されましたが近接するピストン容積部内に多噴孔ホ−ルノズルで燃料群を拡散噴射する方式では各噴流到達域にはホ−ルノズルの特性である燃料噴流の前後分が同一飛翔ル−トで到達域において前後噴流が重なり合う事になり燃料過濃域が構成される事になり過濃燃焼域での煤塵生成因も増える事になります従ってこの燃料群の燃焼には多量の空気と空気の流動条件が必要となりホ−ルノズルより噴射される後続燃料群の燃焼には更なる空気の流動条件が必要となるのです The problem of the dramatic increase in combustion pressure, which is also the cause of NOx, was slightly improved by the pilot split injection technology. However, in the method in which the fuel group is diffusely injected into the adjacent piston volume by the multi-hole hole nozzle, each jet flow In the arrival area, the front and rear portions of the fuel jet, which is a characteristic of the hole nozzle, are the same flight route, and the front and rear jets overlap in the arrival area, so that a fuel-rich area is formed. The cause of soot generation also increases. Therefore, combustion of this fuel group requires a large amount of air and air flow conditions, and combustion of the subsequent fuel group injected from the hole nozzle requires additional air flow conditions. It becomes .

多噴孔ホ−ルノズルの特性により後続噴射燃料群の燃焼条件に不利な燃料群の重合的燃焼では後続燃料の燻蒸燃焼は防ぐ事が出来なく着火遅れや同時反応で生ずるノッキングに近い急激な圧力上昇率は分割噴射技術によって改善されてはきたが未だ広角拡散燃焼方式を基本としている現ディ−ゼル燃焼方式では空気利用率や炭化煤塵発生原因を改善する事は物理的に無理でありピストン燃焼容積部端域に過濃に形成される燃料群の燃焼反応を促進するためには多量の空気導入と大きな空気流動条件とが必要となり排気タ−ビンを利用した過給技術等によれば機関構造は益々複雑となりコストは更に高価となります。 Due to the characteristics of the multi-hole hole nozzles , fumigation combustion of the following fuel cannot be prevented in the polymerization combustion of the fuel group which is disadvantageous to the combustion conditions of the following injection fuel group, and a rapid pressure close to knocking caused by ignition delay or simultaneous reaction cannot be prevented. Although the rate of increase has been improved by split injection technology, the current diesel combustion method, which is still based on the wide-angle diffusion combustion method, is physically impossible to improve the air utilization rate and the cause of carbonized dust generation. In order to promote the combustion reaction of the fuel group that is excessively formed in the end portion of the volume part, a large amount of air introduction and a large air flow condition are required, and the engine according to the supercharging technology using the exhaust turbine is used. The structure becomes more complex and the cost is even more expensive.

従って直噴ディ−ゼル燃焼機関の機能を向上させ低公害化と価格の低減を図るには先ず直噴ディ−ゼルエンジンが燃焼の基本としている多噴孔ノズルよりピストン燃焼室の多端域に燃料を広角で拡散噴射する従来の方法を改め、燃焼を支配する燃料と空気との混合気化条件や燃焼室形態や噴射条件を新規に構成する必要があります。即ち燃焼室の形状や燃料噴射条件を変え多噴流燃料群が多端域で同時的にかつ重合的に反応する燃焼圧力上昇を抑制し排気炭化煤塵の生成を減じ得る燃料噴射条件の構成を燃焼室との整合により構成し噴射燃料群の気化混合条件を燃料がガス化分子化するまでに徹底 する技術手段が必要です、ディ−ゼル機関の更なる省エネと低公害化並びに軽量化や価格の低減目的を達成するに必要な技術は燃料と空気との混合気化技術なのであります。 Therefore, in order to improve the function of the direct injection diesel combustion engine, to reduce pollution and to reduce the price, the direct injection diesel engine is fueled to the multi-end region of the piston combustion chamber from the multi-hole nozzle which is the basis of combustion. It is necessary to modify the conventional method of diffusing and injecting the fuel at a wide angle and to newly configure the gasification condition of the fuel and air that governs combustion, the combustion chamber form, and the injection conditions. That is, the configuration of the fuel injection condition that changes the shape of the combustion chamber and the fuel injection conditions and suppresses the increase in combustion pressure in which the multi-jet fuel group reacts simultaneously and in a multi-end region and reduces the generation of exhaust carbonized dust is reduced. It is necessary to have technical means to ensure that the fuel is gasified and molecularized in accordance with the vaporization and mixing conditions of the injected fuel group , further energy saving and low pollution of the diesel engine, as well as weight reduction and price reduction. The technology necessary to achieve the purpose is a fuel vaporization technology.

本直噴ディ−ゼル燃焼方式は図1又は図3に示すごとくシリンダ−ヘッド部3の略中心域に円錐筒状燃焼部6を有し上部の燃料噴射弁7よりシリンダ−2内のピストン10との間に燃料を狭角環状で噴射し噴射燃料群をピストンの上昇により燃焼室に圧縮した状態においてピストン上死点での点火着火条件を圧縮着火し難い高オクタン価燃料においても点火源のアシストにより制御点火し得る仕組みである。 This direct injection di - piston 10 in the cylinder -2 from the top of the fuel injection valve 7 has a conical tubular combustion portion 6 in a substantially central region of the head part 3 - diesel combustion system 1 or the cylinder as shown in FIG. 3 Assisting the ignition source even in high-octane fuel that is difficult to compress and ignite the ignition ignition condition at the top dead center of the piston when the fuel is injected in a narrow angle ring and the injected fuel group is compressed into the combustion chamber by ascending the piston It is a mechanism that can control ignition by.

この様な燃料噴射条件によれば,図4の如く従来の多噴孔拡散方式により生ずるシリンダ−中心域とノズル16近傍の空気利用率が改善されると共に、従来の多噴孔拡散ノズルによる各噴流先行の流れや反応域中に追加される後続燃料群との重合的な燃焼反応による燃焼に因り生ずる燻蒸燃焼での炭化煤塵生成因を改善することが出来るのです。According to such fuel injection conditions, as shown in FIG. 4, the air utilization rate in the cylinder central region and the vicinity of the nozzle 16 produced by the conventional multi-hole diffusion system is improved, and each of the conventional multi-hole injection nozzles is improved. It is possible to improve the cause of carbonized dust generation in fumigation combustion caused by combustion caused by polymerization combustion reaction with the preceding fuel flow and subsequent fuel group added in the reaction zone.

即ち円錐筒状燃焼容積部6の構成と早期噴射による燃料飛翔距離の時間延伸効果に加えノズル11の狭角環状分割噴霧群との整合によれば空気スワ−ル等の空気流動に依存する事少なく早期燃料噴射によ燃料群の予混合気化条件の構成が噴霧の往復動作用で促進される事になりシリンダ−2の端域に燃料の拡散を制御することが出来るので端域ノック現象が生じなく機関の高圧縮比が可能となるのですThat is, in addition to the structure of the conical cylindrical combustion volume 6 and the effect of time extension of the fuel flight distance by early injection , the alignment with the narrow angle annular divided spray group of the nozzle 11 depends on the air flow such as the air swirl. since it is possible to configure small premix vaporization conditions by Ri fuel group early fuel injection controls the diffusion of the fuel in the end region of the cylinder -2 will be promoted by the reciprocating operation of the spray Tan'iki knock phenomenon It is possible to achieve a high compression ratio of the engine .

特に円錐筒状燃焼容積部と燃料の狭角環状分割噴射による燃料群の早期噴射や飛翔距離延伸作用とによる燃料噴霧群の予混合気化条件の促進効果は燃料粒子群の更なる分裂や分子化により炭化煤塵・PMやPM2.5の生成抑制に顕著な効が発揮され排気後処理費用の低減と共に機関コストの軽減に資するのである。 In particular, the effect of promoting the premixed vaporization condition of the fuel spray group by the early injection of the fuel group by the conical cylindrical combustion volume and the narrow-angle annular split injection of the fuel and the flight distance extending action is the further division and molecularization of the fuel particle group is the conducive to the reduction of the engine cost with reduced carbonization dust · PM and PM2.5 remarkable effect is exhibited exhaust after treatment cost for the generation suppression by.

燃料噴射ノズル11とピストン6間との距離との間隔を離し噴射燃料群の気化混合や燃焼条件の改善を図り噴霧流の側方向慣到性を抑制し、燃焼室中心軸域に濃い燃料混合気の層状展開を構成し端域に達する燃料の制御を特徴とした内燃機関の層状給気燃焼方法は円錐状燃焼容積部と狭角環状噴霧ノズルの噴射条件と早期燃料噴射との整合により構成される内燃機関の燃焼方法でありますThe distance between the fuel injection nozzle 11 and the piston 6 is separated to improve the vaporization mixing of the injected fuel group and the combustion conditions to suppress the lateral inertia of the spray flow, and to concentrate the fuel in the central axis region of the combustion chamber The stratified charge combustion method of this internal combustion engine, which is characterized by the control of the fuel that forms the stratified expansion of the gas and reaches the end region, is based on the matching of the conical combustion volume and the injection conditions of the narrow angle annular spray nozzle with the early fuel injection. It is a combustion method of the internal combustion engine that is configured .

内燃機関の熱効率向上と排気の低公害化を図り得る理想的燃焼条件の構成を可能とする層状給気燃焼方法を具現化するには燃料噴霧の拡散展開条件と燃焼容積部との整合とが不可欠である。如何に機械工作技術を駆使し噴孔を微細化しても超高圧噴射技術を用いてもホ−ル多噴孔より広角で拡散展開する燃料噴射方式と近接するピストン燃焼容積部との整合では各噴流端域での燃焼重合反応は回避出来なく、これに因る燻蒸燃焼や炭化煤塵の制御技術は困難であり未だに後処理技術が必要とされるのである。To realize a layered charge combustion method that enables the configuration of ideal combustion conditions that can improve the thermal efficiency of an internal combustion engine and reduce the pollution of exhaust gas, it is necessary to match the diffusion and deployment conditions of the fuel spray with the combustion volume It is essential. Regardless of how the machine holes are used to make the nozzle holes finer or the ultra-high pressure injection technique, the fuel injection system that diffuses and expands at a wider angle than the hole multi-holes and the piston combustion volume adjacent to each other must be matched. The combustion polymerization reaction in the jet end region cannot be avoided, and the fumigation combustion and carbonization dust control technology due to this is difficult, and the post-treatment technology is still required.

従って円筒又は円錐筒状の上部燃焼容積部頂部の燃料ノズルより狭角環状拡散噴霧とした燃料噴霧群をピストン面に制御噴射する燃料群の飛翔衝突接触方法は噴射燃料群の更なる微粒化や分子的微細化と空気との混合気化条件の構成に必要不可欠な技術であり内燃機関に必要な燃料噴射制御は制御部8の電子制御で容易に行なえるのである。
軽負荷時においても吸気を絞る事なくノッキングを抑制した高圧縮比運転で多種燃料の使用を可能とし、機関の高過給化や空気動力損失の軽減効果は内燃機関の省エネと低公害化の目的を低コストで実現する事が出来るのです。
Therefore, the flight collision contact method of the fuel group in which the fuel spray group formed as a narrow angle annular diffusion spray from the fuel nozzle at the top of the upper combustion volume of the cylindrical or conical cylinder is controlled and injected to the piston surface is used for further atomization of the injected fuel group. The fuel injection control necessary for the internal combustion engine can be easily performed by electronic control of the control unit 8, which is an indispensable technique for the molecular refinement and the configuration of the gas mixture condition with air.
Even at light loads, it is possible to use various fuels with high compression ratio operation that suppresses knocking without restricting intake air, and the effect of increasing the supercharging of the engine and reducing the air power loss contributes to energy saving and low pollution of the internal combustion engine The purpose can be realized at low cost.

燃料噴射系に高動力を要し高価な超高圧噴射技術を必要としなく直噴ディ−ゼルの欠点とされてきたPM炭化煤塵の抑制を直噴燃料粒子群と空気との衝突接触方法による燃料粒子の分裂や微細化により混合気化条件の改善を図りコスト安価に省エネと低公害の目的を達成し内燃機関の諸機能を改善し得る本燃焼技術は電化社会においても便利な動力源として地球と人類の未来に希望をもたらす内燃機関の燃焼技術である。The fuel injection system requires high power, does not require expensive ultra-high pressure injection technology, and suppresses PM carbon dioxide dust, which has been regarded as a drawback of direct injection diesel fuel, by the collision contact method between direct injection fuel particles and air This combustion technology, which can improve the gasification conditions by particle splitting and miniaturization, achieve the purpose of energy saving and low pollution at low cost and improve various functions of the internal combustion engine , is a convenient power source in the electrified society. Combustion technology for internal combustion engines that brings hope to the future of mankind.

Claims (3)

シリンダ−ヘッド部の略中心域にピストン面に対峙した円錐筒状の燃焼容積部を配備し上部の燃料噴射ノズルより気筒中心軸域に燃料群を噴射する内燃機関において、円錐筒状燃焼部内に着火源プラグを配備し、円錐状容積上部の燃料噴射ノズルより下方のピストン中心面に向けて噴射する燃料群を円錐筒状容積部内経由として飛翔期間の延伸を図り、噴射燃料群の微粒化・混合気化・活性化の促進作用を燃料噴射制御部による分割噴射とノズルによる狭角環状噴霧化と噴霧飛翔の時系条件と円錐状容積部構造との整合によって改善する事とし、気筒中心域空気の利用率を高め燃料群と空気との混合気化活性化の促進による燃焼条件の改革を特徴とした燃料直噴式内燃機関の燃焼方式。In an internal combustion engine in which a conical cylindrical combustion volume portion facing the piston surface is disposed in a substantially central region of a cylinder-head portion, and a fuel group is injected into a cylinder central axis region from an upper fuel injection nozzle, An ignition source plug is installed and the fuel group injected toward the piston center plane below the fuel injection nozzle at the upper part of the conical volume is routed through the conical cylindrical volume part to extend the flight period and atomize the injected fuel group・ Acceleration of gas mixture and activation is improved by split injection by the fuel injection control unit, narrow angle annular atomization by the nozzle, and matching of the time system conditions of the spray flight and the conical volume structure, and the center region of the cylinder Combustion system for direct-injection internal combustion engines characterized by reforming combustion conditions by increasing the utilization rate of air and promoting the activation of the mixture of fuel and air. 前記請求項1記載の内燃機関において、噴射燃料群と気筒内空気利用条件の整合向上による燃焼容積部を燃焼反応起点とした層状給気燃焼条件を直噴燃料群の噴射律則により構成し、気筒端域への燃料拡散を抑制する事によってエンドガスノッキングの発生因を抑止し、ガソリン機関の高圧縮比を可能とした層状給気燃焼条件の構成により給気ポンプ損失の低減をも図り、その相乗効果により内燃機関の熱効率を向上し省エネ低公害化を特徴とする燃料直噴層状給気式内燃機関。In the internal combustion engine according to claim 1, the stratified charge combustion condition with the combustion volume as a starting point of the combustion reaction due to the improved matching of the injected fuel group and the in-cylinder air utilization condition is configured by the injection rule of the direct injection fuel group, By suppressing the diffusion of fuel to the cylinder end region, the cause of end gas knocking is suppressed, and the structure of the stratified charge combustion condition that enables a high compression ratio of the gasoline engine also reduces the charge pump loss. A direct-injection fuel-cylinder, air-fueled internal combustion engine characterized by improved thermal efficiency of the internal combustion engine due to its synergistic effect and energy saving and low pollution. 前記請求項1・2の内燃機関において、円錐筒状燃焼部と燃料群の狭角分割環状噴射条件との整合により燃料の気筒内中心域噴射や早期噴射を自在とし、気筒中心域の空気利用による早期噴射燃料群の予混合気化促進条件を可能とし、気筒中心域や燃焼部を起点とした圧縮着火燃焼条件を構成する事とし、多噴孔拡撒燃焼方式に因るピストン燃焼室での急激な燃焼圧力上昇率を制御し、気筒中心域や気筒内における燃料群の予混合作用並びに気化活性化作用を促進するにより燃焼反応時における未気化燃料や燃料粒子に因る炭化煤塵化や生成因を抑制し、前サイクルの残留ガス制御やEGR作用によりNOxの生成因をも抑制し、ピストンに加わる熱負荷をヘッド燃焼部で分担軽減しうる事により機関の静粛性・軽量化・コストの低減を図り信頼・耐久性の向上と共に高圧縮比化による熱効率の向上と低公害化の目的を達成しうる事を特徴とする燃料直噴圧縮着火燃焼方式内燃機関。3. The internal combustion engine according to claim 1 or 2, wherein in-cylinder center region injection or early injection of fuel can be freely performed by matching the conical cylindrical combustion portion and the narrow angle division annular injection condition of the fuel group, and air utilization in the center region of the cylinder is possible. The premixed vaporization promotion condition of the early injection fuel group by the engine is made possible, and the compression ignition combustion condition starting from the cylinder center region and the combustion part is configured. Controls the rate of rapid increase in combustion pressure and promotes premixing and vaporization activation of fuel groups in the center of the cylinder and in the cylinder, thereby generating carbonized dust and generation due to unvaporized fuel and fuel particles during the combustion reaction The control of the residual gas in the previous cycle and the EGR action also suppress the cause of NOx generation, and the heat load applied to the piston can be reduced by the head combustion part, thereby reducing engine silence, weight reduction, and cost. Reduce Lai, durability and that direct fuel injection compression ignition combustion type internal combustion engine, characterized in that can achieve the purpose of low-emission of thermal efficiency due to high compression ratio with improvements.
JP2010123488A 2010-05-11 2010-05-11 Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine Pending JP2011236882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123488A JP2011236882A (en) 2010-05-11 2010-05-11 Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123488A JP2011236882A (en) 2010-05-11 2010-05-11 Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011236882A true JP2011236882A (en) 2011-11-24

Family

ID=45325129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123488A Pending JP2011236882A (en) 2010-05-11 2010-05-11 Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011236882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140772A (en) * 2014-01-30 2015-08-03 マツダ株式会社 Direct injection gasoline engine controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139208A (en) * 1974-04-26 1975-11-07
EP0831212A2 (en) * 1996-09-18 1998-03-25 Daimler-Benz Aktiengesellschaft Direct injection type combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139208A (en) * 1974-04-26 1975-11-07
EP0831212A2 (en) * 1996-09-18 1998-03-25 Daimler-Benz Aktiengesellschaft Direct injection type combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140772A (en) * 2014-01-30 2015-08-03 マツダ株式会社 Direct injection gasoline engine controller

Similar Documents

Publication Publication Date Title
CN109098835B (en) Combustion organization method of natural gas engine with low-pressure gas supply of precombustion chamber and high-pressure direct injection in cylinder
JP5118839B2 (en) In-cylinder direct injection internal combustion engine
CN114320572B (en) Multi-combustion-mode ammonia fuel engine and control method thereof
US20080257304A1 (en) Internal combustion engine and combustion method of the same
JP4170902B2 (en) In-cylinder direct injection internal combustion engine
CN110953067B (en) Engine and double-jet combustion method thereof
JPH0579331A (en) Air compression and valve operating type internal combustion engine
CN101440742A (en) Direct spraying composite flow guide laminating combustion system in spark ignition methanol cylinder
US4641617A (en) Direct injection type internal combustion engine
JP3804879B2 (en) Combustion method of direct injection diesel engine
JP2010048212A (en) Direct injection type gasoline engine
CN114233465A (en) Ammonia fuel combustion system, engine and combustion control method
JP2008157197A (en) Cylinder injection type spark ignition internal combustion engine
CN113756932A (en) Pre-combustion chamber structure
CN216894617U (en) Combustion system and engine
CN216518261U (en) Ammonia fuel combustion system and engine
WO2023067117A2 (en) Method of combustion and fuel injection system for hydrogen gas
JP4428273B2 (en) In-cylinder direct injection internal combustion engine
JP2011236882A (en) Method for combustion of fuel direct injection internal combustion engine, and direct injection compression ignition internal combustion engine
JP2007231913A (en) Fuel injection device for internal combustion engine
JP3695011B2 (en) Sub-chamber engine
JP2005232987A (en) Subsidiary chamber type engine
JPH09217624A (en) Diesel engine using heavy oil as main fuel
CN218760118U (en) Gas supply system for promoting in-cylinder combustion based on jet swirl flame of pre-combustion chamber
CN115750071B (en) Gasoline engine combustion system, engine and vehicle

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403