JP2011234528A - Synchronous-motor control device - Google Patents

Synchronous-motor control device Download PDF

Info

Publication number
JP2011234528A
JP2011234528A JP2010103273A JP2010103273A JP2011234528A JP 2011234528 A JP2011234528 A JP 2011234528A JP 2010103273 A JP2010103273 A JP 2010103273A JP 2010103273 A JP2010103273 A JP 2010103273A JP 2011234528 A JP2011234528 A JP 2011234528A
Authority
JP
Japan
Prior art keywords
frequency
command
synchronous motor
phase
voltage command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010103273A
Other languages
Japanese (ja)
Other versions
JP5627277B2 (en
Inventor
Masahiro Iezawa
雅宏 家澤
Satoshi Kawashima
敏 川村
Akira Nakamura
亮 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010103273A priority Critical patent/JP5627277B2/en
Publication of JP2011234528A publication Critical patent/JP2011234528A/en
Application granted granted Critical
Publication of JP5627277B2 publication Critical patent/JP5627277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a synchronous-motor control device which allows stable operation even if the operating rotational-frequency range includes the resonance frequency.SOLUTION: A frequency correction amount obtained from detected values of at least two phases of electric current running through windings of a synchronous motor 10 and from a phase determined by integrating frequency references is used as input into a notch filter 12 attenuating only frequency components at or near the axial resonance frequency, to calculate a new frequency correction amount.

Description

この発明は、インバータ等の電力変換器を用いて、同期電動機の巻線に印加する電圧とその周波数とを制御する位置センサレスの同期電動機の制御装置に関するものである。   The present invention relates to a position sensorless synchronous motor control device for controlling a voltage applied to a winding of a synchronous motor and a frequency thereof using a power converter such as an inverter.

従来の同期電動機の簡単な位置センサレス制御として、例えば、特許文献1や、非特許文献1に記載されているようなV/F一定制御と、特許文献2や、非特許文献2に記載されているような一次磁束一定制御がよく知られている。   As simple position sensorless control of a conventional synchronous motor, for example, V / F constant control as described in Patent Document 1 and Non-Patent Document 1, Patent Document 2 and Non-Patent Document 2 are described. Such primary magnetic flux constant control is well known.

これらの従来の同期電動機の制御では、同期電動機の巻線に流れる少なくとも2相の電流の検出値と周波数指令の積算によって得られる位相とから求めた周波数補正量を周波数指令に帰還することで、速度制御系を安定化し、負荷変動時の脱調を防止するようにしている。   In the control of these conventional synchronous motors, by feeding back to the frequency command the frequency correction amount obtained from the detected value of at least two-phase current flowing through the winding of the synchronous motor and the phase obtained by integrating the frequency command, The speed control system is stabilized to prevent step-out when the load fluctuates.

特開2000−236694号公報JP 2000-236694 A 特開2000−262088号公報JP 2000-262088 A

伊東淳一、豊崎次郎、大沢博共著、「永久磁石同期電動機のV/f制御の高性能化」、電学論D、122巻3号、平成14年、253−259Ito, Junichi, Toyosaki, Jiro and Osawa, Hiroshi, "Performance improvement of V / f control of permanent magnet synchronous motor", Electrical Engineering D, Vol. 122, No. 3, 2002, 253-259 瓜田英明、山村直紀、常広譲共著、「同期機駆動用汎用インバータについて」、電学論D、119巻5号、平成11年、707−712Hideaki Hamada, Naoki Yamamura, and Joe Tsunehiro, “General-purpose inverter for synchronous machine drive”, D. D. 119, 5, 1999, 707-712

回転子の位置検出器は機器の小形化を妨げる大きな要因になるだけでなく、回転子の位置検出器の信号を伝える複数本の配線や受信回路が必要であるため、信頼性、作業性、価格等に問題点があった。   The rotor position detector is not only a major factor that hinders downsizing of the equipment, but also requires multiple wires and receiving circuits to transmit the rotor position detector signal, so reliability, workability, There was a problem with the price.

また、位置検出器を用いずに電動機の電圧や電流の情報から間接的に回転子の位置を演算する方法は、複雑かつ高速な演算処理が必要なので、制御装置が高価になるという問題点があった。   In addition, the method of calculating the rotor position indirectly from the voltage and current information of the motor without using a position detector requires a complicated and high-speed calculation process, so that the control device becomes expensive. there were.

従来の周波数補正を有するV/F一定制御や一次磁束一定制御は、制御が簡単なため制御装置を安価にすることができるが、同期電動機の動作回転数範囲に回転子とその支持系の共振周波数がある場合には、共振周波数付近で同期電動機への供給電力が増加し、周波数補正が逆に共振点通過動作を妨げ、目標回転数まであげられないという問題点があった。   Conventional V / F constant control and primary magnetic flux constant control with frequency correction can be made inexpensive because the control is simple, but the resonance of the rotor and its support system is within the range of operating speed of the synchronous motor. When there is a frequency, there is a problem that the power supplied to the synchronous motor increases near the resonance frequency, and the frequency correction conversely prevents the operation through the resonance point, so that the target rotational speed cannot be increased.

本発明は、前記のような課題を解決するためになされたものであり、動作回転数範囲に共振周波数があっても安定して動作することが可能な同期電動機の制御装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a synchronous motor control device that can operate stably even when there is a resonance frequency in the operating rotational speed range. And

本発明に係る同期電動機の制御装置は、周波数指令を演算する周波数指令演算手段と、前記周波数指令から周波数補正値を差し引いて新たな周波数指令を生成する加減算手段と、前記新たな周波数指令に基づいて電圧指令を演算する電圧指令演算手段と、前記新たな周波数指令を積算して位相情報を出力する積算手段と、前記位相情報に基づいて、前記電圧指令を3相電圧指令に変換するdq/3相変換手段と、前記3相電圧指令からゲート駆動指令を生成するPWM手段と、前記ゲート駆動指令に基づき同期電動機の巻線に印加する電圧とその周波数とを制御して前記同期電動機を駆動するインバータと、前記位相情報に基づいて、前記同期電動機の巻線に流れる電流を2軸電流成分に変換する3相/dq変換手段と、前記2軸電流成分の一方であるq軸電流から、前記同期電動機の回転子の共振周波数とその前後の周波数成分のみを減衰させるノッチフィルタと、前記ノッチフィルタの出力信号から直流成分を除去するハイパスフィルタと、前記ハイパスフィルタの出力信号にゲインを乗じて前記周波数補正値を出力する比例増幅器とを備えるものである。   A control apparatus for a synchronous motor according to the present invention is based on a frequency command calculating means for calculating a frequency command, an adding / subtracting means for generating a new frequency command by subtracting a frequency correction value from the frequency command, and the new frequency command. A voltage command calculating means for calculating a voltage command, an integrating means for integrating the new frequency command and outputting phase information, and a dq / that converts the voltage command into a three-phase voltage command based on the phase information. Three-phase conversion means, PWM means for generating a gate drive command from the three-phase voltage command, and a voltage applied to the synchronous motor winding based on the gate drive command and its frequency to drive the synchronous motor Based on the phase information, three-phase / dq conversion means for converting the current flowing in the winding of the synchronous motor into a biaxial current component, and the biaxial current component A notch filter for attenuating only the resonance frequency of the rotor of the synchronous motor and frequency components before and after the synchronous motor rotor, a high-pass filter for removing a DC component from the output signal of the notch filter, and the high-pass filter And a proportional amplifier that multiplies the output signal by a gain and outputs the frequency correction value.

本発明に係る同期電動機の制御装置によれば、同期電動機の動作回転数範囲に回転子とその支持系の共振周波数があっても、周波数指令が振動しないため、安定に共振周波数を通過することが可能になる。   According to the control apparatus for a synchronous motor according to the present invention, the frequency command does not vibrate even if the resonance frequency of the rotor and its support system is within the operating rotational speed range of the synchronous motor, so that the resonance frequency passes stably. Is possible.

この発明の実施の形態1に係る同期電動機の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the synchronous motor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る同期電動機の制御装置において一定加速度で同期電動機を運転したときの回転数とq軸電流を示すタイミングチャートである。It is a timing chart which shows the rotation speed and q-axis current when a synchronous motor is drive | operated by fixed acceleration in the control apparatus of the synchronous motor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る同期電動機の制御装置のノッチフィルタの周波数伝達特性を示す図である。It is a figure which shows the frequency transfer characteristic of the notch filter of the control apparatus of the synchronous motor which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る同期電動機の制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus of the synchronous motor which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る同期電動機の制御装置のゲイン記憶手段のゲインテーブル(周波数−ゲイン)を示す図である。It is a figure which shows the gain table (frequency-gain) of the gain memory | storage means of the control apparatus of the synchronous motor which concerns on Embodiment 2 of this invention.

以下、本発明の同期電動機の制御装置の好適な実施の形態につき図面を用いて説明する。   A preferred embodiment of a control apparatus for a synchronous motor according to the present invention will be described below with reference to the drawings.

実施の形態1.
この発明の実施の形態1に係る同期電動機の制御装置について図1から図3までを参照しながら説明する。図1は、この発明の実施の形態1に係る同期電動機の制御装置の構成を示すブロック図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
A control apparatus for a synchronous motor according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a block diagram showing a configuration of a control apparatus for a synchronous motor according to Embodiment 1 of the present invention. In the following, in each figure, the same reference numerals indicate the same or corresponding parts.

図1において、この発明の実施の形態1に係る同期電動機の制御装置は、周波数指令を演算する周波数指令演算手段1と、周波数指令から周波数補正値を差し引いて新たな周波数指令を生成する加減算手段2と、新たな周波数指令に基づいて電圧指令を演算する電圧指令演算手段3と、新たな周波数指令に基づいて補正電圧指令を演算する電圧指令補正演算手段4と、電圧指令と補正電圧指令を加算する加算手段5と、新たな周波数指令を積算して位相情報θを出力する積算手段6と、位相情報θに基づいて、加算された電圧指令を3相電圧指令に変換するdq/3相変換手段7と、3相電圧指令からゲート駆動指令を生成するPWM手段8と、ゲート駆動指令に基づき同期電動機10の巻線に印加する電圧とその周波数とを制御して同期電動機10を駆動するインバータ9と、位相情報θに基づいて、同期電動機10の巻線に流れる電流を2軸電流成分に変換する3相/dq変換手段11と、軸共振周波数とその前後の周波数成分のみを減衰させるノッチフィルタ12と、直流成分を除去するハイパスフィルタ13と、ゲインを乗じて周波数補正値を出力する比例増幅器14とが設けられている。   1, the control apparatus for a synchronous motor according to the first embodiment of the present invention includes a frequency command calculation unit 1 that calculates a frequency command, and an addition / subtraction unit that generates a new frequency command by subtracting a frequency correction value from the frequency command. 2, voltage command calculation means 3 for calculating a voltage command based on a new frequency command, voltage command correction calculation means 4 for calculating a correction voltage command based on the new frequency command, a voltage command and a correction voltage command An adding means 5 for adding, an integrating means 6 for integrating new frequency commands and outputting phase information θ, and a dq / 3 phase for converting the added voltage command into a three-phase voltage command based on the phase information θ The converter 7, the PWM unit 8 that generates a gate drive command from the three-phase voltage command, and the voltage applied to the winding of the synchronous motor 10 based on the gate drive command and the frequency thereof are controlled synchronously. An inverter 9 that drives the motor 10, a three-phase / dq conversion means 11 that converts a current flowing through the winding of the synchronous motor 10 into a two-axis current component based on the phase information θ, an axial resonance frequency, and frequencies before and after that. A notch filter 12 that attenuates only the component, a high-pass filter 13 that removes a DC component, and a proportional amplifier 14 that multiplies the gain and outputs a frequency correction value are provided.

つぎに、この実施の形態1に係る同期電動機の制御装置の動作について図面を参照しながら説明する。   Next, the operation of the synchronous motor control device according to the first embodiment will be described with reference to the drawings.

まず、周波数指令演算手段1は、同期電動機10を駆動する周波数指令を演算する。同期電動機10の巻線に流れる2相以上の電流をCTにより検出し、3相/dq変換手段11は、位相情報θに基づいて、検出した電流を2軸電流成分に変換する。ノッチフィルタ12は、2軸電流成分の一方(q軸電流Iq)を入力信号として、同期電動機10の回転子(図示せず)の共振周波数とその前後の周波数を減衰させる。ハイパスフィルタ13は、ノッチフィルタ12の出力信号から直流成分を除去する。比例増幅器14は、ハイパスフィルタ13の出力信号にゲインを乗じて周波数補正値を出力する。   First, the frequency command calculation means 1 calculates a frequency command for driving the synchronous motor 10. Two-phase or more currents flowing through the windings of the synchronous motor 10 are detected by CT, and the three-phase / dq conversion means 11 converts the detected current into a biaxial current component based on the phase information θ. The notch filter 12 uses one of the two-axis current components (q-axis current Iq) as an input signal, and attenuates the resonance frequency of the rotor (not shown) of the synchronous motor 10 and the frequencies around it. The high pass filter 13 removes a DC component from the output signal of the notch filter 12. The proportional amplifier 14 multiplies the output signal of the high pass filter 13 by a gain and outputs a frequency correction value.

加減算手段2は、周波数指令演算手段1の周波数指令から、比例増幅器14の周波数補正値を差し引いて、新たな周波数指令を生成するようにしている。積算手段6は、新たな周波数指令を積算して位相情報θを出力する。   The adder / subtractor 2 subtracts the frequency correction value of the proportional amplifier 14 from the frequency command of the frequency command calculator 1 to generate a new frequency command. The accumulating means 6 accumulates new frequency commands and outputs phase information θ.

電圧指令演算手段3は、新たな周波数指令に基づいて電圧指令を演算する。また、電圧指令補正演算手段4は、新たな周波数指令に基づいて補正電圧指令を演算する。加算手段5は、電圧指令演算手段3からの電圧指令と、電圧指令補正演算手段4からの補正電圧指令を加算する。   The voltage command calculation means 3 calculates a voltage command based on a new frequency command. The voltage command correction calculation means 4 calculates a correction voltage command based on the new frequency command. The adding means 5 adds the voltage command from the voltage command calculating means 3 and the correction voltage command from the voltage command correction calculating means 4.

dq/3相変換手段7は、位相情報θに基づいて、加算された電圧指令を3相電圧指令に変換する。PWM手段8は、この3相電圧指令からゲート駆動指令を生成する。インバータ9は、ゲート駆動指令に基づき同期電動機10の巻線に印加する電圧とその周波数とを制御して同期電動機10を駆動する。   The dq / 3-phase conversion means 7 converts the added voltage command into a three-phase voltage command based on the phase information θ. The PWM means 8 generates a gate drive command from this three-phase voltage command. The inverter 9 drives the synchronous motor 10 by controlling the voltage applied to the winding of the synchronous motor 10 and its frequency based on the gate drive command.

図2は、この発明の実施の形態1に係る同期電動機の制御装置において一定加速度で同期電動機を運転したときの回転数とq軸電流を示すタイミングチャートである。   FIG. 2 is a timing chart showing the rotational speed and q-axis current when the synchronous motor is operated at a constant acceleration in the synchronous motor control apparatus according to Embodiment 1 of the present invention.

図2において、(a)は同期電動機10の回転子の回転数、(b)は同期電動機10のq軸電流をそれぞれ示している。同期電動機10の巻線に流れる電流は、同期電動機10の回転子の共振周波数を超えるときに生じる回転子軸振動の影響によって図2(b)の破線丸内に示すように大きくなる。図2(b)は、同期電動機10のq軸電流を示しており、共振周波数を超えるときに電流が振動する。   2, (a) shows the rotation speed of the rotor of the synchronous motor 10, and (b) shows the q-axis current of the synchronous motor 10, respectively. The current flowing through the windings of the synchronous motor 10 increases as shown by the broken circle in FIG. 2B due to the influence of the rotor shaft vibration that occurs when the resonance frequency of the rotor of the synchronous motor 10 is exceeded. FIG. 2B shows the q-axis current of the synchronous motor 10, and the current vibrates when exceeding the resonance frequency.

図1において、ノッチフィルタ12が無い場合が従来例に相当するが、ノッチフィルタ12が無い場合には、q軸電流をハイパスフィルタ13と比例増幅器14を介して周波数補正量を得ることになり、前述の共振周波数が周波数補正量に重畳することになる。   In FIG. 1, the case where there is no notch filter 12 corresponds to the conventional example, but when there is no notch filter 12, the q-axis current is obtained as a frequency correction amount via the high-pass filter 13 and the proportional amplifier 14. The above-described resonance frequency is superimposed on the frequency correction amount.

一般に、回転子の共振周波数における振動の大きさは加速時間に依存することが知られており、加速時間が長いと共振による振動が大きく成長し、逆に短いと振動は小さくなる。このため、回転子の共振周波数はできるだけ早く通過させることが望まれるが、ノッチフィルタ12が無い場合には、周波数補正量に共振周波数成分の振動が重畳するため、周波数指令と周波数補正値との差から得られる新たな周波数指令の積算によって得られる位相情報θと、周波数指令と周波数補正値との差から得られる新たな周波数指令に基づき算出される電圧指令が振動することになり、最悪の場合、同期電動機10の回転子が脱調してしまう。   In general, it is known that the magnitude of the vibration at the resonance frequency of the rotor depends on the acceleration time. If the acceleration time is long, the vibration due to the resonance grows greatly. For this reason, it is desirable to pass the resonance frequency of the rotor as soon as possible. However, when the notch filter 12 is not provided, the vibration of the resonance frequency component is superimposed on the frequency correction amount. The voltage command calculated based on the phase information θ obtained by integration of the new frequency command obtained from the difference and the new frequency command obtained from the difference between the frequency command and the frequency correction value will vibrate. In this case, the rotor of the synchronous motor 10 will step out.

図3は、この発明の実施の形態1に係る同期電動機の制御装置のノッチフィルタの周波数伝達特性を示す図である。   FIG. 3 is a diagram showing the frequency transfer characteristics of the notch filter of the synchronous motor control apparatus according to Embodiment 1 of the present invention.

同期電動機10の回転子の共振周波数に合わせてノッチフィルタ12の減衰周波数を設定することで、図2(a)及び(b)に示したような同期電動機10の回転子の回転数が回転子の共振周波数を通過するときの同期電動機10への電流振動が周波数補正値に重畳するのを防止できる。   By setting the attenuation frequency of the notch filter 12 in accordance with the resonance frequency of the rotor of the synchronous motor 10, the rotational speed of the rotor of the synchronous motor 10 as shown in FIGS. It is possible to prevent current oscillations to the synchronous motor 10 when passing through the resonance frequency from being superimposed on the frequency correction value.

このようにすることで、同期電動機10の動作回転数範囲に同期電動機10の回転子の共振周波数があっても、周波数指令が振動しないようにできるため、安定に共振周波数を通過することが可能になる。   By doing so, even if there is a resonance frequency of the rotor of the synchronous motor 10 in the operating rotation speed range of the synchronous motor 10, it is possible to prevent the frequency command from vibrating, and thus it is possible to pass the resonance frequency stably. become.

また、同期電動機10の回転子の回転数が回転子の共振周波数を通過するとき、同期電動機10の巻線の電流振動によって電圧が不足し、同期電動機10の回転子の共振周波数を超えるのに必要な電流が得られずに脱調することがある。   In addition, when the rotational speed of the rotor of the synchronous motor 10 passes through the resonance frequency of the rotor, the voltage is insufficient due to the current vibration of the winding of the synchronous motor 10 and exceeds the resonance frequency of the rotor of the synchronous motor 10. There is a case where the necessary current is not obtained and the step-out occurs.

このような場合、同期電動機10の回転子の共振周波数とその前後の周波数において、同期電動機10の共振周波数を越えるのに必要な電圧(補正電圧指令)を予め電圧指令補正演算手段4に設定しておけば、同期電動機10の動作回転数範囲に同期電動機10の回転子の共振周波数があっても、トルク不足により脱調せずに、安定に共振周波数を通過することが可能になる。   In such a case, the voltage (correction voltage command) necessary to exceed the resonance frequency of the synchronous motor 10 is set in the voltage command correction calculation means 4 in advance at the resonance frequency of the rotor of the synchronous motor 10 and the frequencies before and after the resonance frequency. In this case, even if the resonance frequency of the rotor of the synchronous motor 10 is within the operating rotational speed range of the synchronous motor 10, it is possible to pass the resonance frequency stably without stepping out due to insufficient torque.

実施の形態2.
この発明の実施の形態2に係る同期電動機の制御装置について図4及び図5を参照しながら説明する。図4は、この発明の実施の形態2に係る同期電動機の制御装置の構成を示すブロック図である。
Embodiment 2. FIG.
A control apparatus for a synchronous motor according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 4 is a block diagram showing the configuration of the synchronous motor control apparatus according to Embodiment 2 of the present invention.

図4において、この発明の実施の形態2に係る同期電動機の制御装置は、上記の実施の形態1に係る同期電動機の制御装置と同じもの(ノッチフィルタ12を除く)と、ゲイン記憶手段15と、乗算手段16とが設けられている。   In FIG. 4, the synchronous motor control device according to the second embodiment of the present invention is the same as the synchronous motor control device according to the first embodiment (except for the notch filter 12), and gain storage means 15. , Multiplication means 16 is provided.

つぎに、この実施の形態2に係る同期電動機の制御装置の動作について図面を参照しながら説明する。   Next, the operation of the synchronous motor control device according to the second embodiment will be described with reference to the drawings.

図5は、この発明の実施の形態2に係る同期電動機の制御装置のゲイン記憶手段のゲインテーブル(周波数−ゲイン)を示す図である。   FIG. 5 is a diagram showing a gain table (frequency-gain) of the gain storage means of the synchronous motor control apparatus according to Embodiment 2 of the present invention.

比例増幅器14は、3相/dq変換手段11によって2軸電流成分に分離して得られた2軸電流成分の一方であるq軸電流Iqを、ハイパスフィルタ13を介して入力し、周波数補正値を出力する。ゲイン記憶手段15は、図5に示すように、周波数指令が共振周波数に近づくにつれてゲイン値が小さくなるように予め設定しておいたゲインテーブルから、現在の周波数指令に対応するゲイン値を求めて出力する。   The proportional amplifier 14 inputs a q-axis current Iq, which is one of the two-axis current components obtained by separating into two-axis current components by the three-phase / dq conversion means 11, via the high-pass filter 13, and a frequency correction value. Is output. As shown in FIG. 5, the gain storage means 15 obtains a gain value corresponding to the current frequency command from a gain table set in advance so that the gain value decreases as the frequency command approaches the resonance frequency. Output.

乗算手段16は、比例増幅器14からの周波数補正値と、ゲイン記憶手段15からのゲイン値とを乗算する。すなわち、周波数指令演算手段1からの周波数指令に応じて周波数補正量の比例ゲインを変更するようにしたものである。そして、加減算手段2は、周波数指令演算手段1の周波数指令から乗算手段16の乗算結果を差し引いて、前述の新たな周波数指令を生成するようにしている。   The multiplying unit 16 multiplies the frequency correction value from the proportional amplifier 14 and the gain value from the gain storage unit 15. That is, the proportional gain of the frequency correction amount is changed according to the frequency command from the frequency command calculation means 1. The adder / subtractor 2 subtracts the multiplication result of the multiplier 16 from the frequency command of the frequency command calculator 1 to generate the new frequency command.

ノッチフィルタ12は、減衰させたい共振周波数の数が多かったり、急峻に共振周波数のゲインを落としたりしなければならない場合、ディジタルフィルタを高次数にする必要がある。次数が多くなると積和演算の回数が増え、演算処理装置の処理負荷が大きくなり、高価で高性能な演算処理装置を用いる必要がある。   The notch filter 12 needs to have a high-order digital filter when the number of resonance frequencies to be attenuated is large or the gain of the resonance frequency must be sharply decreased. As the order increases, the number of product-sum operations increases, the processing load on the arithmetic processing unit increases, and it is necessary to use an expensive and high-performance arithmetic processing unit.

この実施の形態2によれば、予め記憶させておいたゲインテーブルから周波数指令に対応するゲインを取り出し、これを周波数補正値に乗じるだけなので、ノッチフィルタ12のような積和演算回数の増加という問題は生じない。   According to the second embodiment, since the gain corresponding to the frequency command is extracted from the gain table stored in advance and this is simply multiplied by the frequency correction value, the number of product-sum operations as in the notch filter 12 is increased. There is no problem.

また、ノッチフィルタ12のように積和演算処理が多くないこと、フィルタ処理による位相遅れの増加が無いため、上記の実施の形態1よりも性能の低い演算装置で位相遅れの小さいより安定な制御が可能になる。   Further, unlike the notch filter 12, there is not much product-sum operation processing, and there is no increase in phase lag due to the filter processing. Therefore, a more stable control with a smaller phase lag with an arithmetic device having lower performance than the first embodiment. Is possible.

1 周波数指令演算手段、2 加減算手段、3 電圧指令演算手段、4 電圧指令補正演算手段、5 加算手段、6 積算手段、7 dq/3相変換手段、8 PWM手段、9 インバータ、10 同期電動機、11 3相/dq変換手段、12 ノッチフィルタ、13 ハイパスフィルタ、14 比例増幅器、15 ゲイン記憶手段、16 乗算手段。   1 frequency command calculation means, 2 addition / subtraction means, 3 voltage command calculation means, 4 voltage command correction calculation means, 5 addition means, 6 integration means, 7 dq / 3 phase conversion means, 8 PWM means, 9 inverter, 10 synchronous motor, 11 3 phase / dq conversion means, 12 notch filter, 13 high pass filter, 14 proportional amplifier, 15 gain storage means, 16 multiplication means.

Claims (3)

周波数指令を演算する周波数指令演算手段と、
前記周波数指令から周波数補正値を差し引いて新たな周波数指令を生成する加減算手段と、
前記新たな周波数指令に基づいて電圧指令を演算する電圧指令演算手段と、
前記新たな周波数指令を積算して位相情報を出力する積算手段と、
前記位相情報に基づいて、前記電圧指令を3相電圧指令に変換するdq/3相変換手段と、
前記3相電圧指令からゲート駆動指令を生成するPWM手段と、
前記ゲート駆動指令に基づき同期電動機の巻線に印加する電圧とその周波数とを制御して前記同期電動機を駆動するインバータと、
前記位相情報に基づいて、前記同期電動機の巻線に流れる電流を2軸電流成分に変換する3相/dq変換手段と、
前記2軸電流成分の一方であるq軸電流から、前記同期電動機の回転子の共振周波数とその前後の周波数成分のみを減衰させるノッチフィルタと、
前記ノッチフィルタの出力信号から直流成分を除去するハイパスフィルタと、
前記ハイパスフィルタの出力信号にゲインを乗じて前記周波数補正値を出力する比例増幅器と
を備えたことを特徴とする同期電動機の制御装置。
A frequency command calculating means for calculating a frequency command;
Addition / subtraction means for generating a new frequency command by subtracting a frequency correction value from the frequency command;
Voltage command calculation means for calculating a voltage command based on the new frequency command;
Integrating means for integrating the new frequency command and outputting phase information;
Dq / 3-phase conversion means for converting the voltage command into a three-phase voltage command based on the phase information;
PWM means for generating a gate drive command from the three-phase voltage command;
An inverter that drives the synchronous motor by controlling the voltage applied to the winding of the synchronous motor and its frequency based on the gate drive command;
Three-phase / dq conversion means for converting a current flowing in the winding of the synchronous motor into a biaxial current component based on the phase information;
A notch filter that attenuates only the resonant frequency of the rotor of the synchronous motor and the frequency components before and after the q-axis current which is one of the two-axis current components;
A high-pass filter that removes a DC component from the output signal of the notch filter;
And a proportional amplifier that multiplies an output signal of the high-pass filter by a gain and outputs the frequency correction value.
周波数指令を演算する周波数指令演算手段と、
前記周波数指令から周波数補正値を差し引いて新たな周波数指令を生成する加減算手段と、
前記新たな周波数指令に基づいて電圧指令を演算する電圧指令演算手段と、
前記新たな周波数指令を積算して位相情報を出力する積算手段と、
前記位相情報に基づいて、前記電圧指令を3相電圧指令に変換するdq/3相変換手段と、
前記3相電圧指令からゲート駆動指令を生成するPWM手段と、
前記ゲート駆動指令に基づき同期電動機の巻線に印加する電圧とその周波数とを制御して前記同期電動機を駆動するインバータと、
前記位相情報に基づいて、前記同期電動機の巻線に流れる電流を2軸電流成分に変換する3相/dq変換手段と、
前記2軸電流成分の一方であるq軸電流から直流成分を除去するハイパスフィルタと、
前記ハイパスフィルタの出力信号に第1のゲインを乗じて前記周波数補正値を出力する比例増幅器と、
周波数が共振周波数に近づくにつれて第2のゲインが小さくなるように予め設定されたゲインテーブルから、前記周波数指令演算手段からの周波数指令に対応する第2のゲインを求めて出力するゲイン記憶手段と、
前記比例増幅器からの周波数補正値に、前記ゲイン記憶手段からの第2のゲインを乗算して前記加減算手段へ出力する乗算手段と
を備えたことを特徴とする同期電動機の制御装置。
A frequency command calculating means for calculating a frequency command;
Addition / subtraction means for generating a new frequency command by subtracting a frequency correction value from the frequency command;
Voltage command calculation means for calculating a voltage command based on the new frequency command;
Integrating means for integrating the new frequency command and outputting phase information;
Dq / 3-phase conversion means for converting the voltage command into a three-phase voltage command based on the phase information;
PWM means for generating a gate drive command from the three-phase voltage command;
An inverter that drives the synchronous motor by controlling the voltage applied to the winding of the synchronous motor and its frequency based on the gate drive command;
Three-phase / dq conversion means for converting a current flowing in the winding of the synchronous motor into a biaxial current component based on the phase information;
A high-pass filter that removes a DC component from the q-axis current that is one of the two-axis current components;
A proportional amplifier that multiplies the output signal of the high-pass filter by a first gain and outputs the frequency correction value;
Gain storage means for obtaining and outputting a second gain corresponding to the frequency command from the frequency command calculation means from a preset gain table so that the second gain decreases as the frequency approaches the resonance frequency;
A control apparatus for a synchronous motor, comprising: multiplication means for multiplying a frequency correction value from the proportional amplifier by a second gain from the gain storage means and outputting the result to the addition / subtraction means.
前記新たな周波数指令に基づいて、前記同期電動機の回転子の共振周波数とその前後の周波数において、前記共振周波数を越えるのに必要な補正電圧指令を演算する電圧指令補正演算手段と、
前記電圧指令と前記補正電圧指令を加算する加算手段とをさらに備え、
前記dq/3相変換手段は、前記位相情報に基づいて、前記加算手段により加算された電圧指令を3相電圧指令に変換する
ことを特徴とする請求項1又は2記載の同期電動機の制御装置。
Based on the new frequency command, a voltage command correction calculation means for calculating a correction voltage command required to exceed the resonance frequency at the resonance frequency of the rotor of the synchronous motor and the frequencies before and after the resonance frequency;
An adding means for adding the voltage command and the correction voltage command;
3. The synchronous motor control device according to claim 1, wherein the dq / 3-phase conversion unit converts the voltage command added by the addition unit into a three-phase voltage command based on the phase information. 4. .
JP2010103273A 2010-04-28 2010-04-28 Control device for synchronous motor Active JP5627277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103273A JP5627277B2 (en) 2010-04-28 2010-04-28 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103273A JP5627277B2 (en) 2010-04-28 2010-04-28 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2011234528A true JP2011234528A (en) 2011-11-17
JP5627277B2 JP5627277B2 (en) 2014-11-19

Family

ID=45323252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103273A Active JP5627277B2 (en) 2010-04-28 2010-04-28 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP5627277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133793A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Control device for motor drive device, and motor drive system
CN108119300A (en) * 2016-11-29 2018-06-05 北京金风科创风电设备有限公司 Reduce the method and device of wind power generating set load
CN111934591A (en) * 2020-07-16 2020-11-13 武汉久同智能科技有限公司 Mechanical resonance suppression method based on self-adaptive notch

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218273A (en) * 2004-02-02 2005-08-11 Fuji Electric Fa Components & Systems Co Ltd Control device of permanent magnet synchronous motor
JP2008296877A (en) * 2007-06-04 2008-12-11 Jtekt Corp Electric power steering device
JP2009124871A (en) * 2007-11-15 2009-06-04 Meidensha Corp V/f control system of synchronous electric motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218273A (en) * 2004-02-02 2005-08-11 Fuji Electric Fa Components & Systems Co Ltd Control device of permanent magnet synchronous motor
JP2008296877A (en) * 2007-06-04 2008-12-11 Jtekt Corp Electric power steering device
JP2009124871A (en) * 2007-11-15 2009-06-04 Meidensha Corp V/f control system of synchronous electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133793A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Control device for motor drive device, and motor drive system
CN108119300A (en) * 2016-11-29 2018-06-05 北京金风科创风电设备有限公司 Reduce the method and device of wind power generating set load
CN111934591A (en) * 2020-07-16 2020-11-13 武汉久同智能科技有限公司 Mechanical resonance suppression method based on self-adaptive notch
CN111934591B (en) * 2020-07-16 2022-08-02 武汉久同智能科技有限公司 Mechanical resonance suppression method based on self-adaptive notch

Also Published As

Publication number Publication date
JP5627277B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
US8362727B2 (en) Control device for synchronous motor
CN109874396B (en) Inverter control device and motor drive system
JP5447590B2 (en) Rotating machine control device
JP5717808B2 (en) Current control device for synchronous motor
US20190199257A1 (en) Motor control device, and method for correcting torque constant in such motor control device
KR101758004B1 (en) Rotary machine controller
US9692340B2 (en) Variable torque angle for electric motor
US20190334463A1 (en) Design for Electric Motor Current Controller with Negative Sequence Harmonic Suppression
JP2000236694A (en) Controller for permanent-magnet synchronous motor
JP4725011B2 (en) V / f control device for permanent magnet synchronous motor
CN111969910A (en) Method and device for controlling motor, electronic equipment and computer readable medium
JP5741566B2 (en) Motor control device and motor control method
JP5627277B2 (en) Control device for synchronous motor
Wang et al. Comparative study of low-pass filter and phase-locked loop type speed filters for sensorless control of AC drives
JP2010206946A (en) Sensorless controller of synchronous motor
JP4924115B2 (en) Permanent magnet synchronous motor drive control device
Pravica et al. Interior permanent magnet wind generator torque estimation considering low-pass filter phase shift compensation
JP4359546B2 (en) AC motor control device
JP7218700B2 (en) motor controller
WO2017221320A1 (en) Motor control device and control method
JP2004072931A (en) Controller for synchronous motor
WO2010116769A1 (en) Rotating electric machine control device
JP2017085720A (en) Position sensorless control device for permanent magnet synchronous motor
JP4678245B2 (en) PM motor variable speed controller
JP2019205238A (en) Inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250