JP2011234089A - Nonlinear waveguide-waveguide converter, and communication device using nonlinear waveguide-waveguide converter - Google Patents

Nonlinear waveguide-waveguide converter, and communication device using nonlinear waveguide-waveguide converter Download PDF

Info

Publication number
JP2011234089A
JP2011234089A JP2010102104A JP2010102104A JP2011234089A JP 2011234089 A JP2011234089 A JP 2011234089A JP 2010102104 A JP2010102104 A JP 2010102104A JP 2010102104 A JP2010102104 A JP 2010102104A JP 2011234089 A JP2011234089 A JP 2011234089A
Authority
JP
Japan
Prior art keywords
waveguide
converter
probe
circuit
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010102104A
Other languages
Japanese (ja)
Other versions
JP5457931B2 (en
Inventor
Yasunori Kishizawa
靖典 岸澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2010102104A priority Critical patent/JP5457931B2/en
Publication of JP2011234089A publication Critical patent/JP2011234089A/en
Application granted granted Critical
Publication of JP5457931B2 publication Critical patent/JP5457931B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve size and cost reduction even when a filter is inserted into a waveguide circuit side, to sufficiently suppress an unwanted signal, and to attenuate even harmonics in a wide frequency band.SOLUTION: A converter comprises: a second waveguide 10B provided with a short-circuit plane S; a probe 14 inserted into a waveguide 10 from an H plane thereof at a tip of a microwave strip line 13 formed on a dielectric substrate 12; and a columnar conductor 16 which is arranged while projecting from a short-circuit plane S to nearby the probe 14, and adapted to form a resonance circuit resonating to a predetermined frequency. The waveguide 10 (10A and 10B) has a width of a rectangle in a magnetic field direction set to a value such that the circumference of a reception frequency band is equal to or less than a cutoff frequency of the waveguide, and the probe 14 is provided with an open stub. Further, a waveguide step impedance converter is provided between the waveguide of the converter and a transmitter-side waveguide.

Description

本発明は非導波管線路−導波管変換器及び通信用装置、特にマイクロ波回路に使用される分布定数線路又は同軸線路等の非導波管線路と導波管との間の変換器で、所望の不要周波数成分を抑圧するフィルタ機能を有する非導波管線路−導波管変換器及び通信用装置の構成に関する。   The present invention relates to a non-waveguide line-waveguide converter and a communication device, particularly a converter between a non-waveguide line and a waveguide, such as a distributed constant line or a coaxial line, used in a microwave circuit. Thus, the present invention relates to a non-waveguide line-waveguide converter having a filter function for suppressing a desired unnecessary frequency component and a configuration of a communication device.

従来、マイクロストリップ線路等の非導波管線路と導波管との間の変換器では、変換部の前後で、特定の周波数を抑圧する目的でフィルタを挿入する場合、分布定数回路を用いるBRF(バンドリジェクションフィルタ)、LPF(ローパスフィルタ)、HPF(ハイパスフィルタ)、BPF(バンドパスフィルタ)が用いられる。また、導波管部分においては、複数の共振器を結合して形成するBPFやBRFが用いられ、抑圧帯域が比較的狭い場合は、導波管伝送方向と直交する向きに取り付けられた導体板の形状により所定の周波数を抑圧する単共振回路を挿入することが行われる(下記特許文献1,2)。   Conventionally, in a converter between a non-waveguide line such as a microstrip line and a waveguide, when a filter is inserted in order to suppress a specific frequency before and after the conversion unit, a BRF using a distributed constant circuit (Band rejection filter), LPF (low pass filter), HPF (high pass filter), BPF (band pass filter) are used. In the waveguide portion, a BPF or BRF formed by coupling a plurality of resonators is used. When the suppression band is relatively narrow, a conductor plate attached in a direction orthogonal to the waveguide transmission direction A single resonance circuit that suppresses a predetermined frequency is inserted depending on the shape (Patent Documents 1 and 2 below).

図12(A),(B)には、上記非導波管線路−導波管変換器の構成が示されており、この変換器では、矩形状空洞を形成した金属製導波管1内に、誘電体基板2上に形成されたマイクロストリップ線路3の先端部をプローブ4として挿入する。即ち、導波管1のH面(上面)からプローブ4を内部に突出させる構成とされる。なお、符号5はスルーホールである。   FIGS. 12A and 12B show the configuration of the non-waveguide line-waveguide converter. In this converter, the inside of the metal waveguide 1 in which a rectangular cavity is formed. Then, the tip of the microstrip line 3 formed on the dielectric substrate 2 is inserted as the probe 4. That is, the probe 4 is projected from the H surface (upper surface) of the waveguide 1 to the inside. Reference numeral 5 denotes a through hole.

一方、衛星を使用した双方向通信では、通信装置内の受信機への妨害及び法令上の規定から送信機から送出される不要信号について厳しい要求仕様があり、また一般の民生用途も睨んだ製品が多くなったことから、価格及び消費電力の低減の要求も強くなっている。このため、これら不要信号の抑圧はできるだけ、コストをかけずに簡易な方法により実現する必要があり、また抑圧機構は最終増幅器以降にも必要であることから、これら回路による送信信号の損失が大きければ結果的に、消費電力の増大を招くこととなる。   On the other hand, in two-way communication using satellites, there are strict requirements for unwanted signals sent from transmitters due to interference with receivers in communication devices and legal regulations, and products that are also intended for general consumer use Therefore, the demand for reduction in price and power consumption is also increasing. For this reason, it is necessary to suppress these unnecessary signals by a simple method without incurring costs as much as possible, and since the suppression mechanism is also required after the final amplifier, the loss of transmission signals by these circuits can be large. As a result, the power consumption is increased.

特許第4301722号公報Japanese Patent No. 4301722 特開2007−180655号公報JP 2007-180655 A 特許第4262192号公報Japanese Patent No. 4262192

ところで、上記の非導波管線路側にフィルタを挿入する場合は、一般に誘電体基板上に回路を形成するため、誘電体の損失に起因して高いQ値のフィルタが実現できない。即ち、例えばイメージ信号や受信周波数帯域雑音を抑圧する際で、通過帯域と抑圧周波数間の離調周波数が小さい場合には採用できず、これら周波数関係に問題がなく採用できる条件であっても、挿入損失が大きい、占有面積が大きいなどの問題がある。   By the way, when a filter is inserted on the non-waveguide line side, since a circuit is generally formed on a dielectric substrate, a high Q value filter cannot be realized due to loss of the dielectric. That is, for example, when suppressing the image signal and the reception frequency band noise, it is not possible to adopt when the detuning frequency between the passband and the suppression frequency is small, and even if it is a condition that can be adopted without any problem in these frequency relationships, There are problems such as large insertion loss and large occupation area.

一方、導波管回路側にフィルタを挿入する場合は、高いQ値/低損失の回路を実現し易いものの、導波管で形成するフィルタ回路は例えばワッフルアイアン型フィルタ等のように一般的に立体形状であるため、占有体積が大きく、また形状や求める特性によっては精密な機械加工を必要とし、コストの上昇を伴うことが多い。   On the other hand, when a filter is inserted on the waveguide circuit side, it is easy to realize a high Q value / low loss circuit. However, a filter circuit formed by a waveguide is generally used as a waffle iron type filter, for example. Due to the three-dimensional shape, the occupied volume is large, and depending on the shape and required characteristics, precise machining is required, which is often accompanied by an increase in cost.

これらの問題を解消し、不要信号であるイメージ信号、受信周波数帯域雑音の抑圧をするため、例えば特許文献1,2では、テーパー導波管と金属板フィルタを組み合わせたもの等が用いられるが、この金属板フィルタは導波管に対し電気的に安定した装着状態にすることが難しい。即ち、この金属板フィルタの安価な装着方法として機械的カシメ等を使用すると、しばしば電気的(マイクロ波的)な接触不良により、送信帯域の挿入損失の増加や、目的とした抑圧周波数帯域内での特性悪化が生じることがあり、これらの不具合をなくすためのスクリーニング試験等の生産上の管理を行う必要がある。   In order to eliminate these problems and suppress unnecessary image signals and reception frequency band noise, for example, in Patent Documents 1 and 2, a combination of a tapered waveguide and a metal plate filter is used. This metal plate filter is difficult to make an electrically stable mounting state with respect to the waveguide. That is, when mechanical caulking or the like is used as an inexpensive mounting method for the metal plate filter, an increase in insertion loss of the transmission band due to a poor electrical (microwave) contact or within the intended suppression frequency band. It is necessary to carry out production management such as screening tests to eliminate these problems.

また、金属板フィルタ自体は、機械的占有体積が小さくて済むが、金属板フィルタの前後に他の導波管回路(フィルタや分波器)を接続・装着する場合は、構造上、金属板フィルタと他の導波管回路との間に適当な長さが必要であり、小型化の妨げとなる。   In addition, the metal plate filter itself requires a small mechanically occupied volume. However, when other waveguide circuits (filters and duplexers) are connected and mounted before and after the metal plate filter, the metal plate is structurally An appropriate length is required between the filter and another waveguide circuit, which prevents miniaturization.

更に、フィルタの素材には何らかの防錆処理が必要であるため、メッキ処理等を行うと、このメッキ処理の種類によっては、表皮抵抗の増加を招き、結果として送信帯域での挿入損失増加の原因となる。   Furthermore, since the filter material requires some rust prevention treatment, plating treatment may cause an increase in skin resistance depending on the type of plating treatment, resulting in an increase in insertion loss in the transmission band. It becomes.

一方、不要信号である第2高調波に関しては、導波管内に抑圧回路を設置する場合は高次モードによる悪影響があるため、上述のように、誘電体基板上に形成したマイクロストリップ回路等で信号抑圧フィルタを形成するため、送信帯域に関しても、損失が発生することになり、これらの加算効果によって、送信電力の低下が生じ、送信機電力効率の低下を招き、結果として消費電力の増加を発生させていた。   On the other hand, the second harmonic, which is an unnecessary signal, has an adverse effect due to higher-order modes when a suppression circuit is installed in the waveguide. Therefore, as described above, a microstrip circuit or the like formed on a dielectric substrate is used. Since the signal suppression filter is formed, a loss is also generated in the transmission band, and these addition effects cause a decrease in transmission power, resulting in a decrease in transmitter power efficiency, resulting in an increase in power consumption. It was generated.

このような第2高調波の抑圧を図るものとして、上記特許文献3があり、この特許文献1は、図12(A)に示されるように、プローブ4からλ/2(λ:抑圧周波数の波長)だけ離れた位置に金属片6を設けている。また、この金属片6は、その長手方向(プローブ4の挿入方向)の長さもλ/2とし、目的の周波数においてプローブ4の先端が疑似接地となるように構成することで、例えば2倍の高調波を抑圧することができる。   As a technique for suppressing such second harmonics, there is Patent Document 3 described above. As shown in FIG. 12 (A), Patent Document 1 discloses that λ / 2 (λ: suppression frequency) The metal piece 6 is provided at a position separated by (wavelength). Further, this metal piece 6 has a length in the longitudinal direction (insertion direction of the probe 4) of λ / 2, and is configured such that the tip of the probe 4 is pseudo-grounded at a target frequency, for example, twice. Harmonics can be suppressed.

しかし、この抑圧回路においては、回路構成上、Q値が高いため、抑圧周波数帯域が広い場合は十分な減衰を確保することが困難である。   However, since this suppression circuit has a high Q value due to the circuit configuration, it is difficult to ensure sufficient attenuation when the suppression frequency band is wide.

本発明は上記問題点に鑑みてなされたものであり、その目的は、導波管回路側にフィルタを挿入する場合であっても、小型化及び低価格化が可能となり、不要信号の十分な抑圧ができ、また高調波においても広い周波数帯域の減衰ができ、送信電力の低下も生じることのない非導波管線路−導波管変換器及び非導波管線路−導波管変換器を用いた通信用装置を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is to achieve downsizing and cost reduction even when a filter is inserted on the waveguide circuit side. A non-waveguide line-waveguide converter and a non-waveguide line-waveguide converter that can be suppressed, can attenuate a wide frequency band even in harmonics, and do not cause a decrease in transmission power. It is to provide a communication device used.

上記目的を達成するために、請求項1の発明は、短絡面が設けられた導波管と、この導波管内部へそのH面(磁界に平行な面)から挿入され、非導波管線路の先端に形成されたプローブと、を備える非導波管線路−導波管変換器において、上記導波管の短絡面から突出させて上記プローブまで近接配置し、所定の周波数で共振する共振回路を形成するための柱状導体を設けたことを特徴とする。
即ち、導波管の短絡面から柱状導体を突出させ、同軸状の構造にすることで、インダクタ(L)と容量(C)からなる並列共振回路が構成され、かつ柱状導体をプローブへ近接させ容量結合させることで、インダクタと容量からなる直列共振回路が構成されるようにする。
In order to achieve the above object, the invention according to claim 1 is a non-waveguide in which a waveguide provided with a short-circuited surface is inserted into the waveguide from its H-plane (plane parallel to the magnetic field). A non-waveguide line-waveguide converter comprising a probe formed at the tip of the line, and a resonance that projects from the short-circuit surface of the waveguide and is close to the probe and resonates at a predetermined frequency A columnar conductor for forming a circuit is provided.
That is, by projecting the columnar conductor from the short-circuited surface of the waveguide to form a coaxial structure, a parallel resonant circuit composed of an inductor (L) and a capacitor (C) is formed, and the columnar conductor is brought close to the probe. By capacitive coupling, a series resonant circuit composed of an inductor and a capacitor is configured.

請求項2の発明は、上記プローブの上記導波管H面の近傍位置に、所定の周波数を接地条件とする開放スタブを設けたことを特徴とする。
請求項3の発明は、短絡面が設けられた矩形導波管と、この導波管内部へそのH面(磁界に平行な面)から挿入され、非導波管線路の先端に形成されたプローブと、を備える非導波管線路−導波管変換器を用いた通信用装置において、上記導波管の短絡面から突出させて上記プローブまで近接配置し、所定の周波数で共振する共振回路を構成するための柱状導体を設けると共に、上記導波管の矩形の磁界方向の幅を、受信周波数帯付近が当該導波管のカットオフ周波数以下となる値に設定したことを特徴とする。
The invention of claim 2 is characterized in that an open stub having a predetermined frequency as a grounding condition is provided at a position near the waveguide H surface of the probe.
The invention of claim 3 is a rectangular waveguide provided with a short-circuited surface, and is inserted into the waveguide from its H surface (a surface parallel to the magnetic field) and formed at the tip of the non-waveguide line. In a communication device using a non-waveguide line-waveguide converter comprising a probe, a resonance circuit that protrudes from the short-circuited surface of the waveguide and is arranged close to the probe and resonates at a predetermined frequency And the width of the rectangular waveguide in the magnetic field direction is set to a value in the vicinity of the reception frequency band equal to or lower than the cutoff frequency of the waveguide.

なお、送信周波数で規定された上記導波管とは異なるサイズの出力側(送信機側)導波管に対し、上記変換器を接続する場合は、これらの間に、矩形導波管の磁界方向の幅を上記変換器の磁界方向の幅と同一とし、電界方向の幅を異なる寸法とした導波管ステップインピーダンス変換器を設けることができる。
また、上記分布定数線路先端プローブ及び開放スタブは、これらプローブ及び開放スタブが形成されている部分の誘電体基板のみを残すように形成することができる。
When the converter is connected to an output side (transmitter side) waveguide having a size different from that of the waveguide defined by the transmission frequency, the magnetic field of the rectangular waveguide is interposed between them. A waveguide step impedance converter having the same direction width as the magnetic field direction width of the converter and a different electric field direction width can be provided.
Further, the distributed constant line end probe and the open stub can be formed so as to leave only a portion of the dielectric substrate where the probe and the open stub are formed.

上記請求項1の構成によれば、柱状導体を設けることで導波管が同軸状構造となり、この柱状導体の長さに起因するインピーダンス特性と柱状導体とプローブとの適当な結合容量によって、等価的にプローブ端で短絡に見える共振回路が形成されることになり、この共振回路によって、イメージ信号や受信周波数帯域雑音における所定の周波数帯を抑圧することが可能となる。   According to the first aspect of the present invention, by providing the columnar conductor, the waveguide has a coaxial structure, and is equivalent to the impedance characteristics resulting from the length of the columnar conductor and the appropriate coupling capacitance between the columnar conductor and the probe. Thus, a resonant circuit that appears to be a short circuit at the probe end is formed, and this resonant circuit can suppress a predetermined frequency band in the image signal and the reception frequency band noise.

上記請求項2の構成によれば、開放スタブを、誘電体基板上であっても接地導体のない導波管内プローブに設けており、プローブにおける開放スタブの接続点が所定の抑圧周波数において接地と等価となることで、所定の周波数帯、例えば第2高調波が良好な減衰特性の下で抑圧される。また、プローブがH面近傍に配置されるので、所定の周波数帯の伝送波を導波管モードに切り換わる前に効率よく減衰させることができる。   According to the configuration of the second aspect, the open stub is provided in the probe in the waveguide without the ground conductor even on the dielectric substrate, and the connection point of the open stub in the probe is grounded at a predetermined suppression frequency. By being equivalent, a predetermined frequency band, for example, the second harmonic, is suppressed under good attenuation characteristics. Further, since the probe is disposed in the vicinity of the H plane, a transmission wave in a predetermined frequency band can be efficiently attenuated before switching to the waveguide mode.

請求項3の構成によれば、送信機等に使用される通信用装置において、非導波管線路−導波管変換器の導波管と出力側導波管との間に、導波管ステップインピーダンス変換器を設けるので、受信周波数帯付近が導波管のカットオフ周波数以下となる値に設定した導波管の抑圧特性を維持したまま、上記柱状導体を有する共振回路で抑圧できなかった不要周波数を抑圧することができる。   According to the configuration of the third aspect, in the communication apparatus used for the transmitter or the like, the waveguide is provided between the waveguide of the non-waveguide line-waveguide converter and the output-side waveguide. Since the step impedance converter is provided, the resonance circuit having the columnar conductor could not be suppressed while maintaining the suppression characteristics of the waveguide set to a value in which the vicinity of the reception frequency band is equal to or lower than the cutoff frequency of the waveguide. Unnecessary frequencies can be suppressed.

本発明の非導波管線路−導波管変換器によれば、変換器の寸法、体積を増加させることなく、イメージ信号や受信周波数帯域雑音において所望の抑圧特性を実現することが可能となる。また、変換器内部に抑圧のための共振回路を内蔵するため、変換器に接続される他の導波管回路との干渉等を避けることかでき、更には構造的に部品の形状変更で実現できるため、金属板フィルタ等の部品の追加、即ちコストの上昇を招くことがなく、総合的に小型化、コスト低減を図ることができるという効果がある。また、生産時の特性のバラツキがなく、しかも特別な防錆処理も必要なく、この防錆処理に起因した挿入損失の増加を招くこともないという利点がある。   According to the non-waveguide line-waveguide converter of the present invention, it is possible to achieve desired suppression characteristics in image signals and reception frequency band noise without increasing the size and volume of the converter. . In addition, since a resonance circuit for suppression is built into the converter, it is possible to avoid interference with other waveguide circuits connected to the converter, and structurally realized by changing the shape of the parts Therefore, there is an effect that the addition of parts such as a metal plate filter, that is, an increase in cost is not caused, and the overall size can be reduced and the cost can be reduced. Further, there is an advantage that there is no variation in characteristics during production, no special rust prevention treatment is necessary, and no increase in insertion loss due to this rust prevention treatment is caused.

請求項2の発明によれば、基板上に形成した回路でありながら導波管内のプローブ部分でフィルタ機能を実現することから、例えば第2高調波の抑圧において実質的な誘電体損失を減少させることができ、またフィルタ回路(開放スタブ)がプローブに直接接続されていることから、導波管内に形成した回路でありながら適度にQ値の低下を図ることができ、広い周波数帯域の第2高調波を十分な減衰量で抑圧することが可能となる。
更に、請求項1及び2は、共にフィルタを導波管内に形成するため、送信周波数帯域での挿入損失を最小限に抑えることができ、送信電力の低下、消費電力の増加を抑制することが可能になるという効果がある。
According to the second aspect of the present invention, since the filter function is realized by the probe portion in the waveguide even though the circuit is formed on the substrate, for example, substantial dielectric loss is reduced in suppressing the second harmonic. In addition, since the filter circuit (open stub) is directly connected to the probe, the Q value can be appropriately lowered while being a circuit formed in the waveguide, and the second in a wide frequency band. It becomes possible to suppress harmonics with a sufficient amount of attenuation.
In addition, since both the filter according to the first and second embodiments form the filter in the waveguide, the insertion loss in the transmission frequency band can be minimized, and the decrease in transmission power and the increase in power consumption can be suppressed. There is an effect that it becomes possible.

請求項3の発明によれば、送信機において、例えばイメージ信号や受信周波数帯域の一部の雑音は柱状導体を用いた共振回路にて抑圧し、第2高調波は開放スタブにて抑圧すると共に、導波管のカットオフ効果により、柱状導体を用いた共振回路で抑圧できない受信帯域の雑音やイメージ信号を良好に抑圧することができる。   According to the invention of claim 3, in the transmitter, for example, an image signal and a part of the noise in the reception frequency band are suppressed by the resonance circuit using the columnar conductor, and the second harmonic is suppressed by the open stub. Due to the cutoff effect of the waveguide, it is possible to satisfactorily suppress reception band noise and image signals that cannot be suppressed by a resonance circuit using columnar conductors.

本発明の第1実施例に係る非導波管線路−導波管変換器の構成を示し、図(A)は正面図、図(B)は図(A)の中央部分の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The structure of the non-waveguide line-waveguide converter based on 1st Example of this invention is shown, A figure (A) is a front view, A figure (B) is sectional drawing of the center part of a figure (A). . 第1実施例の非導波管線路−導波管変換器の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the non-waveguide line-waveguide converter of 1st Example. 第1実施例の非導波管線路−導波管変換器において柱状導体を持たないときの特性を示すグラフ図である。It is a graph which shows the characteristic when not having a columnar conductor in the non-waveguide line-waveguide converter of 1st Example. 第1実施例の非導波管線路−導波管変換器の特性を示すグラフ図である。It is a graph which shows the characteristic of the non-waveguide line-waveguide converter of 1st Example. 第2実施例の非導波管線路−導波管変換器の構成を示し、図(A)は正面図、図(B)は図(A)の中央部分の断面図、図(C)は導波管の底面側からプローブ方向を見た図である。The structure of the non-waveguide line-waveguide converter of 2nd Example is shown, A figure (A) is a front view, A figure (B) is sectional drawing of the center part of a figure (A), A figure (C) is It is the figure which looked at the probe direction from the bottom face side of a waveguide. 第3実施例の非導波管線路−導波管変換器を用いた送信機の構成を示し、図(A)は正面図、図(B)は図(A)の中央部分の断面図、図(C)は図(B)のI−I線の部分の正面図である。The structure of the transmitter using the non-waveguide line-waveguide converter of 3rd Example is shown, A figure (A) is a front view, A figure (B) is sectional drawing of the center part of a figure (A), FIG. (C) is a front view of a portion taken along line II in FIG. (B). 第3実施例の第1導波管の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the 1st waveguide of 3rd Example. 第3実施例の非導波管線路−導波管変換器を用いた送信機の特性を示すグラフ図である。It is a graph which shows the characteristic of the transmitter using the non-waveguide line-waveguide converter of 3rd Example. 第3実施例の非導波管線路−導波管変換器を用いた送信機の第2高調波周波数付近の特性を示すグラフ図である。It is a graph which shows the characteristic of the 2nd harmonic frequency vicinity of the transmitter using the non-waveguide line-waveguide converter of 3rd Example. 第4実施例の非導波管線路−導波管変換器の構成を示し、図(A)は正面図、図(B)は図(A)の中央部分の断面図である。The structure of the non-waveguide line-waveguide converter of 4th Example is shown, A figure (A) is a front view, A figure (B) is sectional drawing of the center part of a figure (A). 第5実施例の非導波管線路−導波管変換器を用いた送信機の構成を示し、図(A)は正面図、図(B)は図(A)の中央部分の断面図、図(C)は図(B)のII−II線の部分の正面図である。The structure of the transmitter using the non-waveguide line-waveguide converter of 5th Example is shown, A figure (A) is a front view, A figure (B) is sectional drawing of the center part of a figure (A), FIG. (C) is a front view of a portion taken along line II-II in FIG. (B). 従来の非導波管線路−導波管変換器の構成を示し、図(A)は正面図、図(B)は図(A)の中央部分の断面図である。The structure of the conventional non-waveguide line-waveguide converter is shown, FIG. (A) is a front view, FIG. (B) is sectional drawing of the center part of FIG. (A).

図1(A),(B)には、本発明の第1実施例に係る非導波管線路−導波管変換器が示されており、図1に示されるように、導波管10は第1導波管10Aとショート面Sが設けられた第2導波管10Bからなり、この第1導波管10Aと第2導波管10Bとに挟まれる形で、誘電体基板12が設けられる。この誘電体基板12には、マイクロストリップ線路(分布定数回路)13の先端を延長する形のプローブ14が導波管10の上側のH面(磁界に平行な面)から内部へ挿入されるように形成され、また第1導波管10Aと第2導波管10Bとが合せられる部分のそれぞれの壁面に接触するように、接地のためのスルーホール5が設けられる。   1A and 1B show a non-waveguide line-waveguide converter according to a first embodiment of the present invention. As shown in FIG. Consists of a first waveguide 10A and a second waveguide 10B provided with a short surface S. The dielectric substrate 12 is sandwiched between the first waveguide 10A and the second waveguide 10B. Provided. In this dielectric substrate 12, a probe 14 extending from the tip of a microstrip line (distributed constant circuit) 13 is inserted into the inside from the upper H surface (surface parallel to the magnetic field) of the waveguide 10. In addition, a through hole 5 for grounding is provided so as to contact each wall surface of the portion where the first waveguide 10A and the second waveguide 10B are combined.

そして、第1実施例では、上記第2導波管10Bのショート面Sがプローブ14から略λ/4(λ:通過周波数の波長)の長さの位置にあるが、このショート面Sの中央位置からプローブ14へ向けて突出させ、このプローブ14に近接させた角柱状(四角柱)の柱状導体16が形成される。この柱状導体16は、ショート面Sから抑圧周波数の波長λの略1/4、即ちλ/4の長さに設定されており、この柱状導体16の先端はプローブ14に接近する関係となる。この柱状導体16を設けることで、第2導波管10Bは同軸状の構造となる。 Then, in the first embodiment, the second substantially lambda 0/4 from the short side S of the waveguide 10B probes 14: While in the position of the length of (lambda 0 the wavelength of a pass frequency), the short side S A prismatic (rectangular) columnar conductor 16 is formed which protrudes from the center position toward the probe 14 and is close to the probe 14. The columnar conductor 16 is approximately a quarter of the wavelength lambda 1 of the suppression frequency from the short plane S, that is, is set to a length of lambda 1/4, the tip of the columnar conductor 16 is the relationship approaching the probe 14 Become. By providing the columnar conductor 16, the second waveguide 10B has a coaxial structure.

このような柱状導体16を設けた回路について電磁界解析を行うと、ある特定の周波数において柱状導体16の部分にTEMモードに近い電磁界分布が認められる。即ち、このTEMモードが発生するのは、上記柱状導体16が当該モードにおいて1/4波長相当のときであり、その他の周波数では強いTEMモードは励起されず、導波管内はほぼ通常の導波管モードとなる。   When an electromagnetic field analysis is performed on a circuit provided with such a columnar conductor 16, an electromagnetic field distribution close to the TEM mode is recognized in the columnar conductor 16 at a certain specific frequency. That is, this TEM mode is generated when the columnar conductor 16 is equivalent to a quarter wavelength in the mode, and a strong TEM mode is not excited at other frequencies, and the inside of the waveguide is almost normal. It becomes tube mode.

第1実施例では、TEMモードが励起している柱状導体16の先端は、プローブ14と比較的近い距離に配置されているので、プローブ14に対して直接電気的に結合していると考えられることから、これらを踏まえて簡単な等価回路で表せば、図2のように表現することができる。   In the first embodiment, since the tip of the columnar conductor 16 in which the TEM mode is excited is disposed at a relatively close distance from the probe 14, it is considered that it is directly electrically coupled to the probe 14. Therefore, if expressed in a simple equivalent circuit based on these, it can be expressed as shown in FIG.

図2において、18は導波管入力端子、19は入力導波管、20はプローブ、21は非導波管線路出力端子、22はショート面までの導波管線路、23はショート面、24は柱状導体16のTEMモードで発生する共振回路、25は柱状導体16とプローブ14間に寄生する結合容量を表す。即ち、第2導波管10Bに柱状導体16を設けた同軸状構造により、L(インダクタ)C(容量)の並列共振回路24が構成されると共に、柱状導体16をプローブ14へ近接させ容量結合することで、例えばイメージ信号や受信周波数帯域雑音の抑圧するためのLCの直列共振回路が構成される。   In FIG. 2, 18 is a waveguide input terminal, 19 is an input waveguide, 20 is a probe, 21 is a non-waveguide line output terminal, 22 is a waveguide line up to a short plane, 23 is a short plane, 24 Represents a resonance circuit generated in the TEM mode of the columnar conductor 16, and 25 represents a coupling capacitance parasitic between the columnar conductor 16 and the probe 14. That is, the coaxial structure in which the columnar conductor 16 is provided in the second waveguide 10B constitutes a parallel resonant circuit 24 of L (inductor) C (capacitance), and the columnar conductor 16 is brought close to the probe 14 and capacitively coupled. Thus, for example, an LC series resonance circuit for suppressing an image signal and reception frequency band noise is configured.

第1実施例は以上の構成からなり、次にその動作を説明する。
図2に示したように、ショート面Sの中央に突出させた略λ/4の長さの柱状導体16を含む同軸状構造により、並列共振回路24が形成されることになり、この共振回路24の共振周波数f01では回路端は開放と等価となるが、このf01より低域側では、共振回路24の実効的インピーダンスは誘導性であり、この等価インダクタと結合容量25とで形成される直列共振回路が発生し、この共振周波数f02ではプローブ14の先端は短絡と等価となる。
The first embodiment has the above configuration, and the operation thereof will be described next.
As shown in FIG. 2, the coaxial structure including a substantially lambda 1/4 of the length of the columnar conductor 16 which projects into the center of the short side S, will be parallel resonant circuit 24 is formed, the resonance At the resonance frequency f 01 of the circuit 24, the circuit end is equivalent to an open circuit, but the effective impedance of the resonance circuit 24 is inductive on the lower side than this f 01 , and is formed by this equivalent inductor and the coupling capacitor 25. A series resonance circuit is generated, and at the resonance frequency f02 , the tip of the probe 14 is equivalent to a short circuit.

これらを計算式で表せば、以下の数式1及び2となる。但し、共振回路15内の等価インダクタをL1 、等価キャパシタをC1 、結合容量25をC2 とする。

Figure 2011234089
Figure 2011234089
These can be expressed by the following formulas 1 and 2. However, the equivalent inductor in the resonance circuit 15 is L1, the equivalent capacitor is C1, and the coupling capacitance 25 is C2.
Figure 2011234089
Figure 2011234089

即ち、上記共振周波数f02では、プローブ14端が短絡に見えるため、減衰特性を得ることができ、通過帯域では、ほぼ通常の非導波管線路−導波管変換器と同等の特性を有することとなる。
また、この共振回路は非常に低損失であり、Q値が高いため、柱状導体16のプローブ14への結合を疎に設定すれば、通過周波数と抑圧周波数間の離調周波数が小さくても通過帯域への悪影響を最小限とすることが可能である。
That is, at the resonance frequency f02 , the end of the probe 14 appears to be short-circuited, so that attenuation characteristics can be obtained. In the pass band, the characteristics are almost the same as those of a normal non-waveguide line-waveguide converter. It will be.
Further, since this resonant circuit has a very low loss and a high Q value, if the coupling of the columnar conductor 16 to the probe 14 is set sparse, even if the detuning frequency between the pass frequency and the suppression frequency is small, the resonance circuit passes. It is possible to minimize the adverse effect on the bandwidth.

なお、上記共振回路24は同軸状構造で生成されるものであり、第2導波管10Bに対する柱状導体16のサイズ(太さ等)や長さにより、その特性は変化し、また上記結合容量25は主にプローブ14との距離で決定される。従って、これらのパラメータを適当に組み合わせることで、所望の特性が得られ、実際の設計は電磁界シミュレータ等を用いて行うこととなる。   The resonance circuit 24 is generated in a coaxial structure, and its characteristics change depending on the size (thickness etc.) and length of the columnar conductor 16 with respect to the second waveguide 10B, and the coupling capacitance. 25 is mainly determined by the distance from the probe 14. Accordingly, desired characteristics can be obtained by appropriately combining these parameters, and actual design is performed using an electromagnetic field simulator or the like.

図3及び図4には、第1実施例のシミュレーションによる特性例が示されており、図3は共振回路がないとき、図4は柱状導体16を設けたときのもので、通過帯域を13.75〜14.5GHz、抑圧周波数を12.75GHz付近に設定したときの結果である。図4に示されるように、柱状導体16を設けたときは、12.75GHz付近で大きな減衰量が得られており、このような特性によって、例えば受信周波数帯域の一部の雑音を良好に抑制することができる。   FIG. 3 and FIG. 4 show characteristic examples by simulation of the first embodiment. FIG. 3 shows a case where there is no resonance circuit, and FIG. 4 shows a case where the columnar conductor 16 is provided. This is a result when the suppression frequency is set in the vicinity of 12.75 GHz with .75 to 14.5 GHz. As shown in FIG. 4, when the columnar conductor 16 is provided, a large amount of attenuation is obtained in the vicinity of 12.75 GHz. With such characteristics, for example, a part of the noise in the reception frequency band is suppressed satisfactorily. can do.

第1実施例では、マイクロストリップ線路(分布定数線路)から導波管線路への変換について説明したが、本発明は、同軸線路から導波管線路への変換、或いはその他の多様な伝送線路との変換においても適用することができる。   In the first embodiment, the conversion from the microstrip line (distributed constant line) to the waveguide line has been described. However, the present invention is not limited to the conversion from the coaxial line to the waveguide line, or other various transmission lines. This can also be applied to the conversion.

図5(A)〜(C)には、同軸線路に適用した第2実施例の構成が示されている。この第2実施例では、ショート面Sが設けられた導波管27の上面のH面(磁界に平行な面)から導波管27内に、同軸線路28の中心導体の先端がプローブ29として突出・配置される。そして、上記導波管27のショート面Sの中央位置から略λ/4の長さで突出し、プローブ29に近接するように角柱状の柱状導体30が配置される。 5A to 5C show the configuration of the second embodiment applied to a coaxial line. In this second embodiment, the tip of the central conductor of the coaxial line 28 is used as the probe 29 in the waveguide 27 from the H surface (surface parallel to the magnetic field) of the upper surface of the waveguide 27 provided with the short surface S. Protruding and arranged. The protruding length of approximately lambda 1/4 from the center of the short side S of the waveguide 27, a prismatic columnar conductor 30 so as to be close to the probe 29 is placed.

このような第2実施例の構成によっても、上記第1実施例と同等の効果を得ることができる。なお、上記第1及び第2の実施例では、柱状導体16,30を角柱状としたが、この柱状導体を円柱状等、その他の形状としてもよい。また、導波管10,27として矩形のものを用いたが、円形導波管を用いることもできる。   Even with the configuration of the second embodiment, the same effects as those of the first embodiment can be obtained. In the first and second embodiments, the columnar conductors 16 and 30 are formed in a rectangular column shape, but the columnar conductor may be formed in other shapes such as a columnar shape. Moreover, although the rectangular thing was used as the waveguides 10 and 27, a circular waveguide can also be used.

図6(A)〜(C)には、第3実施例の構成が示されており、この第3実施例は、イメージ信号や受信周波数帯域雑音の抑制に加え、第2高調波の抑制を図りながら、通信用機器である送信機に適用することのできる装置である。具体的には、Ku−Band帯(送信周波数:13.75〜14.5GHz、受信周波数:10.95〜12.75GHz)の衛星通信システム等に適用される。このシステムの送信機のうち「Universal Band」と呼ばれるものは、通常、IF周波数を0.95〜1.7GHz、局部発振器周波数を12.8GHzとしているので、イメージ信号の周波数は11.10〜11.85GHzとなる。   FIGS. 6A to 6C show the configuration of the third embodiment. In the third embodiment, the second harmonic is suppressed in addition to the suppression of the image signal and the reception frequency band noise. It is an apparatus that can be applied to a transmitter that is a communication device. Specifically, it is applied to a satellite communication system or the like in the Ku-Band band (transmission frequency: 13.75 to 14.5 GHz, reception frequency: 10.95 to 12.75 GHz). Among the transmitters of this system, what is called “Universal Band” normally has an IF frequency of 0.95 to 1.7 GHz and a local oscillator frequency of 12.8 GHz, so that the frequency of the image signal is 11.10 to 11. .85 GHz.

この第3実施例は、第1実施例で説明した柱状導体16を形成した矩形の第2導波管10Bと、詳細は後述するが、この第2導波管10Bのサイズ(磁界方向及び電界方向の長さ)と同一の矩形の導波管部32を有する第1導波管10Cを有する。また、図6(B)に示されるように、第1導波管10Cと第2導波管10Bとに挟まれる形で、誘電体基板12が設けられ、この誘電体基板12に、マイクロストリップ線路13及びプローブ14が形成されるが、このプローブ14に接続する形で、上記導波管10B内のH面の近傍位置で、このH面に略平行に、開放スタブ33a,33bが形成される。第3実施例の開放スタブ33a,33bは、第2高調波を抑圧するために設けられ、プローブ14の中心からD≒λ/4(λ:所定の抑圧周波数の波長)の長さを持ち、先端が開放されたものである。 In the third embodiment, the rectangular second waveguide 10B in which the columnar conductor 16 described in the first embodiment is formed and the size (the magnetic field direction and the electric field) of the second waveguide 10B will be described in detail later. The first waveguide 10 </ b> C has a rectangular waveguide portion 32 having the same length as the direction). Further, as shown in FIG. 6B, a dielectric substrate 12 is provided so as to be sandwiched between the first waveguide 10C and the second waveguide 10B, and this dielectric substrate 12 is provided with a microstrip. The line 13 and the probe 14 are formed, and open stubs 33a and 33b are formed in a form connected to the probe 14 in the vicinity of the H surface in the waveguide 10B and substantially parallel to the H surface. The Open stub 33a of the third embodiment, 33b is provided for suppressing the second harmonic, D ≒ λ 2/4 from the center of the probe 14: The length of the (lambda 2 wavelength of a predetermined suppression frequency) It is held and the tip is opened.

即ち、略λ/4の長さの開放スタブ33a,33bを設けることで、所定の抑圧周波数において、この開放スタブ33a,33bが接続されるプローブ14の接続点が接地と等価となり、第3実施例では第2高調波の周波数帯域において良好な減衰特性を得ることができる。この開放スタブ33a,33bは、導波管部32又は第2導波管10B内の中心位置ではなく、H面の近傍に配置することで、目的の周波数帯の伝送波を導波管モードに切り換わる前に効率よく減衰させることができる。 That is, approximately lambda 2/4 of the length of the open stub 33a, by providing the 33b, at a predetermined suppression frequency, the open stub 33a, 33b becomes the connection point grounding equivalent of the probe 14 connected, third In the embodiment, good attenuation characteristics can be obtained in the frequency band of the second harmonic. The open stubs 33a and 33b are arranged not near the center position in the waveguide section 32 or the second waveguide 10B but in the vicinity of the H plane, so that the transmission wave in the target frequency band is changed to the waveguide mode. It can be attenuated efficiently before switching.

更に、第3実施例では、第1導波管10Cの導波管部32と第2導波管10Bの矩形の磁界方向の幅(長辺の幅)dを例えば11.6mmとし、この導波管(32,10B)のカットオフ周波数を、受信周波数帯域の上限である12.75GHz以上で、送信帯域下限である13.75GHz未満(12.75〜13.75GHz)に設定し、第1導波管10Cの導波管部32の伝搬方向の長さに比例した減衰量を得るようにしている。即ち、上述した柱状導体16で得られる単共振抑圧特性により、送信帯域の直ぐ下側の周波数に急峻な減衰特性(図4)を生成し、またこの抑圧周波数より下側は上記の導波管カットオフに起因した、周波数が下がるほど減衰量が大きくなる減衰特性を生成することで、これらの減衰特性を加算した特性(後述の図10)を得ることができる。   Furthermore, in the third embodiment, the width (long side width) d of the rectangular waveguide direction 32 of the first waveguide 10C and the second waveguide 10B is set to 11.6 mm, for example. The cutoff frequency of the wave tube (32, 10B) is set to 12.75 GHz or more which is the upper limit of the reception frequency band and less than 13.75 GHz (12.75 to 13.75 GHz) which is the lower limit of the transmission band. An attenuation amount proportional to the length in the propagation direction of the waveguide portion 32 of the waveguide 10C is obtained. That is, the single resonance suppression characteristic obtained by the columnar conductor 16 generates a steep attenuation characteristic (FIG. 4) at a frequency immediately below the transmission band, and below the suppression frequency is the above waveguide. By generating an attenuation characteristic in which the attenuation amount increases as the frequency decreases due to the cut-off, a characteristic (FIG. 10 described later) obtained by adding these attenuation characteristics can be obtained.

ところで、通常、機器間の接続に使用される導波管には、使用周波数によって推奨される規格化寸法があり、実施例の周波数においては、EIA規格の例えばWR75(IECではR120)が使用されるため、上記のような変則サイズの導波管(32,10B)では不都合である。そこで、第3実施例では、第1導波管10Cの送信機側(出力側)導波管部(最終出力端子)35として、上記WR75を用い、磁界方向の寸法を絞ったマイクロストリップ線路−導波管変換器部(10B,32)と送信機側導波管部35との間に、物理的サイズの変換と共にインピーダンス整合をとるためのステップインピーダンス変換器36を設けている。   By the way, normally, there are standardized dimensions recommended for the frequency used in the waveguide used for connection between devices. For example, WR75 (R120 in IEC) of the EIA standard is used at the frequency of the embodiment. Therefore, the irregular-sized waveguide (32, 10B) as described above is inconvenient. Therefore, in the third embodiment, the WR75 is used as the transmitter-side (output-side) waveguide section (final output terminal) 35 of the first waveguide 10C, and the microstrip line with a reduced size in the magnetic field direction- Between the waveguide converter section (10B, 32) and the transmitter side waveguide section 35, a step impedance converter 36 for impedance matching as well as physical size conversion is provided.

このステップインピーダンス変換器36は、ステップ状に導波管部36a,36bを直線的に接続したものであるが、このステップインピーダンス変換器として、非導波管線路−導波管変換器部(32,10B)の磁界方向(H面)のみを単に絞った寸法とすると、インピーダンスが高くなり過ぎる。そこで、実施例のステップインピーダンス変換器36は、磁界方向と電界方向の両方を絞った導波管部36aと、導波管部32の磁界方向の幅が同じで電界方向の幅を小さくした導波管で36bとから構成する。即ち、導波管部36aにより、その部分のインピーダンスを送信機側導波管部35のサイズのインピーダンスに近い状態とし、導波管部36bにより、上述した導波管カットオフ周波数による受信周波数帯域の抑圧特性を効率よく得るようにしている。   In this step impedance converter 36, waveguide portions 36a and 36b are linearly connected in a step shape. As this step impedance converter, a non-waveguide line-waveguide converter portion (32 , 10B), the impedance becomes too high if only the magnetic field direction (H surface) is limited. In view of this, the step impedance converter 36 of the embodiment has a waveguide section 36a in which both the magnetic field direction and the electric field direction are narrowed, and a waveguide section 32 in which the width in the magnetic field direction is the same and the width in the electric field direction is reduced. The wave tube is composed of 36b. That is, the impedance of the portion is made close to the impedance of the size of the transmitter-side waveguide portion 35 by the waveguide portion 36a, and the reception frequency band based on the above-described waveguide cutoff frequency is set by the waveguide portion 36b. Is effectively obtained.

図7には、第1導波管のステップインピーダンス変換器(インピーダンス整合回路)の他の構成が示されており、この例の第1導波管10Dは、導波管を曲げるための導波管部(ベンド導波管)36dを設けると共に、これと送信機側導波管部35との間に導波管部36cを配置する。このステップインピーダンス変換器36の導波管部36cと導波管部36dは、矩形のサイズ、即ち磁界方向及び電界方向の幅が上記導波管36a,36bと同一であるが、それらの電界方向(E面)の中心をオフセット(下側へずらす)させている。このような構成のステップインピーダンス変換器36によっても、同様の特性を得ることができる。   FIG. 7 shows another configuration of the step impedance converter (impedance matching circuit) of the first waveguide. The first waveguide 10D of this example is a waveguide for bending the waveguide. A tube portion (bend waveguide) 36d is provided, and a waveguide portion 36c is disposed between the tube portion and the transmitter-side waveguide portion 35. The waveguide portion 36c and the waveguide portion 36d of the step impedance converter 36 have the same rectangular size, that is, the width of the magnetic field direction and the electric field direction as those of the waveguides 36a and 36b. The center of (E surface) is offset (shifted downward). Similar characteristics can be obtained by the step impedance converter 36 having such a configuration.

このような第3実施例によれば、非導波管線路−導波管変換器としての導波管部32と第2導波管10Bの構成により、図2で示した等価回路が形成され、柱状導体16を設けた同軸状構造により、LCの並列共振回路24が構成されると共に、柱状導体16をプローブ14へ近接させ容量結合することで、LCの直列共振回路が構成される。   According to the third embodiment, the equivalent circuit shown in FIG. 2 is formed by the configuration of the waveguide portion 32 as the non-waveguide line-waveguide converter and the second waveguide 10B. The LC parallel resonance circuit 24 is configured by the coaxial structure provided with the columnar conductors 16, and the LC series resonance circuit is configured by capacitively coupling the columnar conductors 16 to the probe 14.

そして、上述のように、インピーダンス整合回路として、磁界方向の幅を一定にしたステップインピーダンス変換器36を使用することを条件として設計を行ったとき、図8のような特性を得ることが可能である。即ち、送信周波数帯の下限である13.75GHzの少し下側の周波数から約12.75GHzまで急峻に減衰し、その下側の周波数においても、大きく減衰した特性が得られており、これによって、イメージ信号や受信周波数帯域雑音等を良好に抑制することができる。   As described above, when the impedance matching circuit is designed on the condition that the step impedance converter 36 having a constant width in the magnetic field direction is used, the characteristics shown in FIG. 8 can be obtained. is there. In other words, a characteristic that is attenuated steeply from a slightly lower frequency of 13.75 GHz, which is the lower limit of the transmission frequency band, to about 12.75 GHz, and a greatly attenuated characteristic is also obtained at the lower frequency. Image signals, reception frequency band noise, and the like can be satisfactorily suppressed.

また、第3実施例では、プローブ14に開放スタブ33a,33bを設けたので、第2高調波の抑圧を図ることも可能となる。図9には、第3実施例において、抑圧周波数を通過周波数の第2高調波帯である、27.5〜29GHzとしたときに得られた特性例が示されており、図9のように、上記27.5〜29GHzの抑圧周波数帯域で43dB程度の減衰が得られており、また30dBの抑圧を得ている帯域幅は5GHzと帯域も広いことが判る。   In the third embodiment, since the open stubs 33a and 33b are provided on the probe 14, the second harmonic can be suppressed. FIG. 9 shows an example of characteristics obtained when the suppression frequency is 27.5 to 29 GHz, which is the second harmonic band of the pass frequency, in the third embodiment, as shown in FIG. It can be seen that attenuation of about 43 dB is obtained in the suppression frequency band of 27.5 to 29 GHz, and that the band width of 30 dB suppression is as wide as 5 GHz.

図10(A),(B)には、上記実施例の導波管内の誘電体基板の領域削減を図った第4実施例の構成が示されている。この第4実施例のプローブ14、開放スタブ33a,33b等の構成は、第3実施例等と同様であるが、誘電体基板38において、プローブ14と開放スタブ33a,33bが形成されている部分とスルーホール5が形成された部分のみを残し、導波管10の内部空間に合わせて、その他の領域50の誘電体基板をカットして抜いたものである。   FIGS. 10A and 10B show the configuration of the fourth embodiment in which the area of the dielectric substrate in the waveguide of the above embodiment is reduced. The configuration of the probe 14 and the open stubs 33a and 33b of the fourth embodiment is the same as that of the third embodiment, but the portion of the dielectric substrate 38 where the probe 14 and the open stubs 33a and 33b are formed. The dielectric substrate in the other region 50 is cut and removed in accordance with the internal space of the waveguide 10 except for the portion where the through hole 5 is formed.

このような第4実施例の構成によれば、領域50の誘電体基板が抜かれているので、誘電体基板38が存在することに起因する挿入損失を更に減少させることができるという効果がある。   According to the configuration of the fourth embodiment, since the dielectric substrate in the region 50 is removed, there is an effect that the insertion loss due to the presence of the dielectric substrate 38 can be further reduced.

図11(A)〜(C)には、第3実施例の特徴事項を同軸線路に適用した第5実施例の通信用装置(送信機)の構成が示されている。この第5実施例では、ショート面Sが設けられた導波管40の上面のH面(磁界に平行な面)から導波管40内に、同軸線路28の中心導体の先端がプローブ29として突出・配置されており、このプローブ29に対して、導波管40内のH面の近傍位置でかつこのH面に略平行に、開放スタブ41a,41bが接続、形成される。この開放スタブ41a,41bも、第3実施例と同様に、プローブ29の中心から約λ/4(λ:所定の抑圧周波数の波長)の長さとされる。 FIGS. 11A to 11C show the configuration of a communication device (transmitter) according to a fifth embodiment in which the features of the third embodiment are applied to a coaxial line. In the fifth embodiment, the tip of the central conductor of the coaxial line 28 is used as the probe 29 in the waveguide 40 from the H surface (surface parallel to the magnetic field) of the upper surface of the waveguide 40 provided with the short surface S. The open stubs 41a and 41b are connected to and formed on the probe 29 at a position near the H surface in the waveguide 40 and substantially parallel to the H surface. The open stub 41a, 41b, similar to the third embodiment, approximately from the center of the probe 29 λ 2/4: is the length of (lambda 2 wavelength of a predetermined suppression frequency).

また、上記導波管40には、第3実施例と同様に、矩形の磁界方向の幅を例えば11.6mmとした導波管部42aが設けられ、この導波管部42aのカットオフ周波数を、受信周波数帯域の上限である12.75GHz以上、送信帯域下限である13.75GHz未満に設定することで、導波管部42aの長さに比例した減衰量が得られるようにしている。そして、導波管40の送信機側導波管42bと上記導波管部42aとの間に、導波管部43a,43bからなるステップインピーダンス変換器43が設けられており、このステップインピーダンス変換器は、第3実施例と同様に、磁界方向と電界方向の両方を絞った導波管部43aと、導波管部42aの磁界方向の幅と同じで電界方向の幅のみを絞った導波管で43bとから構成される。   The waveguide 40 is provided with a waveguide portion 42a having a rectangular magnetic field direction width of, for example, 11.6 mm, as in the third embodiment, and the cutoff frequency of the waveguide portion 42a. Is set to 12.75 GHz or more, which is the upper limit of the reception frequency band, and less than 13.75 GHz, which is the lower limit of the transmission band, so that an amount of attenuation proportional to the length of the waveguide section 42a can be obtained. A step impedance converter 43 including waveguide portions 43a and 43b is provided between the transmitter-side waveguide 42b of the waveguide 40 and the waveguide portion 42a. As in the third embodiment, the device is similar to the waveguide portion 43a in which both the magnetic field direction and the electric field direction are narrowed, and the waveguide portion 42a has the same width in the magnetic field direction as that of the waveguide portion 42a. The wave tube is composed of 43b.

このような第5実施例によっても、第3実施例と同様に、イメージ信号や受信周波数帯域雑音等の不要周波数を抑圧すると共に、第2高調波を良好な減衰特性の下で抑圧することが可能となる。   According to the fifth embodiment, as in the third embodiment, unnecessary frequencies such as image signals and reception frequency band noise can be suppressed and the second harmonic can be suppressed with good attenuation characteristics. It becomes possible.

上記第3〜第5実施例では、2個の開放スタブ33a,33b,41a,41bを設けたが、この開放スタブは1個でもよいし、またこの開放スタブは全方位方向において3個以上設けることも可能である。   In the third to fifth embodiments, two open stubs 33a, 33b, 41a and 41b are provided. However, one open stub may be provided, and three or more open stubs may be provided in all directions. It is also possible.

更に、第3実施例において、上記開放スタブ33a,33b,41a,41bを設置することによる効果は、下記のようになる。即ち、
a.開放スタブ部分の誘電体基板(12,38)の裏面にはGNDがなく、電磁界分布が分散するため、誘電体基板の影響が減少し、分布定数線路部分より損失が少なくて済む。
b.開放スタブは、導波管H壁面近傍のプローブ(14,29)に設けられており、この部分の伝送モードは未だ導波管モードに変換されていないため、導波管内で発生する高次モードの影響を受け難く、従って導波管側負荷条件の影響による、抑圧量の大幅減少といった問題を避けることができる。
c.開放スタブは、導波管回路内に形成された回路であるが、誘電体基板上に形成されていること、プローブに直接接続されていることより、必要以上にQ値が高くなく、図12で説明した特許文献3の変換器に比して広帯域な抑圧特性を得ることができる。
d.開放スタブは、通過周波数において線路途中に容量性スタブが付加される場合と等価であるから、これを見込んだ回路設計を行えば、通過周波数での特性も所望のものを実現することが可能である。
Furthermore, in the third embodiment, the effect obtained by installing the open stubs 33a, 33b, 41a, 41b is as follows. That is,
a. Since there is no GND on the back surface of the dielectric substrate (12, 38) in the open stub portion and the electromagnetic field distribution is dispersed, the influence of the dielectric substrate is reduced, and the loss is less than that of the distributed constant line portion.
b. The open stub is provided in the probe (14, 29) in the vicinity of the wall surface of the waveguide H, and the transmission mode of this portion has not yet been converted to the waveguide mode. Therefore, it is possible to avoid the problem of a significant decrease in the amount of suppression due to the influence of the waveguide-side load condition.
c. The open stub is a circuit formed in the waveguide circuit, but the Q value is not higher than necessary because it is formed on the dielectric substrate and directly connected to the probe. Compared with the converter of Patent Document 3 described in (4), a broadband suppression characteristic can be obtained.
d. An open stub is equivalent to a case where a capacitive stub is added in the middle of the line at the passing frequency. Therefore, if the circuit design taking this into account is performed, it is possible to achieve the desired characteristics at the passing frequency. is there.

マイクロストリップ線路、同軸線路等の非導波管線路と導波管との間の変換器、そして非導波管線路−導波管変換器を搭載する通信用機器に適用することができる。
また、現在、運用されている衛星通信用システムは受信周波数が送信周波数より低く、また送信機のアップコンバージョンは送信周波数より低い周波数の局部発振器信号との混合により行うため、本発明は、基本的にどの周波数帯の衛星通信システムの送信機にも適用することができる。また、同様な通過帯域、抑圧周波数の関係(通過帯域に対して抑圧周波数が下側)であれば、衛星通信用送信機以外の通信用装置にも適用することが可能である。
The present invention can be applied to a converter between a non-waveguide line and a waveguide, such as a microstrip line and a coaxial line, and a communication device equipped with a non-waveguide line-waveguide converter.
In addition, in the satellite communication system currently in operation, the reception frequency is lower than the transmission frequency, and the up-conversion of the transmitter is performed by mixing with a local oscillator signal having a frequency lower than the transmission frequency. The present invention can be applied to a transmitter of a satellite communication system in any frequency band. Further, if the relationship between the pass band and the suppression frequency is the same (the suppression frequency is lower than the pass band), the present invention can be applied to a communication device other than the satellite communication transmitter.

10,10A〜10C,27,40…導波管、
2,12,38…誘電体基板、
3,13…マイクロストリップ線路、
4,14,29 …プローブ、 16,30…柱状導体、
24…並列共振回路、 25…結合容量、
28…同軸線路、 32,36a〜36d,42a,43a,43b…導波管部、
33a,33b,41a,41b…開放スタブ、
35,42b…送信機側導波管部、
36,43…ステップインピーダンス変換器。
10, 10A-10C, 27, 40 ... waveguide,
2, 12, 38 ... dielectric substrate,
3, 13 ... microstrip line,
4, 14, 29 ... probe, 16, 30 ... columnar conductor,
24 ... Parallel resonant circuit, 25 ... Coupling capacitance,
28 ... Coaxial line, 32, 36a to 36d, 42a, 43a, 43b ... Waveguide section,
33a, 33b, 41a, 41b ... open stub,
35, 42b ... Transmitter side waveguide section,
36, 43 ... Step impedance converter.

Claims (3)

短絡面が設けられた導波管と、
この導波管内部へそのH面から挿入され、非導波管線路の先端に形成されたプローブと、を備える非導波管線路−導波管変換器において、
上記導波管の短絡面から突出させて上記プローブまで近接配置し、所定の周波数で共振する共振回路を形成するための柱状導体を設けたことを特徴とする非導波管線路−導波管変換器。
A waveguide provided with a short-circuit surface;
A non-waveguide line-waveguide converter comprising a probe inserted into the waveguide from its H-plane and formed at the tip of the non-waveguide line;
A non-waveguide line-waveguide characterized in that a columnar conductor is provided to project from the short-circuit surface of the waveguide and close to the probe and to form a resonant circuit that resonates at a predetermined frequency. converter.
上記プローブの上記導波管H面の近傍位置に、所定の周波数を接地条件とする開放スタブを設けたことを特徴とする請求項1記載の非導波管線路−導波管変換器。   2. The non-waveguide line-waveguide converter according to claim 1, wherein an open stub having a predetermined frequency as a grounding condition is provided at a position near the waveguide H surface of the probe. 短絡面が設けられた矩形導波管と、
この導波管内部へそのH面から挿入され、非導波管線路の先端に形成されたプローブと、を備える非導波管線路−導波管変換器を用いた通信用装置において、
上記導波管の短絡面から突出させて上記プローブまで近接配置し、所定の周波数で共振する共振回路を構成するための柱状導体を設けると共に、
上記導波管の矩形の磁界方向の幅を、受信周波数帯付近が当該導波管のカットオフ周波数以下となる値に設定したことを特徴とする非導波管線路−導波管変換器を用いた通信用装置。
A rectangular waveguide provided with a short-circuit surface;
In a communication apparatus using a non-waveguide line-waveguide converter, comprising a probe inserted into the waveguide from its H-plane and formed at the tip of a non-waveguide line,
Protruding from the short-circuited surface of the waveguide and close to the probe, providing a columnar conductor for configuring a resonance circuit that resonates at a predetermined frequency,
A non-waveguide line-waveguide converter characterized in that the width of the rectangular magnetic field direction of the waveguide is set to a value in which the vicinity of the reception frequency band is equal to or lower than the cutoff frequency of the waveguide. Communication device used.
JP2010102104A 2010-04-27 2010-04-27 Communication device using non-waveguide line-waveguide converter and non-waveguide line-waveguide converter Active JP5457931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102104A JP5457931B2 (en) 2010-04-27 2010-04-27 Communication device using non-waveguide line-waveguide converter and non-waveguide line-waveguide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102104A JP5457931B2 (en) 2010-04-27 2010-04-27 Communication device using non-waveguide line-waveguide converter and non-waveguide line-waveguide converter

Publications (2)

Publication Number Publication Date
JP2011234089A true JP2011234089A (en) 2011-11-17
JP5457931B2 JP5457931B2 (en) 2014-04-02

Family

ID=45322972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102104A Active JP5457931B2 (en) 2010-04-27 2010-04-27 Communication device using non-waveguide line-waveguide converter and non-waveguide line-waveguide converter

Country Status (1)

Country Link
JP (1) JP5457931B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456092B1 (en) * 2012-11-26 2014-10-31 한국전기연구원 Microwave reactor with monitoring window and method thereof
CN109672012A (en) * 2018-11-07 2019-04-23 杭州电子科技大学 Apply the difference transition structure in the broadband RWG and SIW of millimeter wave frequency band
JP2019530373A (en) * 2016-10-05 2019-10-17 ギャップウェーブス アーベー Package structure including at least one transition forming a contactless interface
CN114094297A (en) * 2021-10-11 2022-02-25 广州程星通信科技有限公司 Compact type double-ridge waveguide coaxial converter
CN115966870A (en) * 2022-12-28 2023-04-14 西安艾力特电子实业有限公司 Coaxial rectangular waveguide conversion structure used near cut-off frequency

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735360C1 (en) * 2020-02-04 2020-10-30 Акционерное общество "Научно-производственное предприятие "Пульсар" Coaxial-waveguide broadband junction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284704A (en) * 1991-03-14 1992-10-09 Fujitsu Ltd Filter
JPH09284002A (en) * 1996-04-18 1997-10-31 Maspro Denkoh Corp Microwave converter
JP2007288568A (en) * 2006-04-18 2007-11-01 Furuno Electric Co Ltd Waveguide/microstrip line converter and its method
JP2008079085A (en) * 2006-09-22 2008-04-03 Mitsubishi Electric Corp Transmission line waveguide converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284704A (en) * 1991-03-14 1992-10-09 Fujitsu Ltd Filter
JPH09284002A (en) * 1996-04-18 1997-10-31 Maspro Denkoh Corp Microwave converter
JP2007288568A (en) * 2006-04-18 2007-11-01 Furuno Electric Co Ltd Waveguide/microstrip line converter and its method
JP2008079085A (en) * 2006-09-22 2008-04-03 Mitsubishi Electric Corp Transmission line waveguide converter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101456092B1 (en) * 2012-11-26 2014-10-31 한국전기연구원 Microwave reactor with monitoring window and method thereof
JP2019530373A (en) * 2016-10-05 2019-10-17 ギャップウェーブス アーベー Package structure including at least one transition forming a contactless interface
CN109672012A (en) * 2018-11-07 2019-04-23 杭州电子科技大学 Apply the difference transition structure in the broadband RWG and SIW of millimeter wave frequency band
CN109672012B (en) * 2018-11-07 2020-08-04 杭州电子科技大学 Broadband RWG and SIW differential transition structure applied to millimeter wave frequency band
CN114094297A (en) * 2021-10-11 2022-02-25 广州程星通信科技有限公司 Compact type double-ridge waveguide coaxial converter
CN114094297B (en) * 2021-10-11 2023-05-16 广州程星通信科技有限公司 Double-ridge waveguide coaxial converter
CN115966870A (en) * 2022-12-28 2023-04-14 西安艾力特电子实业有限公司 Coaxial rectangular waveguide conversion structure used near cut-off frequency
CN115966870B (en) * 2022-12-28 2023-08-25 西安艾力特电子实业有限公司 Coaxial rectangular waveguide conversion structure near cut-off frequency

Also Published As

Publication number Publication date
JP5457931B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4516883B2 (en) Non-contact transition element between waveguide and microstrip feed line
JP5457931B2 (en) Communication device using non-waveguide line-waveguide converter and non-waveguide line-waveguide converter
US7821361B2 (en) Second-order band-pass filter and wireless apparatus using the same
JP2000101301A (en) High frequency circuit device and communication equipment
JP6143971B2 (en) Coaxial microstrip line conversion circuit
Zeng et al. A reconfigurable filter using defected ground structure for wideband common-mode suppression
JP2005260570A (en) Microstripline waveguide converter
CN111628257B (en) Filtering power divider
US10050322B2 (en) Coaxial filter and method for manufacturing the same
JP2006191428A (en) Microstrip line waveguide converter
US10673111B2 (en) Filtering unit and filter
KR100987478B1 (en) Coplaner waveguide having multi-frequency resonance property
JP4262192B2 (en) Non-waveguide line-waveguide converter
JPH09246820A (en) Dielectric resonator and band pass filter
JP5486363B2 (en) Non-waveguide line-waveguide converter
JP6262437B2 (en) Polarized bandpass filter
EP1143552A1 (en) Sheet-metal filter
CN111033884B (en) Filter, duplexer and communication equipment
JP2008079085A (en) Transmission line waveguide converter
JP6144456B2 (en) High frequency module
JP2010213199A (en) High frequency module
CN110994094A (en) Differential three-passband filter for loading UIR based on T-branch node
JP4030900B2 (en) filter
JP5674494B2 (en) High frequency filter and high frequency module
CN117691965B (en) Filter containing half-mode substrate coaxial resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140110

R150 Certificate of patent or registration of utility model

Ref document number: 5457931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250