JP2011235434A - Steel material excellent in coated film adhesiveness and method of manufacturing the same - Google Patents

Steel material excellent in coated film adhesiveness and method of manufacturing the same Download PDF

Info

Publication number
JP2011235434A
JP2011235434A JP2011017905A JP2011017905A JP2011235434A JP 2011235434 A JP2011235434 A JP 2011235434A JP 2011017905 A JP2011017905 A JP 2011017905A JP 2011017905 A JP2011017905 A JP 2011017905A JP 2011235434 A JP2011235434 A JP 2011235434A
Authority
JP
Japan
Prior art keywords
steel material
less
treatment
blasting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011017905A
Other languages
Japanese (ja)
Other versions
JP5633399B2 (en
Inventor
Yoshihiro Yazawa
好弘 矢沢
Keiichiro Kishi
慶一郎 岸
Masaji Murase
正次 村瀬
Toshiyuki Hoshino
俊幸 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011017905A priority Critical patent/JP5633399B2/en
Publication of JP2011235434A publication Critical patent/JP2011235434A/en
Application granted granted Critical
Publication of JP5633399B2 publication Critical patent/JP5633399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a steel material excellent in coated film adhesiveness.SOLUTION: First blasting and second blasting are performed in the order on the surface of the steel material. The first blasting uses projection particles having an average particle size of 0.40 to 1.0 mm, wherein the surface roughness Rzof the surface of the steel material is 40 to 100 μm. Subsequently, onto the surface of the steel material subjected to the first blasting, the treatment using projection particles having an average particle size of 1/2 or less of the particle size of the projection particles used in the first blasting is performed as the second blasting, wherein the surface roughness Rzof the surface of the steel material is 20 to 80 μm. Thereby, such a surface that the surface property of the steel material is effective for improving the coated film adhesiveness is provided and, in particular, in such a case that heavy-duty coating in a thick steel plate or the like is performed, the life of the coated film is markedly improved.

Description

本発明は、海水、大気等の腐食環境に曝される、土木・建築、橋梁、船舶、建設機械、とくに海洋構造物等の各種鋼構造物用素材として好適な、塗装を施されて使用される鋼材に係り、とくに鋼材表面に形成された塗膜の密着性向上、さらには塗膜の寿命延長に関する。   INDUSTRIAL APPLICABILITY The present invention is coated and used as a material for various steel structures such as civil engineering / architecture, bridges, ships, construction machines, especially marine structures, which are exposed to corrosive environments such as seawater and air. In particular, the present invention relates to the improvement of the adhesion of a coating film formed on the surface of a steel material, and further to the extension of the life of the coating film.

土木・建築、橋梁、船舶、建設機械、とくに海洋構造物等の各種鋼構造物用素材として利用される鋼材は、通常、少なくとも熱間圧延工程を経て、所定の寸法形状の製品とされて、使用されている。熱間圧延工程を施された後の鋼材の表面には、スケールと称される酸化物層が形成されている。このスケールは、鋼材(地鉄)との密着性が低く、熱間圧延し冷却した後に、ローラ矯正やプレス矯正などにより歪が付加されると、容易に剥離したり、クラックを生じて容易に剥離しやすい状態となる。このような状態のスケールが付着した鋼材に、防錆のため塗装を施すと、塗膜の密着性が低く、塗膜が容易に剥離し、塗膜寿命が短いという問題がある。   Steel materials used as materials for various steel structures such as civil engineering / architecture, bridges, ships, construction machines, especially marine structures, are usually made into products of a predetermined size and shape through at least a hot rolling process. in use. An oxide layer called a scale is formed on the surface of the steel material that has been subjected to the hot rolling process. This scale has low adhesion to steel (base metal), and after hot rolling and cooling, if strain is applied by roller straightening or press straightening, it easily peels off or cracks easily Easy to peel. When the steel material to which the scale in such a state is attached is coated for rust prevention, there is a problem that the adhesion of the coating film is low, the coating film is easily peeled off, and the coating film life is short.

このような問題に対し、例えば特許文献1には、「塗膜密着性に優れた形鋼の製造方法」が記載されている。特許文献1に記載された技術では、C:0.03〜0.22%、Si:0.1〜0.5%、Mn:0.2〜1.6%、Al:0.003〜0.09%、Mo:0.01〜0.7%を含む鋼片に、粗圧延機、中間圧延機で熱間圧延後、高圧水を、衝突圧力が2.5kg/cm以上で、衝突回数が同じ場所に対して5s以内に2回以上となるように噴射・衝突させてデスケーリングを施してから仕上げ圧延機で、圧延温度700〜1000℃、圧下率15%以下の熱間仕上げ圧延を行い、圧延直後に、形鋼表面に、好ましくは機械的打撃により微細な凹凸を付与して、形鋼の表面粗度を調整し、その直後に、形鋼表面に高圧水を噴射・衝突させてデスケーリングを施し、あるいは施すことなく、0.5〜20℃/sの冷却速度で500℃以下に冷却する。特許文献1に記載された技術では、Siを適正範囲に限定しスケールと地鉄との密着性を向上させるとともに、仕上げ圧延直後に機械的打撃を行って微細な凹凸を形成し、表面に厚みが15μm以下で表面粗度(Rz)が40〜100μmのタイトスケールを形成して、塗膜密着性に優れるとともに、機械的性質、溶接性にも優れた形鋼としている。 For such a problem, for example, Patent Document 1 describes “a method for producing a shape steel having excellent coating film adhesion”. In the technique described in Patent Document 1, a steel slab containing C: 0.03-0.22%, Si: 0.1-0.5%, Mn: 0.2-1.6%, Al: 0.003-0.09%, Mo: 0.01-0.7%, After hot rolling with a rough rolling mill and an intermediate rolling mill, high-pressure water is injected and collided so that the collision pressure is 2.5 kg / cm 2 or more and the number of collisions is two or more within 5 s in the same location. After descaling, perform hot finish rolling at a rolling temperature of 700 to 1000 ° C and a reduction rate of 15% or less with a finish rolling mill. Immediately after rolling, fine irregularities are formed on the surface of the shaped steel, preferably by mechanical impact. To adjust the surface roughness of the shape steel. Immediately after that, high-pressure water is injected and collided on the surface of the shape steel, and descaling is performed or not, and the cooling rate is 0.5 to 20 ° C / s. Cool to below 500 ° C. In the technique described in Patent Document 1, Si is limited to an appropriate range to improve the adhesion between the scale and the ground iron, and mechanical striking is performed immediately after finish rolling to form fine irregularities, and the thickness is increased on the surface. Is formed with a tight scale having a surface roughness (Rz) of 40 to 100 μm and an excellent coating film adhesion, as well as excellent mechanical properties and weldability.

しかしながら、特許文献1に記載された技術では、スケールを残存させたまま、塗装を行うことを前提としており、疵部や端部で膨れが進展するなど、必ずしも十分な塗膜密着性を確保できておらず、所望の塗膜寿命を十分に保持できないという問題があった。
また、特許文献2には、棒鋼に、前処理としてブラスト処理を施し、棒鋼表面の酸化被膜を除去したのち、クローメート被膜を形成するクロメート処理を施したのち、さらに合成樹脂塗膜を形成する「耐食性棒鋼の製造方法」が記載されている。これにより、棒鋼と合成樹脂被膜との密着性(塗膜密着性)が向上し、耐食性が高まるとしている。
However, the technique described in Patent Document 1 is based on the premise that coating is performed with the scale remaining, and sufficient coating film adhesion is not necessarily ensured, such as swelling occurring at the heel and end. However, there was a problem that the desired coating film life could not be sufficiently maintained.
Patent Document 2 discloses that a steel plate is subjected to a blasting treatment as a pretreatment, an oxide film on the surface of the steel bar is removed, a chromate treatment for forming a chromate film is performed, and a synthetic resin coating film is further formed. A method for producing a corrosion-resistant steel bar ”is described. Thereby, the adhesion (coating film adhesion) between the steel bar and the synthetic resin coating is improved, and the corrosion resistance is increased.

しかし、特許文献2に記載された技術では、クロメート処理液を扱うために、Cr6+を含有する処理液の廃液処理などを必要とし、廃液処理設備の建設や、環境への配慮が必要になるといった問題がある。
また、特許文献3には、亜鉛系めっき鋼材に熱間プレスを施して鉄−亜鉛固溶相を含む亜鉛系めっき層およびその上に酸化亜鉛層を備えた熱間プレス品とする工程と、得られた熱間プレス成形品の最表層の酸化亜鉛層の平均膜厚が2μm以下となるように当該酸化亜鉛層の一部または全部を除去する工程を含む熱間プレス成形品の製造方法が記載されている。特許文献3に記載された技術では、酸化亜鉛層の一部または全部を除去する工程として、平均粒径が100〜500μmの鋼球をショット弾として使用するショットブラストを施す工程とすることが好ましいとしている。
However, in the technique described in Patent Document 2, in order to handle the chromate treatment solution, it is necessary to treat the treatment solution containing Cr 6+ , and it is necessary to construct a waste treatment facility and consider the environment. There is a problem of becoming.
Patent Document 3 includes a step of hot-pressing a zinc-based plated steel material to form a hot-pressed product including a zinc-based plated layer containing an iron-zinc solid solution phase and a zinc oxide layer thereon, and A method for producing a hot press-formed product comprising a step of removing a part or all of the zinc oxide layer so that the average film thickness of the outermost zinc oxide layer of the obtained hot press-formed product is 2 μm or less. Are listed. In the technique described in Patent Document 3, it is preferable that the step of removing part or all of the zinc oxide layer is a step of performing shot blasting using a steel ball having an average particle diameter of 100 to 500 μm as a shot bullet. It is said.

特開平09−272951号公報JP 09-272951 A 特開2002−220679号公報JP 2002-220679 A 特開2004−323897号公報JP 2004-323897

しかしながら、特許文献3に記載された技術では、ショットブラスト処理で使用するショット弾が細かく、処理により形成される鋼材表層の凹凸が小さくなるため、薄い被膜(酸化層)の除去には有効であるが、厚い被膜(酸化層)の除去については効果が少ないという問題がある。また、この技術では、鋼材表層に形成される凹凸が小さいため、重防食被覆を施すような場合には、塗膜密着性が十分に向上するまでには至らないという問題がある。   However, the technique described in Patent Document 3 is effective in removing a thin film (oxide layer) because shot bullets used in the shot blasting process are fine and the unevenness of the steel surface layer formed by the process is reduced. However, there is a problem that the effect is small with respect to the removal of the thick film (oxide layer). Moreover, in this technique, since the unevenness | corrugation formed in steel material surface layer is small, when performing heavy anti-corrosion coating, there exists a problem that coating-film adhesiveness does not come to fully improve.

本発明は、かかる従来技術の問題を解決し、塗膜密着性に優れた鋼材の製造方法を提供することを目的とする。なお、ここでいう「鋼材」には、鋼板、鋼帯、厚鋼板、形鋼、棒鋼、鋼管等が含まれる。   The object of the present invention is to solve the problems of the prior art and to provide a method for producing a steel material having excellent coating film adhesion. The “steel material” here includes a steel plate, a steel strip, a thick steel plate, a shaped steel, a bar steel, a steel pipe, and the like.

本発明者らは、上記した目的を達成するために、塗膜密着性に及ぼす各種要因について鋭意研究した。その結果、熱間圧延後の鋼材の表面に形成された酸化膜を除去するために、従来から用いられていたブラスト処理に工夫を加えることにより、塗膜の密着性が顕著に向上することを見出した。ブラスト処理を、粒径の異なる投射粒子を用いて、2回、しかも、1回目のブラスト処理を、所定範囲内の平均粒径を有する投射粒子を用いて行い、続く2回目のブラスト処理を、該1回目のブラスト処理で使用した投射粒子の1/2以下の平均粒径を有する投射粒子を用いて行うことにより、鋼材の表面性状が適正化され、厚い塗膜を形成する重防食被覆においても、塗膜密着性が顕著に向上するという知見を得た。   In order to achieve the above-mentioned object, the present inventors diligently studied various factors affecting the adhesion of the coating film. As a result, in order to remove the oxide film formed on the surface of the steel material after hot rolling, the adhesion of the coating film is remarkably improved by adding a device to the blasting treatment that has been used conventionally. I found it. Blasting is performed twice using projecting particles having different particle diameters, and the first blasting process is performed using projecting particles having an average particle diameter within a predetermined range, and the subsequent second blasting process is performed. In the heavy-duty anti-corrosion coating in which the surface property of the steel material is optimized by forming using a projecting particle having an average particle size of 1/2 or less of the projecting particle used in the first blast treatment, a thick coating film is formed. In addition, the inventors have found that coating film adhesion is significantly improved.

上記したように、2回目の投射粒子を、1回目の投射粒子の粒径に比べて細かい所定の粒径を有する投射粒子とする、2段階のブラスト処理を施すことにより、処理後の鋼材の表面は、1回目のブラスト処理により形成された大きな凹部の内面に、微細な凹凸が形成され、さらに、1回目のブラスト処理により形成された凸部の平坦化が進んだ、表面形状を呈するようになる。この表面性状を断面で、1回のみブラスト処理を施された鋼材(従来材)と対比して、図1に示す。このような断面形状(表面性状)を有する鋼材(本発明鋼材)とすることにより、従来のような方法(1回のブラスト処理)で形成された表面性状を有する鋼材(従来材)に比べて、塗膜の密着性が顕著に向上することを知見した。   As described above, by performing the two-stage blast treatment, the second projection particle is a projection particle having a predetermined particle size finer than the particle size of the first projection particle. The surface appears to have a surface shape in which fine irregularities are formed on the inner surface of the large concave portion formed by the first blasting process, and the convexity formed by the first blasting process is further flattened. become. This surface property is shown in FIG. 1 in comparison with a steel material (conventional material) that has been subjected to blasting only once in cross section. By using a steel material (the steel material of the present invention) having such a cross-sectional shape (surface property), compared with a steel material (conventional material) having a surface property formed by a conventional method (one blast treatment). It was found that the adhesion of the coating film was significantly improved.

またさらに、使用する鋼材を、特定な組成に限定したうえで、鋼材表面に、上記したような、2段階のブラスト処理を施すことにより、塗膜寿命の顕著な向上が認められることを知見した。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は、次のとおりである。
Furthermore, after limiting the steel material to be used to a specific composition, it was found that a remarkable improvement in the coating film life was observed by applying the above-described two-stage blast treatment to the steel material surface. .
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.

(1)鋼材表面に、ブラスト処理を施し、塗膜密着性に優れた鋼材とするに当たり、前記ブラスト処理を、第一のブラスト処理と第二のブラスト処理とを順次施してなる処理とし、前記第二のブラスト処理を、前記第一のブラスト処理で使用した投射粒子の粒径より小さい粒径を有する投射粒子を用いる処理とすることを特徴とする塗膜密着性に優れた鋼材の製造方法。   (1) When the steel material surface is subjected to a blasting treatment to obtain a steel material excellent in coating film adhesion, the blasting treatment is a treatment obtained by sequentially performing a first blasting treatment and a second blasting treatment, The method for producing a steel material having excellent coating film adhesion, characterized in that the second blasting treatment is treatment using projection particles having a particle size smaller than that of the projection particles used in the first blasting treatment. .

(2)(1)において、前記第一のブラスト処理を、平均粒径が0.40〜1.0 mmの投射粒子を前記鋼材表面に衝突させ、該鋼板表面の表面粗さをRz JISで40〜100μmとする処理とし、前記第二のブラスト処理を、前記第一のブラスト処理で使用した投射粒子の平均粒径の1/2以下の平均粒径を有する投射粒子を前記第一のブラスト処理を施した前記鋼材表面に衝突させ、該鋼材表面の表面粗さをRz JISで20〜80μmとする処理と、することを特徴とする塗膜密着性に優れた鋼材の製造方法。 (2) In (1), the first blast treatment is performed by causing projected particles having an average particle diameter of 0.40 to 1.0 mm to collide with the steel material surface, and the surface roughness of the steel plate surface is 40 to 100 μm in Rz JIS. And the second blasting treatment was performed on the projecting particles having an average particle size of 1/2 or less of the average particle size of the projection particles used in the first blasting treatment. A method for producing a steel material having excellent coating film adhesion, characterized in that the steel material is made to collide with the surface of the steel material and the surface roughness of the steel material surface is adjusted to 20 to 80 μm according to Rz JIS .

(3)(2)において、前記鋼材が、質量%で、C:0.01〜0.15%、Si:0.10〜0.60%、Mn:0.2〜1.8%、P:0.03%以下、S:0.02%以下、Al:0.10%以下、N:0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする鋼材の製造方法。
(4)(3)において、前記組成に加えてさらに、質量%で、Cu:0.5%以下、Ni:2.0%以下、Mo:0.5%以下、W:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする鋼材の製造方法。
(3) In (2), the steel material is in mass%, C: 0.01 to 0.15%, Si: 0.10 to 0.60%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.02% or less, Al : 0.10% or less, N: 0.01% or less, and the composition which consists of remainder Fe and an unavoidable impurity, The manufacturing method of the steel materials characterized by the above-mentioned.
(4) In (3), in addition to the above-mentioned composition, by mass%, Cu: 0.5% or less, Ni: 2.0% or less, Mo: 0.5% or less, W: 0.5% or less Or it is set as the composition containing 2 or more types, The manufacturing method of the steel materials characterized by the above-mentioned.

(5)(2)ないし(4)のいずれかに記載の鋼材の製造方法により製造されてなる塗膜密着性に優れた鋼材。
(6)鋼材表面に、ブラスト処理を施されてなる鋼材であって、前記ブラスト処理が、平均粒径が0.40〜1.0 mmの投射粒子を衝突させる第一のブラスト処理と、該第一のブラスト処理で使用した投射粒子の平均粒径の1/2以下の平均粒径の投射粒子を衝突させる第二のブラスト処理とを順次施す処理であり、鋼材表面の表面粗さがRz JISで20〜80μmであることを特徴とする塗膜密着性に優れた鋼材。
(5) A steel material excellent in coating film adhesion produced by the method for producing a steel material according to any one of (2) to (4).
(6) A steel material obtained by subjecting a steel material surface to a blasting treatment, wherein the blasting treatment includes a first blasting treatment in which projected particles having an average particle diameter of 0.40 to 1.0 mm collide, and the first blasting treatment. And a second blasting treatment for colliding the projected particles having an average particle size of 1/2 or less of the average particle size of the projected particles used in the treatment, and the surface roughness of the steel material surface is 20 to Rz JIS Steel with excellent coating film adhesion, characterized by being 80 μm.

(7)(6)において、前記鋼材が、質量%で、C:0.01〜0.15%、Si:0.10〜0.60%、Mn:0.2〜1.8%、P:0.03%以下、S:0.02%以下、Al:0.10%以下、N:0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする鋼材。
(8)(7)において、前記組成に加えてさらに、質量%で、Cu:0.5%以下、Ni:2.0%以下、Mo:0.5%以下、W:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする鋼材。
(7) In (6), the steel material is mass%, C: 0.01 to 0.15%, Si: 0.10 to 0.60%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.02% or less, Al : Steel material containing 0.10% or less, N: 0.01% or less, and having a composition comprising the balance Fe and inevitable impurities.
(8) In (7), in addition to the above composition, in addition to mass, Cu: 0.5% or less, Ni: 2.0% or less, Mo: 0.5% or less, W: 0.5% or less Or the steel material characterized by setting it as a composition containing 2 or more types.

本発明によれば、塗膜密着性に優れた鋼材を、安価にしかも容易に製造でき、産業上格段の効果を奏する。本発明によれば、塗膜密着性が向上し、とくに厚鋼板におけるような重防食被覆を施すような場合においても、塗膜寿命の顕著な向上が認められるという効果もある。   According to the present invention, a steel material excellent in coating film adhesion can be easily manufactured at a low cost, and a remarkable industrial effect can be achieved. According to the present invention, the adhesion of the coating film is improved, and there is also an effect that a remarkable improvement in the coating film life is recognized even when a heavy anticorrosion coating such as that in a thick steel plate is applied.

本発明鋼材と従来材の断面形状を比較して模式的に示す説明図である。It is explanatory drawing which compares and shows the cross-sectional shape of this invention steel material and a conventional material typically.

本発明では、鋼材表面に、第一のブラスト処理と第二のブラスト処理とからなる2段階のブラスト処理を施し、塗膜密着性に優れた鋼材とする。本発明で用いる2段階のブラスト処理では、第二のブラスト処理を、第一のブラスト処理で使用した投射粒子の粒径より小さい粒径を有する投射粒子を用いる処理とする。これにより、鋼材の表面性状を、塗膜密着性向上に有効な、凹凸を有する表面、すなわち大きな凹部の内面に、微細な凹凸が形成され、さらに、大きな凸部の平坦化が進んだ、表面形状を呈する表面とすることができる。   In the present invention, the steel material surface is subjected to a two-stage blasting process including a first blasting process and a second blasting process to obtain a steel material having excellent coating film adhesion. In the two-stage blasting process used in the present invention, the second blasting process is a process using a projecting particle having a particle size smaller than that of the projecting particle used in the first blasting process. As a result, the surface property of the steel material is effective for improving the adhesion of the coating film, the surface having irregularities, that is, the fine irregularities are formed on the inner surface of the large concave portions, and the flatness of the large convex portions has further progressed. It can be a surface exhibiting a shape.

第一のブラスト処理は、鋼材表面に、平均粒径が0.40〜1.0 mmの投射粒子を衝突させる処理とすることが好ましい。投射粒子の平均粒径が0.40mm未満では、投射粒子の粒径が小さすぎて、表層のスケールを効率的に除去できず、さらに所望の表面粗さを安定して確保できない。一方、投射粒子の平均粒径が1.0mmを超えて大きくなると、鋼材表面の凹凸が著しくなり、塗膜密着性が低下するとともに、塗膜が薄い場合、特に塗膜欠陥の発生が顕著となりやすい。このようなことから、第一のブラスト処理で使用する投射粒子の平均粒径を0.40〜1.0 mmの範囲に限定した。なお、より好ましくは0.7〜0.9mmである。   The first blast treatment is preferably a treatment in which projected particles having an average particle diameter of 0.40 to 1.0 mm collide with the steel material surface. If the average particle size of the projected particles is less than 0.40 mm, the particle size of the projected particles is too small to efficiently remove the surface scale, and the desired surface roughness cannot be secured stably. On the other hand, when the average particle size of the projected particles is larger than 1.0 mm, the unevenness of the steel surface becomes remarkable, the coating film adhesion is lowered, and when the coating film is thin, the occurrence of coating film defects tends to be remarkable. . For this reason, the average particle size of the projection particles used in the first blast treatment was limited to a range of 0.40 to 1.0 mm. In addition, More preferably, it is 0.7-0.9 mm.

ここで、投射粒子の平均粒径は、JIS Z 8801に規定される試験用ふるいを用いて測定した値を用いるものとする。すなわち、目開きの大きいふるいが上段になるように重ね、最上段のふるいに、測定する粉末を投入し機械振動を与える。そして、各々のふるい上に残った粉末の重量を量り、粒径の重量分率を算出する。そして、重量が50%となる粒径D50を平均粒径とした。 Here, as the average particle diameter of the projected particles, a value measured using a test sieve specified in JIS Z 8801 is used. That is, the sieves with large openings are stacked so as to be in the upper stage, and the powder to be measured is put into the uppermost stage to give mechanical vibration. And the weight of the powder which remained on each sieve is measured, and the weight fraction of a particle size is calculated. The particle diameter D 50 at which the weight was 50% was taken as the average particle diameter.

なお、本発明のブラスト処理で使用する投射粒子は、とくに限定する必要はなく、常用のものがいずれも使用可能であるが、その形状は、より球形に近いものとすることが好ましく、またその硬さは、対象鋼材より硬いものとすることが好ましい。例えば、カットワイヤ、スチールグリッド、スチールショット、スラグ、アルミナ、ケイ砂、ガラスビーズ等が例示できる。   The projected particles used in the blasting treatment of the present invention are not particularly limited, and any conventional particles can be used, but the shape is preferably closer to a sphere, The hardness is preferably harder than the target steel material. For example, cut wires, steel grids, steel shots, slag, alumina, silica sand, glass beads and the like can be exemplified.

スチール素材としてはJIS Z 0311に規定される「ブラスト処理用金属系研削材」を用いることが好ましい。したがって、使用する投射粒子としては、粒子形状と硬さの点からスチールショットとすることが最も好ましい。
そして、上記した第一のブラスト処理により、鋼材表面の表面粗さをRz JISで40〜100μmとすることが好ましい。このような表面粗さとすることにより、塗膜液を塗布した際に、塗膜液の垂れを防止し、所望の厚い塗装被覆を行うことができる。なお、ここでは、表面粗さは、JIS B 0601−2001の規定に準拠して測定された、十点平均粗さRz JISを用いて表示するものとする。
As the steel material, it is preferable to use a “metal grinding material for blast treatment” defined in JIS Z 0311. Therefore, the shot particles used are most preferably steel shots in terms of particle shape and hardness.
And it is preferable that the surface roughness of the steel material surface shall be 40-100 micrometers by Rz JIS by the above-mentioned 1st blasting process. By setting it as such surface roughness, when apply | coating a coating-film liquid, dripping of a coating-film liquid can be prevented and desired thick coating coating can be performed. Here, the surface roughness is displayed using ten-point average roughness Rz JIS measured in accordance with JIS B 0601-2001.

第一のブラスト処理により形成される鋼材表面の表面粗さが、Rz JISで40μm未満では、第一の処理で形成される凹凸が小さすぎて、引続いて施される第二のブラスト処理により得られる、凹部内面に形成される微細な凹凸形成による、塗膜密着性向上効果が十分に得られなくなる。一方、100μmを超えて粗くなると、凹凸が大きくなりすぎて塗膜密着性が低下し、所望の塗膜密着性を確保できなくなる。このため、第一のブラスト処理後の鋼材表面の表面粗さは、Rz JISで40〜100μmの範囲に限定した。なお、より好ましくはRz JISで50〜80μmである。 If the surface roughness of the steel material formed by the first blast treatment is less than 40 μm in Rz JIS , the unevenness formed by the first treatment is too small, and the second blast treatment applied subsequently The effect of improving the adhesion of the coating film due to the formation of fine irregularities formed on the inner surface of the recess is not sufficiently obtained. On the other hand, when it exceeds 100 μm and becomes rough, the unevenness becomes too large and the coating film adhesion is lowered, and the desired coating film adhesion cannot be ensured. For this reason, the surface roughness of the steel material surface after the first blast treatment was limited to a range of 40 to 100 μm according to Rz JIS . More preferably, it is 50 to 80 μm in Rz JIS .

なお、第一のブラスト処理では、投射(ショット)条件はとくに限定する必要はない。上記した範囲内の粒径(平均)を有する投射粒子を、鋼材表面が上記した表面粗さとなるように、適宜、投射(ショット)条件を調整して、鋼材表面に衝突させることが好ましい。
また、第二のブラスト処理では、第一のブラスト処理で使用した投射粒子の粒径の1/2以下と、小さい平均粒径を有する投射粒子を用いることが好ましい。使用する投射粒子を、第一のブラスト処理で使用した投射粒子の粒径の1/2より大きな粒径の粒子とすると、大きな凹部内面に所望の微細な凹凸を十分に形成された表面性状とすることが困難となり、所望の塗膜アンカー効果を得ることが難しくなる。また、第一のブラスト処理で形成された大きな凸部の平滑化を達成することが難しくなり、所望の塗膜アンカー効果を得ることが困難となり、所望の塗膜密着性の向上、所望の塗膜寿命の延長を期待できなくなる。このようなことから、第二のブラスト処理で使用する投射粒子の平均粒径は、第一のブラスト処理で使用した投射粒子の粒径の1/2以下に限定した。
なお、より好ましくは1/3以下である。
In the first blasting process, the projection (shot) conditions need not be particularly limited. It is preferable that the projecting particles having a particle size (average) in the above-described range are caused to collide with the steel material surface by appropriately adjusting the projecting (shot) conditions so that the steel material surface has the surface roughness described above.
In the second blasting process, it is preferable to use a projecting particle having a small average particle diameter and 1/2 or less of the particle diameter of the projecting particle used in the first blasting process. When the projecting particles to be used are particles having a particle size larger than ½ of the particle size of the projecting particles used in the first blasting treatment, the surface properties in which desired fine irregularities are sufficiently formed on the inner surface of the large concave portion It becomes difficult to obtain a desired coating film anchor effect. In addition, it becomes difficult to achieve smoothing of the large protrusions formed by the first blasting process, and it becomes difficult to obtain a desired coating film anchor effect. Prolonged film life cannot be expected. For this reason, the average particle size of the projection particles used in the second blast treatment is limited to ½ or less of the particle size of the projection particles used in the first blast treatment.
In addition, More preferably, it is 1/3 or less.

なお、第二のブラスト処理では、使用する投射粒子の粒径を規定する以外は、投射(ショット)条件を特に限定する必要はない。所要の表面粗さが得られるように適宜条件を調整することが好ましい。
また、本発明では第二のブラスト処理により、鋼材表面の表面粗さを、Rz JISで20〜80μmとすることが好ましい。このような表面性状とすることにより、微細な凹凸による塗膜のアンカー効果が顕著となり、塗膜密着性が顕著に向上する。鋼材表面の表面粗さが、Rz JISで20μm未満では、塗膜密着性が著しく低下する。一方、鋼材表面の表面粗さが80μmを超えて大きくなると、凹部の内面に、微細な凹凸が十分に形成されないため、塗膜密着性向上効果が少ない。このため、第二のブラスト処理による、鋼材表面の表面粗さはRz JISで20〜80μmの範囲に限定した。なお、より好ましくはRz JISで30〜60μmである。
In the second blast treatment, it is not necessary to particularly limit the projection (shot) conditions except that the particle size of the projection particles to be used is defined. It is preferable to appropriately adjust the conditions so that the required surface roughness can be obtained.
In the present invention, the surface roughness of the steel material surface is preferably 20 to 80 μm in Rz JIS by the second blast treatment. By setting it as such surface property, the anchor effect of the coating film by a fine unevenness | corrugation becomes remarkable, and coating-film adhesiveness improves notably. When the surface roughness of the steel material is less than 20 μm in Rz JIS , the adhesion of the coating film is remarkably lowered. On the other hand, when the surface roughness of the steel material exceeds 80 μm, fine unevenness is not sufficiently formed on the inner surface of the recess, and the effect of improving coating film adhesion is small. For this reason, the surface roughness of the steel material surface by the second blast treatment is limited to the range of 20 to 80 μm by Rz JIS . More preferably, it is 30-60 μm in Rz JIS .

なお、投射粒子の投射条件としては、第一のブラスト処理および第二のブラスト処理においても、所望の表面粗さの確保、生産性の向上という観点から、投射密度:80〜200kg/m、投射速度:60〜100 m/s、投射距離:300〜1000 mmの範囲とすることが好ましい。
投射密度が80 kg/m未満では、脱スケール性が低下する。一方、200 kg/mを超えて多くなると、所望の鋼材表面粗さを達成できなくなる。
In addition, as a projection condition of a projection particle, also in a 1st blast process and a 2nd blast process, from a viewpoint of ensuring desired surface roughness and an improvement in productivity, projection density: 80-200 kg / m < 2 >, Preferably, the projection speed is 60 to 100 m / s, and the projection distance is 300 to 1000 mm.
When the projection density is less than 80 kg / m 2 , the descaling property decreases. On the other hand, when it exceeds 200 kg / m 2 , the desired steel surface roughness cannot be achieved.

また、投射速度が60 m/s未満では、投射速度が遅すぎて所望の表面粗さを安定して確保できない。一方、100 m/sを超えて速くなると、鋼板表面への歪の蓄積が大きく、表面が硬化して加工が困難となる。
また、投射距離が300mm未満では、部分的にしかショット(投射粒子)が強く当たらないため、表層の硬さ分布が不均一となる。一方、1000 mmを超えて長くなると、ショット(投射粒子)を効率よく行えず、スケール除去に長時間を要することとなる。
On the other hand, if the projection speed is less than 60 m / s, the projection speed is too slow to secure a desired surface roughness stably. On the other hand, if it exceeds 100 m / s, the accumulation of strain on the surface of the steel plate is large, and the surface is hardened and difficult to process.
In addition, when the projection distance is less than 300 mm, the shot (projected particles) is only partially hit, so that the hardness distribution of the surface layer becomes non-uniform. On the other hand, if the length exceeds 1000 mm, shots (projected particles) cannot be efficiently performed, and it takes a long time to remove the scale.

そして、本発明では、上記したブラスト処理を、特定組成の鋼材に施すことが、塗膜寿命の延長という観点、さらには耐食性向上の観点から好ましい。
上記したブラスト処理を施す鋼材は、質量%で、C:0.01〜0.15%、Si:0.10〜0.60%、Mn:0.2〜1.8%、P:0.03%以下、S:0.02%以下、Al:0.10%以下、N:0.01%以下を含み、あるいはさらに、Cu:0.5%以下、Ni:2.0%以下、Mo:0.5%以下、W:0.5%以下のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼材とすることが望ましい。
In the present invention, it is preferable that the above-described blast treatment is performed on a steel material having a specific composition from the viewpoint of extending the life of the coating film and further from the viewpoint of improving corrosion resistance.
The steel materials to be subjected to the above blast treatment are in mass%, C: 0.01 to 0.15%, Si: 0.10 to 0.60%, Mn: 0.2 to 1.8%, P: 0.03% or less, S: 0.02% or less, Al: 0.10% In the following, N: 0.01% or less is included, or Cu: 0.5% or less, Ni: 2.0% or less, Mo: 0.5% or less, W: 0.5% or less And it is desirable to make it the steel material which has a composition which consists of remainder Fe and an unavoidable impurity.

つぎに、使用する鋼材の好ましい組成範囲限定の理由について説明する。以下、とくに断わらない限り、質量%は、単に%で記す。
C:0.01〜0.15%
Cは、鋼材の強度を増加させる元素であり、所望の強度を確保するために、0.01%以上、含有することが好ましい。一方、0.15%を超える含有は、鋼材を硬質化し、溶接性を低下させる。このため、Cは0.01〜0.15%の範囲に限定することが好ましい。なお、より好ましくは0.02〜0.10%である。
Next, the reason for limiting the preferable composition range of the steel material to be used will be described. Hereinafter, unless otherwise specified, mass% is simply expressed as%.
C: 0.01-0.15%
C is an element that increases the strength of the steel material, and is preferably contained in an amount of 0.01% or more in order to ensure a desired strength. On the other hand, the content exceeding 0.15% hardens the steel material and lowers the weldability. For this reason, C is preferably limited to a range of 0.01 to 0.15%. In addition, More preferably, it is 0.02 to 0.10%.

Si:0.10〜0.60%
Siは、脱酸剤として作用するとともに、強度を増加させる元素であり、所望の強度を確保するためには、0.10%以上含有することが好ましい。Siは、加熱時の酸化に際し、地鉄とスケール界面にファイアライトを生成し、スケールと地鉄との密着性を増加させる作用を有するが、0.60%を超える多量の含有は、地鉄とスケールとの界面厚さが増大しすぎて、ローラ矯正、プレス矯正時に、スケールの割れ、剥離が顕著となる。このため、Siは0.10〜0.60%の範囲に限定することが好ましい。なお、より好ましくは0.20〜0.40%である。
Si: 0.10 to 0.60%
Si is an element that acts as a deoxidizer and increases the strength. In order to secure a desired strength, Si is preferably contained in an amount of 0.10% or more. Si oxidizes during heating and generates firelite at the interface between the scale and the scale, increasing the adhesion between the scale and the scale, but a large content exceeding 0.60% The interface thickness increases too much, and cracking and peeling of the scale become noticeable during roller correction and press correction. For this reason, it is preferable to limit Si to the range of 0.10 to 0.60%. In addition, More preferably, it is 0.20 to 0.40%.

Mn:0.2〜1.8%
Mnは、固溶して鋼材の強度を増加させるとともに、靭性を向上させる作用を有する元素である。また、MnはSと結合しMnSを形成し、鋼材表面および鋼中でのSの悪影響を抑制する作用を有する。このような効果を得るためには、Mnは0.2%以上の含有を必要とする。一方、1.8%を超える含有は、溶接性を低下させ、機械加工性を低下させる。このため、Mnは0.2〜1.8%の範囲に限定することが好ましい。なお、より好ましくは0.4〜1.5%である。
Mn: 0.2-1.8%
Mn is an element having a function of increasing the strength of the steel material by solid solution and improving the toughness. Further, Mn combines with S to form MnS, and has an action of suppressing adverse effects of S on the steel material surface and in steel. In order to acquire such an effect, Mn needs to contain 0.2% or more. On the other hand, if the content exceeds 1.8%, the weldability is lowered and the machinability is lowered. For this reason, it is preferable to limit Mn to the range of 0.2 to 1.8%. In addition, More preferably, it is 0.4 to 1.5%.

P:0.03%以下
Pは、鋼材の強度を増加させる作用を有するが、粒界に偏析し、二次加工脆性の原因となり、鋼材の加工性を低下させる。このため、加工性向上の観点からはできるだけ低減することが望ましいが、過度の低減は精錬コストを高騰させる。このため、0.005%程度以上とすることが望ましい。また、このような加工性の低下は0.03%を超える含有で顕著となる。このため、Pは0.03%以下に限定することが好ましい。なお、より好ましくは0.02%以下である。
P: 0.03% or less P has the effect of increasing the strength of the steel material, but segregates at the grain boundaries, causes secondary work embrittlement, and decreases the workability of the steel material. For this reason, although it is desirable to reduce as much as possible from a viewpoint of workability improvement, excessive reduction raises refining cost. For this reason, it is desirable to set it as about 0.005% or more. Moreover, such a decrease in workability becomes significant when the content exceeds 0.03%. For this reason, it is preferable to limit P to 0.03% or less. In addition, More preferably, it is 0.02% or less.

S:0.02%以下
Sは、地鉄とスケールとの界面にFeSを形成して、スケールの密着性を低下させる元素であり、できるだけ低減することが望ましい。0.02%を超える多量の含有は、スケールの密着性を顕著に低下させる。このため、Sは0.02%以下に限定することが好ましい。
Al:0.10%以下
Alは、脱酸剤として作用するとともに、結晶粒を微細化する元素である。このような効果を得るためには、0.01%以上含有することが好ましいが、0.10%を超える含有は、酸化物系介在物が増加し、鋼材の清浄度が低下する。このため、Alは0.10%以下に限定することが好ましい。
S: 0.02% or less S is an element that forms FeS at the interface between the ground iron and the scale to reduce the adhesion of the scale, and is desirably reduced as much as possible. Containing a large amount exceeding 0.02% significantly reduces the adhesion of the scale. For this reason, it is preferable to limit S to 0.02% or less.
Al: 0.10% or less
Al is an element that acts as a deoxidizer and refines crystal grains. In order to acquire such an effect, it is preferable to contain 0.01% or more, but if it exceeds 0.10%, oxide inclusions increase and the cleanliness of the steel material decreases. For this reason, it is preferable to limit Al to 0.10% or less.

N:0.01%以下
Nは、固溶して鋼材の強度を増加させるが、多量の含有は溶接性を低下させる。溶接性の観点からはNは、できるだけ低減することが望ましいが、過度の低減は精錬コストを高騰させるため、0.001%程度以上とすることが好ましい。一方、0.01%を超えて多量に含有すると、鋼材が硬質化し、靭性が低下するとともに、溶接性が低下する。このため、Nは0.01%以下に限定することが好ましい。
N: 0.01% or less N increases the strength of the steel material by solid solution, but a large amount reduces weldability. From the viewpoint of weldability, it is desirable to reduce N as much as possible. However, excessive reduction raises the refining cost, so it is preferable to be about 0.001% or more. On the other hand, if the content exceeds 0.01%, the steel material becomes hard, the toughness is lowered, and the weldability is lowered. For this reason, it is preferable to limit N to 0.01% or less.

上記した成分が基本の成分であるが、基本の組成に加えてさらに、Cu:0.5%以下、Ni:2.0%以下、Mo:0.5%以下、W:0.5%以下のうちから選ばれた1種または2種以上を含有してもよい。
Cu、Ni、Mo、Wはいずれも、耐食性向上、塗膜寿命延長に有効に寄与する元素であり、必要に応じて、1種または2種以上を選択して含有できる。このような効果は、Cu:0.01%以上、Ni:0.1%以上、Mo:0.05%以上、W:0.01%以上の、それぞれの含有で認められるが、Cu:0.5%、Ni:2.0%、Mo:0.5%、W:0.5%を、それぞれ超える含有は、鋼が硬質化し靭性が低下して、製造性が低下するとともに、鋼材価格の高騰を招く。このため、含有する場合にはそれぞれ、Cu:0.5%以下、Ni:2.0%以下、Mo:0.5%以下、W:0.5%以下に限定することが好ましい。
The above components are basic components, but in addition to the basic composition, Cu: 0.5% or less, Ni: 2.0% or less, Mo: 0.5% or less, W: 0.5% or less Or you may contain 2 or more types.
Cu, Ni, Mo, and W are all elements that contribute effectively to improving corrosion resistance and extending the life of the coating film, and can be selected from one or more as required. Such effects are recognized with Cu: 0.01% or more, Ni: 0.1% or more, Mo: 0.05% or more, W: 0.01% or more, Cu: 0.5%, Ni: 2.0%, Mo : Containing more than 0.5% and W: 0.5% respectively, the steel becomes hard and the toughness is lowered, resulting in a decrease in manufacturability and an increase in steel price. For this reason, when it contains, it is preferable to limit to Cu: 0.5% or less, Ni: 2.0% or less, Mo: 0.5% or less, and W: 0.5% or less, respectively.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。
なお、不可避的不純物としては、O:0.005%以下、Mg:0.005%以下、REM:0.005%以下、B:0.005%以下、Ca:0.005%以下がそれぞれ許容される。
上記した組成を有する鋼材の製造方法は、通常公知の方法がいずれも適用可能であり、とくに限定されない。
The balance other than the components described above consists of Fe and inevitable impurities.
Inevitable impurities include O: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, B: 0.005% or less, and Ca: 0.005% or less.
As a method for producing a steel material having the above-described composition, any known method can be applied and is not particularly limited.

例えば鋼材が、厚鋼板の場合には、上記した組成の溶鋼を、転炉等の通常公知の溶製方法で溶製し、連続鋳造法等の常用の方法でスラブ等の鋼素材としたのち、鋼素材を加熱し、厚板圧延(熱間圧延)を施し、冷却、あるいはさらに矯正等を施して所望の寸法形状の厚鋼板とする。なお、厚板圧延では、通常の圧延に加えて、制御圧延、制御冷却等を適用して所望の強度、靭性等の特性を付与することもできる。   For example, when the steel material is a thick steel plate, the molten steel having the above composition is melted by a generally known melting method such as a converter, and is made into a steel material such as a slab by a conventional method such as a continuous casting method. Then, the steel material is heated, subjected to thick plate rolling (hot rolling), cooled, or further corrected to obtain a thick steel plate having a desired size and shape. In thick plate rolling, characteristics such as desired strength and toughness can be imparted by applying controlled rolling, controlled cooling and the like in addition to normal rolling.

また、鋼材が、形鋼の場合には、上記した組成の溶鋼を、転炉等の通常公知の溶製方法で溶製し、連続鋳造法等の常用の方法でブルーム等の鋼素材としたのち、鋼素材を加熱し、形鋼圧延(熱間圧延)を施し、冷却、あるいはさらに矯正等を施して所望の寸法形状の、H形鋼、鋼矢板等の形鋼とする。形鋼圧延は、通常の圧延方法がいずれも適用可能である。また、鋼材が棒鋼である場合も同様で、通常の棒鋼圧延を適用して所望の寸法形状の棒鋼とすることができる。   Further, when the steel material is a shape steel, the molten steel having the above composition is melted by a generally known melting method such as a converter, and is made into a steel material such as bloom by a conventional method such as a continuous casting method. After that, the steel material is heated, subjected to shape steel rolling (hot rolling), cooled, or further straightened to obtain a shape steel such as H-shaped steel or steel sheet pile having a desired dimensional shape. Any of the usual rolling methods can be applied to shape steel rolling. The same applies to the case where the steel material is a steel bar, and a normal steel bar rolling can be applied to obtain a steel bar having a desired size and shape.

以下、実施例に基づいて、さらに本発明について詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated further in detail.

表1に示す組成の鋼材(U型鋼矢板:有効幅600mm×有効高さ180mm×厚さ13.4mm)を素材とした。素材として、上記した組成を有する鋼素材(ブルーム)を加熱し、通常の形鋼圧延(熱間圧延)により上記した寸法のU型鋼矢板に圧延されたものを用いた。素材表面には酸化スケールが付着している。
素材(鋼材)から試験材(長さ:150mm)を採取し、該試験材に、ブラスト処理、塗装前処理、塗装処理を、順次施し、塗装鋼材(塗装試験材)とした。
A steel material having a composition shown in Table 1 (U-shaped steel sheet pile: effective width 600 mm × effective height 180 mm × thickness 13.4 mm) was used as a material. As the material, a steel material (bloom) having the above-described composition was heated and rolled into a U-shaped steel sheet pile having the above-described dimensions by ordinary shape steel rolling (hot rolling). Oxide scale is attached to the surface of the material.
A test material (length: 150 mm) was sampled from the material (steel material), and the test material was sequentially subjected to a blast treatment, a pre-paint treatment, and a paint treatment to obtain a painted steel material (paint test material).

なお、ブラスト処理では、素材を予熱(50〜60℃)したのち、ブラスト処理を行った。ブラスト処理では、試験材(素材)の片面に、表2に示す平均粒径の投射粒子を用い、第一のブラスト処理と、それに続く、第二のブラスト処理とを、順次施した。なお、同一条件のブラスト処理を3個の試験材について施し、結果はそれらの算術平均で示した。なお、従来例として、ブラスト処理を1回のみとした例も実施した。   In the blasting process, the material was preheated (50 to 60 ° C.) and then the blasting process was performed. In the blasting treatment, the first blasting treatment and the subsequent second blasting treatment were sequentially performed on one side of the test material (material) using the projected particles having an average particle size shown in Table 2. In addition, the blast process of the same conditions was given about three test materials, and the result was shown by those arithmetic averages. In addition, the example which performed the blast process only once as a prior art example was also implemented.

投射粒子の平均粒径は、JIS Z 8801に規定の試験用ふるいを用い、上記した方法でD50を算出して求めた。また、投射粒子には、JIS Z 0311に規定される高炭素鋳鋼ショットを用いた。
ブラスト処理後、試験材(素材)表面の表面粗さを測定した。表面粗さの測定は、JIS B 0601−2001の規定に準拠して、触針式表面粗さ計を用い、試験材の圧延方向(長手方向)に沿って測定し、十点平均粗さRz JISで表示した。
The average particle size of the projected particles was obtained by calculating D 50 by the above-described method using a test sieve specified in JIS Z 8801. Moreover, the high carbon cast steel shot prescribed | regulated to JISZ0311 was used for the projection particle | grains.
After the blast treatment, the surface roughness of the surface of the test material (raw material) was measured. The surface roughness is measured in accordance with JIS B 0601-2001 using a stylus type surface roughness meter along the rolling direction (longitudinal direction) of the test material, and the ten-point average roughness Rz. Displayed in JIS .

また、塗装前処理は、ブラスト処理済みの試験材(素材)表面(片面)に、板温:100℃でクロメート処理液(商品名:関西ペイント(株)製コスマー100)をスプレー塗布し、板温:100℃で焼き付ける処理とした。また一部の試験材では、ブラスト処理済みの試験材(素材)表面に、ノンクロメート処理液(商品名:日本ペイント(株)製サーフコートCM 1706)をスプレー塗布し、板温:110℃で焼き付ける処理とした。   In addition, the coating pretreatment is performed by spraying the chromate treatment liquid (trade name: Cosmer 100 manufactured by Kansai Paint Co., Ltd.) on the surface (one side) of the blasted test material (material) at a plate temperature of 100 ° C. Temperature: A process of baking at 100 ° C. For some test materials, the surface of the blasted test material (material) is spray-coated with a non-chromate treatment solution (trade name: Surfcoat CM 1706 manufactured by Nippon Paint Co., Ltd.), and the plate temperature is 110 ° C. It was set as the baking process.

また、塗装処理は、前処理済みの試験材(素材)表面(片面)に、ポリウレタン塗装を施す処理とし、塗装厚さ:2.5mmとした。ポリウレタン塗装は、二液反応型ポリウレタン(商品名:第一工業製薬(株)製パーマガード137)を用い、試験材(素材)に無溶剤スプレー塗布する処理とした。なお、塗装面は片面とし、他の面は無塗装面となる。
ついで、得られた該塗装試験材について、初期密着性試験、接着性試験、耐剥離性試験を実施し、塗膜の密着性を評価した。試験方法は次の通りとした。
(1)初期密着性試験
初期密着性試験として、剥離強度試験を実施した。得られた塗装試験材の塗膜表面に、剛体棒(鉄製ピン:10mmφ)を接着し、塗膜に対して垂直に引張り荷重を負荷し、塗膜が剥離するときの荷重を求め、剥離強度(N/mm)を算出し、塗膜の初期密着性を評価した。
(2)接着性試験
接着性試験として、温度勾配試験を実施した。得られた塗装試験材から両面サンプル片を採取し、該両面サンプル片を、片面(塗装面)が80℃の溶液に接し、他の面(無塗装面)が70℃の溶液に接するように、60日間、溶液に浸漬したのち、塗膜表面に、剛体棒(鉄製ピン:10mmφ)を接着し、塗膜に対して垂直に引張り荷重を負荷し、塗膜が剥離するときの荷重を求め、剥離強度(N/mm)を算出し、塗膜の接着性を評価した。
(3)耐剥離性試験
耐剥離性試験として、陰極剥離試験を実施した。得られた塗装試験材からサンプル片を採取し、地金に達するまでの5mmφの初期穴を形成して、液温:60℃の3%NaCl溶液中で、負荷電圧:−1.5V(対SCE)として、60日間浸漬したのち、最大5点の剥離幅(mm)を測定し、その算術平均値を、その塗装試験材の剥離距離とし、塗膜の耐剥離性を評価した。
The coating treatment was a treatment in which polyurethane coating was applied to the surface (one side) of the pretreated test material (material), and the coating thickness was 2.5 mm. The polyurethane coating was a treatment in which a two-component reaction type polyurethane (trade name: Permguard 137 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was used and solvent-free spray coating was applied to the test material (material). The painted surface is one side, and the other surface is a non-painted surface.
Subsequently, the obtained coating test material was subjected to an initial adhesion test, an adhesion test, and a peel resistance test to evaluate the adhesion of the coating film. The test method was as follows.
(1) Initial adhesion test As an initial adhesion test, a peel strength test was performed. Bond a rigid rod (iron pin: 10mmφ) to the coating surface of the obtained coating test material, apply a tensile load perpendicular to the coating film, determine the load when the coating film peels, and peel strength (N / mm 2 ) was calculated and the initial adhesion of the coating film was evaluated.
(2) Adhesion test A temperature gradient test was performed as an adhesion test. Take a double-sided sample piece from the obtained coating test material, and place the double-sided sample piece in contact with a solution at 80 ° C on one side (painted surface) and in contact with a solution at 70 ° C on the other side (uncoated surface). After dipping in the solution for 60 days, a rigid rod (iron pin: 10mmφ) is adhered to the surface of the coating, and a tensile load is applied perpendicular to the coating to determine the load when the coating peels off. The peel strength (N / mm 2 ) was calculated and the adhesion of the coating film was evaluated.
(3) Peel resistance test A cathode peel test was performed as a peel resistance test. A sample piece is taken from the obtained coating test material, an initial hole of 5 mmφ is formed until reaching the metal, and the liquid temperature is 60 ° C. in a 3% NaCl solution, the load voltage is −1.5 V (vs. SCE). ), After immersing for 60 days, the peel width (mm) of a maximum of 5 points was measured, and the arithmetic average value was taken as the peel distance of the coating test material to evaluate the peel resistance of the coating film.

得られた結果を、表3に示す。   The results obtained are shown in Table 3.

Figure 2011235434
Figure 2011235434

Figure 2011235434
Figure 2011235434

Figure 2011235434
Figure 2011235434

Figure 2011235434
Figure 2011235434

Figure 2011235434
Figure 2011235434

本発明例は、剥離強度が高く、塗膜の初期密着性に優れるうえ、温度差のある溶液中に浸漬されたのちにも、高い剥離強度を有し、塗膜の接着性に優れ、かつ塗膜の耐剥離性にも優れた鋼材となっている。これに対し、本発明の範囲を外れる比較例は、塗膜の初期密着性が低いか、温度差のある溶液中に浸漬されたのちに、剥離強度が低下し、塗膜の接着性が低下しているか、あるいは、塗膜の耐剥離性が低下している。   The present invention example has high peel strength, excellent initial adhesion of the coating film, has high peel strength even after being immersed in a solution having a temperature difference, and excellent adhesion of the coating film, and It is a steel material with excellent peeling resistance of the coating film. On the other hand, the comparative example outside the scope of the present invention has a low initial adhesion of the coating film, or after being immersed in a solution having a temperature difference, the peel strength decreases and the coating film adhesion decreases. Or the peel resistance of the coating film is reduced.

Claims (8)

鋼材表面に、ブラスト処理を施し、塗膜密着性に優れた鋼材とするに当たり、前記ブラスト処理を、第一のブラスト処理と第二のブラスト処理とを順次施してなる処理とし、前記第二のブラスト処理を、前記第一のブラスト処理で使用した投射粒子の粒径より小さい粒径を有する投射粒子を用いる処理とすることを特徴とする塗膜密着性に優れた鋼材の製造方法。   When the steel material surface is subjected to blasting treatment to obtain a steel material having excellent coating film adhesion, the blasting treatment is a treatment obtained by sequentially performing a first blasting treatment and a second blasting treatment, and the second blasting treatment. A method for producing a steel material excellent in coating film adhesion, characterized in that the blast treatment is treatment using projected particles having a particle size smaller than that of the projected particles used in the first blast treatment. 前記第一のブラスト処理を、平均粒径が0.40〜1.0 mmの投射粒子を前記鋼材表面に衝突させ、該鋼板表面の表面粗さをRz JISで40〜100μmとする処理とし、前記第二のブラスト処理を、前記第一のブラスト処理で使用した投射粒子の平均粒径の1/2以下の平均粒径を有する投射粒子を前記第一のブラスト処理を施した前記鋼材表面に衝突させ、該鋼材表面の表面粗さをRz JISで20〜80μmとする処理と、することを特徴とする請求項1に記載の塗膜密着性に優れた鋼材の製造方法。 The first blast treatment is a treatment in which projected particles having an average particle diameter of 0.40 to 1.0 mm collide with the steel material surface, and the surface roughness of the steel plate surface is set to 40 to 100 μm in Rz JIS . The blasting treatment is performed by causing the projecting particles having an average particle size equal to or less than ½ of the average particle size of the projecting particles used in the first blasting treatment to collide with the steel material surface subjected to the first blasting treatment, The method for producing a steel material excellent in coating film adhesion according to claim 1, wherein the surface roughness of the steel material is treated to 20 to 80 µm by Rz JIS . 前記鋼材が、質量%で、
C:0.01〜0.15%、 Si:0.10〜0.60%、
Mn:0.2〜1.8%、 P:0.03%以下、
S:0.02%以下、 Al:0.10%以下、
N:0.01%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする請求項2に記載の鋼材の製造方法。
The steel material is mass%,
C: 0.01 to 0.15%, Si: 0.10 to 0.60%,
Mn: 0.2 to 1.8%, P: 0.03% or less,
S: 0.02% or less, Al: 0.10% or less,
N: The manufacturing method of the steel materials of Claim 2 which has a composition which contains 0.01% or less and consists of remainder Fe and an unavoidable impurity.
前記組成に加えてさらに、質量%で、Cu:0.5%以下、Ni:2.0%以下、Mo:0.5%以下、W:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項3に記載の鋼材の製造方法。   In addition to the above composition, the composition further contains, by mass%, one or more selected from Cu: 0.5% or less, Ni: 2.0% or less, Mo: 0.5% or less, W: 0.5% or less. The method for producing a steel material according to claim 3. 請求項2ないし4のいずれかに記載の鋼材の製造方法により製造されてなる塗膜密着性に優れた鋼材。   A steel material excellent in coating film adhesion produced by the method for producing a steel material according to any one of claims 2 to 4. 鋼材表面に、ブラスト処理を施されてなる鋼材であって、前記ブラスト処理が、平均粒径が0.40〜1.0 mmの投射粒子を衝突させる第一のブラスト処理と、該第一のブラスト処理で使用した投射粒子の平均粒径の1/2以下の平均粒径の投射粒子を衝突させる第二のブラスト処理とを順次施す処理であり、鋼材表面の表面粗さがRz JISで20〜80μmであることを特徴とする塗膜密着性に優れた鋼材。 A steel material that is subjected to a blasting process on the surface of the steel material, wherein the blasting process is used in a first blasting process in which projected particles having an average particle diameter of 0.40 to 1.0 mm collide, and the first blasting process. And a second blasting treatment for colliding the projected particles having an average particle size of 1/2 or less of the average particle size of the projected particles, and the surface roughness of the steel material surface is 20 to 80 μm in Rz JIS. A steel material excellent in coating film adhesion characterized by the above. 前記鋼材が、質量%で、
C:0.01〜0.15%、 Si:0.10〜0.60%、
Mn:0.2〜1.8%、 P:0.03%以下、
S:0.02%以下、 Al:0.10%以下、
N:0.01%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有することを特徴とする請求項6に記載の鋼材。
The steel material is mass%,
C: 0.01 to 0.15%, Si: 0.10 to 0.60%,
Mn: 0.2 to 1.8%, P: 0.03% or less,
S: 0.02% or less, Al: 0.10% or less,
The steel material according to claim 6, wherein N: 0.01% or less, and having a composition composed of the remaining Fe and inevitable impurities.
前記組成に加えてさらに、質量%で、Cu:0.5%以下、Ni:2.0%以下、Mo:0.5%以下、W:0.5%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項7に記載の鋼材。   In addition to the above composition, the composition further contains, by mass%, one or more selected from Cu: 0.5% or less, Ni: 2.0% or less, Mo: 0.5% or less, W: 0.5% or less. The steel material according to claim 7, wherein:
JP2011017905A 2010-04-16 2011-01-31 Steel material excellent in coating film adhesion and method for producing the same Active JP5633399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017905A JP5633399B2 (en) 2010-04-16 2011-01-31 Steel material excellent in coating film adhesion and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010094864 2010-04-16
JP2010094864 2010-04-16
JP2011017905A JP5633399B2 (en) 2010-04-16 2011-01-31 Steel material excellent in coating film adhesion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011235434A true JP2011235434A (en) 2011-11-24
JP5633399B2 JP5633399B2 (en) 2014-12-03

Family

ID=45323968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017905A Active JP5633399B2 (en) 2010-04-16 2011-01-31 Steel material excellent in coating film adhesion and method for producing the same

Country Status (1)

Country Link
JP (1) JP5633399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223873A (en) * 2011-04-22 2012-11-15 Shimano Inc Finish machining method of mold surface
WO2013065476A1 (en) * 2011-11-04 2013-05-10 国立大学法人京都大学 Material having pores on surface, and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355780A (en) * 1999-06-17 2000-12-26 Nkk Corp Steel structure excellent in water resisting adhesion and cathode peeling resistance
JP2005171332A (en) * 2003-12-12 2005-06-30 Jfe Steel Kk Steel for ship ballast tank having excellent corrosion resistance
JP2005224902A (en) * 2004-02-13 2005-08-25 Tokyo Metropolis Substrate processing method of base material surface, base material having substrate processed surface by this method and product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355780A (en) * 1999-06-17 2000-12-26 Nkk Corp Steel structure excellent in water resisting adhesion and cathode peeling resistance
JP2005171332A (en) * 2003-12-12 2005-06-30 Jfe Steel Kk Steel for ship ballast tank having excellent corrosion resistance
JP2005224902A (en) * 2004-02-13 2005-08-25 Tokyo Metropolis Substrate processing method of base material surface, base material having substrate processed surface by this method and product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223873A (en) * 2011-04-22 2012-11-15 Shimano Inc Finish machining method of mold surface
WO2013065476A1 (en) * 2011-11-04 2013-05-10 国立大学法人京都大学 Material having pores on surface, and method for manufacturing same
JPWO2013065476A1 (en) * 2011-11-04 2015-04-02 国立大学法人京都大学 Material having pores on the surface and method for producing the same

Also Published As

Publication number Publication date
JP5633399B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
US20090214892A1 (en) High strength steel sheet having superior ductility and method for manufacturing the same
KR20180126580A (en) Low density hot-dip galvanized steel and its manufacturing method
WO2012081666A1 (en) Hot-dip zinc-plated steel sheet and process for production thereof
JP2003253382A (en) Weather-resistant high-strength steel sheet superior in bending resistance for abrasive blasting, and manufacturing method
CN110832099A (en) Structural steel and structure
WO2017183133A1 (en) Hot-rolled steel sheet, steel, and container
JP2019094563A (en) Steel material
JP5884148B2 (en) Thick steel plate excellent in coating film peeling resistance and method for producing the same
KR101302534B1 (en) Excellent-formability and high-strength steel tube excellent in chemical conversion treatability and process for production of same
JP2009149937A (en) High-strength hot-dip galvanized steel sheet having excellent formability, and production method therefor
JP5633399B2 (en) Steel material excellent in coating film adhesion and method for producing the same
JP7107327B2 (en) Press-molded product manufacturing method and press-molded product
JP7322932B2 (en) Thick steel plate, manufacturing method thereof, and structure
JP6758225B2 (en) Wire rods for non-treated bolts, steel wires for non-conditioned bolts and their manufacturing methods, and non-conditioned bolts
JP4507668B2 (en) Manufacturing method of high corrosion resistant steel
JPH07286240A (en) High corrosion resistant surface treated steel sheet excellent in workability and its production
JP7405246B2 (en) H-shaped steel
JP5694562B2 (en) Method for producing hot-rolled steel sheet excellent in aging resistance and hot-rolled steel sheet produced thereby
JP6848939B2 (en) Hot-dip galvanized steel sheet manufacturing method and hot-dip galvanized hot-dip steel sheet, and hot-dip galvanized steel sheet manufacturing method and hot-dip galvanized steel sheet
JP7044089B2 (en) Structural steel materials with excellent fatigue crack propagation characteristics and coating durability and their manufacturing methods
US20240043701A1 (en) Composite plated steel sheet having excellent post-formation corrosion resistance, and manufacturing method therefor
JP4858436B2 (en) Zinc rich primer coated steel with excellent iron rust resistance
JP3146839B2 (en) High corrosion resistant cold rolled steel sheet excellent in workability and method for producing the same
JP2007146235A (en) Surface treated steel sheet for liquid crystal front frame, its manufacturing method, and liquid crystal front frame manufactured by the manufacturing method
JP4305103B2 (en) Fe-Cr alloy for automobile undercarriage

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111114

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250