JP2011234429A - Phase-to-phase insulating paper of rotary electric machine, and rotary electric machine - Google Patents

Phase-to-phase insulating paper of rotary electric machine, and rotary electric machine Download PDF

Info

Publication number
JP2011234429A
JP2011234429A JP2010099767A JP2010099767A JP2011234429A JP 2011234429 A JP2011234429 A JP 2011234429A JP 2010099767 A JP2010099767 A JP 2010099767A JP 2010099767 A JP2010099767 A JP 2010099767A JP 2011234429 A JP2011234429 A JP 2011234429A
Authority
JP
Japan
Prior art keywords
insulating paper
interphase insulating
coil end
phase
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010099767A
Other languages
Japanese (ja)
Inventor
Toshio Innan
敏夫 院南
Wataru Ito
伊藤  渉
Masakatsu Matsubara
正克 松原
Takashi Hanai
隆 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2010099767A priority Critical patent/JP2011234429A/en
Publication of JP2011234429A publication Critical patent/JP2011234429A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phase-to-phase insulating paper of a rotary electric machine which can prevent a coil end from being torn or shifted in coil end molding compression, and a rotary electric machine.SOLUTION: A phase-to-phase insulating paper of a rotary electric machine of this embodiment comprises: a pair of phase-to-phase insulating paper main body formed in a shape which can insulate the coil ends of a stator coil of multiple phases in both the edges of the axial direction of a stator core; a coupling streak portion provided to lead the pair of phase-to-phase insulating paper main body and positioned in a slot. The phase-to-phase insulating paper main body is composed of multiple layers, and of these multiple layers, a friction coefficient between the external layer positioned on the outer peripheral side of the stator core and the magnet wire of the coil end is bigger than a friction coefficient between the internal layer positioned on the inner peripheral side of the stator core and the magnet wire of the coil end.

Description

本実施形態は、回転電機の相間絶縁紙及び回転電機に関する。   The present embodiment relates to an interphase insulating paper for a rotating electrical machine and the rotating electrical machine.

回転電機においては、その固定子コイルのコイルエンド間に相間絶縁紙を設けて、コイルエンド相間を絶縁するようにしている。この相間絶縁紙としては、耐熱性、耐油性、機械的強度などを考慮して、例えばアラミドポリマーからなるアラミド紙単体や、このアラミド紙の両面を電気的絶縁性に優れたポリエチレンナフタレートフィルムで挟んで構成された3層構造のシート材などがよく用いられる。   In a rotating electrical machine, interphase insulating paper is provided between the coil ends of the stator coil to insulate the coil end phases. As this interphase insulating paper, considering heat resistance, oil resistance, mechanical strength, etc., for example, aramid paper alone made of aramid polymer, or both sides of this aramid paper are made of polyethylene naphthalate film with excellent electrical insulation. A sheet material having a three-layer structure sandwiched between them is often used.

ところで、近年、地球環境の問題から電気自動車(ハイブリッド車を含む)が注目されてきており、その駆動源としての車載用の回転電機の小型化が望まれている。
このため、従来では、固定子鉄心の両端部から外方に大きく突出する固定子コイルのコイルエンドを、固定子鉄心の外周方向に拡開成形して、軸方向に圧縮してコイルエンドの突出寸法を小さくすることが行われている。しかし、前述のシート材による相間絶縁紙では、コイルエンド成形圧縮時におけるコイルエンドの変形量を吸収しきれず、相間絶縁紙に破れやずれなどが生じる不具合があった。
By the way, in recent years, electric vehicles (including hybrid vehicles) have attracted attention due to problems of the global environment, and downsizing of an on-vehicle rotating electrical machine as a driving source is desired.
For this reason, conventionally, the coil end of the stator coil that protrudes largely outward from both ends of the stator core is expanded in the outer circumferential direction of the stator core and compressed in the axial direction to protrude the coil end. Reducing the dimensions has been done. However, the interphase insulating paper made of the above-described sheet material has a problem that the deformation amount of the coil end at the time of coil end molding compression cannot be absorbed and the interphase insulating paper is torn or displaced.

特開2006−288041号公報JP 2006-288041 A

そこで、固定子コイルのコイルエンド成形圧縮時のコイルエンドの動きに対して、破れやずれを防止することができる回転電機の相間絶縁紙及び回転電機を提供する。   In view of this, an interphase insulating paper for a rotating electrical machine and a rotating electrical machine that can prevent breakage and displacement with respect to the movement of the coil end during coil end molding compression of the stator coil are provided.

本実施形態の回転電機の相間絶縁紙は、固定子鉄心の軸方向両端部において複数相の固定子コイルのコイルエンド間を絶縁可能な形状に形成された一対の相間絶縁紙本体と、この一対の相間絶縁紙本体を繋ぐように設けられて前記固定子鉄心のスロット内に位置する連結条部とを有し、前記相間絶縁紙本体は複数の層からなり、該複数の層のうち前記固定子鉄心の外周側に位置する外層と前記コイルエンドのマグネットワイヤとの摩擦係数は、前記固定子鉄心の内周側に位置する内層と前記コイルエンドのマグネットワイヤとの摩擦係数よりも大としたことを特徴とする。   The interphase insulating paper of the rotating electrical machine of the present embodiment includes a pair of interphase insulating paper main bodies formed in a shape capable of insulating between the coil ends of the stator coils of a plurality of phases at both axial end portions of the stator core, and the pair The interphase insulating paper body is connected to the stator core and is located in the slot of the stator core, and the interphase insulating paper body includes a plurality of layers, and the fixing of the plurality of layers The friction coefficient between the outer layer located on the outer peripheral side of the core and the magnet wire of the coil end is larger than the friction coefficient between the inner layer located on the inner side of the stator core and the magnet wire of the coil end. It is characterized by that.

第1の実施形態を示す3相の固定子コイル及び相間絶縁紙が配置された状態の固定子の斜視図The perspective view of the stator of the state by which the three-phase stator coil and phase insulation paper which show 1st Embodiment are arrange | positioned (a)はコイルエンドの成形前における固定子の断面図、(b)はコイルエンドの成形後における固定子の断面図(A) is a cross-sectional view of the stator before forming the coil end, (b) is a cross-sectional view of the stator after forming the coil end. (a)は折り曲げ部が延びていない状態にある相間絶縁紙の斜視図、(b)は折り曲げ部が延びた状態にある相間絶縁紙の斜視図(A) is a perspective view of the interphase insulating paper in a state where the bent portion is not extended, (b) is a perspective view of the interphase insulating paper in a state where the bent portion is extended. コイルエンドを糸にて緊縛した状態で示す固定子の展開図Development view of the stator with the coil ends tied with thread 図3のA―A線に沿う断面図Sectional view along line AA in FIG. 第2の実施形態を示す図5相当図FIG. 5 equivalent view showing the second embodiment 第3の実施形態を示す図5相当図FIG. 5 equivalent diagram showing the third embodiment 第4の実施形態を示す図5相当図FIG. 5 equivalent view showing the fourth embodiment

(第1の実施形態)
以下、車載用回転電機に適用される第1の実施形態について、図1から図5を参照して説明する。
図1に示すように、固定子1は、複数のスロット2を備えた円筒状の固定子鉄心3を有して構成されている。このスロット2内には、スロット絶縁紙4(図2参照)を介して複数相(本実施形態では、U、V、Wの3相)の固定子コイル5が挿通され、その両端部はコイルエンド6として固定子鉄心3から突出している。また、図2にも示すように、複数相の固定子コイル5のコイルエンド6(U)、6(V)間及び6(V)、6(W)間には、各相間にそれぞれ複数枚の、例えば4枚ずつ、合計8枚の相間絶縁紙7が配設されている。
(First embodiment)
Hereinafter, a first embodiment applied to an in-vehicle rotating electrical machine will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, the stator 1 has a cylindrical stator core 3 having a plurality of slots 2. A plurality of phases (in this embodiment, three phases U, V, W) of stator coils 5 are inserted into the slots 2 through slot insulating paper 4 (see FIG. 2), and both ends of the coils are coiled. The end 6 protrudes from the stator core 3. In addition, as shown in FIG. 2, a plurality of stator coils 5 are arranged between the coil ends 6 (U) and 6 (V) and between 6 (V) and 6 (W). For example, a total of eight interphase insulating papers 7 are provided for each four sheets.

相間絶縁紙7は、図3に示すように、複数相のコイルエンド6間を絶縁可能となるように長尺なほぼ矩形状に形成された一対の相間絶縁紙本体8と、この一対の相間絶縁紙本体8を繋ぐようにこれらと一体的に形成された3本の連結条部9とから構成されている。一対の相間絶縁紙本体8において、該相間絶縁紙本体8同士が対向する側には、台形状の切欠部10が2箇所ずつ形成されている。更に、一対の相間絶縁紙本体8には、該相間絶縁紙本体8の長手方向に対して2段階の段差を有する折曲部11が2箇所ずつに形成されている。即ち、一対の相間絶縁紙本体8は左右対称の形状になっている。これにより、相間絶縁紙本体8は、図3(a)及び(b)に示すように、長手方向に伸縮可能(図3(b)が延びた状態)となっている。   As shown in FIG. 3, the interphase insulating paper 7 includes a pair of interphase insulating paper bodies 8 formed in a substantially rectangular shape so as to be able to insulate between the coil ends 6 of a plurality of phases, and the pair of interphase insulating papers 8. It comprises three connecting strips 9 formed integrally with the insulating paper body 8 so as to connect them. In the pair of interphase insulating paper bodies 8, two trapezoidal notches 10 are formed on the side where the interphase insulating paper bodies 8 face each other. Further, the pair of interphase insulating paper main bodies 8 are formed with two bent portions 11 each having two steps in the longitudinal direction of the interphase insulating paper main body 8. That is, the pair of interphase insulating paper bodies 8 have a symmetrical shape. Accordingly, the interphase insulating paper main body 8 can be expanded and contracted in the longitudinal direction as shown in FIGS. 3A and 3B (a state where FIG. 3B is extended).

図5で、図3におけるA−A線に沿って相間絶縁紙本体8の断面を示すように、相間絶縁紙本体8は、中間層8aの一方の面(固定子鉄心3の外周側に位置する面)に外層8bが貼付けられるとともに、他方の面(固定子鉄心3の内周側に位置する面)に内層8cが貼付けられて、複数層たる3層に構成されている。中間層8aには、例えば、アラミド紙に高温高圧でのカレンダ処理が施されて高密度化された、電気的絶縁性能に優れる耐熱絶縁紙が用いられる。外層8bには、例えば、アラミド紙に前記のようなカレンダ処理が施されていない、柔軟性に富んだ耐熱絶縁紙が用いられる。この場合、前記カレンダ処理が施された中間層8aに用いられる耐熱絶縁紙に比べて、カレンダ処理が施されていない外層8bは、コイルエンド6のマグネットワイヤ(例えば、エナメル線)との摩擦力が大きい。   5, the interphase insulating paper main body 8 is positioned on one surface of the intermediate layer 8a (on the outer peripheral side of the stator core 3), as shown in the cross section of the interphase insulating paper main body 8 along the line AA in FIG. The outer layer 8b is affixed to the surface on which the inner layer 8c is adhered, and the inner layer 8c is affixed to the other surface (the surface located on the inner peripheral side of the stator core 3). For the intermediate layer 8a, for example, heat-resistant insulating paper excellent in electrical insulation performance, which is aramid paper subjected to calendering at high temperature and high pressure to be densified, is used. For the outer layer 8b, for example, a heat-resistant insulating paper having high flexibility, which is not subjected to the above-mentioned calendar processing on aramid paper, is used. In this case, compared with the heat-resistant insulating paper used for the intermediate layer 8a subjected to the calendering process, the outer layer 8b not subjected to the calendering process has a frictional force with the magnet wire (for example, enameled wire) of the coil end 6. Is big.

また、内層8cには、例えば、低摩擦性能に優れたフッ素樹脂(例えば、四フッ化エチレン樹脂)などからなる耐熱絶縁紙が用いられる。この場合、前記カレンダ処理が施された中間層8aに用いられる耐熱絶縁紙に比べて、フッ素樹脂からなる内層8cは、コイルエンド6のマグネットワイヤとの摩擦力が小さい。これにより、外層8bとコイルエンド6のマグネットワイヤとの摩擦係数は、内層8cとコイルエンド6のマグネットワイヤとの摩擦係数より大きいこととなる。   Further, for the inner layer 8c, for example, heat-resistant insulating paper made of a fluororesin (for example, tetrafluoroethylene resin) excellent in low friction performance is used. In this case, the inner layer 8c made of fluororesin has a smaller frictional force with the magnet wire of the coil end 6 than the heat-resistant insulating paper used for the calendered intermediate layer 8a. As a result, the friction coefficient between the outer layer 8 b and the magnet wire of the coil end 6 is larger than the friction coefficient between the inner layer 8 c and the magnet wire of the coil end 6.

ここで、本実施形態では、前記3層構造とした1枚の耐熱絶縁紙を打抜加工することによって、一対の相間絶縁紙本体8及びこれらを繋ぐ連結条部9が一体的に形成される。このため、連結条部9も相間絶縁紙本体8と同様の3層構造となっている。ちなみに、この一対の相間絶縁紙本体8を、該相間絶縁紙本体8とは別体(及び別部材)に作られた連結条部で連結させて構成しても良い。この場合、該連結条部は耐熱絶縁性等を備えていれば良い。   Here, in this embodiment, a pair of interphase insulating paper main bodies 8 and a connecting strip 9 connecting them are integrally formed by punching one heat-resistant insulating paper having the three-layer structure. . For this reason, the connecting strip 9 also has a three-layer structure similar to the interphase insulating paper body 8. Incidentally, the pair of interphase insulating paper main bodies 8 may be configured to be connected by a connecting strip formed separately from the interphase insulating paper main body 8 (and a separate member). In this case, it is sufficient that the connecting strip has a heat-resistant insulating property.

このような構成の一つの相間絶縁紙7は、前述した図2(a)のように、相間絶縁紙本体8が複数相たるU、V相のコイルエンド6(U)、6(V)間に位置するように配置され、他の相間絶縁紙7は、相間絶縁紙本体8が複数相たるV、W相のコイルエンド6(V)、6(W)間に位置するように配置される。この場合、相間絶縁紙7の3本の連結条部9は、固定子鉄心3の適宜のスロット2内に位置されている。図4では、説明の便宜上、連結条部9が位置するスロットを符号2aで示す。   As shown in FIG. 2A, the interphase insulating paper 7 having such a structure is formed between the U and V phase coil ends 6 (U) and 6 (V) in which the interphase insulating paper main body 8 is a plurality of phases. The other interphase insulating paper 7 is arranged so that the interphase insulating paper main body 8 is positioned between the V and W phase coil ends 6 (V) and 6 (W). . In this case, the three connecting strips 9 of the interphase insulating paper 7 are positioned in appropriate slots 2 of the stator core 3. In FIG. 4, for convenience of explanation, the slot in which the connecting strip 9 is located is denoted by reference numeral 2 a.

なお、固定子鉄心3のスロット2内には、まず、三相の固定子コイル5(U)、5(V)、5(W)のうち、外周側に位置するW相の固定子コイル5(W)が最初に挿入される。次に、コイルエンド6(W)、6(V)間に配置される相間絶縁紙7の連結条部9が挿入されて配置される。このとき、カレンダ処理が施されていない、即ち、マグネットワイヤとの摩擦係数が大きい外層8bは、W相のコイルエンド6(W)と接触する向きに配置され、マグネットワイヤとの摩擦係数が小さい内層8cは、V相のコイルエンド6(V)と接触する向きに配置される。   In addition, in the slot 2 of the stator core 3, first, of the three-phase stator coils 5 (U), 5 (V), and 5 (W), the W-phase stator coil 5 that is positioned on the outer peripheral side. (W) is inserted first. Next, the connecting strip 9 of the interphase insulating paper 7 disposed between the coil ends 6 (W) and 6 (V) is inserted and disposed. At this time, the calendar layer is not applied, that is, the outer layer 8b having a large friction coefficient with the magnet wire is arranged in a direction in contact with the W-phase coil end 6 (W), and the friction coefficient with the magnet wire is small. The inner layer 8c is disposed in a direction in contact with the V-phase coil end 6 (V).

次に、他のスロット2内に、V相の固定子コイル5(V)が挿入される。そして、コイルエンド6(V)、6(U)間に配置される相間絶縁紙7の連結条部9が挿入されて配置される。このときも同じく、カレンダ処理が施されていない、マグネットワイヤとの摩擦係数が大きい外層8bは、V相のコイルエンド6(V)と接触する向きに配置され、マグネットワイヤとの摩擦係数が小さい内層8cは、U相のコイルエンド6(U)と接触する向きに配置される。そして、更に他のスロット2内に、内層側に位置するU相の固定子コイル5(U)が挿入される。これにより、各相コイルエンド間は相間絶縁紙7によって絶縁される。   Next, the V-phase stator coil 5 (V) is inserted into the other slot 2. And the connecting strip 9 of the interphase insulating paper 7 disposed between the coil ends 6 (V) and 6 (U) is inserted and disposed. At this time as well, the outer layer 8b, which is not calendered and has a large friction coefficient with the magnet wire, is arranged in a direction in contact with the V-phase coil end 6 (V) and has a small friction coefficient with the magnet wire. The inner layer 8c is arranged in a direction in contact with the U-phase coil end 6 (U). Further, a U-phase stator coil 5 (U) located on the inner layer side is inserted into another slot 2. Thereby, the phase coil ends are insulated from each other by the interphase insulating paper 7.

その後、コイルエンド6は、固定子1の小型化のために、図2(b)に示すように、固定子鉄心3の外周方向(図2において上方向)に拡開されるように成形されて、且つ、中心方向(図2において左右中央方向)に圧縮される。このとき、図4(この図4では、折曲部11が延びた状態になっている)に示すように、相間絶縁紙本体8部分がコイルエンド6とともに糸12(図4では説明の便宜上、U相のコイルエンド6(U)のみを糸12にて緊縛するように図示している。)にて緊縛される。この状態で該コイルエンド6にはワニスが滴下され、このワニスを固定子コイル5に含浸させることにより全体が固められて固定子1が構成される。   Thereafter, the coil end 6 is shaped so as to expand in the outer peripheral direction (upward in FIG. 2) of the stator core 3 as shown in FIG. And compressed in the central direction (left and right central direction in FIG. 2). At this time, as shown in FIG. 4 (in FIG. 4, the bent portion 11 is in an extended state), the interphase insulating paper main body 8 portion is thread 12 together with the coil end 6 (in FIG. Only the U-phase coil end 6 (U) is shown to be bound with the thread 12. In this state, varnish is dripped onto the coil end 6 and the stator coil 5 is impregnated with the varnish to harden the whole to constitute the stator 1.

ここで、前述のようにコイルエンド6には、固定子1の小型化のための成形時に長手方向あるいは幅方向に対して力(引張力)が加えられる。これにより、相間絶縁紙7にもコイルエンド6と同様な力が作用してしまう。また、固定子コイル5が配置される位置、つまり、各相におけるコイルエンド6(U)、6(V)、6(W)によって成形圧縮される際のコイルエンド6の変形量が異なるため、相間絶縁紙本体8の表裏面が異なる向きや大きさの力で引っ張られてしまい、相間絶縁紙7にしわや破れが生じる虞があった。   Here, as described above, a force (tensile force) is applied to the coil end 6 in the longitudinal direction or the width direction when the stator 1 is molded for the purpose of downsizing. As a result, the same force as that of the coil end 6 acts on the interphase insulating paper 7. In addition, since the amount of deformation of the coil end 6 when the stator coil 5 is arranged, that is, the coil end 6 (U), 6 (V), 6 (W) in each phase is different depending on the amount of deformation, The front and back surfaces of the interphase insulating paper main body 8 are pulled by forces of different directions and sizes, and the interphase insulating paper 7 may be wrinkled or torn.

しかしながら、本実施形態は上記問題を解決し得る構成としている。ここで、本実施形態の作用効果について図2を参照して、3相のコイルエンド6うちコイルエンド6(U)、6(V)を代表して説明する。前述の通り、相間絶縁紙本体8において、外層8bとコイルエンド6(V)のマグネットワイヤとの摩擦係数は、内層8cとコイルエンド6(U)のマグネトワイヤとの摩擦係数より大きくなっている。このため、コイルエンド6が固定子鉄心3の外周方向に拡開されるように成形されて、且つ、中心方向に圧縮されると、外層8bとコイルエンド6(V)とは摩擦力が大きいためずれることなく移動(及び変形)する。つまり、外層8bはコイルエンド6(V)の移動に追従して移動することになる。   However, the present embodiment is configured to solve the above problem. Here, with reference to FIG. 2, the effect of this embodiment is demonstrated on behalf of the coil ends 6 (U) and 6 (V) among the three-phase coil ends 6. As described above, in the interphase insulating paper main body 8, the friction coefficient between the outer layer 8b and the magnet wire of the coil end 6 (V) is larger than the friction coefficient between the inner layer 8c and the magnet wire of the coil end 6 (U). . For this reason, when the coil end 6 is formed so as to expand in the outer peripheral direction of the stator core 3 and is compressed in the center direction, the outer layer 8b and the coil end 6 (V) have a large frictional force. Therefore, it moves (and deforms) without shifting. That is, the outer layer 8b moves following the movement of the coil end 6 (V).

これに対し、内層8cとコイルエンド6(U)とは摩擦力が小さいため、お互いが滑りながら移動する。つまり、内層8cはコイルエンド6(U)の移動には追従せずに移動することになる。これにより、相間絶縁紙本体8の表裏面には、主に外層8bとコイルエンド6(V)との間の摩擦力しか伝わらないため、相間絶縁紙本体8は変形量の小さい外周側のコイルエンド6(V)に追従して移動することになり、変形量の大きい内周側のコイルエンド6(U)には追従しない。従って、相間絶縁紙7の表裏面が異なった方向に引っ張られることがなく、相間絶縁紙本体8にしわが生じたり、ずれて破れてしまったりすることを極力防ぐことができる。この結果、コイルエンド6の成形圧縮時のコイルエンド6の動きに対して、効果的にしわや破れ、ずれを防止することができる。   On the other hand, since the inner layer 8c and the coil end 6 (U) have a small frictional force, they move while sliding against each other. That is, the inner layer 8c moves without following the movement of the coil end 6 (U). As a result, only the frictional force between the outer layer 8b and the coil end 6 (V) is mainly transmitted to the front and back surfaces of the interphase insulating paper main body 8, so that the interphase insulating paper main body 8 has a small amount of deformation on the outer peripheral side coil. It moves following the end 6 (V) and does not follow the coil end 6 (U) on the inner peripheral side having a large deformation amount. Therefore, the front and back surfaces of the interphase insulating paper 7 are not pulled in different directions, and it is possible to prevent the interphase insulating paper main body 8 from being wrinkled or displaced and torn as much as possible. As a result, it is possible to effectively prevent wrinkles, tears, and displacement with respect to the movement of the coil end 6 when the coil end 6 is molded and compressed.

また、本実施形態の相間絶縁紙7は、相間絶縁紙本体8において2段階の折曲部11が形成されている(図3参照)。このため、コイルエンド6の成形時に相間絶縁紙本体8に対して長手方向の力(固定子鉄心3の円周方向の力)が、つまり相間絶縁紙本体8を破るような力が加わったとしても、この力は折曲部11が、図3(b)のように、延びることによって吸収されるので、相間絶縁紙本体8が破れてしまうことを極力防止することができる。
更に、相間絶縁紙本体8には切欠部10が形成されている。このため、コイルエンド6に相間絶縁紙本体8が配設された状態でワニスを滴下しても、切欠部10を通じてワニスが流れやすくなり、コイルエンド6及び固定子コイル5に対するワニスの浸透性を向上させることが可能となる。
そして、一対の相間絶縁紙本体8間には、これらを連結する連結条部9を3本設けるようにしたので、固定子鉄心3のスロット2に連結条部9を相通させることにより、コイルエンド6に対する相間絶縁紙7の位置決めを正確に行うことができる。
Further, the interphase insulating paper 7 of the present embodiment has a two-stage bent portion 11 formed in the interphase insulating paper main body 8 (see FIG. 3). For this reason, when the coil end 6 is formed, a longitudinal force (force in the circumferential direction of the stator core 3) is applied to the interphase insulating paper main body 8, that is, a force that breaks the interphase insulating paper main body 8 is applied. However, since this force is absorbed when the bent part 11 extends as shown in FIG. 3B, it is possible to prevent the interphase insulating paper body 8 from being broken as much as possible.
Further, a notch 10 is formed in the interphase insulating paper body 8. For this reason, even if the varnish is dropped with the interphase insulating paper main body 8 disposed on the coil end 6, the varnish easily flows through the notch 10, and the varnish permeability to the coil end 6 and the stator coil 5 is improved. It becomes possible to improve.
Since three connecting strips 9 are provided between the pair of interphase insulating paper main bodies 8, the connecting strip 9 is passed through the slot 2 of the stator core 3, so that the coil end The interphase insulating paper 7 can be accurately positioned with respect to 6.

(第2の実施形態)
次に第2の実施形態について図6を参照して説明する。
この第2の実施形態は、相間絶縁紙本体13を、外層13b(外層8bに相当)と内層13c(内層8cに相当)とを直接貼り合せた複数層たる2層構造としている。この第2の実施形態によれば、第1の実施形態と同様の破れやしわなどの防止効果を、2層構造の相間絶縁紙で得ることができる。ここで、この第2の実施形態は中間層を有していない分、第1の実施形態に比べて耐熱絶縁性能は若干劣ることになるが、柔軟性やコスト面では有利となる。従って、第1及び第2の実施形態を、固定子コイル5の仕様(例えば、通電量や発熱量等)に応じて適宜選択することができ、相間絶縁紙の選択肢が広がる。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG.
In the second embodiment, the interphase insulating paper main body 13 has a two-layer structure as a plurality of layers obtained by directly bonding an outer layer 13b (corresponding to the outer layer 8b) and an inner layer 13c (corresponding to the inner layer 8c). According to the second embodiment, the same effect of preventing tears and wrinkles as in the first embodiment can be obtained with the two-layer structure interphase insulating paper. Here, since the second embodiment does not have the intermediate layer, the heat-resistant insulation performance is slightly inferior to that of the first embodiment, but it is advantageous in terms of flexibility and cost. Therefore, the first and second embodiments can be appropriately selected according to the specifications of the stator coil 5 (for example, the energization amount and the heat generation amount), and the choice of interphase insulating paper is expanded.

(第3の実施形態)
図7は第3の実施形態を示し、第1の実施形態とは次の点で異なる。
第3の実施形態の相間絶縁紙本体14は、前記中間層8aと同様にカレンダ処理が施されたアラミド紙からなる中間層14aを有している。この中間層14aの一方の面(固定子鉄心3の外周側に位置する面)は、放電加工などの表面処理(増摩擦処理)が施されて、コイルエンド6のマグネットワイヤとの摩擦係数を増加させた外層14bが形成されている。また、中間層14aの他方の面(固定子鉄心3の内周側に位置する面)は、減摩剤塗布や流体パラフィン塗布等の処理(減摩擦処理)が施されて、コイルエンド6のマグネットワイヤとの摩擦係数を減少させた内層14cが形成されている。このように、中間層14aの表裏面に摩擦を増減させる処理を施すことにより、外層14b及び内層14cに接触するコイルエンド6のマグネットワイヤとの摩擦係数を、外層14b側は大きく、内層14c側は小さくしている。この第3の実施形態によれば、第1の実施形態と同様の作用効果を得ることができる。
(Third embodiment)
FIG. 7 shows a third embodiment, which differs from the first embodiment in the following points.
The interphase insulating paper main body 14 of the third embodiment has an intermediate layer 14a made of aramid paper that has been subjected to calendering treatment in the same manner as the intermediate layer 8a. One surface of the intermediate layer 14a (the surface located on the outer peripheral side of the stator core 3) is subjected to surface treatment (increased friction treatment) such as electric discharge machining so that the friction coefficient with the magnet wire of the coil end 6 is increased. An increased outer layer 14b is formed. Further, the other surface of the intermediate layer 14a (the surface located on the inner peripheral side of the stator core 3) is subjected to processing (friction reduction processing) such as anti-friction agent application or fluid paraffin application, so that the coil end 6 is An inner layer 14c having a reduced coefficient of friction with the magnet wire is formed. In this way, by applying a process to increase or decrease the friction on the front and back surfaces of the intermediate layer 14a, the coefficient of friction with the magnet wire of the coil end 6 contacting the outer layer 14b and the inner layer 14c is larger on the outer layer 14b side, and the inner layer 14c side is larger. Is small. According to the third embodiment, it is possible to obtain the same operational effects as those of the first embodiment.

また、この場合、低圧でカレンダ処理が施された比較的摩擦抵抗の大きいアラミド紙を母材層として、その一方の面(固定子鉄心3の外周側に位置する面)を摩擦抵抗の大きい外層とし、他方の面(固定子鉄心3の内周側に位置する面)のみに流体パラフィン塗布等の処理を施して摩擦抵抗を減少させた内層としても良い。この場合においても、摩擦抵抗の大きい外層と摩擦抵抗の小さい内層とからなる複数層たる2層構造を構成し、第1の実施形態と同様の作用効果を得ることができる。   Further, in this case, aramid paper having a relatively high frictional resistance subjected to calendering at a low pressure is used as a base material layer, and one surface thereof (a surface located on the outer peripheral side of the stator core 3) is an outer layer having a high frictional resistance. Further, only the other surface (the surface located on the inner peripheral side of the stator core 3) may be treated as a fluid paraffin coating to form an inner layer with reduced frictional resistance. Even in this case, a two-layer structure of a plurality of layers including an outer layer having a high frictional resistance and an inner layer having a low frictional resistance can be configured, and the same operational effects as those of the first embodiment can be obtained.

(第4の実施形態)
図8は第4の実施形態を示し、第1の実施形態とは次の点で異なる。
第4の実施形態の相間絶縁紙本体15は、前記中間層8aと同様にカレンダ処理が施されたアラミド紙からなる耐熱絶縁紙を母材層15aとし、この母材層15aの一方の面(固定子鉄心3の外周側に位置する面)には、例えば、樹脂やゴムからなる短繊維16が静電植毛されて、表面の摩擦抵抗を増加させた外層15bが形成されている。そして、固定子鉄心3の内周側に位置する母材層15a自体を内層15cとして、複数層たる2層構造を構成している。ここで、外層15bにおいて、静電植毛された短繊維16を、コイルエンド6の拡開方向におけるコイルエンド6のマグネットワイヤとの摩擦係数を増加させる方向、即ち、固定子鉄心3に向かって一方向に押し倒す(寝かす)ことにより、コイルエンド6のマグネットワイヤとの間に生じる摩擦力に方向性を持たしている。例えば、図8にいては、マグネットワイヤが右方向の移動する場合は摩擦力が大きくなり、左方向に移動する場合は摩擦力が小さくなる。
(Fourth embodiment)
FIG. 8 shows a fourth embodiment, which differs from the first embodiment in the following points.
In the interphase insulating paper main body 15 of the fourth embodiment, a heat-resistant insulating paper made of aramid paper that has been subjected to calendering treatment is used as a base material layer 15a in the same manner as the intermediate layer 8a, and one surface of the base material layer 15a ( On the outer peripheral surface of the stator core 3, for example, short fibers 16 made of resin or rubber are electrostatically implanted to form an outer layer 15 b with increased surface frictional resistance. And the base material layer 15a itself located in the inner peripheral side of the stator core 3 is made into the inner layer 15c, and the two-layer structure which is multiple layers is comprised. Here, in the outer layer 15 b, the electrostatically implanted short fibers 16 are increased in the direction of increasing the friction coefficient with the magnet wire of the coil end 6 in the expanding direction of the coil end 6, that is, toward the stator core 3. The frictional force generated between the coil end 6 and the magnet wire is directional by pushing it down in the direction. For example, in FIG. 8, the frictional force increases when the magnet wire moves in the right direction, and the frictional force decreases when it moves in the left direction.

ここで、第4の実施形態の作用効果について図2を流用して説明する(この場合、相間絶縁紙本体8は、相間絶縁紙本体15とする)。コイルエンド6の成形圧縮時には、コイルエンド6(V)と相間絶縁紙本体15との拡開方向への摩擦係数は大きいため、コイルエンド6(V)の移動に追従して相間絶縁紙本体15も移動する。しかし、コイルエンド6(V)のスプリングバックによってコイルエンド6(V)が拡開方向(成形圧縮方向)とは逆の方向に移動した場合、コイルエンド6(V)と相間絶縁紙本体15との拡開方向とは逆の方向への摩擦係数は小さいため、相間絶縁紙本体15はコイルエンド6(V)の移動には追従しない。従って、コイルエンド6(V)のスプリングバックによっても、相間絶縁紙本体15(相間絶縁紙7)の位置がずれたり破れたりすることを防止することができる。   Here, the effects of the fourth embodiment will be described with reference to FIG. 2 (in this case, the interphase insulating paper main body 8 is the interphase insulating paper main body 15). At the time of forming and compressing the coil end 6, since the coefficient of friction between the coil end 6 (V) and the interphase insulating paper main body 15 in the expanding direction is large, the interphase insulating paper main body 15 follows the movement of the coil end 6 (V). Also move. However, when the coil end 6 (V) moves in the direction opposite to the expansion direction (molding compression direction) due to the spring back of the coil end 6 (V), the coil end 6 (V) and the interphase insulating paper main body 15 Since the friction coefficient in the direction opposite to the spreading direction is small, the interphase insulating paper main body 15 does not follow the movement of the coil end 6 (V). Therefore, it is possible to prevent the position of the interphase insulating paper main body 15 (interphase insulating paper 7) from being shifted or torn even by the spring back of the coil end 6 (V).

以上のように、本実施形態の回転電機の相間絶縁紙によれば、複数層で構成された相間絶縁紙本体において、固定子鉄心の外周側に位置する面(外層)は、固定子鉄心の内周側に位置する面(内層)よりも、コイルエンドのマグネットワイヤとの摩擦係数が大きくなるよう構成している。つまり、相間絶縁紙本体とマグネットワイヤとを接触させたとき、外層の方が内層よりも滑り難くなっている。このため、コイルエンドを成形する際にコイルエンドが拡開圧縮されると、相間絶縁紙において、コイルエンドの変形量の小さい外周側(外層側)は滑り難いためコイルエンドの移動に追従する。これに対し、コイルエンドの変形量の大きい内周側(内層側)は滑り易いためコイルエンドの移動には追従しない。これにより、相間絶縁紙本体の表裏面が異なる向きに引っ張られることがないため、相間絶縁紙にしわや破れが生じるのを防ぐことができる。   As described above, according to the interphase insulating paper of the rotating electrical machine of the present embodiment, in the interphase insulating paper main body constituted by a plurality of layers, the surface (outer layer) located on the outer peripheral side of the stator core is the stator core. The friction coefficient between the coil end and the magnet wire is larger than the surface (inner layer) located on the inner peripheral side. That is, when the interphase insulating paper main body and the magnet wire are brought into contact with each other, the outer layer is less slippery than the inner layer. For this reason, when the coil end is expanded and compressed when the coil end is formed, the outer peripheral side (outer layer side) where the deformation amount of the coil end is small in the interphase insulating paper is difficult to slip, and follows the movement of the coil end. On the other hand, the inner peripheral side (inner layer side) where the deformation amount of the coil end is large is slippery and does not follow the movement of the coil end. Thereby, since the front and back surfaces of the interphase insulating paper main body are not pulled in different directions, wrinkles and tearing of the interphase insulating paper can be prevented.

以上説明した回転電機の相間絶縁紙及びこれを用いた回転電機は、上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適宜変更して適用可能である。   The interphase insulating paper for a rotating electrical machine described above and the rotating electrical machine using the same are not limited to the above-described embodiment, and can be applied by appropriately changing to various embodiments without departing from the gist thereof. .

図面中、1は固定子、2はスロット、3は固定子鉄心、5は固定子コイル、6はコイルエンド、7は相間絶縁紙、8、13、14、15は相間絶縁紙本体、8a、14aは中間層、8b、13b、14b、15bは外層、8c、13c、14c、15cは内層、9は連結条部を示す。   In the drawings, 1 is a stator, 2 is a slot, 3 is a stator core, 5 is a stator coil, 6 is a coil end, 7 is interphase insulating paper, 8, 13, 14, and 15 are interphase insulating paper bodies, 8a, 14a is an intermediate layer, 8b, 13b, 14b and 15b are outer layers, 8c, 13c, 14c and 15c are inner layers, and 9 is a connecting strip.

Claims (6)

固定子鉄心の軸方向両端部において複数相の固定子コイルのコイルエンド間を絶縁可能な形状に形成された一対の相間絶縁紙本体と、
この一対の相間絶縁紙本体を繋ぐように設けられて前記固定子鉄心のスロット内に位置する連結条部とを有し、
前記相間絶縁紙本体は複数の層からなり、該複数の層のうち前記固定子鉄心の外周側に位置する外層と前記コイルエンドのマグネットワイヤとの摩擦係数は、前記固定子鉄心の内周側に位置する内層と前記コイルエンドのマグネットワイヤとの摩擦係数よりも大としたことを特徴とする回転電機の相間絶縁紙。
A pair of interphase insulating paper bodies formed in a shape that can insulate between the coil ends of the stator coils of a plurality of phases at both axial ends of the stator core;
A connecting strip that is provided so as to connect the pair of interphase insulating paper main bodies and is located in a slot of the stator core;
The interphase insulating paper body is composed of a plurality of layers, and the coefficient of friction between the outer layer of the plurality of layers located on the outer peripheral side of the stator core and the magnet wire of the coil end is the inner peripheral side of the stator core. An interphase insulating paper for a rotating electrical machine, characterized in that the coefficient of friction is larger than the coefficient of friction between the inner layer located at the coil and the magnet wire at the coil end.
前記相間絶縁紙本体は、中間層を有し、該中間層の一方の面には前記外層を貼付けるとともに他方の面には前記内層を貼付けて3層構造とすることを特徴とする請求項1記載の回転電機の相間絶縁紙。   The interphase insulating paper main body has an intermediate layer, and the outer layer is attached to one surface of the intermediate layer and the inner layer is attached to the other surface to form a three-layer structure. The interphase insulating paper for a rotating electrical machine according to 1. 前記相間絶縁紙本体は、前記外層と前記内層とを貼り合せた2層構造とすることを特徴とする請求項1記載の回転電機の相間絶縁紙。   2. The interphase insulating paper for a rotating electrical machine according to claim 1, wherein the interphase insulating paper main body has a two-layer structure in which the outer layer and the inner layer are bonded together. 前記相間絶縁紙本体は、中間層を有し、該中間層の一方の面には増摩擦処理を施して前記外層とし、他方の面には減摩擦処理を施して前記内層とすることを特徴とする請求項1記載の回転電機の相間絶縁紙。   The interphase insulating paper main body has an intermediate layer, one surface of the intermediate layer is subjected to a friction increasing treatment to form the outer layer, and the other surface is subjected to a friction reducing treatment to form the inner layer. The interphase insulating paper for rotating electrical machines according to claim 1. 前記相間絶縁紙本体は、中間層を有し、該中間層の一方の面は前記コイルエンドの拡開方向における該コイルエンドのマグネットワイヤとの摩擦係数を増加させる表面処理を施して前記外層としたことを特徴とする請求項1記載の回転電機の相間絶縁紙。   The interphase insulating paper main body has an intermediate layer, and one surface of the intermediate layer is subjected to a surface treatment for increasing a coefficient of friction with the magnet wire of the coil end in the expanding direction of the coil end, and the outer layer and The interphase insulating paper for a rotating electric machine according to claim 1, wherein the interphase insulating paper is used. 請求項1から5のいずれか一項記載の相間絶縁紙を用いたことを特徴とする回転電機。   A rotary electric machine using the interphase insulating paper according to any one of claims 1 to 5.
JP2010099767A 2010-04-23 2010-04-23 Phase-to-phase insulating paper of rotary electric machine, and rotary electric machine Pending JP2011234429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099767A JP2011234429A (en) 2010-04-23 2010-04-23 Phase-to-phase insulating paper of rotary electric machine, and rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099767A JP2011234429A (en) 2010-04-23 2010-04-23 Phase-to-phase insulating paper of rotary electric machine, and rotary electric machine

Publications (1)

Publication Number Publication Date
JP2011234429A true JP2011234429A (en) 2011-11-17

Family

ID=45323175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099767A Pending JP2011234429A (en) 2010-04-23 2010-04-23 Phase-to-phase insulating paper of rotary electric machine, and rotary electric machine

Country Status (1)

Country Link
JP (1) JP2011234429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120133238A1 (en) * 2010-11-26 2012-05-31 Honda Motor Co., Ltd. Stator
US20170047808A1 (en) * 2014-05-15 2017-02-16 Mitsubishi Electric Corporation Rotary electric machine and a manufacturing method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120133238A1 (en) * 2010-11-26 2012-05-31 Honda Motor Co., Ltd. Stator
US8659204B2 (en) * 2010-11-26 2014-02-25 Honda Motor Co., Ltd. Stator with interphase insulation sheet
US20170047808A1 (en) * 2014-05-15 2017-02-16 Mitsubishi Electric Corporation Rotary electric machine and a manufacturing method therefor
CN106464054A (en) * 2014-05-15 2017-02-22 三菱电机株式会社 Rotating electric machine and method for manufacturing same
US9705374B2 (en) * 2014-05-15 2017-07-11 Mitsubishi Electric Corporation Rotary electric machine and a manufacturing method thereof
CN106464054B (en) * 2014-05-15 2019-05-28 三菱电机株式会社 Rotating electric machine and its manufacturing method

Similar Documents

Publication Publication Date Title
US11283336B2 (en) Insulating member, stator of rotary electric machine, and rotary electric machine
US10848024B2 (en) Stator for rotary electric machine and method of manufacturing the same
JP4293237B2 (en) stator
JP4980631B2 (en) Interphase insulating member and rotating electric machine
EP2907224A2 (en) Slot insulating paper
JP2012065426A (en) Manufacturing method of actuator
JP6459083B2 (en) Insulating member, stator of rotating electric machine, rotating electric machine, and method for manufacturing stator of rotating electric machine
JP4461820B2 (en) Interphase insulating paper and electric motor provided with the same
JP5151300B2 (en) Stator and rotating electric machine
US20180254681A1 (en) Stator assembly method
US10897173B2 (en) Insulation paper and stator of rotary electric machine
JP2011234429A (en) Phase-to-phase insulating paper of rotary electric machine, and rotary electric machine
JP4764048B2 (en) Interphase insulation paper for rotating electrical machines
US11303178B2 (en) Stator for rotary electric machine, method of manufacturing stator for rotary electric machine, and rotary electric machine
JP2010288405A (en) Rotating electric machine
JP5267114B2 (en) Core insulating member for rotating electric machine and insulating structure of rotating electric machine
JP2009050151A (en) Capped stator core wedge, and related method
JP5242075B2 (en) Interphase insulating paper and stator of rotating electrical machines
JP7471110B2 (en) Slot Liner
JP5324547B2 (en) Stator
JP2011097779A (en) Insulating cap
JP2006197662A (en) Stator with skew
JP7486898B2 (en) Motor stator
JP4914668B2 (en) Coil fixing structure to motor stator core slot, and liquid ring motor
JP2007325398A (en) Slot material