JP2011233627A - Substrate processing method using parallel plate type plasma cvd device - Google Patents

Substrate processing method using parallel plate type plasma cvd device Download PDF

Info

Publication number
JP2011233627A
JP2011233627A JP2010101055A JP2010101055A JP2011233627A JP 2011233627 A JP2011233627 A JP 2011233627A JP 2010101055 A JP2010101055 A JP 2010101055A JP 2010101055 A JP2010101055 A JP 2010101055A JP 2011233627 A JP2011233627 A JP 2011233627A
Authority
JP
Japan
Prior art keywords
solar cell
electrode
cell substrate
antireflection film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010101055A
Other languages
Japanese (ja)
Inventor
Atsuo Nakatani
敦夫 中谷
Atsufumi Ogishi
厚文 大岸
Nozomi Kiji
望 生地
Tatsuhiro Taguchi
竜大 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010101055A priority Critical patent/JP2011233627A/en
Publication of JP2011233627A publication Critical patent/JP2011233627A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of performing natural oxide film removal processing on a solar cell substrate with high throughput in a step of manufacturing a solar cell.SOLUTION: A method of forming an antireflection film on a surface of the solar cell substrate using the parallel plate type plasma CVD device comprises a removal step of generating plasma including nitrogen ions between a high frequency electrode and a substrate electrode by supplying first processing gas from a processing gas supply device and also applying high frequency electric power of first frequency from a high frequency power source to the high frequency electrode, and removing an oxide film on the solar cell substrate with the nitrogen ions; and a film formation step of generating plasma for forming the antireflection film on the surface of the solar cell substrate between the high frequency electrode and substrate electrode by supplying second processing gas from the processing gas supply device and also applying high frequency electric power of second frequency (>first frequency) from the high frequency power source to the high frequency electrode, and forming the antireflection film on the surface of the solar cell substrate with the plasma.

Description

本発明は、平行平板型プラズマCVD装置を用いた基板処理方法に関し、とりわけ太陽電池の製造において、平行平板型プラズマCVD装置を用いて基板界面の酸化膜を除去する方法に関する。   The present invention relates to a substrate processing method using a parallel plate type plasma CVD apparatus, and more particularly to a method for removing an oxide film at a substrate interface using a parallel plate type plasma CVD apparatus in the manufacture of a solar cell.

近年、太陽電池などの製造において、製造コストの削減の要求が大きくなっている。このため、太陽電池の製造に用いる装置のスループットを向上することが重要となっている。   In recent years, in the manufacture of solar cells and the like, there has been an increasing demand for reduction in manufacturing costs. For this reason, it is important to improve the throughput of an apparatus used for manufacturing a solar cell.

シリコン系材料を用いた半導体素子の製造においては、シリコンが容易に酸化されるため、シリコン基板表面には一般的に1−5nm程度の自然酸化膜が存在する。特に太陽電池においては、pn接合形成後に、この自然酸化膜の除去を行わず残したまま反射防止膜やパッシベーション膜を更に形成すると、キャリヤの移動度の低下を招き、この結果、開放電圧(VOC)が低下する等、太陽電池の性能が低下することが知られている。また、酸化膜が残っていると、これが障害となり、SiNあるいはSiO等を用いた反射防止膜やパッシベーション膜のきれいな膜が形成されず、従って、これらの膜の性能をも低下させる原因となっている。 In the manufacture of a semiconductor element using a silicon-based material, since silicon is easily oxidized, a natural oxide film of about 1-5 nm is generally present on the surface of the silicon substrate. In particular, in a solar cell, if an antireflection film or a passivation film is further formed without removing the natural oxide film after the pn junction is formed, the mobility of the carrier is lowered, resulting in an open circuit voltage (VOC). It is known that the performance of the solar cell is reduced, for example, the In addition, if an oxide film remains, this becomes an obstacle, and a clean film such as an antireflection film or a passivation film using SiN x or SiO 2 is not formed. Therefore, the performance of these films may be deteriorated. It has become.

プラズマエッチングによって酸化膜の除去を行う装置は近年商品化されているが、これらはフッ素系のガス混合物を用いてプラズマを発生するもので、主にこのプラズマ中のフッ素ラジカルまたは活性化したフッ素系ガスによって表面の酸化膜を除去するものである(例えば特許文献1参照)。
フッ素ラジカルまたは活性化されたフッ素系ガスによる酸化膜の除去方法では、基板表面にある自然酸化膜は除去できるが、基板内部における粒子界面の酸化膜の除去には向いていない。
In recent years, apparatuses for removing oxide films by plasma etching have been commercialized, but these generate plasma using a fluorine-based gas mixture, mainly fluorine radicals in this plasma or activated fluorine-based ones. The surface oxide film is removed by gas (see, for example, Patent Document 1).
The oxide film removal method using fluorine radicals or activated fluorine-based gas can remove the natural oxide film on the substrate surface, but is not suitable for removing the oxide film at the particle interface inside the substrate.

特に太陽電池においては、処理は、スループット向上のためできるかぎり一貫した製造工程で連続して行われることが必要とされている。また、平行平板型プラズマCVD(PECVD)装置は大面積の太陽電池を高スループットで製造するのに向いており、上記の酸化膜除去処理も、このPECVD装置を用いた製造工程の中で行うことが望ましい。   In particular, in a solar cell, processing is required to be performed continuously in as consistent a manufacturing process as possible in order to improve throughput. Moreover, the parallel plate type plasma CVD (PECVD) apparatus is suitable for manufacturing a large-area solar cell with high throughput, and the oxide film removal process is also performed in the manufacturing process using the PECVD apparatus. Is desirable.

太陽電池基板の製造工程では、自然酸化膜の除去の後でSiNやSiOを用いた反射防止膜を成膜するが、これらの成膜に用いる反応ガス(処理用ガス)は、上記のフッ素系のガスとは全く異なる組成のガスである。したがって、フッ素系のガスを用いた場合には反射防止膜の成膜を行う前に、まずこのフッ素系のガスを充分に排気し、その後、成膜用の反応ガスを導入することになる。このような処理プロセスでは必ず排気プロセスが入るため、太陽電池に要求されている高スループット化が難しい。 In the manufacturing process of the solar cell substrate, an antireflection film using SiN x or SiO 2 is formed after removal of the natural oxide film. The reactive gas (processing gas) used for forming these films is It is a gas having a completely different composition from the fluorine-based gas. Therefore, when a fluorine-based gas is used, the fluorine-based gas is first sufficiently exhausted before forming the antireflection film, and then a reaction gas for film formation is introduced. In such a treatment process, an exhaust process is always included, so that it is difficult to increase the throughput required for the solar cell.

他の方法で酸化膜を除去するものとして、特許文献2には、イオン源を用いて窒素イオンNを発生させ、これをNビームとして加速して基板表面に斜めに入射し、基板表面の酸化膜を窒化する方法が開示されている。しかし、これも大面積基板の太陽電池の製造において、均質な処理を高スループットで行うには向いていない。 As another method for removing the oxide film, Patent Document 2 discloses that an ion source is used to generate nitrogen ions N + , which is accelerated as an N + beam and incident obliquely on the substrate surface. A method of nitriding the oxide film is disclosed. However, this is also not suitable for performing high-throughput uniform processing in the production of large-area substrate solar cells.

窒素イオンをプラズマで発生させ、これを高周波で加速して基板に注入し、基板表面および内部の界面における酸化膜を除去することが可能である。   Nitrogen ions can be generated by plasma, accelerated at a high frequency and injected into the substrate, and the oxide film on the substrate surface and the internal interface can be removed.

PECVD装置では、プラズマの生成に通常13.56MHzの高周波が用いられているが、この13.56MHzの代わりに、もっと低い周波数、例えば1MHz以下でプラズマを生成することにより、プラズマ生成と同時に、プラズマ中のイオンが充分加速されるので、これにより加速されたイオンが基板に注入されることが知られている。   In the PECVD apparatus, a high frequency of 13.56 MHz is normally used for plasma generation. Instead of this 13.56 MHz, plasma is generated at a lower frequency, for example, 1 MHz or less, so that plasma is generated simultaneously with plasma generation. Since ions therein are sufficiently accelerated, it is known that ions accelerated thereby are implanted into the substrate.

特許文献3にはPECVD装置ではないが、50kHzから500kHzの高周波を印加してプラズマを発生すると共に、このプラズマ中のSiイオンを加速して基板に注入することが記載されている。この文献ではSi等の成膜も同じ装置を用いて行うことが記載されている。しかしながら、すべての工程で50kHzから500kHzの高周波を用いているため、多量の高エネルギーのイオン照射が行われるので、基板表面のエッチングには向いているものの、成膜まで含めた工程を高スループットで行うことには不向きである。   Patent Document 3 describes that although not a PECVD apparatus, plasma is generated by applying a high frequency of 50 kHz to 500 kHz, and Si ions in the plasma are accelerated and implanted into the substrate. In this document, it is described that film formation of Si or the like is performed using the same apparatus. However, since a high frequency of 50 kHz to 500 kHz is used in all the steps, a large amount of high energy ion irradiation is performed. Therefore, although it is suitable for etching the substrate surface, the steps including the film formation are performed at a high throughput. Not suitable for doing.

特開2009−71334号公報JP 2009-71334 A 特開2008−192919号公報JP 2008-192919 A 特開2008−38217号公報JP 2008-38217 A

平行平板型プラズマCVD(PECVD)装置を用いた、従来の大面積太陽電池の製造方法では、太陽電池基板の酸化膜除去処理を、太陽電池の製造工程の中で高いスループットで行うことができなかった。   In the conventional large area solar cell manufacturing method using a parallel plate type plasma CVD (PECVD) apparatus, the oxide film removal treatment of the solar cell substrate cannot be performed at a high throughput in the solar cell manufacturing process. It was.

(1)請求項1に記載の発明は、太陽電池基板の反射防止膜の成膜方法であって、処理用ガスを供給する処理用ガス供給装置と、高周波電力を出力する高周波電力源と、真空容器内で太陽電池基板を戴置する基板電極と、真空容器内で基板電極に対向して配置されている高周波電極とを備えた平行平板型プラズマCVD装置を用いて太陽電池基板の反射防止膜を成膜する方法において、処理用ガス供給装置から第1処理用ガスを供給するとともに高周波電力源から高周波電極に第1周波数の高周波電力を印加し、高周波電極と基板電極との間に窒素イオンを含むプラズマを発生させ、この窒素イオンによって太陽電池基板の酸化膜を除去する除去工程と、処理用ガス供給装置から第2処理用ガスを供給するとともに高周波電力源から高周波電極に第2周波数(>第1周波数)の高周波電力を印加し、高周波電極と基板電極との間に太陽電池基板表面に反射防止膜を成膜するプラズマを発生させ、このプラズマによって太陽電池基板表面に反射防止膜を成膜する成膜工程とを連続して行うことを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法である。
(2)請求項2に記載の発明は、請求項1に記載の太陽電池基板の反射防止膜成膜方法において、除去工程は、太陽電池基板の酸化膜を除去する窒素イオンを含むプラズマを発生するための第1処理用ガスを処理ガス供給装置から供給する第1工程、および、高周波電力源から第1周波数の高周波電力を発生させる第2工程を含み、成膜工程は、除去工程が終了した後、太陽電池基板に反射防止膜を成膜するための第2処理用ガスを処理ガス供給装置から供給するように切り替える第3工程、および、高周波電力源から第1周波数より高い第2周波数の高周波電力を発生させる第4工程を含むことを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法である。
(3)請求項3に記載の発明は、請求項1または2に記載の太陽電池基板の反射防止膜成膜方法において、窒素イオンを含むプラズマを発生するための第1処理用ガスはNであることを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法である。
(4)請求項4に記載の発明は、請求項1乃至3のいずれか一項に記載の太陽電池基板の反射防止膜成膜方法において、除去工程において、窒素イオンを含むプラズマを発生させる際には、高周波電力源の出力電力を50kHz〜800kHzの第1周波数に設定し、成膜工程において、太陽電池基板表面に反射防止膜を成膜するプラズマを発生させる際には、高周波電力源の出力電力を13.56MHzの第2周波数に設定することを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法である。
(5)請求項5に記載の発明は、請求項1乃至第4のいずれか一項に記載の太陽電池基板の反射防止膜成膜方法において、反射防止膜はSiNであり、このSiNの反射防止膜を成膜するプラズマを発生するための第2処理用ガスはSiHとNHとNとの混合ガスであることを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法である。
(6)請求項6に記載の発明は、処理用ガスを供給する処理用ガス供給装置と、高周波電力を高周波電極に印加する高周波電力源と、真空容器内において太陽電池基板を戴置する基板電極と、真空容器内において基板電極に対向して配置されている高周波電極と、処理用ガス供給装置および高周波電力源を制御する制御回路とを備え、制御回路は、(a)高周波電極と基板電極との間に窒素イオンを含むプラズマを発生させ、この窒素イオンによって太陽電池基板の酸化膜を除去させるため、Nを供給するように処理用ガス供給装置を制御するとともに、低周波数の高周波電力を高周波電極に印加するように高周波電力源を制御し、(b)酸化膜を除去させた後、高周波電極と基板電極との間に太陽電池基板表面にSiNの反射防止膜を成膜するプラズマを発生させ、このプラズマによって太陽電池基板表面に反射防止膜を成膜するため、SiHとNHとNとの混合ガスを供給するように処理用ガス供給装置を制御するとともに、高周波数の高周波電力を高周波電極に印加するように高周波電力源を制御することを特徴とする平行平板型プラズマCVD装置である。
(7)請求項7に記載の発明は、請求項6に記載の平行平板型プラズマCVD装置において、酸化膜を除去させるときの高周波電力の周波数は50kHz〜800kHzであり、SiNの反射防止膜を成膜するときの高周波電力の周波数は13.56MHzであることを特徴とする平行平板型プラズマCVD装置である。
(1) The invention described in claim 1 is a method for forming an antireflection film on a solar cell substrate, wherein a processing gas supply device that supplies a processing gas, a high-frequency power source that outputs high-frequency power, Antireflection of solar cell substrate using parallel plate type plasma CVD apparatus provided with substrate electrode for placing solar cell substrate in vacuum vessel and high-frequency electrode arranged opposite to substrate electrode in vacuum vessel In the method of forming a film, a first processing gas is supplied from a processing gas supply device, a high frequency power of a first frequency is applied to a high frequency electrode from a high frequency power source, and nitrogen is interposed between the high frequency electrode and the substrate electrode. A removal process of generating plasma containing ions and removing the oxide film of the solar cell substrate by the nitrogen ions, supplying a second processing gas from the processing gas supply device, and supplying a high-frequency power from a high-frequency power source A high frequency power of a second frequency (> first frequency) is applied to the substrate to generate a plasma for forming an antireflection film on the surface of the solar cell substrate between the high frequency electrode and the substrate electrode. The method for forming an antireflection film on a solar cell substrate using a parallel plate plasma CVD apparatus is characterized in that a film forming step for forming an antireflection film is continuously performed.
(2) The invention described in claim 2 is the solar cell substrate antireflection film forming method according to claim 1, wherein the removing step generates plasma containing nitrogen ions for removing the oxide film of the solar cell substrate. A first step of supplying a first processing gas for processing from a processing gas supply device and a second step of generating high-frequency power of a first frequency from a high-frequency power source, and the film-forming step ends the removal step Then, a third step of switching to supply a second processing gas for forming an antireflection film on the solar cell substrate from the processing gas supply device, and a second frequency higher than the first frequency from the high frequency power source A method for forming an antireflection film on a solar cell substrate using a parallel plate type plasma CVD apparatus, comprising a fourth step of generating a high-frequency power.
(3) The invention described in claim 3 is the method for forming an antireflection film on a solar cell substrate according to claim 1 or 2, wherein the first processing gas for generating plasma containing nitrogen ions is N 2. An antireflection film forming method for a solar cell substrate using a parallel plate type plasma CVD apparatus.
(4) The invention according to claim 4 is the method for forming an antireflection film for a solar cell substrate according to any one of claims 1 to 3, wherein in the removing step, plasma containing nitrogen ions is generated. In this case, the output power of the high-frequency power source is set to the first frequency of 50 kHz to 800 kHz, and when the plasma for forming the antireflection film on the solar cell substrate surface is generated in the film-forming process, An antireflection film forming method for a solar cell substrate using a parallel plate type plasma CVD apparatus, characterized in that output power is set to a second frequency of 13.56 MHz.
(5) The invention according to claim 5 is the method for forming an antireflection film for a solar cell substrate according to any one of claims 1 to 4, wherein the antireflection film is SiN x , and the SiN x A solar cell using a parallel plate plasma CVD apparatus, wherein the second processing gas for generating plasma for forming the antireflection film is a mixed gas of SiH 4 , NH 3 and N 2 This is a method for forming an antireflection film on a substrate.
(6) The invention described in claim 6 is a processing gas supply device that supplies a processing gas, a high-frequency power source that applies high-frequency power to a high-frequency electrode, and a substrate on which a solar cell substrate is placed in a vacuum vessel. And a control circuit for controlling the processing gas supply device and the high-frequency power source, the control circuit comprising: (a) the high-frequency electrode and the substrate In order to generate a plasma containing nitrogen ions between the electrodes and remove the oxide film of the solar cell substrate by the nitrogen ions, the processing gas supply device is controlled to supply N 2, and a low frequency high frequency controls high-frequency power source so as to apply power to the high frequency electrode, (b) after removal of the oxide film, the antireflection film of SiN x on the solar cell substrate surface between the high-frequency electrode and the substrate electrode The deposition plasma is generated, the plasma for forming the antireflection film on the solar cell substrate surface by, controlling the process gas supply system to supply a mixed gas of SiH 4 and NH 3 and N 2 In addition, the parallel plate type plasma CVD apparatus is characterized in that the high frequency power source is controlled so that high frequency high frequency power is applied to the high frequency electrode.
(7) The invention according to claim 7 is the parallel plate type plasma CVD apparatus according to claim 6, wherein the frequency of the high frequency power when removing the oxide film is 50 kHz to 800 kHz, and the antireflection film of SiN x The parallel plate type plasma CVD apparatus is characterized in that the frequency of the high-frequency power when forming the film is 13.56 MHz.

本発明により、平行平板型プラズマCVD装置を用いて、太陽電池基板の表面および内部の粒子界面の自然酸化膜除去処理を反射防止膜生成前に、連続した工程で行うことができるので、効率の良い太陽電池を高スループットで製造することができる。   According to the present invention, the natural oxide film removal treatment on the surface of the solar cell substrate and the internal particle interface can be performed in a continuous process before the production of the antireflection film by using a parallel plate type plasma CVD apparatus. Good solar cells can be manufactured with high throughput.

本発明に用いる平行平板型プラズマCVD装置の一実施形態の概略を説明する垂直断面図である。It is a vertical sectional view explaining the outline of one embodiment of a parallel plate type plasma CVD apparatus used in the present invention. 図1の平行平板型プラズマCVD装置の水平断面図で、図1のA2−A2線に沿って上側(高周波電極側)を見た概略図である。FIG. 2 is a horizontal sectional view of the parallel plate type plasma CVD apparatus of FIG. 1, and is a schematic view of the upper side (high-frequency electrode side) taken along line A2-A2 of FIG. 図1の平行平板型プラズマCVD装置の水平断面図で、図1のA4−A4線に沿って下側(基板電極側)を見た概略図である。FIG. 2 is a horizontal sectional view of the parallel plate type plasma CVD apparatus of FIG. 1, and is a schematic view of the lower side (substrate electrode side) taken along line A 4 -A 4 of FIG.

本発明に用いる平行平板型プラズマCVDの実施形態を図1〜図3を用いて説明する。
本発明の一実施形態のプラズマCVD装置は平行平板型プラズマCVDであり、図1および図2に示すように、真空容器(反応室)1と、高周波電力源2と、処理用ガス供給部3と、真空ポンプ4とを有している。高周波電力源2、処理用ガス供給部3、真空ポンプ4は周知のプラズマCVD装置に共通な一般的な構成であり、ここでの説明は省略し、真空容器1の内部の構成を以下に説明する。
An embodiment of parallel plate type plasma CVD used in the present invention will be described with reference to FIGS.
The plasma CVD apparatus according to an embodiment of the present invention is a parallel plate type plasma CVD. As shown in FIGS. 1 and 2, a vacuum vessel (reaction chamber) 1, a high-frequency power source 2, and a processing gas supply unit 3 are used. And a vacuum pump 4. The high-frequency power source 2, the processing gas supply unit 3, and the vacuum pump 4 have a common configuration common to well-known plasma CVD apparatuses, and a description thereof is omitted here, and an internal configuration of the vacuum vessel 1 is described below. To do.

真空容器1の内部には、カート(基板電極)5と、これに対向するように高周波電極6が設けられている。高周波電極6には高周波電力部2から配線7を介して高周波電力が供給される。また高周波電極6には処理用ガスを放出するガス放出孔6aが設けられ、更に高周波電極6には電極板6bが備えられ、電極板6bには複数の細孔6cが設けられ、複数の細孔6cから反応室1内に処理用ガスが放出される。高周波電極6の電極板6bと基板電極5との間にプラズマが生成される。   Inside the vacuum vessel 1, a cart (substrate electrode) 5 and a high-frequency electrode 6 are provided so as to face the cart. High frequency power is supplied to the high frequency electrode 6 from the high frequency power unit 2 through the wiring 7. The high-frequency electrode 6 is provided with a gas discharge hole 6a for discharging a processing gas, the high-frequency electrode 6 is provided with an electrode plate 6b, and the electrode plate 6b is provided with a plurality of pores 6c, and a plurality of fine electrodes. A processing gas is discharged into the reaction chamber 1 from the hole 6c. Plasma is generated between the electrode plate 6 b of the high-frequency electrode 6 and the substrate electrode 5.

本装置では、太陽電池基板の酸化膜除去処理と、これに続く反射防止膜の成膜処理とで異なる組成のガスが供給され、これらの処理に適したプラズマが生成される。また、高周波電力源2は各々の処理の場合のプラズマの発生に合わせて、高周波の周波数および出力を切り替えて高周波電極6に印加する。   In this apparatus, gases having different compositions are supplied in the process for removing the oxide film from the solar cell substrate and the subsequent film forming process for the antireflection film, and plasma suitable for these processes is generated. Further, the high frequency power source 2 switches the frequency and output of the high frequency to be applied to the high frequency electrode 6 in accordance with the generation of plasma in each processing.

プラズマ処理が施される太陽電池の基板8(以下、太陽電池基板8)は複数枚がカート5に搭載された状態で反応室1の搬入窓(図示省略)から反応室1内に搬入される。カート5は反応室1内で接地され、平行平板型プラズマ装置の基板電極5となる。カート5の下側にはカートごと基板を加熱する複数のヒーター9が設置されている。   A plurality of solar cell substrates 8 (hereinafter referred to as solar cell substrates 8) to be subjected to plasma treatment are carried into the reaction chamber 1 from a carry-in window (not shown) of the reaction chamber 1 while being mounted on the cart 5. . The cart 5 is grounded in the reaction chamber 1 and becomes the substrate electrode 5 of the parallel plate type plasma apparatus. A plurality of heaters 9 for heating the substrate together with the cart are installed below the cart 5.

高周波電極6の周囲には、この高周波電極6を囲むようにアースシールド10が設けられている(図1、2、3参照)。アースシールドは高周波電極6と基板電極5の間の電界がこれらの電極から外側に洩れることを抑え、高周波電極6と基板電極5の間に生成するプラズマの密度が低下しないように機能する。従って、アースシールド10より内側の、高周波電極6と基板電極5の間の空間に、密度の高いプラズマが発生し、この領域がプラズマ処理を行う処理領域となる。プラズマ処理される複数の太陽電池基板8はこの領域で処理される。   A ground shield 10 is provided around the high-frequency electrode 6 so as to surround the high-frequency electrode 6 (see FIGS. 1, 2, and 3). The earth shield functions to prevent the electric field between the high-frequency electrode 6 and the substrate electrode 5 from leaking outside from these electrodes, and to prevent the density of plasma generated between the high-frequency electrode 6 and the substrate electrode 5 from decreasing. Therefore, high-density plasma is generated in the space between the high-frequency electrode 6 and the substrate electrode 5 inside the earth shield 10, and this region becomes a processing region where plasma processing is performed. A plurality of solar cell substrates 8 to be plasma processed are processed in this region.

なお、上記の高周波電力源2、処理用ガス供給部3、および真空ポンプ4を外部の制御装置(不図示)で制御して、真空容器1の真空引き、処理用ガスの供給、および高周波電力の印加を行ってもよい。特に、後述するように、本発明においては処理用ガスの切換および高周波電力の高周波切換を行うので、これらの制御をこの制御装置を用いて行うことにより、本発明による太陽電池基板の反射防止膜の成膜をさらに高スループットで行うことができる。   The high-frequency power source 2, the processing gas supply unit 3, and the vacuum pump 4 are controlled by an external control device (not shown) to evacuate the vacuum vessel 1, supply the processing gas, and high-frequency power. May be applied. In particular, as will be described later, in the present invention, the processing gas is switched and the high-frequency power is switched at high frequency. Therefore, by performing these controls using this control device, the antireflection film for the solar cell substrate according to the present invention is used. Can be formed at a higher throughput.

ここで、本発明の一実施形態による平行平板型プラズマCVD装置の動作と、太陽電池基板8の自然酸化膜除去処理および太陽電池基板8への反射防止膜形成方法について説明する。   Here, the operation of the parallel plate type plasma CVD apparatus according to one embodiment of the present invention, the natural oxide film removal treatment of the solar cell substrate 8 and the antireflection film forming method on the solar cell substrate 8 will be described.

上記のようにカート5に戴置された太陽電池基板8が反応室1内に搬入され、反応室1は真空ポンプ4によって真空引きされる。太陽電池基板8は、カート5ごとヒーター9によって加熱され、基板表面が約450℃となるように調整される。処理用ガス供給部3から太陽電池基板8の酸化膜除去処理用ガス(N)が供給され、高周波電極6の細孔6cから反応室1内に放出される。 The solar cell substrate 8 placed on the cart 5 as described above is carried into the reaction chamber 1, and the reaction chamber 1 is evacuated by the vacuum pump 4. The solar cell substrate 8 is heated by the heater 9 together with the cart 5 and adjusted so that the substrate surface becomes about 450 ° C. A gas (N 2 ) for removing the oxide film of the solar cell substrate 8 is supplied from the processing gas supply unit 3 and discharged into the reaction chamber 1 from the pores 6 c of the high-frequency electrode 6.

この際、高周波電極には通常PECVD装置で用いられる13.56MHzより低い周波数の、50kHzから800kHzの高周波電力が高周波電力源2から印加される。これにより上記の処理ガスから窒素イオンを含むプラズマ(窒素プラズマ)が形成される。この周波数の高周波では、発生したプラズマ中のイオンもこの周波数に追随して加減速されるので、太陽電池基板8付近の窒素イオンは加速されて基板に注入され、基板内部の粒子界面における酸化膜中の酸素と反応して酸素を除去する。これにより酸化膜が除去される。   At this time, a high frequency power of 50 kHz to 800 kHz having a frequency lower than 13.56 MHz normally used in a PECVD apparatus is applied to the high frequency electrode from the high frequency power source 2. As a result, plasma containing nitrogen ions (nitrogen plasma) is formed from the processing gas. At the high frequency of this frequency, the generated ions in the plasma are also accelerated and decelerated following this frequency, so that the nitrogen ions near the solar cell substrate 8 are accelerated and implanted into the substrate, and the oxide film at the particle interface inside the substrate. Reacts with oxygen in it to remove oxygen. As a result, the oxide film is removed.

酸化膜除去処理が完了すると、高周波電力印加は停止される。
次に、処理用ガス供給部3から反射防止膜成膜用の成膜ガス(SiH、NH、N)が供給され、高周波電極6の細孔6cから反応室1内に放出される。尚、酸化膜除去処理用に反応室1に導入したNガスは、上記の反射防止膜成膜用の成膜ガスの成分の1つと同じであり、成膜ガスを用いたプラズマの発生に際し障害となるものではないので、成膜ガスの反応器1への導入は、酸化膜除去処理の完了に続けて行われる。
When the oxide film removal process is completed, the high frequency power application is stopped.
Next, a film forming gas (SiH 4 , NH 3 , N 2 ) for forming an antireflection film is supplied from the processing gas supply unit 3 and is released into the reaction chamber 1 from the pores 6 c of the high-frequency electrode 6. . Note that the N 2 gas introduced into the reaction chamber 1 for the oxide film removal treatment is the same as one of the components of the film forming gas for forming the antireflection film, and the plasma is generated using the film forming gas. Since this is not an obstacle, the deposition gas is introduced into the reactor 1 following the completion of the oxide film removal process.

高周波電極6には外部の高周波電力源2から13.56MHzの高周波電力が印加され、電極板6bとカート5の間に、放出された成膜ガスから反応性のあるプラズマが生成される。このプラズマには各種のイオンおよびラジカルなどの反応性のある中性粒子が含まれており、これらが太陽電池基板8に付着し反応することにより太陽電池基板上に反射防止膜となるSiNの成膜が行われる。
成膜処理が完了すると、太陽電池基板8は反応室1からカート5ごと搬出され、更に次に処理される太陽電池基板8がカート5ごと反応室1に搬入される。
High frequency power of 13.56 MHz is applied to the high frequency electrode 6 from the external high frequency power source 2, and reactive plasma is generated between the electrode plate 6 b and the cart 5 from the released film forming gas. This plasma contains reactive neutral particles such as various ions and radicals, and these adhere to the solar cell substrate 8 and react to react with SiN x as an antireflection film on the solar cell substrate. Film formation is performed.
When the film forming process is completed, the solar cell substrate 8 is carried out from the reaction chamber 1 together with the cart 5, and the solar cell substrate 8 to be processed next is carried into the reaction chamber 1 together with the cart 5.

以上のように、本発明によれば、1台の装置で窒素プラズマによる太陽電池基板8の酸化膜除去処理と、これに続いてこの太陽電池基板8にSiNの反射防止膜の成膜処理が行われる。本発明により、酸化膜除去処理後に、別の装置で反射防止膜の成膜を行うために、太陽電池基板を一旦反応室から出す必要がないので、太陽電池基板の処理スループットが向上できる。また、酸化膜除去処理後すぐに反射防止膜を成膜することで、太陽電池基板表面が変化することなく保護することが可能となる。 As described above, according to the present invention, the oxide film removal process of the solar cell substrate 8 by nitrogen plasma in one apparatus, and the film formation process of the antireflection film of SiN x on the solar cell substrate 8 subsequently. Is done. According to the present invention, it is not necessary to take the solar cell substrate out of the reaction chamber in order to form the antireflection film with another apparatus after the oxide film removal process, so that the processing throughput of the solar cell substrate can be improved. Further, by forming an antireflection film immediately after the oxide film removal treatment, it is possible to protect the surface of the solar cell substrate without changing.

上記の本発明の実施形態では、太陽電池基板8の酸化膜の処理のみを説明したが、本発明では太陽電池以外であっても、大面積の半導体基板に対し酸化膜の除去を含む工程を高スループットで行うことが可能である。また酸化膜を除去するために用いる窒素イオンを含むプラズマは、N以外の処理用ガスであっても、太陽電池の特性に影響を与えない限り、発生したプラズマに窒素イオンが含まれるようなものであれば、使用可能である。 In the above-described embodiment of the present invention, only the processing of the oxide film of the solar cell substrate 8 has been described. It can be performed with high throughput. Further, even if the plasma containing nitrogen ions used for removing the oxide film is a processing gas other than N 2 , the generated plasma contains nitrogen ions as long as it does not affect the characteristics of the solar cell. Anything can be used.

また、本発明の実施形態として、SiNからなる反射防止膜を太陽電池基板8の表面に成膜する例で説明したが、本発明はSiN膜の成膜だけに限らず、処理用ガスを変更することにより、SiOやITO等の他の種類の成膜処理を行う場合にも有効である。従って、太陽電池の反射防止膜の成膜に限らず、太陽電池および各種半導体デバイスのパッシベーション膜の成膜やELパネルの封止膜の成膜、液晶での透明電極膜の成膜等においても有効である。 Further, as an embodiment of the present invention has been described in example of forming an antireflection film made of SiN x on the surface of the solar cell substrate 8, the present invention is not limited to the deposition of the SiN x film, the process gas Is also effective when performing other types of film forming processes such as SiO 2 and ITO. Therefore, it is not limited to the formation of an antireflection film for solar cells, but also for the formation of passivation films for solar cells and various semiconductor devices, the formation of sealing films for EL panels, and the formation of transparent electrode films for liquid crystals. It is valid.

また上記の説明では、反射防止膜の成膜のためのプラズマは通常13.56MHzが用いられるとしたが、この周波数以外でこのプラズマを発生してもよい。尚、この領域の周波数では窒素イオンを含む各種イオンはこの周波数に追従できず、電子のみがこの周波数に追従して効率的に処理用ガスのイオン化を行うことにより、高濃度のプラズマが生成される。   In the above description, the plasma for forming the antireflection film is normally 13.56 MHz. However, this plasma may be generated at a frequency other than this frequency. It should be noted that various ions including nitrogen ions cannot follow this frequency at frequencies in this region, and only the electrons follow this frequency to efficiently ionize the processing gas to generate high-concentration plasma. The

1‥ 真空容器(反応室)
2‥ 高周波電力源
3‥ 処理用ガス供給部
4‥ 真空ポンプ
5‥ カート(基板電極)
6‥ 高周波電極
6a‥ ガス放出孔 6b‥ 電極板 6c‥ 細孔
7‥ 配線
8‥ 太陽電池基板
9‥ ヒーター
10‥ アースシールド
1. Vacuum container (reaction chamber)
2. High frequency power source 3. Treatment gas supply 4 Vacuum pump
5. Cart (substrate electrode)
6. High frequency electrode
6a ... Gas discharge hole 6b ... Electrode plate 6c ... Pore 7 ... Wiring 8 ... Solar cell substrate 9 ... Heater 10 ... Earth shield

Claims (7)

処理用ガスを供給する処理用ガス供給装置と、
高周波電力を出力する高周波電力源と、
真空容器内で太陽電池基板を戴置する基板電極と、
前記真空容器内で前記基板電極に対向して配置されている高周波電極とを備えた平行平板型プラズマCVD装置を用いて太陽電池基板の反射防止膜を成膜する方法において、
前記処理用ガス供給装置から第1処理用ガスを供給するとともに前記高周波電力源から前記高周波電極に第1周波数の高周波電力を印加し、前記高周波電極と前記基板電極との間に窒素イオンを含むプラズマを発生させ、この窒素イオンによって前記太陽電池基板の酸化膜を除去する除去工程と、
前記処理用ガス供給装置から第2処理用ガスを供給するとともに前記高周波電力源から前記高周波電極に第2周波数(>第1周波数)の高周波電力を印加し、前記高周波電極と前記基板電極との間に太陽電池基板表面に反射防止膜を成膜するプラズマを発生させ、このプラズマによって前記太陽電池基板表面に前記反射防止膜を成膜する成膜工程とを連続して行うことを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法。
A processing gas supply device for supplying a processing gas;
A high frequency power source that outputs high frequency power; and
A substrate electrode for placing a solar cell substrate in a vacuum vessel;
In the method of forming an antireflection film on a solar cell substrate using a parallel plate type plasma CVD apparatus provided with a high-frequency electrode disposed opposite to the substrate electrode in the vacuum vessel,
A first processing gas is supplied from the processing gas supply device, a high frequency power of a first frequency is applied from the high frequency power source to the high frequency electrode, and nitrogen ions are included between the high frequency electrode and the substrate electrode. Removing step of generating plasma and removing the oxide film of the solar cell substrate by the nitrogen ions;
A second processing gas is supplied from the processing gas supply device, a high frequency power of a second frequency (> first frequency) is applied from the high frequency power source to the high frequency electrode, and the high frequency electrode and the substrate electrode In the meantime, a plasma for forming an antireflection film on the surface of the solar cell substrate is generated, and a film forming step for forming the antireflection film on the surface of the solar cell substrate by the plasma is continuously performed. A method for forming an antireflection film on a solar cell substrate using a parallel plate type plasma CVD apparatus.
請求項1に記載の太陽電池基板の反射防止膜成膜方法において、
前記除去工程は、前記太陽電池基板の酸化膜を除去する窒素イオンを含むプラズマを発生するための第1処理用ガスを前記処理ガス供給装置から供給する第1工程、および、前記高周波電力源から第1周波数の高周波電力を発生させる第2工程を含み、
前記成膜工程は、前記除去工程が終了した後、前記太陽電池基板に前記反射防止膜を成膜するための第2処理用ガスを前記処理ガス供給装置から供給するように切り替える第3工程、および、前記高周波電力源から前記第1周波数より高い第2周波数の高周波電力を発生させる第4工程を含むことを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法。
In the solar cell substrate antireflection film-forming method according to claim 1,
The removing step includes a first step of supplying a first processing gas for generating a plasma containing nitrogen ions for removing an oxide film on the solar cell substrate from the processing gas supply device, and the high frequency power source. Including a second step of generating high-frequency power of a first frequency,
The film forming step is a third step of switching to supply a second processing gas for forming the antireflection film on the solar cell substrate from the processing gas supply device after the removal step is completed. And a fourth step of generating high-frequency power having a second frequency higher than the first frequency from the high-frequency power source, and forming an antireflection film on a solar cell substrate using a parallel plate type plasma CVD apparatus Method.
請求項1または2に記載の太陽電池基板の反射防止膜成膜方法において、
前記窒素イオンを含むプラズマを発生するための第1処理用ガスはNであることを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法。
In the solar cell substrate antireflection film-forming method according to claim 1 or 2,
A method for forming an antireflection film on a solar cell substrate using a parallel plate plasma CVD apparatus, wherein the first processing gas for generating plasma containing nitrogen ions is N 2 .
請求項1乃至3のいずれか一項に記載の太陽電池基板の反射防止膜成膜方法において、
前記除去工程において、前記窒素イオンを含むプラズマを発生させる際には、前記高周波電力源の出力電力を50kHz〜800kHzの第1周波数に設定し、
前記成膜工程において、前記太陽電池基板表面に反射防止膜を成膜するプラズマを発生させる際には、前記高周波電力源の出力電力を13.56MHzの第2周波数に設定することを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法。
In the solar cell substrate antireflection film-forming method according to any one of claims 1 to 3,
In the removing step, when generating the plasma containing nitrogen ions, the output power of the high-frequency power source is set to a first frequency of 50 kHz to 800 kHz,
In the film formation step, when generating plasma for forming an antireflection film on the surface of the solar cell substrate, the output power of the high frequency power source is set to a second frequency of 13.56 MHz. A method for forming an antireflection film on a solar cell substrate using a parallel plate type plasma CVD apparatus.
請求項1乃至第4のいずれか一項に記載の太陽電池基板の反射防止膜成膜方法において、
前記反射防止膜はSiNであり、このSiNの反射防止膜を成膜するプラズマを発生するための第2処理用ガスはSiHとNHとNとの混合ガスであることを特徴とする平行平板型プラズマCVD装置を用いた太陽電池基板の反射防止膜成膜方法。
In the solar cell substrate antireflection film-forming method according to any one of claims 1 to 4,
The antireflection film is SiN x , and the second processing gas for generating plasma for forming the antireflection film of SiN x is a mixed gas of SiH 4 , NH 3, and N 2. A method for forming an antireflection film on a solar cell substrate using a parallel plate type plasma CVD apparatus.
処理用ガスを供給する処理用ガス供給装置と、
高周波電力を高周波電極に印加する高周波電力源と、
真空容器内において前記前記太陽電池基板を戴置する基板電極と、
前記真空容器内において前記基板電極に対向して配置されている高周波電極と、
前記処理用ガス供給装置および前記高周波電力源を制御する制御回路とを備え、
前記制御回路は、
(a)前記高周波電極と前記基板電極との間に窒素イオンを含むプラズマを発生させ、この窒素イオンによって前記太陽電池基板の酸化膜を除去させるため、Nを供給するように前記処理用ガス供給装置を制御するとともに、低周波数の高周波電力を前記高周波電極に印加するように前記高周波電力源を制御し、
(b)酸化膜を除去させた後、前記高周波電極と前記基板電極との間に太陽電池基板表面にSiNの反射防止膜を成膜するプラズマを発生させ、このプラズマによって前記太陽電池基板表面に前記反射防止膜を成膜するため、SiHとNHとNとの混合ガスを供給するように前記処理用ガス供給装置を制御するとともに、高周波数の高周波電力を前記高周波電極に印加するように前記高周波電力源を制御することを特徴とする平行平板型プラズマCVD装置。
A processing gas supply device for supplying a processing gas;
A high frequency power source for applying high frequency power to the high frequency electrode;
A substrate electrode for placing the solar cell substrate in a vacuum vessel;
A high frequency electrode disposed opposite to the substrate electrode in the vacuum vessel;
A control circuit for controlling the processing gas supply device and the high-frequency power source,
The control circuit includes:
(A) The processing gas is supplied so as to supply N 2 in order to generate a plasma containing nitrogen ions between the high-frequency electrode and the substrate electrode, and to remove the oxide film of the solar cell substrate by the nitrogen ions. Controlling the supply device, and controlling the high-frequency power source to apply low-frequency high-frequency power to the high-frequency electrode,
(B) After removing the oxide film, a plasma is formed between the high-frequency electrode and the substrate electrode to form a SiN x antireflection film on the surface of the solar cell substrate. In order to form the antireflection film, the processing gas supply device is controlled so as to supply a mixed gas of SiH 4 , NH 3 and N 2, and high frequency high frequency power is applied to the high frequency electrode. A parallel plate type plasma CVD apparatus characterized by controlling the high-frequency power source.
請求項6に記載の平行平板型プラズマCVD装置において、
酸化膜を除去させるときの前記高周波電力の周波数は50kHz〜800kHzであり、前記SiNの反射防止膜を成膜するときの前記高周波電力の周波数は13.56MHzであることを特徴とする平行平板型プラズマCVD装置。
In the parallel plate type plasma CVD apparatus according to claim 6,
The frequency of the high-frequency power when removing the oxide film is 50 kHz to 800 kHz, and the frequency of the high-frequency power when forming the SiN x antireflection film is 13.56 MHz. Type plasma CVD equipment.
JP2010101055A 2010-04-26 2010-04-26 Substrate processing method using parallel plate type plasma cvd device Pending JP2011233627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010101055A JP2011233627A (en) 2010-04-26 2010-04-26 Substrate processing method using parallel plate type plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101055A JP2011233627A (en) 2010-04-26 2010-04-26 Substrate processing method using parallel plate type plasma cvd device

Publications (1)

Publication Number Publication Date
JP2011233627A true JP2011233627A (en) 2011-11-17

Family

ID=45322685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101055A Pending JP2011233627A (en) 2010-04-26 2010-04-26 Substrate processing method using parallel plate type plasma cvd device

Country Status (1)

Country Link
JP (1) JP2011233627A (en)

Similar Documents

Publication Publication Date Title
US11257685B2 (en) Apparatus and process for electron beam mediated plasma etch and deposition processes
JP4714166B2 (en) Substrate plasma processing apparatus and plasma processing method
JP5589839B2 (en) Plasma processing apparatus and method for producing amorphous silicon thin film using the same
JP2004343017A (en) Plasma treatment device
EP2274764A1 (en) Plasma processing apparatus and method for the plasma processing of substrates
JP2005064465A (en) Plasma processing apparatus and method of cleaning the same
JP2008060429A (en) Plasma treatment apparatus and plasma treatment method of substrate
KR102060671B1 (en) Device for treating an object with plasma
JP2012149278A (en) Method for producing silicon-containing film
JP2002093721A (en) Method and apparatus for forming deposition film
KR101971773B1 (en) Substrate processing apparatus
JP5520834B2 (en) Method for forming passivation film and method for manufacturing solar cell element
JP5614180B2 (en) Plasma CVD equipment
KR101702869B1 (en) Atomic layer etching apparatus
JP4087234B2 (en) Plasma processing apparatus and plasma processing method
JP2012124229A (en) Method of forming antireflection film using parallel flat plate type plasma cvd apparatus
JP2013179126A (en) Etching equipment, etching method and cleaning equipment
CN101964301A (en) Plasma filter screen device, plasma screening method and plasma equipment thereof
JP2011233627A (en) Substrate processing method using parallel plate type plasma cvd device
JP4194466B2 (en) Plasma process apparatus and electronic device manufacturing method using the same
JP4980055B2 (en) Method for manufacturing a vacuum plasma treated workpiece
JP5862027B2 (en) Plasma CVD apparatus and method for manufacturing thin film substrate
JP2005310834A (en) Plasma processing apparatus
JP2018019107A (en) Plasma cvd system, crystal silicon-based solar battery, and plasma cvd method for manufacturing the same
KR20120025656A (en) Apparatus for generation plasma