JP2011232177A - Probe microscope and frictional sliding, cmp, and hard disk inspection device including the same - Google Patents

Probe microscope and frictional sliding, cmp, and hard disk inspection device including the same Download PDF

Info

Publication number
JP2011232177A
JP2011232177A JP2010102818A JP2010102818A JP2011232177A JP 2011232177 A JP2011232177 A JP 2011232177A JP 2010102818 A JP2010102818 A JP 2010102818A JP 2010102818 A JP2010102818 A JP 2010102818A JP 2011232177 A JP2011232177 A JP 2011232177A
Authority
JP
Japan
Prior art keywords
sample
leaf spring
cmp
probe microscope
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010102818A
Other languages
Japanese (ja)
Inventor
Michiko Honbo
享子 本棒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010102818A priority Critical patent/JP2011232177A/en
Publication of JP2011232177A publication Critical patent/JP2011232177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow measurement even in the case that the center of gravity of a material is deviated from a center of a flat spring for detection or the flat spring is deformed.SOLUTION: A scanning probe microscope S1 includes: a flat spring 3 having a first sample 1 installed at a front end thereof; a fixing member 14 which fixes a base end of the flat spring 3; a stage 15 which has a second sample 2 fixed thereon; an optical system 18 for detecting displacement of the flat spring 3, which detects reflected light of detecting light radiated from a light source 16 to the flat spring 3, by a photodetector 17; a sample interval adjustment mechanism 19 which moves the stage 15 or the flat spring 3 to bring the first and second samples 1 and 2 close to or away from each other; a horizontal scanning mechanism 20 which measures friction between the first and second samples 1 and 2; and a vertical scanning mechanism 21 which measures at least one of adsorption, agglutination, and reaction between the first and second samples 1 and 2. The scanning probe microscope S1 includes a rotating mechanism 22 for rotating the fixing member 14 which changes inclination of the flat spring 3 with which an optical axis of detecting light r11 is aligned, at an arbitrary angle with respect to the stage 15.

Description

本発明は、二種類の物質間の相互作用を測定するプローブ顕微鏡に係わり、特に、変速機、CMP、ハードディスクなどの摺動部材、研磨部材の物性を計測してこれらの特性を推定することができるプローブ顕微鏡、およびこれを備える摩擦摺動・CMP・ハードディスクの検査装置に関する。   The present invention relates to a probe microscope that measures the interaction between two kinds of substances, and in particular, can measure the physical properties of a sliding member such as a transmission, CMP, a hard disk, and a polishing member to estimate these characteristics. The present invention relates to a probe microscope that can be used, and a friction sliding / CMP / hard disk inspection apparatus including the same.

走査型プローブ顕微鏡は、探針と試料とを接近させた状態で探針を試料に対して相対的に走査する際に、探針から試料へ接触または非接触の局所的刺激を発生させ、その刺激に対する試料表面からの局所的応答を測定することによって試料の表面を観察する顕微鏡である。走査型プローブ顕微鏡はその物理量の測定方法の違いから、探針と試料間に流れる電流を検出する走査トンネル顕微鏡と試料表面と探針との間に働くいろいろな力を検出する原子間力顕微鏡、試料表面の磁気分布を測定する磁気力顕微鏡をはじめ、試料表面の摩擦力、粘性、弾性、電位等を測定する多くの種類の顕微鏡が実用化されている。   The scanning probe microscope generates a local stimulus of contact or non-contact from the probe to the sample when the probe is scanned relative to the sample in a state where the probe and the sample are brought close to each other. A microscope that observes the surface of a sample by measuring the local response from the sample surface to a stimulus. Scanning probe microscopes have different measurement methods for their physical quantities, so scanning tunneling microscopes that detect the current flowing between the probe and the sample, and atomic force microscopes that detect various forces acting between the sample surface and the probe, Many types of microscopes for measuring friction force, viscosity, elasticity, electric potential and the like on the sample surface have been put into practical use, including a magnetic force microscope for measuring the magnetic distribution on the sample surface.

この顕微鏡は、試料と探針の間に働く力によって、測定プローブを支持しているバネ要素がたわむことを利用した測定法が主流である。その制御手段としては、片持ち梁プローブの背面にレーザ光を照射して、反射光の光軸が、片持ち梁プローブのたわみによって、変化することを利用した光てこ方式や光波干渉方式が利用されている。
図12に従来の光てこ方式の顕微鏡300を示す。
顕微鏡300は、板ばね303の先端に探針(カンチレバ)313が配置され、試料台315には試料302が固定されている。そして、板ばね303の先端に取り付けられた探針313で試料302に局所的刺激を発生させ、その際に板ばね303から反射するレーザ光r100を4分割ポジションディテクタ307で検知して、試料302の表面を観察する。
This microscope mainly uses a measurement method that utilizes the bending of the spring element that supports the measurement probe due to the force acting between the sample and the probe. As the control means, the back of the cantilever probe is irradiated with laser light, and the optical lever method and the light wave interference method that use the fact that the optical axis of the reflected light changes due to the deflection of the cantilever probe are used. Has been.
FIG. 12 shows a conventional optical lever type microscope 300.
In the microscope 300, a probe (cantilever) 313 is disposed at the tip of a leaf spring 303, and a sample 302 is fixed to a sample table 315. Then, a local stimulus is generated in the sample 302 by the probe 313 attached to the tip of the leaf spring 303, and the laser beam r100 reflected from the leaf spring 303 at that time is detected by the four-divided position detector 307, and the sample 302 is detected. Observe the surface.

顕微鏡は、先端に探針313が取り付けられた板ばね303、レーザ光r10を発光する半導体レーザ304、発光されたレーザ光r100を板ばね303に向けて集光するレンズ305、板ばね303で反射したレーザ光r100を反射する鏡306、板ばね303で反射したレーザ光r100を検知する4分割ポジションディテクタ307、プリアンプ308、Z軸方向(鉛直方向)の走査を制御するZ軸サーボ系309、水平方向の走査を制御するX,Yラスタースキャン系310、試料302に鉛直方向(Z軸方向)の微小な移動を付与するピエゾ素子311、および試料302を鉛直方向(Z軸方向)に移動するステップインモータ312より構成される。   The microscope has a leaf spring 303 with a probe 313 attached to the tip, a semiconductor laser 304 that emits laser light r10, a lens 305 that focuses the emitted laser light r100 toward the leaf spring 303, and a reflection by the leaf spring 303. A mirror 306 that reflects the laser beam r100, a quadrant position detector 307 that detects the laser beam r100 reflected by the leaf spring 303, a preamplifier 308, a Z-axis servo system 309 that controls scanning in the Z-axis direction (vertical direction), horizontal X, Y raster scan system 310 that controls scanning in the direction, piezo element 311 that imparts minute movement in the vertical direction (Z-axis direction) to sample 302, and step of moving sample 302 in the vertical direction (Z-axis direction) An in-motor 312 is included.

試料302の測定に際して、板ばね303は試料302に局所的刺激を発生させることから、板ばね303に垂直方向の変位、及び試料302と探針313との摩擦により生じる板ばね303のねじれ、即ち板ばね303の水平方向の変位が発生する。半導体レーザ304からのレーザ光r100は、板ばね303の背面で反射され、4分割ポジションディテクタ307により検出されるので、板ばね303の垂直方向、及び水平方向の変位は4分割ポジションディテクタ307の検知信号から求められる(特許文献1参照)。
探針と試料の間に流れる電流を検出する走査型トンネル顕微鏡では、探針側に取り付けられているピエゾを走査して画像を収集している。
When measuring the sample 302, the leaf spring 303 generates local stimulation on the sample 302, so that the leaf spring 303 is twisted due to the displacement in the vertical direction to the leaf spring 303 and the friction between the sample 302 and the probe 313. A horizontal displacement of the leaf spring 303 occurs. The laser beam r100 from the semiconductor laser 304 is reflected by the back surface of the leaf spring 303 and detected by the quadrant position detector 307. Therefore, the vertical and horizontal displacements of the leaf spring 303 are detected by the quadrant position detector 307. It is calculated | required from a signal (refer patent document 1).
In a scanning tunneling microscope that detects a current flowing between a probe and a sample, an image is collected by scanning a piezo attached to the probe side.

一方、光てこ方式からなる原子間力顕微鏡では、図12に示すように、試料302の側にX方向,Y方向,Z方向のピエゾを設けているものが多い。
原子間力顕微鏡では、可動範囲の大きなピエゾ素子を搭載しているため、探針と試料との間の追随性が悪くなる。これを回避するため、探針(カンチレバー)313の母材上にX,Y,Zのピエゾを設けている例がある。探針(カンチレバー)313の母材上にX,Y,Zのピエゾを設けているものの中には、探針313は試料表面を「の」の字でなぞる様に小旋回動作をさせる例が開示されている(特許文献2)。
On the other hand, many atomic force microscopes using an optical lever system are provided with piezoelectric elements in the X, Y, and Z directions on the sample 302 side as shown in FIG.
In the atomic force microscope, since a piezo element having a large movable range is mounted, the followability between the probe and the sample is deteriorated. In order to avoid this, there is an example in which X, Y, and Z piezos are provided on the base material of the probe (cantilever) 313. Among those in which X, Y, and Z piezos are provided on the base material of the probe (cantilever) 313, there is an example in which the probe 313 performs a small turning operation so that the surface of the sample is traced in the shape of "". It is disclosed (Patent Document 2).

また、これらに使用される探針313は、円柱状、円錐状、円筒状、平面状、三角錐、正四面体、針状、球状等の対称性に優れた形状が一般に用いられる。さらには、球形度が0.75以上の球状粒子をAFM(原子間力顕微鏡)用探針の先端に接着させる例(特許文献3)や、粒径が数十ミクロン以下の微小球状粒子を接着させる例(特許文献4)なども開示されている。これらの探針は、必ず、重心が板ばねの中心線上にある。これは、板ばねが試料に対して水平にアプローチする、あるいは上下振動する際に板ばねがズレて誤検知を生じないために必要不可欠だからである。   In addition, the probe 313 used for these generally has a shape having excellent symmetry such as a columnar shape, a conical shape, a cylindrical shape, a planar shape, a triangular pyramid, a regular tetrahedron, a needle shape, and a spherical shape. Furthermore, an example in which spherical particles having a sphericity of 0.75 or more are adhered to the tip of an AFM (Atomic Force Microscope) probe (Patent Document 3), or a minute spherical particle having a particle size of several tens of microns or less is adhered. An example (Patent Document 4) is also disclosed. These probes always have a center of gravity on the centerline of the leaf spring. This is because the leaf spring is indispensable in order to avoid horizontal misalignment when the leaf spring approaches the sample horizontally or vibrates up and down.

特開平6−241762号公報JP-A-6-241762 特開2008−191062号公報JP 2008-191062 A 特開2002−62253号公報JP 2002-62253 A 特開2009−115533号公報JP 2009-115533 A

従来の光てこ方式の顕微鏡に使用されている駆動系では、使用可能な探針は、その形状が対称性に優れ、探針の重心が板ばねの中心線上に存在すること、その大きさが板ばねの歪まない程度に十分小さく、軽いことなどの制約があった。しかし、種々の製品に使用されている摺動部材や研磨部材などの実材料は、多孔体、多結晶体、凝集体などや、特定の箇所に溝を切ってあるものなど、形状が複雑かつ不定形で、しかも非対称であり、重心が材料の中心から大きくずれていたり、重量が大きかったりする場合が多い。   In the drive system used in a conventional optical lever microscope, the usable probe has excellent symmetry in shape, the center of gravity of the probe is on the center line of the leaf spring, and its size is There were restrictions such as being small enough and light enough not to distort the leaf spring. However, actual materials such as sliding members and abrasive members used in various products are complex in shape, such as porous bodies, polycrystalline bodies, aggregates, and those with grooves in specific locations. In many cases, it is indeterminate and asymmetric, and the center of gravity is greatly deviated from the center of the material or the weight is large.

これらの実材料を板ばねに取り付けて探針の替わりに使用しようとすると、板ばねの中心線上に材料の重心がくるように取り付けることが困難なために、板ばねがねじれてしまう。或いは、重量が大きいために板ばねが垂れ下がってしまうなどの不具合が生じている。
このように変形した板ばねでは、板ばねの背面にレーザ光を照射しても、その反射光が散乱してしまって集光させることができない、或いは、ディテクタで検出できないなどの問題がある。
If these actual materials are attached to a leaf spring and are to be used in place of the probe, it is difficult to attach the center of gravity of the material on the center line of the leaf spring, and the leaf spring is twisted. Alternatively, there is a problem that the leaf spring hangs down due to its large weight.
In such a deformed leaf spring, there is a problem that even if the back surface of the leaf spring is irradiated with laser light, the reflected light is scattered and cannot be collected, or cannot be detected by a detector.

本発明は上記実状に鑑み、材料の重心が検知用の板ばねの中心からずれたり、材料の重量が大きいために板ばねが垂れ下がる場合にも正確な測定が可能なプローブ顕微鏡、およびこれを備える摩擦摺動・CMP・ハードディスクの検査装置の提供を目的とする。   In view of the above situation, the present invention includes a probe microscope capable of performing accurate measurement even when the center of gravity of the material deviates from the center of the leaf spring for detection or the leaf spring hangs down due to the weight of the material, and the probe microscope. The object is to provide a friction sliding / CMP / hard disk inspection device.

上記目的を達成すべく、第1の本発明に関わる走査型プローブ顕微鏡は、第1試料が先端部に取り付けられた板ばねと、前記板ばねの前記先端部とは反対側の端部を固定する固定部材と、第2試料が固定される試料台と、光源から発生する検出光の光軸が前記板ばねの先端部または前記板ばねの変位に追従する部分に当てられ、その反射光を光検出器で検出する前記板ばねの変位検出光学系と、前記試料台もしくは前記板ばねを動かして、前記第1試料と前記第2試料とを接近または離隔させるための試料間隔調整機構と、前記第1試料と前記第2試料との間の摩擦を測定するための水平走査機構と、前記第1試料と前記第2試料との間の吸着、凝着、反発のうち少なくとも一つを測定するための垂直走査機構とを備える走査型プローブ顕微鏡であって、前記光源から発生する検出光の光軸が当てられた部分の前記第1試料が先端部に取り付けられた板ばねの傾きを、前記試料台に対して任意の角度で変化させるための前記固定部材を回転させる回転機構を備えている。   In order to achieve the above object, a scanning probe microscope according to the first aspect of the present invention fixes a leaf spring having a first sample attached to a tip portion and an end portion of the leaf spring opposite to the tip portion. A fixing member to be fixed, a sample stage to which the second sample is fixed, an optical axis of detection light generated from a light source is applied to a tip portion of the leaf spring or a portion following the displacement of the leaf spring, and the reflected light is A displacement detection optical system of the leaf spring to be detected by a photodetector; a sample interval adjustment mechanism for moving the sample stage or the leaf spring to bring the first sample and the second sample closer to or away from each other; Measuring at least one of a horizontal scanning mechanism for measuring friction between the first sample and the second sample, and adsorption, adhesion and repulsion between the first sample and the second sample Scanning probe microscope with vertical scanning mechanism In order to change the inclination of a leaf spring attached to the tip of the first sample of the portion to which the optical axis of the detection light generated from the light source is applied at an arbitrary angle with respect to the sample stage A rotating mechanism for rotating the fixing member.

第2の本発明に関わる摩擦摺動の検査装置は、第1の本発明の走査型プローブ顕微鏡を備え、相互に摩擦摺動する一対の摺動部材のうち少なくとも一方の前記摺動部材を、他方の前記摺動部材に対して摺動する摺動面が下面となるように、前記板ばねの先端部に取り付けると共に、前記他方の摺動部材を前記試料台の上に固定して、前記試料間隔調整機構が、前記板ばねの先端部に取り付けた一方の摺動部材と、前記他方の摺動部材との間に一定の荷重を加えるとともに、前記水平走査機構で前記試料台の上の他方の摺動部材を水平走査させることにより、前記一対の摺動部材間の摩擦特性を測定している。   The inspection apparatus for frictional sliding according to the second aspect of the present invention includes the scanning probe microscope according to the first aspect of the present invention, and includes at least one of the sliding members frictionally sliding with each other. Attach to the tip of the leaf spring so that the sliding surface sliding with respect to the other sliding member is the lower surface, and fix the other sliding member on the sample table, The sample interval adjusting mechanism applies a constant load between the one sliding member attached to the tip of the leaf spring and the other sliding member, and the horizontal scanning mechanism is used to The friction characteristic between the pair of sliding members is measured by horizontally scanning the other sliding member.

第3の本発明に関わるCMPの検査装置は、第1の本発明の走査型プローブ顕微鏡を備え、半導体用ウエハ、前記半導体用ウエハの表面を化学的機械的に研磨して平滑化するために用いるCMP用スラリに含まれる砥粒、一定の荷重をかけて回転させることにより前記半導体用ウエハの表面を研磨するためのCMP用パッド、前記CMP用パッドをクリーニングするためのCMP用ドレスのうちの少なくとも一つを前記板ばねの先端部に取り付けるとともに前記板ばねの先端部に取り付けた部材とは異なる部材を試料台の上に固定して、前記水平走査機構または前記垂直走査機構で前記試料台の上の部材を走査させることにより、摩擦、吸着、凝着、反発のうち少なくとも一つを測定している。   A CMP inspection apparatus according to a third aspect of the present invention includes the scanning probe microscope according to the first aspect of the present invention, and is for chemically and mechanically polishing and smoothing a semiconductor wafer and the surface of the semiconductor wafer. Of the abrasive grains contained in the CMP slurry to be used, a CMP pad for polishing the surface of the semiconductor wafer by rotating it under a constant load, and a CMP dress for cleaning the CMP pad At least one is attached to the tip of the leaf spring and a member different from the member attached to the tip of the leaf spring is fixed on the sample stage, and the sample stage is moved by the horizontal scanning mechanism or the vertical scanning mechanism. By scanning a member on the surface, at least one of friction, adsorption, adhesion, and repulsion is measured.

第4の本発明に関わるハードディスクの検査装置は、第1の本発明の走査型プローブ顕微鏡を備え、ハードディスク用のヘッドを磁気記録媒体から一定の間隔で浮上させ、データの書き込みを行う磁気記録装置における前記ヘッドと前記磁気記録媒体のうち何れか一方の部材が前記板ばねの先端部に取り付けられるとともに他方の部材が前記試料台の上に固定され、前記水平走査機構または前記垂直走査機構で前記試料台の上の部材を走査させることにより、摩擦、吸着、凝着、反発のうち少なくとも一つを測定している。   A hard disk inspection apparatus according to a fourth aspect of the present invention includes a scanning probe microscope according to the first aspect of the present invention, and a magnetic recording apparatus for writing data by levitating a head for a hard disk from a magnetic recording medium at a constant interval. One of the head and the magnetic recording medium is attached to the tip of the leaf spring, and the other member is fixed on the sample stage, and the horizontal scanning mechanism or the vertical scanning mechanism By scanning a member on the sample stage, at least one of friction, adsorption, adhesion, and repulsion is measured.

本発明によれば、材料の重心が検知用の板ばねの中心からずれたり、材料の重量が大きいために板ばねが垂れ下がる場合にも正確な測定が可能なプローブ顕微鏡、およびこれを備える摩擦摺動・CMP・ハードディスクの検査装置を実現できる。   According to the present invention, the probe microscope capable of accurate measurement even when the center of gravity of the material is shifted from the center of the leaf spring for detection or the leaf spring hangs down due to the large weight of the material, and the frictional slide including the probe microscope are provided. A dynamic / CMP / hard disk inspection device can be realized.

本発明の実施形態の一例を示す相互作用測定装置を示す概念的構成図である。It is a notional block diagram which shows the interaction measuring apparatus which shows an example of embodiment of this invention. (a)は、実施形態の一例の試料aを取り付けた板ばねの先端部側が試料aの重みで下方に向け変形した状態を示す図1のA方向矢視図であり、(b)は、実施形態の試料aの重みで変形した板ばねを水平にした状態を示すA方向矢視図である。(a) is a view in the direction of arrow A in FIG. 1 showing a state in which the tip end side of a leaf spring to which a sample a of an example of the embodiment is attached is deformed downward by the weight of the sample a. It is an A direction arrow directional view which shows the state which leveled the leaf | plate spring deform | transformed with the weight of the sample a of embodiment. (a)は、図1の実施形態の相互作用測定装置の板ばねの先端部に取り付けた試料aの重心が板ばねの中心線より左側にある場合の状態を示す図1のB方向矢視図であり、(b)は、(a)の相互作用測定装置の板ばねの先端部に取り付けた試料aの重心が板ばねの中心線より右側にある場合の状態を示す図1のB方向矢視図であり、(c)は、(a)、(b)の相互作用測定装置の変形した板ばねを水平にした状態を示す図1のB方向矢視図である。(a) is a view in the direction of arrow B in FIG. 1 showing a state where the center of gravity of the sample a attached to the tip of the leaf spring of the interaction measuring apparatus of the embodiment of FIG. 1 is on the left side of the center line of the leaf spring. (B) is a B direction in FIG. 1 showing a state in which the center of gravity of the sample a attached to the tip of the leaf spring of the interaction measuring device in (a) is on the right side of the center line of the leaf spring. It is an arrow view, (c) is a B direction arrow view of FIG. 1 which shows the state which leveled the deformed leaf | plate spring of the interaction measuring apparatus of (a), (b). 実施形態の相互作用測定装置における回転機構の第1回転式アクチュエータの一例を示す図1のA方向矢視図である。It is an A direction arrow directional view of Drawing 1 showing an example of the 1st rotation type actuator of the rotation mechanism in the interaction measuring device of an embodiment. 実施形態の相互作用測定装置で使用する試料aと板ばねとの廻りの外観を示す図である。(a)〜(d)は板ばねを上方から見た図(図1のC方向矢視図)であり、(e)〜(h)は板ばねを前方から見た図(図1のB方向矢視図)である。It is a figure which shows the external appearance of the circumference | surroundings of the sample a used with the interaction measuring apparatus of embodiment and a leaf | plate spring. (a)-(d) is the figure which looked at the leaf | plate spring from upper direction (C direction arrow figure of FIG. 1), (e)-(h) is the figure (B of FIG. 1) which looked at the leaf | plate spring from the front. Direction arrow view). (a)および(b)は、実施形態の一例を示す相互作用測定装置で使用する試料aと板ばねとの廻りの外観および試料aの寸法を示す図であり、板ばねを上方から見た図(図1のC方向矢視図)である。(a) And (b) is a figure which shows the external appearance of the circumference | surroundings of the sample a used with the interaction measuring apparatus which shows an example of embodiment, and a leaf | plate spring, and the dimension of the sample a, The leaf | plate spring was seen from upper direction It is a figure (C direction arrow line view of FIG. 1). 実施形態の一例を示す相互作用測定装置で使用する雰囲気制御方式を示す図1のB方向矢視図である。It is a B direction arrow line view of FIG. 1 which shows the atmosphere control system used with the interaction measuring device which shows an example of embodiment. CMP用パッドから作製した試料a付き板ばねの一例であり、(a)は、試料a付き板ばねを上方から見た図(図1のC方向矢視図)であり、(b)は、試料a付き板ばねを向かって右側方から横から見た図(図1のA方向矢視図)である。It is an example of a leaf spring with a sample a produced from a pad for CMP, (a) is a view of the leaf spring with a sample a as viewed from above (a view in the direction of arrow C in FIG. 1), and (b) is It is the figure which looked at the leaf | plate spring with a sample a from the right side toward the direction (arrow A arrow view of FIG. 1). 水平走査機構を用いてパッド粉を3nNの荷重をかけて左右に1ミクロンずつ走査させ、パッド粉とウエハとの間の摩擦を測定した際の板ばねのねじれの変位カーブを示す図である。It is a figure which shows the displacement curve of the twist of a leaf | plate spring when a pad powder is scanned 1 micron to the left and right using a horizontal scanning mechanism, and the friction between pad powder and a wafer is measured. 配線パターンの異なるウエハとパッド粉との相互作用を測定したときのねじれ変位幅と研磨速度との結果を示す図である。It is a figure which shows the result of the twist displacement width | variety and polishing rate when measuring the interaction of the wafer and pad powder | flour from which a wiring pattern differs. CMP用スラリの砥粒から作製した試料a付き板ばねの一例であり、(a)は、試料a付き板ばねを上方から見た図(図1のC方向矢視図)であり、(b)は、試料a付き板ばねを横から見た図(図1のA方向矢視図)である。It is an example of a leaf spring with a sample a produced from abrasive grains of a slurry for CMP, and (a) is a view of the leaf spring with a sample a as viewed from above (a view in the direction of arrow C in FIG. 1). ) Is a view of a leaf spring with a sample a as viewed from the side (a view in the direction of arrow A in FIG. 1). 従来の光てこ方式の顕微鏡を示す斜視図である。It is a perspective view which shows the microscope of the conventional optical lever system.

以下、本発明の実施形態について添付図面を参照して説明する。
図1は本発明の実施形態の一例を示す走査型プローブ顕微鏡の相互作用測定装置S1を示す概念的構成図である。
<実施形態の相互作用測定装置S1の概要>
実施形態の走査型プローブ顕微鏡の相互作用測定装置S1は、非対称の不定形形状を有する試料や、板ばねの重心を通る中心線から重心がずれた位置にしか設置できない試料を板ばねに接着して種々の相互作用の測定に使用する。
そのため、相互作用測定装置S1は、光源16から発生する検出光の光軸が当てられた部分の板ばね3の傾きを、試料台15に対して任意の角度で変化させるための板ばね3を回転させる回転機構22を備える。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a conceptual configuration diagram showing an interaction measuring apparatus S1 of a scanning probe microscope showing an example of an embodiment of the present invention.
<Outline of Interaction Measuring Device S1 of Embodiment>
The scanning probe microscope interaction measuring apparatus S1 of the embodiment adheres a sample having an asymmetrical indefinite shape or a sample that can be placed only at a position where the center of gravity is shifted from the center line passing through the center of gravity of the leaf spring to the leaf spring. Used to measure various interactions.
Therefore, the interaction measuring device S1 includes a leaf spring 3 for changing the inclination of the leaf spring 3 at a portion to which the optical axis of the detection light generated from the light source 16 is applied at an arbitrary angle with respect to the sample stage 15. A rotating mechanism 22 for rotating is provided.

<相互作用測定装置S1の構成>
実施形態の相互作用測定装置S1は、先端部に試料a(1)が取り付けられた板ばね3と、板ばね3の先端部とは反対側の端部を固定した固定ホルダ14(図2参照)と備え、試料台15の上には試料b(2)が固定されている。なお、固定ホルダ14は、固定ホルダケース14cで覆われている。
相互作用測定装置S1は、光源16から発生するレーザ検出光等の検出光r11の光軸が板ばね3の先端部または板ばね3の変位に追従する部分に当てられた反射光r12を光検出器17で検出する板ばね3の変位検出光学系18と、試料台15もしくは板ばね3を動かして試料a(1)と試料b(2)とを接近または離隔させるための微動/粗動機構19と、試料a(1)と試料b(2)との間の摩擦を測定するために試料台15を水平方向(X・Y軸方向)に走査させる水平走査機構20と、試料a(1)と試料b(2)との間の吸着、凝着、反発のうち少なくとも一つを測定するために試料台15を垂直方向(Z軸方向)に走査させる垂直走査機構21とを有する走査型プローブ顕微鏡である。
<Configuration of interaction measuring device S1>
The interaction measuring apparatus S1 according to the embodiment includes a leaf spring 3 having a sample a (1) attached to a tip portion, and a fixed holder 14 that fixes an end portion on the opposite side of the tip portion of the leaf spring 3 (see FIG. 2). ) And the sample b (2) is fixed on the sample stage 15. The fixed holder 14 is covered with a fixed holder case 14c.
The interaction measuring device S1 detects the reflected light r12 applied to the tip of the leaf spring 3 or the portion following the displacement of the leaf spring 3 with the optical axis of the detection light r11 such as laser detection light generated from the light source 16 being detected. Displacement detecting optical system 18 of the leaf spring 3 detected by the instrument 17 and a fine / coarse movement mechanism for moving the sample table 15 or the leaf spring 3 to approach or separate the sample a (1) and the sample b (2). 19 and a horizontal scanning mechanism 20 that scans the sample stage 15 in the horizontal direction (X and Y axis directions) in order to measure the friction between the sample a (1) and the sample b (2), and the sample a (1 And a vertical scanning mechanism 21 that scans the sample stage 15 in the vertical direction (Z-axis direction) in order to measure at least one of adsorption, adhesion, and repulsion between the sample b and the sample b (2). It is a probe microscope.

変位検出光学系18は、検出光r11を発する光源16と、光源16からの検出光r11を板ばね3に向けて集光するレンズ5と、ビームスプリッタと、板ばね3で反射した反射光r12を反射する鏡6と、鏡6で反射した反射光r12を検出する光検出器17とを有する。
相互作用測定装置S1は、試料a(1)と試料b(2)とを接近させる前に、光源16から発生する検出光r11の光軸が当てられた部分の板ばね3の傾きを、試料台15に対して任意の角度で変化させるための固定ホルダ14を回転させる回転機構22を備えている。
The displacement detection optical system 18 includes a light source 16 that emits detection light r11, a lens 5 that condenses the detection light r11 from the light source 16 toward the leaf spring 3, a beam splitter, and reflected light r12 that is reflected by the leaf spring 3. And a photodetector 17 for detecting the reflected light r12 reflected by the mirror 6.
The interaction measuring device S1 determines the inclination of the leaf spring 3 at the portion to which the optical axis of the detection light r11 generated from the light source 16 is applied before the sample a (1) and the sample b (2) are brought close to each other. A rotation mechanism 22 is provided for rotating the fixed holder 14 for changing the table 15 at an arbitrary angle.

図2〜図4は本発明の実施形態の一例を示す回転機構を表わす図である。
図2(a)は、実施形態の一例の試料a(1)を取り付けた板ばね3の先端部側が試料a(1)の重みで下方に向け変形した状態を示す図1のA方向矢視図であり、図2(b)は、実施形態の試料a(1)の重みで変形した板ばね3を水平にした状態を示すA方向矢視図である。
相互作用測定装置S1の回転機構22は、板ばね3の試料a(1)を取り付けた先端部から固定ホルダ14に固定された端部までの長手方向(例えば、板ばね3の長手方向の中心線c31)を、固定ホルダ14の固定端側を支点として、試料台15に対して水平方向になるように、図2(b)の矢印α11、α12方向に回転させる第1回転式アクチュエータ24aを備えている。
2-4 is a figure showing the rotation mechanism which shows an example of embodiment of this invention.
FIG. 2A is a view in the direction of arrow A in FIG. 1 showing a state in which the tip side of the leaf spring 3 to which the sample a (1) of the example of the embodiment is attached is deformed downward by the weight of the sample a (1). FIG. 2B is a view in the direction of arrow A showing a state in which the leaf spring 3 deformed by the weight of the sample a (1) of the embodiment is leveled.
The rotation mechanism 22 of the interaction measuring device S1 has a longitudinal direction (for example, the center in the longitudinal direction of the leaf spring 3) from the distal end portion to which the sample a (1) of the leaf spring 3 is attached to the end portion fixed to the fixed holder 14. The first rotary actuator 24a that rotates the line c31) in the directions of arrows α11 and α12 in FIG. 2B so that the line c31) is horizontal with respect to the sample stage 15 with the fixed end side of the fixed holder 14 as a fulcrum. I have.

図2(a)に示すように、固定ホルダ14の自由端側で水平に支持される板ばね3の先端部に試料a(1)を取り付けた場合、板ばね3が試料a(1)の重量により下方に向けて曲げ変形する。すると、光源16から発した検出光r11は、曲げ変形した板ばね3で反射し、反射した反射光r12が光検出器17から外れ、光検出器17で検出することができなくなる。
この際、図2(a)の矢印α12方向に、第1回転式アクチュエータ24aによって固定ホルダ14を介して変形した板ばね3を回転させ、図2(b)に示すように、変形した板ばね3の位置を変え、光源16から発した検出光r11が曲げ変形した板ばね3で反射し、反射した反射光r13が光検出器17に入るようにして、検出できるようにする。
As shown in FIG. 2A, when the sample a (1) is attached to the tip of the leaf spring 3 that is horizontally supported on the free end side of the fixed holder 14, the leaf spring 3 is attached to the sample a (1). Bends and deforms downward due to weight. Then, the detection light r <b> 11 emitted from the light source 16 is reflected by the bent and deformed leaf spring 3, and the reflected reflected light r <b> 12 is detached from the light detector 17 and cannot be detected by the light detector 17.
At this time, the deformed leaf spring 3 is rotated by the first rotary actuator 24a via the fixed holder 14 in the direction of the arrow α12 in FIG. 2A, and the deformed leaf spring as shown in FIG. 2B. 3 is changed so that the detection light r11 emitted from the light source 16 is reflected by the bent leaf spring 3 and the reflected light r13 reflected enters the photodetector 17 so that it can be detected.

図3(a)は、実施形態の相互作用測定装置S1の板ばね3の先端部に取り付けた試料a(1)の重心1Gが板ばね3の重心が位置する板ばね3の幅を等分する中心線c33より左側にある場合の状態を示す図1のB方向矢視図であり、図3(b)は、図3(a)の相互作用測定装置S1の板ばね3の先端部に取り付けた試料a(1)の重心1Gが板ばね3の重心が位置する板ばね3の幅を等分する中心線c33より右側にある場合の状態を示す図1のB方向矢視図であり、図3(c)は、図3(a)、図3(b)の相互作用測定装置S1の変形した板ばね3を水平にした状態を示す図1のB方向矢視図である。
なお、板ばね3の重心は、板ばね3を上から見た場合、板ばね3の短手方向の幅を等分する中心線c33上に位置する。
相互作用測定装置S1の回転機構22は、板ばね3の短手方向(例えば、板ばね3の短手方向の中心線c32)を、試料台15に対して、図3(a)の矢印α21、図3(b)の矢印α22に示す方向に回転させる第2回転式アクチュエータ24b(図2参照)を備えている。
FIG. 3A shows that the center of gravity 1G of the sample a (1) attached to the tip of the leaf spring 3 of the interaction measuring device S1 of the embodiment is equally divided by the width of the leaf spring 3 where the center of gravity of the leaf spring 3 is located. FIG. 3B is a view taken in the direction of the arrow B in FIG. 1 and shows a state in the case of being on the left side of the center line c33. FIG. 3B is a plan view of the leaf spring 3 of the interaction measuring device S1 in FIG. FIG. 3 is a view in the direction of the arrow B in FIG. 1 showing a state where the center of gravity 1G of the attached sample a (1) is on the right side of the center line c33 equally dividing the width of the leaf spring 3 where the center of gravity of the leaf spring 3 is located. 3 (c) is a view in the direction of arrow B in FIG. 1 showing a state in which the deformed leaf spring 3 of the interaction measuring device S1 in FIGS. 3 (a) and 3 (b) is horizontal.
The center of gravity of the leaf spring 3 is located on a center line c33 that equally divides the width of the leaf spring 3 in the short direction when the leaf spring 3 is viewed from above.
The rotation mechanism 22 of the interaction measuring device S1 moves the short direction of the leaf spring 3 (for example, the center line c32 in the short direction of the leaf spring 3) with respect to the sample stage 15 by the arrow α21 in FIG. , A second rotary actuator 24b (see FIG. 2) that rotates in a direction indicated by an arrow α22 in FIG.

図3(a)に示すように、板ばね3の先端部に取り付けた試料a(1)の重心1Gが、板ばね3の重心が位置する板ばね3の短手方向の幅を等分する中心線c33より向かって左側にある場合、板ばね3が向かって左側に曲げ変形する。そのため、光源16からの検出光r21が曲げ変形した板ばね3で反射し、反射した反射光r22が光検出器17からずれて光検出器17で検出することができなくなる。   As shown in FIG. 3A, the center of gravity 1G of the sample a (1) attached to the tip of the leaf spring 3 equally divides the width in the short direction of the leaf spring 3 where the center of gravity of the leaf spring 3 is located. When it is on the left side from the center line c33, the leaf spring 3 is bent and deformed to the left side. Therefore, the detection light r <b> 21 from the light source 16 is reflected by the bent leaf spring 3, and the reflected light r <b> 22 that is reflected deviates from the photodetector 17 and cannot be detected by the photodetector 17.

そこで、第2回転式アクチュエータ24bによって、固定ホルダ14を介して、図2(a)の矢印α21方向に、変形した板ばね3を回転させてその位置を変えて、図3(c)に示すように、光源16から発し変形した板ばね3で反射した反射光r24が、光検出器17に入射し光検出器17で検出できるようにする。
また、図3(b)に示すように、板ばね3の先端部に取り付けた試料a(1)の重心1Gが、板ばね3の重心が位置する板ばね3の幅を等分する中心線c33より向かって右側にある場合、板ばね3が向かって右側に曲げ変形する。そのため、光源16から発した検出光r21が曲げ変形した板ばね3で反射し、反射した反射光r23が検出器17からずれて、光検出器17で検出できなくなる。
Therefore, the deformed leaf spring 3 is rotated by the second rotary actuator 24b through the fixed holder 14 in the direction of the arrow α21 in FIG. 2A to change its position, as shown in FIG. As described above, the reflected light r <b> 24 emitted from the light source 16 and reflected by the deformed leaf spring 3 enters the photodetector 17 and can be detected by the photodetector 17.
3B, the center line 1G of the sample a (1) attached to the tip of the leaf spring 3 equally divides the width of the leaf spring 3 where the center of gravity of the leaf spring 3 is located. When it is on the right side from c33, the leaf spring 3 is bent and deformed to the right side. Therefore, the detection light r21 emitted from the light source 16 is reflected by the bent and deformed leaf spring 3, and the reflected light r23 reflected deviates from the detector 17 and cannot be detected by the photodetector 17.

そこで、第2回転式アクチュエータ24bによって、固定ホルダ14を介して、図3(b)の矢印α22方向に、変形した板ばね3の短手方向を回転させて位置を変えて、図3(c)に示すように、光源16から発し変形した板ばね3で反射した反射光r24が、光検出器17に入るようにすることで光検出器17で検出できるようにする。
図4は、相互作用測定装置S1における回転機構22(図2参照)の第1回転式アクチュエータ24aの一例を示す図1のA方向矢視図である。
Therefore, the position of the deformed leaf spring 3 is changed by rotating the short direction of the deformed leaf spring 3 in the direction of arrow α22 in FIG. ), The reflected light r24 emitted from the light source 16 and reflected by the deformed leaf spring 3 enters the photodetector 17 so that the photodetector 17 can detect it.
4 is a view in the direction of arrow A in FIG. 1 showing an example of the first rotary actuator 24a of the rotation mechanism 22 (see FIG. 2) in the interaction measuring device S1.

第1回転式アクチュエータ24aは、固定支軸o1廻りにプーリp1が回転自在に支持されており、プーリp1に巻装されるベルトb1を介して、プーリp1の回転が伝達されるプーリp2が、固定支軸o2廻りに回転自在に支持されている。そして、プーリp2に巻装されるベルトb2を介してプーリp2の回転が伝達されるプーリp3が、固定支軸o3廻りに回転自在に支持されている。プーリp3には固定ホルダ14が固定され、プーリp3の回転により、固定ホルダ14が、図4の矢印α11方向または矢印α12方向に回転する。   In the first rotary actuator 24a, a pulley p1 is rotatably supported around a fixed support shaft o1, and a pulley p2 to which rotation of the pulley p1 is transmitted via a belt b1 wound around the pulley p1 is provided. It is rotatably supported around the fixed support shaft o2. A pulley p3 to which the rotation of the pulley p2 is transmitted via the belt b2 wound around the pulley p2 is supported so as to be rotatable around the fixed support shaft o3. The fixed holder 14 is fixed to the pulley p3, and the fixed holder 14 rotates in the direction of arrow α11 or arrow α12 in FIG. 4 by the rotation of the pulley p3.

また、プーリp1には、長孔p11が形成され、長孔p11には、積層した圧電素子26に固定された伝達部材26dに固定されたピン26d1がスライド自在に嵌入されている。この積層した圧電素子26は、電圧が印加されることにより、図4の矢印β11方向または矢印β12方向に微動する。
積層した圧電素子26の下方には、ステップモータ25の回転運動が、図4の矢印β11方向または矢印β12方向の直線運動に変換され、矢印β11方向または矢印β12方向に粗動させる粗動機構25kが設けられており、粗動機構25kの上に、積層した圧電素子26が固定されている。
In addition, a long hole p11 is formed in the pulley p1, and a pin 26d1 fixed to a transmission member 26d fixed to the laminated piezoelectric element 26 is slidably fitted in the long hole p11. The laminated piezoelectric element 26 finely moves in the direction of arrow β11 or arrow β12 in FIG. 4 when a voltage is applied.
Below the laminated piezoelectric element 26, the rotational motion of the step motor 25 is converted into a linear motion in the direction of arrow β11 or arrow β12 in FIG. 4 and coarsely moved in the direction of arrow β11 or arrow β12. The laminated piezoelectric element 26 is fixed on the coarse movement mechanism 25k.

第1回転式アクチュエータ24aは、ステップモータ25と圧電素子26を組み合わせた図4の矢印β11方向、矢印β12方向に移動する微動/粗動機構から得られる動力を、固定ホルダ14の回転運動へ変換する回転構造(プーリp1、p2、p3、ベルトb1、b2)を備え、この回転構造により、固定ホルダ14を回転運動させることによって、板ばね3を図4のα11方向、矢印α12方向に回転させて、配置できる。   The first rotary actuator 24 a converts the power obtained from the fine / coarse movement mechanism that moves in the directions of arrows β 11 and β 12 in FIG. 4 combining the step motor 25 and the piezoelectric element 26 into the rotational motion of the fixed holder 14. 4 to rotate the leaf spring 3 in the direction of α11 in FIG. 4 and the direction of arrow α12 by rotating the fixed holder 14 with this rotational structure. Can be placed.

この構成により、板ばね3がその先端部に取り付けた試料a(1)の重量により変形し、光源16から発した検出光r11が曲げ変形した板ばね3で反射した反射光r12を、変形した板ばね3を図4のα11方向、矢印α12方向に回転させることで、光検出器17に入る反射光r13とすることができる(図2(b)参照)。
ここで、図2に示す回転機構22における板ばね3の短手方向を回転(図3参照)させる第2回転式アクチュエータ24bは、図4に示す回転式アクチュエータ24aの設置方向を板ばね3の長手方向廻りに90°回転させることにより、実現することができる。
With this configuration, the leaf spring 3 is deformed by the weight of the sample a (1) attached to the tip thereof, and the reflected light r12 reflected by the leaf spring 3 in which the detection light r11 emitted from the light source 16 is bent and deformed is deformed. By rotating the leaf spring 3 in the α11 direction and the arrow α12 direction in FIG. 4, reflected light r13 entering the photodetector 17 can be obtained (see FIG. 2B).
Here, the second rotary actuator 24b that rotates the transverse direction of the leaf spring 3 in the rotation mechanism 22 shown in FIG. 2 (see FIG. 3) is configured so that the installation direction of the rotary actuator 24a shown in FIG. This can be realized by rotating 90 ° around the longitudinal direction.

なお、図4においては、第1回転式アクチュエータ24aの一例を挙げたが、例示した以外のモータの回転運動を減速機構、リンク等を用いて伝達する粗動機構を構成することも可能であり、例示した構成に限定されない。また、微動機構も、所定の微動動作が得られれば、図4に例示した構成に限定されない。
また、第1回転式アクチュエータ24aは、板ばね3の長手方向を任意の角度回転できれば、その構成は適宜選択可能である。同様に、第2回転式アクチュエータ24bは、板ばね3の長手方向を任意の角度回転できれば、その構成は適宜選択可能である。
In FIG. 4, an example of the first rotary actuator 24a has been described. However, it is also possible to configure a coarse motion mechanism that transmits a rotational motion of a motor other than the illustrated one using a speed reduction mechanism, a link, or the like. The configuration is not limited to the illustrated example. Further, the fine movement mechanism is not limited to the configuration illustrated in FIG. 4 as long as a predetermined fine movement is obtained.
Further, the configuration of the first rotary actuator 24a can be appropriately selected as long as the longitudinal direction of the leaf spring 3 can be rotated by an arbitrary angle. Similarly, the configuration of the second rotary actuator 24b can be appropriately selected as long as the longitudinal direction of the leaf spring 3 can be rotated by an arbitrary angle.

図5は、実施形態の一例を示す相互作用測定装置S1で使用する試料a(1)と板ばね3との廻りの外観を示す図である。図5(a)〜図5(d)は板ばね3を上方から見た図(図1のC方向矢視図)であり、図5(e)〜図5(h)は板ばね3を前方から見た図(図1のB方向矢視図)である。
図5(a)〜図5(h)の中心線c33(一点鎖線)は、それぞれ板ばね3の重心が位置する板ばね3の幅を等分する中心線である。
FIG. 5 is a diagram showing an external appearance around the sample a (1) and the leaf spring 3 used in the interaction measuring device S1 showing an example of the embodiment. 5 (a) to 5 (d) are views of the leaf spring 3 as viewed from above (viewed in the direction of arrow C in FIG. 1), and FIGS. 5 (e) to 5 (h) illustrate the leaf spring 3. It is the figure seen from the front (B direction arrow view of FIG. 1).
A center line c33 (a chain line) in FIGS. 5A to 5H is a center line that equally divides the width of the leaf spring 3 where the center of gravity of the leaf spring 3 is located.

試料a(1)は、非対称の不定形形状を有しており、かつ、試料a(1)の重心1Gは、板ばね3の幅を等分する中心線c33からずれた位置にある。
そのため、板ばね3には、試料a(1)の重心1Gが板ばね3の幅を等分する中心線c33からずれることによる偏りの変形が発生し易い。
図6(a)、(b)は、実施形態の一例を示す相互作用測定装置S1で使用する試料a(1)と板ばね3との廻りの外観および試料a(1)の寸法を示す図であり、板ばね3を上方から見た図(図1のC方向矢視図)である。
The sample a (1) has an asymmetrical indeterminate shape, and the center of gravity 1G of the sample a (1) is at a position shifted from the center line c33 that equally divides the width of the leaf spring 3.
Therefore, the deformation of the bias is likely to occur in the leaf spring 3 due to the center of gravity 1G of the sample a (1) deviating from the center line c33 that equally divides the width of the leaf spring 3.
6 (a) and 6 (b) are views showing the appearance around the sample a (1) and the leaf spring 3 used in the interaction measuring apparatus S1 showing an example of the embodiment and the dimensions of the sample a (1). FIG. 3 is a view of the leaf spring 3 as viewed from above (viewed in the direction of arrow C in FIG. 1).

板ばね3に配置された試料a(1)は、板ばね3を上方から見下ろした場合(板ばね3の延在面を厚さ方向に上方から見下ろした場合)、最大径が60μm(マイクロメートル)以上かつ500μm以下の範囲にある。
実施形態の走査型プローブ顕微鏡の相互作用測定装置S1は、試料a(1)と試料b(2)の間の摩擦力、吸着力、凝着力、硬度、電位差、静電気力、磁気力、弾性率を測定する。
摩擦力は、相互作用測定装置S1により、次のようにして求められる。
The sample a (1) disposed on the leaf spring 3 has a maximum diameter of 60 μm (micrometer) when the leaf spring 3 is looked down from above (when the extending surface of the leaf spring 3 is looked down from above in the thickness direction). ) And in the range of 500 μm or less.
The scanning probe microscope interaction measuring apparatus S1 of the embodiment includes a friction force, an adsorption force, an adhesion force, a hardness, a potential difference, an electrostatic force, a magnetic force, and an elastic modulus between the sample a (1) and the sample b (2). Measure.
The frictional force is obtained by the interaction measuring device S1 as follows.

試料a(1)と試料b(2)とを、水平走査機構20によって試料台15を水平移動(図1のX、Y方向に移動)させることにより、水平方向に擦り合わせる。すると、試料a(1)と試料b(2)との摩擦力で板ばね3が変形するので、その時の板ばね3の変位を測定することで摩擦力が求められる。
試料a(1)と試料b(2)とを擦り合わせる方向は板ばね3の短手方向(図3の中心線c32方向)とする。このとき、板ばね3の短手方向(図3の中心線c32方向)に対するねじれを検知する。ねじれが大きいほど摩擦抵抗が大きく、摩擦が大きい。
The sample a (1) and the sample b (2) are rubbed in the horizontal direction by moving the sample stage 15 horizontally (moving in the X and Y directions in FIG. 1) by the horizontal scanning mechanism 20. Then, since the leaf spring 3 is deformed by the frictional force between the sample a (1) and the sample b (2), the frictional force is obtained by measuring the displacement of the leaf spring 3 at that time.
The direction in which the sample a (1) and the sample b (2) are rubbed is the short direction of the leaf spring 3 (the direction of the center line c32 in FIG. 3). At this time, the twist of the leaf spring 3 with respect to the short direction (the direction of the center line c32 in FIG. 3) is detected. The greater the twist, the greater the frictional resistance and the greater the friction.

吸着力は、相互作用測定装置S1により、次のようにして求められる。
試料a(1)と試料b(2)とが離れた状態から、垂直走査機構21(図1参照)で試料台15を鉛直方向(Z軸方向)に移動させることにより、上下方向に接近させて、その時の板ばね3の変位を測定する。変位は試料a(1)と試料b(2)が接触するときの板ばね3のたわみを検知して得る。板ばね3のたわみが大きいほど試料a(1)と試料b(2)との吸着力が大きい。
凝着力は、相互作用測定装置S1により、次のようにして求められる。
The adsorption force is obtained by the interaction measuring device S1 as follows.
By moving the sample stage 15 in the vertical direction (Z-axis direction) by the vertical scanning mechanism 21 (see FIG. 1) from the state in which the sample a (1) and the sample b (2) are separated from each other, the sample is moved closer to the vertical direction. Then, the displacement of the leaf spring 3 at that time is measured. The displacement is obtained by detecting the deflection of the leaf spring 3 when the sample a (1) and the sample b (2) contact. The greater the deflection of the leaf spring 3, the greater the adsorption force between the sample a (1) and the sample b (2).
The adhesion force is obtained by the interaction measuring device S1 as follows.

試料a(1)と試料b(2)が接触した状態から、垂直走査機構21(図1参照)で試料台15を鉛直方向に移動させることにより、上下方向に離して、その時の板ばね3の変位を測定する。変位は、試料a(1)と試料b(2)が離れるときのたわんだ板ばね3の戻り量を検知して得る。戻り量が大きいほど、凝着力に起因する板ばね3の変形のエネルギが大きいので、試料a(1)と試料b(2)との凝着力は大きい。
硬度は、試料a(1)と試料b(2)とが接した状態から、垂直走査機構21(図1参照)で試料台15を鉛直方向に移動させることにより、上下方向にさらに押しつけて、その時の板ばね3の変位を測定する。変位は試料a(1)と試料b(2)が押しつけ合ったときの板ばね3の反りを検知して得る。反りが大きいほどより硬いので、硬度が大きい。
From the state in which the sample a (1) and the sample b (2) are in contact, the vertical scanning mechanism 21 (see FIG. 1) is used to move the sample table 15 in the vertical direction, so that the plate spring 3 at that time is separated. Measure the displacement. The displacement is obtained by detecting the return amount of the bent leaf spring 3 when the sample a (1) and the sample b (2) are separated. The larger the return amount, the greater the deformation energy of the leaf spring 3 due to the adhesion force, and the greater the adhesion force between the sample a (1) and the sample b (2).
The hardness is further pressed in the vertical direction by moving the sample stage 15 in the vertical direction by the vertical scanning mechanism 21 (see FIG. 1) from the state where the sample a (1) and the sample b (2) are in contact with each other. The displacement of the leaf spring 3 at that time is measured. The displacement is obtained by detecting the warping of the leaf spring 3 when the sample a (1) and the sample b (2) are pressed against each other. The greater the warp, the harder it is and the greater the hardness.

電位差は、電気化学的に研磨される材料や、電気化学的な作用をする材料に対して測定される
電位差は、試料a(1)と試料b(2)とを、垂直走査機構21(図1参照)で試料台15を鉛直方向に移動させることにより、少し離して一定のバイアス電圧を印加してその時の電位差を読み取る。
静電気力は、試料a(1)と試料b(2)が離れた状態から、垂直走査機構21(図1参照)で試料台15を鉛直方向に移動させることにより、上下方向にさらに接近させて、その時の板ばね3の変位を測定する。変位は試料a(1)と試料b(2)が接近したときの板ばね3の反りを検知して得る。板ばね3の反りが大きいほど静電気力は大きい。
The potential difference is measured with respect to a material to be polished electrochemically or to an electrochemically acting material. The potential difference is measured between the sample a (1) and the sample b (2) by the vertical scanning mechanism 21 (FIG. 1)), the sample stage 15 is moved in the vertical direction, a certain bias voltage is applied at a slight distance, and the potential difference at that time is read.
The electrostatic force is moved closer to the vertical direction by moving the sample stage 15 in the vertical direction by the vertical scanning mechanism 21 (see FIG. 1) from the state where the sample a (1) and the sample b (2) are separated from each other. Then, the displacement of the leaf spring 3 at that time is measured. The displacement is obtained by detecting the warping of the leaf spring 3 when the sample a (1) and the sample b (2) approach each other. The greater the warp of the leaf spring 3, the greater the electrostatic force.

磁気力は、試料a(1)と試料b(2)を、垂直走査機構21(図1参照)で試料台15を鉛直方向に移動させることにより、上下方向に叩いて、その時の板ばね3の周期の遅れを測定する。叩く周期からの遅れ(位相差)が大きいほど磁気力は大きい。
弾性力は、試料a(1)と試料b(2)を、垂直走査機構21(図1参照)で試料台15を鉛直方向に移動させることにより、上下方向に叩いて、その時の板ばね3の周期の遅れを測定する。叩く周期からの遅れ(位相差)が大きいほど弾性力は小さい。
The magnetic force strikes the sample a (1) and the sample b (2) in the vertical direction by moving the sample stage 15 in the vertical direction by the vertical scanning mechanism 21 (see FIG. 1), and the leaf spring 3 at that time is hit. Measure the delay of the period. The greater the delay (phase difference) from the tapping cycle, the greater the magnetic force.
The elastic force is obtained by striking the sample a (1) and the sample b (2) in the vertical direction by moving the sample table 15 in the vertical direction by the vertical scanning mechanism 21 (see FIG. 1), and the leaf spring 3 at that time. Measure the delay of the period. The greater the delay (phase difference) from the tapping cycle, the smaller the elastic force.

図7は本実施形態の相互作用測定装置S1で使用する雰囲気制御方式を示す図1のB方向矢視図である。
相互作用測定装置S1は、試料a(1)と試料b(2)を、任意の温度、湿度、真空中、気体中、液体中に設置するための雰囲気制御機構30を有する密閉容器31を備える。
雰囲気制御機構30による密閉容器31の温度の制御は、ヒータ、冷凍サイクル等を利用して、密閉容器31の所望の温度を得る。
雰囲気制御機構30による密閉容器31の湿度の発生方法は、例えば、水を溜ためた水槽の中にバブラを設置し、バブラにガスを流し込む。水槽の温度を上げることにより、飽和水蒸気が発生する。そして、飽和水蒸気を試料a(1)と試料b(2)のセットされた密閉容器31内に流し込む。湿度の制御は、流し込む飽和水蒸気を含んだガスと乾燥ガスとの混合によって得る。
FIG. 7 is a view in the direction of arrow B in FIG. 1 showing an atmosphere control method used in the interaction measuring apparatus S1 of the present embodiment.
The interaction measuring device S1 includes a sealed container 31 having an atmosphere control mechanism 30 for installing the sample a (1) and the sample b (2) in an arbitrary temperature, humidity, vacuum, gas, or liquid. .
Control of the temperature of the sealed container 31 by the atmosphere control mechanism 30 obtains a desired temperature of the sealed container 31 using a heater, a refrigeration cycle, or the like.
The method for generating the humidity of the sealed container 31 by the atmosphere control mechanism 30 is, for example, installing a bubbler in a water tank in which water is stored and pouring gas into the bubbler. Saturated water vapor is generated by raising the temperature of the water tank. Then, saturated water vapor is poured into the sealed container 31 in which the sample a (1) and the sample b (2) are set. Control of humidity is obtained by mixing a gas containing saturated water vapor and a dry gas.

雰囲気制御機構30による密閉容器31の真空制御は、例えば、密閉容器31をバキュームポンプで真空引きする。
雰囲気制御機構30による密閉容器31の気体制御は、例えば、密閉容器31へ所望の気体を該気体を入れた容器から流し込む。
雰囲気制御機構30による密閉容器31の液体制御は、例えば、密閉容器31へ所望の液体を該液体を入れた容器からポンプで流し込む。
The vacuum control of the sealed container 31 by the atmosphere control mechanism 30 is performed, for example, by evacuating the sealed container 31 with a vacuum pump.
In the gas control of the sealed container 31 by the atmosphere control mechanism 30, for example, a desired gas is poured into the sealed container 31 from a container containing the gas.
In the liquid control of the sealed container 31 by the atmosphere control mechanism 30, for example, a desired liquid is poured into the sealed container 31 from a container containing the liquid by a pump.

<相互作用測定装置S1を備える検査装置>
図1に示す相互作用測定装置S1を備える検査装置は、相互に摩擦摺動する一対の摺動部材のうち少なくとも一方の摺動部材を、他方の摺動部材に対して摺動する摺動面が下面となるように、板ばね3の先端部に取り付けると共に、他方の摺動部材を試料台15の上に固定する。そして、板ばね3の先端部に取り付けた一方の摺動部材と試料台15の上に固定した他方の摺動部材との間に垂直走査機構21で一定の荷重を加えるとともに、水平走査機構20で試料台15の上の他方の摺動部材を水平走査させることにより、摩擦を測定する。
<Inspection apparatus provided with interaction measuring apparatus S1>
The inspection apparatus provided with the interaction measuring device S1 shown in FIG. 1 is a sliding surface that slides at least one sliding member relative to the other sliding member among a pair of sliding members that slide against each other. Is attached to the distal end of the leaf spring 3 so that the lower surface is the lower surface, and the other sliding member is fixed on the sample stage 15. A constant load is applied by the vertical scanning mechanism 21 between one sliding member attached to the tip of the leaf spring 3 and the other sliding member fixed on the sample table 15, and the horizontal scanning mechanism 20. Then, the friction is measured by horizontally scanning the other sliding member on the sample stage 15.

さらに、検査装置は、相互に摩擦摺動する一対の摺動部材の少なくとも一方の摺動面に被膜が形成された摺動部材の耐摩耗性を検査する。摺動面に被膜が形成された摺動部材とは、例えば、CMP用スラリに使用される砥粒に表面添加剤の被膜を付けたものや、表面にダイヤモンドカーボンを付けたもの、表面に潤滑膜を付けたもの等がある。
その他、摩擦摺動を測定する一対の摺動部材として、シンクロメッシュ式の変速機におけるシンクロナイザリングと、該シンクロナイザリングに摩擦摺動するクラッチギヤが挙げられる。
Further, the inspection device inspects the wear resistance of the sliding member in which a coating is formed on at least one sliding surface of the pair of sliding members that slide against each other. Sliding members with a coating on the sliding surface include, for example, abrasive grains used in CMP slurries with a surface additive coating, diamond carbon on the surface, and lubrication on the surface. There are those with membranes.
Other examples of the pair of sliding members for measuring the frictional sliding include a synchronizer ring in a synchromesh transmission and a clutch gear that frictionally slides on the synchronizer ring.

<相互作用測定装置S1を備えるCMP(Chemical Mechanical Polishing)の検査装置>
図1に示す相互作用測定装置S1を備えるCMPの検査装置は、半導体用ウエハと、半導体用ウエハの表面を化学的機械的に研磨して平滑化するために用いるCMP用スラリと、CMP用スラリに含有される砥粒と、一定の荷重をかけて回転させることにより半導体用ウエハの表面を研磨するためのCMP用パッドと、CMP用パッドをクリーニングするためのCMP用ドレスとを用いて、CMPの検査を行う。
<CMP (Chemical Mechanical Polishing) Inspection Device with Interaction Measuring Device S1>
A CMP inspection apparatus including the interaction measuring apparatus S1 shown in FIG. 1 includes a semiconductor wafer, a CMP slurry used for polishing and smoothing the surface of the semiconductor wafer chemically and mechanically, and a CMP slurry. CMP using the abrasive grains contained in the wafer, a CMP pad for polishing the surface of the semiconductor wafer by rotating it under a constant load, and a CMP dress for cleaning the CMP pad Perform the inspection.

これらの半導体用ウエハ、砥粒、CMP用パッド、CMP用ドレスのうち少なくとも一つを板ばね3の先端部に取り付けるとともに、板ばね3の先端部に取り付けた部材とは異なる部材を試料台15の上に固定する。そして、両部材の間に垂直走査機構21で一定の荷重を加えるとともに水平走査機構20で試料台15の上の部材を水平走査させることにより摩擦を測定する。
或いは、試料台15の上の部材を垂直走査機構21で垂直走査させることにより、吸着、凝着、反発のうち少なくとも一つを測定する。
At least one of these semiconductor wafers, abrasive grains, CMP pads, and CMP dresses is attached to the tip of the leaf spring 3, and a member different from the member attached to the tip of the leaf spring 3 is used as the sample table 15. Secure on top. A constant load is applied between the two members by the vertical scanning mechanism 21 and the member on the sample table 15 is horizontally scanned by the horizontal scanning mechanism 20 to measure friction.
Alternatively, at least one of adsorption, adhesion, and repulsion is measured by vertically scanning the member on the sample stage 15 with the vertical scanning mechanism 21.

CMPの検査装置は、化学的機械的研磨における砥粒と半導体用ウエハ間、CMP用パッドと半導体用ウエハ間、CMP用ドレスと半導体用ウエハ間、CMP用ドレスと砥粒間、CMP用パッドと砥粒間、CMP用パッドとCMP用ドレス間の少なくとも一つにおいて、摩擦、吸着、凝着、反発のうち少なくとも一つを測定して、測定した情報を用いて、研磨速度、パッド寿命、ドレス寿命を予測する速度・寿命予測手段を備えている。速度・寿命予測手段は、コンピュータ等で構成される。   The CMP inspection apparatus includes chemical mechanical polishing between abrasive grains and semiconductor wafers, between CMP pads and semiconductor wafers, between CMP dresses and semiconductor wafers, between CMP dresses and abrasive grains, and between CMP pads. At least one of friction, adsorption, adhesion, and repulsion is measured between abrasive grains and at least one between a CMP pad and a CMP dress, and using the measured information, polishing rate, pad life, dress A speed / life prediction means for predicting the life is provided. The speed / life prediction means is constituted by a computer or the like.

例えば、速度・寿命予測手段は、摩擦が大の場合は摩擦抵抗が大きいので研磨速度が速いと予測する一方、摩擦が小の場合は摩擦抵抗が小さいので研磨速度が遅いと予測する。
速度・寿命予測手段は、CMP用パッドと半導体用ウエハとの間の摩擦、吸着、凝着、反発力の何れかが大、CMP用パッドと砥粒間の摩擦、吸着、凝着、反発力の何れかが大、CMP用パッドとCMP用ドレス間の摩擦、吸着、凝着、反発力の何れかが大等の場合、CMP用パッドの寿命が短いと判断する。一方、予測手段は、CMP用パッドと半導体用ウエハとの間の摩擦、吸着、凝着、反発の何れかが小、CMP用パッドと砥粒間の摩擦、吸着、凝着、反発力の何れかが小、CMP用パッドとCMP用ドレス間の摩擦、吸着、凝着、反発力の何れかが小等の場合、CMP用パッドの寿命が長いと判断する。
For example, when the friction is large, the speed / life prediction means predicts that the polishing speed is fast because the friction resistance is large, whereas when the friction is small, the speed / life prediction means predicts that the polishing speed is slow because the friction resistance is small.
Speed / life prediction means that friction, adsorption, adhesion, or repulsion between CMP pad and semiconductor wafer is large. Friction, adsorption, adhesion, or repulsion between CMP pad and abrasive grains. Is large and any of friction, adsorption, adhesion, and repulsion between the CMP pad and the CMP dress is large, it is determined that the life of the CMP pad is short. On the other hand, the prediction means is that any of friction, adsorption, adhesion, and repulsion between the CMP pad and the semiconductor wafer is small, and any of friction, adsorption, adhesion, and repulsion between the CMP pad and abrasive grains. If any of the friction, adsorption, adhesion, and repulsion between the CMP pad and the CMP dress is small, it is determined that the life of the CMP pad is long.

速度・寿命予測手段は、CMP用ドレスと半導体用ウエハとの間の摩擦、吸着、凝着、反発の何れかが大、CMP用ドレスと砥粒間の摩擦、吸着、凝着、反発力の何れかが大、CMP用パッドとCMP用ドレス間の摩擦、吸着、凝着、反発の何れかが大等の場合、CMP用ドレスの寿命が短いと判断する。一方、予測手段は、CMP用ドレスと半導体用ウエハとの間の摩擦、吸着、凝着、反発の何れかが小、CMP用ドレスと砥粒間の摩擦、吸着、凝着、反発の何れかが小、CMP用パッドとCMP用ドレス間の摩擦、吸着、凝着、反発の何れかが小等の場合、CMP用ドレスの寿命が長いと判断する。
なお、説明した速度・寿命予測手段の予測は一例であり、予測は適宜行えるのは勿論である。
As for the speed / life prediction means, any of friction, adsorption, adhesion, and repulsion between the CMP dress and the semiconductor wafer is large, friction between the CMP dress and abrasive grains, adsorption, adhesion, and repulsive force. When any one is large and any of friction, adsorption, adhesion, and repulsion between the CMP pad and the CMP dress is large, it is determined that the life of the CMP dress is short. On the other hand, the prediction means is that any of friction, adsorption, adhesion, and repulsion between the CMP dress and the semiconductor wafer is small, and any of friction, adsorption, adhesion, and repulsion between the CMP dress and abrasive grains. Is small, and any of friction, adsorption, adhesion, and repulsion between the CMP pad and the CMP dress is small, etc., it is determined that the lifetime of the CMP dress is long.
Note that the prediction of the speed / life prediction means described above is an example, and it is needless to say that the prediction can be performed as appropriate.

<相互作用測定装置S1を備えるハードディスクの検査装置>
図1に示す相互作用測定装置S1を備えるハードディスクの検査装置は、ハードディスク用のヘッドを磁気ディスク等の磁気記録媒体から一定の間隔で浮上させ、データの書き込みを行う磁気記録装置の検査に用いられる。
磁気記録装置のヘッドと磁気記録媒体とのうち何れか一方の部材を板ばね3の先端部に取り付けるとともに板ばね3の先端部に取り付けた部材とは異なる他方の部材を試料台15の上に固定して、両部材間に垂直走査機構21で一定の荷重を加えるとともに水平走査機構20で、試料台15の上の部材を水平走査させることにより、摩擦を測定する。
<Hard Disk Inspection Device with Interaction Measuring Device S1>
The hard disk inspection apparatus including the interaction measuring device S1 shown in FIG. 1 is used for inspection of a magnetic recording apparatus in which a hard disk head is levitated from a magnetic recording medium such as a magnetic disk at a predetermined interval and data is written. .
Either one of the head of the magnetic recording device and the magnetic recording medium is attached to the tip of the leaf spring 3 and the other member different from the member attached to the tip of the leaf spring 3 is placed on the sample table 15. A fixed load is applied between the two members by the vertical scanning mechanism 21 and the member on the sample table 15 is horizontally scanned by the horizontal scanning mechanism 20 to measure the friction.

或いは、試料台15の上の部材を、垂直走査機構21で垂直走査させることにより、吸着、凝着、反発のうち少なくとも一つを測定する。
ハードディスクの検査装置は、ハードディスクにおけるヘッドと磁気記録媒体間の摩擦、吸着、凝着、反発のうち少なくとも一つを測定し、測定した情報を用いて書き込みエラーの発生率を予測するエラー予測手段を備える。エラー予測手段は、コンピュータ等で構成される。
Alternatively, at least one of adsorption, adhesion, and repulsion is measured by vertically scanning the member on the sample stage 15 with the vertical scanning mechanism 21.
The hard disk inspection device measures error prediction means for measuring at least one of friction, adsorption, adhesion, and repulsion between the head and the magnetic recording medium in the hard disk and predicting the occurrence rate of write errors using the measured information. Prepare. The error prediction means is configured by a computer or the like.

例えば、エラー予測手段は、ヘッドと磁気記録媒体間の摩擦、吸着、凝着、反発の何れかが大き過ぎるまたは小さ過ぎる場合、エラーの発生率が高いと予測する一方、ヘッドと磁気記録媒体間の摩擦、吸着、凝着、反発が適切な場合、エラーの発生率が低いと予測する。
なお、このエラー予測手段の予測は一例であり、予測は適宜行える。
For example, the error prediction means predicts that the error rate is high when any of friction, adsorption, adhesion, and repulsion between the head and the magnetic recording medium is too large or too small. If the friction, adsorption, adhesion, and repulsion of the material are appropriate, the error rate is expected to be low.
Note that the prediction of the error prediction means is an example, and the prediction can be performed as appropriate.

<<実施形態1>>
次に、実施形態1の相互作用測定装置S1を備えるCMPの検査装置によるCMP用パッドと半導体用のウエハとの摩擦特性の検査について説明する。
CMP用の研磨パッドを細かく裁断して、長さが約120ミクロン、幅が約80ミクロン、高さが約130ミクロンのパッド粉末を作製した。これを、板ばね3の先端部分にエポキシ樹脂を用いて接着した。
<< Embodiment 1 >>
Next, the inspection of the friction characteristics between the CMP pad and the semiconductor wafer by the CMP inspection apparatus provided with the interaction measuring apparatus S1 of the first embodiment will be described.
A polishing pad for CMP was finely cut to produce a pad powder having a length of about 120 microns, a width of about 80 microns, and a height of about 130 microns. This was adhered to the tip portion of the leaf spring 3 using an epoxy resin.

図8は、CMP用パッドから作製した試料a(1)付き板ばね3の一例であり、図8(a)は、試料a(1)付き板ばね3を上方から見た図(図1のC方向矢視図)であり、図8(b)は、試料a(1)付き板ばね3を向かって右側方から見た図(図1のA方向矢視図)である。
試料a(1)のパッド粉末はポリウレタンの発泡体から形成されているため、その形状は多孔体であり、かつ、非対称、不定形な形状で、試料a(1)のパッド粉末の重心1Gの位置が板ばね3の重心が位置する板ばね3の幅を等分する中心線c33から一方側に大きくずれていることが分かった。
FIG. 8 is an example of a leaf spring 3 with a sample a (1) produced from a CMP pad. FIG. 8A is a view of the leaf spring 3 with a sample a (1) as viewed from above (FIG. 1). FIG. 8B is a view of the leaf spring 3 with the sample a (1) as viewed from the right side (viewed in the direction of arrow A in FIG. 1).
Since the pad powder of the sample a (1) is formed from a polyurethane foam, the shape thereof is a porous body, and is asymmetric and irregular in shape, with a center of gravity 1G of the pad powder of the sample a (1). It was found that the position was greatly shifted to one side from the center line c33 that equally divides the width of the leaf spring 3 where the center of gravity of the leaf spring 3 is located.

このCMP用パッドから作製した試料a(1)を、図1の相互作用測定装置S1を用いて相互作用を測定するため、固定ホルダ14(図2参照)に板ばね3の試料a(1)を接着した先端部分とは反対側の端部を固定した。このとき、図8(b)に示すように、板ばね3が試料a(1)の重量により水平線に対して左に3°(板ばね3の先端側が下方に3°)ほど傾いているのが分かった。
一方、試料台15には試料b(2)として銅の配線が表面に形成されているLSI(Large Scale Integration)用のウエハを固定した。光源16から発生する検出光r11の光軸を板ばね3の先端部分に当てて、反射光r12を光検出器17で検出する操作を行ったところ、板ばね3がパッド粉末の重心1Gの側にねじれているため検出できた光量は通常の1/8しかなかった。
In order to measure the interaction of the sample a (1) produced from the CMP pad using the interaction measuring device S1 of FIG. 1, the sample a (1) of the leaf spring 3 is fixed to the fixed holder 14 (see FIG. 2). The end portion opposite to the tip end portion where the was attached was fixed. At this time, as shown in FIG. 8 (b), the leaf spring 3 is inclined 3 ° to the left with respect to the horizontal line by the weight of the sample a (1) (the tip side of the leaf spring 3 is 3 ° downward). I understood.
On the other hand, a wafer for LSI (Large Scale Integration) having a copper wiring formed on the surface was fixed to the sample stage 15 as the sample b (2). When the optical axis of the detection light r11 generated from the light source 16 is applied to the tip of the leaf spring 3 and the reflected light r12 is detected by the photodetector 17, the leaf spring 3 is located on the side of the center of gravity 1G of the pad powder. Therefore, the amount of light that could be detected was only 1/8 of the normal amount.

そこで、第1回転アクチュエータ24a(図2(b)参照)により、図8(b)の矢印α11に示すように、下方に傾き変形した板ばね3を、時計方向に3°ほど回転させて、試料台15に対して板ばね3が平行になるように設定した。
この状態で、再度、光源16から発生する検出光r11の光軸を板ばね3の先端部分に当てて、反射光r12を光検出器17で検出する操作を行ったところ、検出できた光量は通常の6/8まで回復した。
Therefore, the first rotary actuator 24a (see FIG. 2 (b)) rotates the leaf spring 3 tilted downward as shown by an arrow α11 in FIG. 8 (b) by about 3 ° clockwise, The leaf spring 3 was set parallel to the sample stage 15.
In this state, when the optical axis of the detection light r11 generated from the light source 16 is again applied to the tip portion of the leaf spring 3 and the reflected light r12 is detected by the photodetector 17, the detected light amount is It recovered to normal 6/8.

次に、第2回転式アクチュエータ24bにより、板ばね3(図8(a)参照)を、固定ホルダ14の側を支点として試料台15に対し水平になるように除々に回転させながら、検出光r11の光軸を板ばね3の先端部分に当てて、反射光r12を光検出器17で検出する操作を行った。検出された光量が通常の値まで回復したところで、回転を止めた。この状態で、板ばね3の先端部に接着させたパッド粉(試料a(1))とウエハ(試料b(2))とを微動/粗動機構19(図1参照)を用いて接近させた。   Next, the second rotary actuator 24b gradually rotates the leaf spring 3 (see FIG. 8A) while rotating gradually so as to be horizontal with respect to the sample table 15 with the fixed holder 14 side as a fulcrum. The operation of detecting the reflected light r12 with the photodetector 17 was performed by applying the optical axis r11 to the tip of the leaf spring 3. The rotation was stopped when the detected light quantity recovered to the normal value. In this state, the pad powder (sample a (1)) and the wafer (sample b (2)) adhered to the tip of the leaf spring 3 are brought close to each other using the fine / coarse movement mechanism 19 (see FIG. 1). It was.

そして、微動/粗動機構19を用いて試料a(1)のパッド粉に3nN(ナノニュートン)の荷重をかけて、試料台15のウエハを水平走査機構20を用いて左右(板ばね3の短手方向)に1ミクロン(μm)ずつ走査させたところ、試料a(1)のパッド粉とウエハとの間の摩擦を測定することができた。
この時の板ばね3のねじれの変位カーブを図9に示す。図9の横軸に走査距離をとり、縦軸にねじれ変位をとっている。
ねじれ変位は反射光r12を光検出器17で検出した電圧信号で捉える。
Then, a load of 3 nN (nanonewton) is applied to the pad powder of the sample a (1) using the fine movement / coarse movement mechanism 19, and the wafer on the sample stage 15 is moved to the left and right (the leaf spring 3 of the leaf spring 3 using the horizontal scanning mechanism 20. When scanning was performed by 1 micron (μm) in the short direction), the friction between the pad powder of sample a (1) and the wafer could be measured.
FIG. 9 shows a torsional displacement curve of the leaf spring 3 at this time. In FIG. 9, the horizontal axis represents the scanning distance, and the vertical axis represents the torsional displacement.
The torsional displacement is captured by the voltage signal detected by the photodetector 17 with the reflected light r12.

図9の点n0が走査の測定開始の点とする。点n0から点n1(矢印n11)では走査速度が上がるので、ねじれ変位(摩擦力)が急激に上昇する。点n1で、走査が定常状態になるので、点n1から点n2(矢印n12)ではねじれ変位(摩擦力)が一定となる。点n2から点n3から逆方向に走査すると、点n2から点n3(矢印n13)でねじれ変位(摩擦力)が減少する。点n3で逆向きの走査方向の定常状態になり、点n3から点n0(矢印n14)ではねじれ変位(摩擦力)が一定となる。   A point n0 in FIG. 9 is a scanning measurement start point. Since the scanning speed increases from point n0 to point n1 (arrow n11), the torsional displacement (frictional force) increases rapidly. Since the scanning is in a steady state at the point n1, the torsional displacement (frictional force) is constant from the point n1 to the point n2 (arrow n12). When scanning from point n2 to point n3 in the reverse direction, torsional displacement (frictional force) decreases from point n2 to point n3 (arrow n13). A steady state in the reverse scanning direction is obtained at point n3, and the torsional displacement (frictional force) is constant from point n3 to point n0 (arrow n14).

図9においては、板ばね3が受ける摩擦力(摩擦抵抗)が大きいほどねじれ変位幅が大きくなるので、図9に示すねじれ変位幅が大きいほど摩擦力が大きいことを表わす。
配線パターンの異なるウエハ(試料b(2))とパッド粉(試料a(1))との相互作用を上記の方法で測定したときのねじれ変位幅研磨速度との結果を図10に示す。図10の縦軸は、同じウエハとパッドとを実際に研磨して求めた研磨速度(μm/min)であり、横軸は、ねじれ変位幅(mV)である。
In FIG. 9, the greater the frictional force (friction resistance) that the leaf spring 3 receives, the greater the torsional displacement width. Therefore, the greater the torsional displacement width shown in FIG. 9, the greater the frictional force.
FIG. 10 shows the results of the torsional displacement width polishing rate when the interaction between the wafer (sample b (2)) and the pad powder (sample a (1)) having different wiring patterns was measured by the above method. The vertical axis in FIG. 10 is the polishing rate (μm / min) obtained by actually polishing the same wafer and pad, and the horizontal axis is the torsional displacement width (mV).

この結果より、摩擦力(図10の横軸のねじれ変位幅)と研磨速度(図10の縦軸)との間に良い相関性が得られていることがわかる。
即ち、半導体用ウエハの研磨速度を検査するためのCMPの検査装置として、本相互作用測定装置S1備えるCMPの検査装置が有効である。この装置を用いた検査では、図10の情報をデータベース化することで、速度・寿命予測手段によって、実際の測定に際して、板ばね3の測定したねじれ変位幅から、データベースの図10の情報を用いて、半導体用ウエハの研磨速度を推定できる。これにより、要求されている研磨速度が得られているかどうかを検査することができる。
From this result, it is understood that a good correlation is obtained between the frictional force (twist displacement width on the horizontal axis in FIG. 10) and the polishing rate (vertical axis in FIG. 10).
That is, the CMP inspection apparatus provided with the interaction measuring apparatus S1 is effective as a CMP inspection apparatus for inspecting the polishing rate of the semiconductor wafer. In the inspection using this apparatus, the information of FIG. 10 is made into a database, and the information of FIG. 10 in the database is used from the torsional displacement width measured by the leaf spring 3 in the actual measurement by the speed / life prediction means. Thus, the polishing rate of the semiconductor wafer can be estimated. Thereby, it can be inspected whether the required polishing rate is obtained.

<<実施形態2>>
次に、相互作用測定装置S1を備えるCMPの検査装置によるCMP用スラリの砥粒とCMP用のドレスとの吸着力の測定について、説明する。
CMP用のスラリ中に含まれる砥粒を、板ばね3の先端部分にエポキシ樹脂を用いて接着した。
図11は、CMP用スラリの砥粒から作製した試料a(1)を取り付けた板ばね3の一例を示す図であり、図11(a)は、試料a(1)付き板ばね3を上方から見た図(図1のC方向矢視図)であり、図11(b)は、試料a(1)付き板ばね3を向かって右側方から見た図(図1のA方向矢視図)である。
<< Embodiment 2 >>
Next, the measurement of the adsorption force between the abrasive grains of the CMP slurry and the CMP dress by the CMP inspection apparatus including the interaction measuring apparatus S1 will be described.
The abrasive grains contained in the CMP slurry were bonded to the tip of the leaf spring 3 using an epoxy resin.
FIG. 11 is a view showing an example of a leaf spring 3 to which a sample a (1) produced from abrasive grains of CMP slurry is attached. FIG. 11 (a) shows the leaf spring 3 with the sample a (1) upward. FIG. 11B is a view seen from the right side of the leaf spring 3 with the sample a (1) (viewed in the direction of arrow A in FIG. 1). Figure).

砥粒は酸化セリウム結晶の集合体から形成されているため、その形状は多結晶体であり、かつ、非対称、不定形な形状で、図11(a)に示すように、試料a(1)の重心1Gの位置が板ばね3の重心を通る板ばね3の短手方向の幅を等分する中心線c33から一方側(向かって右側)に大きくずれていることが分かる。
これを、図1の相互作用測定装置S1を用いてCMP用スラリの砥粒の相互作用を測定するため、固定ホルダ14に板ばね3の試料a(1)とは反対側の端部を固定するとともに、試料台15には試料b(2)としてCMP用のドレスを固定した。そして、微動/粗動機構19により、板ばね3の試料a(1)に試料台15に固定した試料b(2)のCMP用のドレスを接触させた。
Since the abrasive grains are formed from an aggregate of cerium oxide crystals, the shape is polycrystalline, and the shape is asymmetric and irregular, as shown in FIG. 11 (a). Sample a (1) It can be seen that the position of the center of gravity 1G is greatly shifted from the center line c33 that equally divides the width of the leaf spring 3 passing through the center of gravity of the leaf spring 3 to one side (right side).
In order to measure the interaction between the abrasive grains of the CMP slurry using the interaction measuring device S1 of FIG. 1, the end of the leaf spring 3 opposite to the sample a (1) is fixed to the fixing holder 14. At the same time, a dress for CMP was fixed to the sample stage 15 as the sample b (2). The fine dressing / coarse motion mechanism 19 brought the CMP dress of the sample b (2) fixed to the sample stage 15 into contact with the sample a (1) of the leaf spring 3.

このとき、図11(b)に示すように、板ばね3の中心線c31が水平方向に対して時計廻り方向に2°ほど傾いているのが分かった。光源16から発生する検出光r11の光軸を板ばね3の先端部分に当てて、反射光r12を光検出器17で検出する操作を行ったところ、板ばね3が水平方向に対して時計廻り方向に2°ほどねじれているため、検出できた光量は通常の1/4しかなかった。ここで、第1回転アクチュエータ24aにより、左に傾いた中心線c31をもつ板ばね3を図11(b)の矢印α12に示す反時計廻り方向に2°ほど回転させて、試料台15に対して板ばね3が平行になるように設定した。   At this time, as shown in FIG. 11 (b), it was found that the center line c31 of the leaf spring 3 was inclined about 2 ° in the clockwise direction with respect to the horizontal direction. When the optical axis of the detection light r11 generated from the light source 16 is applied to the tip of the leaf spring 3 and the reflected light r12 is detected by the photodetector 17, the leaf spring 3 rotates clockwise with respect to the horizontal direction. Since the direction is twisted by about 2 °, the amount of light that could be detected was only 1/4 of the usual amount. Here, the first rotary actuator 24a rotates the leaf spring 3 having the center line c31 inclined to the left by about 2 ° in the counterclockwise direction indicated by the arrow α12 in FIG. The leaf springs 3 were set to be parallel.

この状態で、再度、光源16から発生する検出光r11の光軸を板ばね3の先端部分に当てて、反射光r12を光検出器17で検出する操作を行ったところ、検出できた光量は通常の2/4まで回復した。次に、第2回転式アクチュエータ24bにより、図11(a)に示す板ばね3を、水平になるように回転させながら、検出光r11の光軸を板ばね3の先端部分に当てて、反射光r12を光検出器17で検出する操作を行った。検出された光量が通常の値まで回復したところで、第2回転式アクチュエータ24bによる板ばね3の回転を止めた。   In this state, when the optical axis of the detection light r11 generated from the light source 16 is again applied to the tip portion of the leaf spring 3 and the reflected light r12 is detected by the photodetector 17, the detected light amount is It recovered to the normal 2/4. Next, the second rotary actuator 24b rotates the leaf spring 3 shown in FIG. 11 (a) so as to be horizontal, and the optical axis of the detection light r11 is applied to the tip portion of the leaf spring 3 to reflect it. An operation of detecting the light r12 with the photodetector 17 was performed. When the detected light quantity recovered to the normal value, the rotation of the leaf spring 3 by the second rotary actuator 24b was stopped.

垂直走査機構21を用いて、試料台15に固定した試料b(2)のCMP用のドレスを、板ばね3の先端に接着させた試料a(1)の砥粒に接近させたところ、砥粒とCMP用のドレスとの間の吸着力を測定することができた。
ここで、この吸着力が大きいほど、ドレスは摩耗し易いことが実験により判明した。そのため、この吸着力の測定は、ドレスの摩耗し易さを検査するのに有効である。
即ち、CMP用のドレスの摩耗性を検査するためのCMPの検査装置として、吸着力を測定できる相互作用測定装置S1を備えるCMPの検査装置が有効であることが示された。
When the vertical scanning mechanism 21 was used to bring the CMP dress of the sample b (2) fixed to the sample stage 15 closer to the abrasive grains of the sample a (1) adhered to the tip of the leaf spring 3, the abrasive was removed. The adsorption force between the grains and the CMP dress could be measured.
Here, it was proved by experiments that the greater the adsorption force, the easier the dress wears. Therefore, the measurement of the attractive force is effective for inspecting the easiness of wearing of the dress.
That is, it has been shown that a CMP inspection apparatus including the interaction measuring apparatus S1 capable of measuring the adsorption force is effective as a CMP inspection apparatus for inspecting the wearability of the CMP dress.

また、CMPの検査装置は、CMP用スラリの砥粒とCMP用のドレスとの吸着力と摩耗速度との関係をあらかじめ求めてデータベースに記憶しておき、実際の砥粒とドレスとの間の吸着力から、データベースのCMP用スラリの砥粒とCMP用のドレスとの吸着力と摩耗速度との関係を用いて、CMP用ドレスの摩耗速度を推定する速度・寿命予測手段を備える。
これにより、CMPの検査装置は、吸着力を測定することにより、要求されている摩耗速度が得られているかどうかを検査することができる。
In addition, the CMP inspection apparatus obtains in advance a relationship between the attraction force and the wear rate between the abrasive slurry of the CMP slurry and the CMP dress and stores it in a database, and between the actual abrasive grains and the dress. There is provided speed / life prediction means for estimating the wear rate of the CMP dress using the relationship between the wear force and the wear force of the CMP slurry of the database and the CMP dress.
Thereby, the CMP inspection apparatus can inspect whether the required wear rate is obtained by measuring the adsorption force.

<効果>
相互作用測定装置S1を用いれば、非対称の不定形形状を有する試料や、重心が板ばね3の短手方向におけるその重心の位置からずれた位置にしか設置できない試料を板ばね3に接着させて種々の相互作用の測定に用いることができる。また、最大径が60μm(マイクロメートル)以上かつ500μm以下の大きい試料でも使用することができる。これにより、種々の製品に使用されている摺動部材や研磨部材などの実材料、例えば、多孔体、多結晶体、凝集体などや、特定の箇所に溝を切ってあるものなど、形状が複雑でかつ非対称であったり、重心が板ばね3の中心から大きくずれていたり、重量が大きかったりする材料を評価することが可能となる。
<Effect>
If the interaction measuring device S1 is used, a sample having an asymmetrical indefinite shape or a sample whose center of gravity can be placed only at a position shifted from the position of the center of gravity in the short direction of the leaf spring 3 is adhered to the leaf spring 3. It can be used to measure various interactions. Further, even a large sample having a maximum diameter of 60 μm (micrometer) or more and 500 μm or less can be used. As a result, actual materials such as sliding members and polishing members used in various products, for example, porous bodies, polycrystalline bodies, aggregates, etc., and shapes having grooves in specific places, etc. It is possible to evaluate a material that is complicated and asymmetrical, has a center of gravity greatly deviated from the center of the leaf spring 3, or is heavy.

これらの実材料を板ばね3に取り付けて探針の替わりに使用する場合、板ばね3の短手方向の重心の位置に材料の重心の位置をもってくることができないため、板ばね3がねじれてしまうが、本装置を用いれば、左右のねじれを修正することができる。
また、実材料の重量が大きいために板ばね3が垂れ下がって変形してしまう場合にも、本装置を用いれば、上下のたわみを修正することができる。従来の装置では、変形した板ばねの背面にレーザ光を照射しても、その反射光が散乱してしまって集光させることができない、あるいは、光検出器で検出できないなどの問題があったが、これらの問題を解決することができ、あらゆる実材料に対して、相互作用を測定することが可能となる。
When these actual materials are attached to the leaf spring 3 and used instead of the probe, the leaf spring 3 is twisted because the center of gravity of the material cannot be brought to the position of the center of gravity of the leaf spring 3 in the short direction. However, if this apparatus is used, the left and right twists can be corrected.
Further, even when the leaf spring 3 hangs down and deforms due to the weight of the actual material, the vertical deflection can be corrected by using this apparatus. In the conventional apparatus, even if the laser beam is irradiated on the back surface of the deformed leaf spring, the reflected light is scattered and cannot be collected or cannot be detected by the photodetector. However, these problems can be solved and the interaction can be measured for any real material.

1 試料a(第1試料)
1G 試料aの重心(第1試料の重心)
2 試料b(第2試料)
3 板ばね
5 レンズ(変位検出光学系)
6 鏡(変位検出光学系)
14 固定ホルダ(固定部材)
15 試料台
16 光源(変位検出光学系)
17 光検出器(変位検出光学系)
18 変位検出光学系
19 微動/粗動機構(試料間隔調整機構)
20 水平走査機構
21 垂直走査機構
22 回転機構
24 回転式アクチュエータ
24a 第1回転式アクチュエータ
24b 第2回転式アクチュエータ
25 ステップモータ
26 圧電素子
30 雰囲気制御機構
31 密閉容器
b1、b2 ベルト(変換構造)
c31 板ばねの長手方向の中心線(板ばねの長手方向の中心線)
c32 板ばねの短手方向の中心線(板ばねの短手方向の中心線)
c33 板ばねの短手方向の幅を等分する中心線
p1、p2、p3 プーリ(変換構造)
r11 (検出光)
r12 反射光
S1 相互作用測定装置(走査型プローブ顕微鏡)
1 Sample a (first sample)
1G Center of gravity of sample a (center of gravity of first sample)
2 Sample b (second sample)
3 Leaf spring 5 Lens (Displacement detection optical system)
6 Mirror (Displacement detection optical system)
14 Fixed holder (fixing member)
15 Sample stage 16 Light source (Displacement detection optical system)
17 Photodetector (Displacement detection optical system)
18 Displacement detection optical system 19 Fine / coarse movement mechanism (sample interval adjustment mechanism)
DESCRIPTION OF SYMBOLS 20 Horizontal scanning mechanism 21 Vertical scanning mechanism 22 Rotating mechanism 24 Rotating actuator 24a 1st rotating actuator 24b 2nd rotating actuator 25 Step motor 26 Piezoelectric element 30 Atmosphere control mechanism 31 Sealed container b1, b2 Belt (conversion structure)
c31 Longitudinal centerline of leaf spring (longitudinal centerline of leaf spring)
c32 Leaf spring center line in the short direction (leaf spring center line in the short direction)
c33 Center lines equally dividing the width of the leaf spring in the short direction p1, p2, p3 Pulley (conversion structure)
r11 (detection light)
r12 reflected light S1 interaction measuring device (scanning probe microscope)

Claims (15)

第1試料が先端部に取り付けられた板ばねと、
前記板ばねの前記先端部とは反対側の端部を固定する固定部材と、
第2試料が固定される試料台と、
光源から発生する検出光の光軸が前記板ばねの先端部または前記板ばねの変位に追従する部分に当てられ、その反射光を光検出器で検出する前記板ばねの変位検出光学系と、
前記試料台もしくは前記板ばねを動かして、前記第1試料と前記第2試料とを接近または離隔させるための試料間隔調整機構と、
前記第1試料と前記第2試料との間の摩擦を測定するための水平走査機構と、
前記第1試料と前記第2試料との間の吸着、凝着、反発のうち少なくとも一つを測定するための垂直走査機構とを備える走査型プローブ顕微鏡であって、
前記光源から発生する検出光の光軸が当てられた部分の前記第1試料が先端部に取り付けられた板ばねの傾きを、前記試料台に対して任意の角度で変化させるための前記固定部材を回転させる回転機構を備える
ことを特徴とする走査型プローブ顕微鏡。
A leaf spring with a first sample attached to the tip;
A fixing member that fixes an end of the leaf spring opposite to the tip,
A sample stage on which the second sample is fixed;
A displacement detection optical system of the leaf spring in which an optical axis of detection light generated from a light source is applied to a tip portion of the leaf spring or a portion following displacement of the leaf spring, and the reflected light is detected by a photodetector;
A sample interval adjustment mechanism for moving the sample stage or the leaf spring to approach or separate the first sample and the second sample;
A horizontal scanning mechanism for measuring friction between the first sample and the second sample;
A scanning probe microscope comprising a vertical scanning mechanism for measuring at least one of adsorption, adhesion, and repulsion between the first sample and the second sample,
The fixing member for changing the inclination of a leaf spring attached to the tip of the first sample of the portion to which the optical axis of the detection light generated from the light source is applied at an arbitrary angle with respect to the sample stage A scanning probe microscope comprising a rotation mechanism for rotating the probe.
前記回転機構として、
前記板ばねの前記第1試料を取り付けた先端部から前記固定ホルダに固定された端部までの長手方向を、前記固定部材側を支点として前記試料台に対して回転させる第1回転式アクチュエータを備える
ことを特徴とする請求項1記載の走査型プローブ顕微鏡。
As the rotation mechanism,
A first rotary actuator that rotates a longitudinal direction from a tip end portion of the leaf spring to which the first sample is attached to an end portion fixed to the fixing holder with respect to the sample stage with the fixing member side as a fulcrum; The scanning probe microscope according to claim 1, wherein the scanning probe microscope is provided.
前記回転機構として、
前記板ばねの短手方向を、前記試料台に対して回転させる第2回転式アクチュエータを備える
ことを特徴とする請求項1または請求項2記載の走査型プローブ顕微鏡。
As the rotation mechanism,
The scanning probe microscope according to claim 1, further comprising a second rotary actuator that rotates a short direction of the leaf spring with respect to the sample stage.
前記第1回転式アクチュエータまたは前記第2回転式アクチュエータは、ステップモータと圧電素子を組み合わせて得られる動力を回転運動へ変換させる変換構造を備える
ことを特徴とする請求項2または請求項3記載の走査型プローブ顕微鏡。
The said 1st rotary actuator or the said 2nd rotary actuator is provided with the conversion structure which converts the motive power obtained by combining a step motor and a piezoelectric element into rotary motion. The Claim 2 or Claim 3 characterized by the above-mentioned. Scanning probe microscope.
前記第1試料は、非対称の不定形形状を有し、かつ、その重心が前記板ばねの短手方向における前記板ばねの重心の位置からずれた位置にある
ことを特徴とする請求項1から請求項4に何れか一項記載の走査型プローブ顕微鏡。
The first sample has an asymmetrical indeterminate shape, and a center of gravity of the first sample is shifted from a position of a center of gravity of the leaf spring in a short direction of the leaf spring. The scanning probe microscope according to claim 4.
前記板ばねに取り付けられた第1試料は、前記板ばねの延在平面をその厚さ方向に見下ろした場合、前記第1試料の最大径が60マイクロメートル以上かつ500マイクロメートル以下の範囲である
ことを特徴する請求項5記載の走査型プローブ顕微鏡。
The first sample attached to the leaf spring has a maximum diameter of 60 micrometers or more and 500 micrometers or less when the extension plane of the leaf spring is looked down in the thickness direction. The scanning probe microscope according to claim 5.
前記第1試料と前記第2試料の間の摩擦力、吸着力、凝着力、硬度、電位差、静電気力、磁気力、弾性率の何れかを測定することを特徴とする請求項1から請求項6の何れか一項記載の走査型プローブ顕微鏡。   The frictional force, adsorption force, adhesion force, hardness, potential difference, electrostatic force, magnetic force, or elastic modulus between the first sample and the second sample is measured. The scanning probe microscope according to claim 6. 前記第1試料と前記第2試料とを、任意の温度、湿度、真空中、気体中、液体中の何れかに設置するための雰囲気制御機構を有する密閉容器を備える
ことを特徴とする請求項1から請求項7の何れか一項記載の走査型プローブ顕微鏡。
An airtight container having an atmosphere control mechanism for installing the first sample and the second sample in any temperature, humidity, vacuum, gas, or liquid is provided. The scanning probe microscope according to any one of claims 1 to 7.
請求項1から請求項8の何れか一項記載の走査型プローブ顕微鏡を備え、
相互に摩擦摺動する一対の摺動部材のうち少なくとも一方の前記摺動部材を、他方の前記摺動部材に対して摺動する摺動面が下面となるように、前記板ばねの先端部に取り付けると共に、
前記他方の摺動部材を前記試料台の上に固定して、
前記試料間隔調整機構は、前記板ばねの先端部に取り付けた一方の摺動部材と、前記他方の摺動部材との間に一定の荷重を加えるとともに、前記水平走査機構で前記試料台の上の他方の摺動部材を水平走査させることにより、前記一対の摺動部材間の摩擦特性を測定することを特徴とする摩擦摺動の検査装置。
A scanning probe microscope according to any one of claims 1 to 8, comprising:
The tip of the leaf spring is such that the sliding surface that slides at least one of the pair of sliding members that slide against each other relative to the other sliding member is the lower surface. And attached to
Fixing the other sliding member on the sample stage,
The sample interval adjusting mechanism applies a constant load between one sliding member attached to the tip of the leaf spring and the other sliding member, and the horizontal scanning mechanism is used to A frictional sliding inspection apparatus characterized by measuring a friction characteristic between the pair of sliding members by horizontally scanning the other sliding member.
前記一対の摺動部材の少なくとも一方の摺動面に被膜が形成された摺動部材の耐摩耗性を検査することを特徴とする請求項9記載の摩擦摺動の検査装置。   10. The friction sliding inspection apparatus according to claim 9, wherein the wear resistance of the sliding member having a coating formed on at least one sliding surface of the pair of sliding members is inspected. 前記一対の摺動部材は、シンクロメッシュ式の変速機におけるシンクロナイザリングと該シンクロナイザリングに摩擦摺動するクラッチギヤとである
ことを特徴とする請求項9または請求項10記載の摩擦摺動の検査装置。
11. The frictional sliding inspection according to claim 9 or 10, wherein the pair of sliding members are a synchronizer ring in a synchromesh transmission and a clutch gear that frictionally slides on the synchronizer ring. apparatus.
請求項1から請求項8の何れか一項の記載の走査型プローブ顕微鏡を備え、
半導体用ウエハ、前記半導体用ウエハの表面を化学的機械的に研磨して平滑化するために用いるCMP用スラリに含まれる砥粒、一定の荷重をかけて回転させることにより前記半導体用ウエハの表面を研磨するためのCMP用パッド、前記CMP用パッドをクリーニングするためのCMP用ドレスのうちの少なくとも一つを前記板ばねの先端部に取り付けるとともに前記板ばねの先端部に取り付けた部材とは異なる部材を試料台の上に固定して、
前記水平走査機構または前記垂直走査機構で前記試料台の上の部材を走査させることにより、摩擦、吸着、凝着、反発のうち少なくとも一つを測定する
ことを特徴とするCMPの検査装置。
A scanning probe microscope according to any one of claims 1 to 8, comprising:
Semiconductor wafer, abrasive grains contained in CMP slurry used for smoothing the surface of the semiconductor wafer by chemical mechanical polishing, the surface of the semiconductor wafer by rotating under a constant load At least one of a CMP pad for polishing the CMP and a CMP dress for cleaning the CMP pad is attached to the tip of the leaf spring and is different from a member attached to the tip of the leaf spring Fix the member on the sample stage,
A CMP inspection apparatus, wherein at least one of friction, adsorption, adhesion, and repulsion is measured by scanning a member on the sample stage with the horizontal scanning mechanism or the vertical scanning mechanism.
請求項12記載のCMPの検査装置において、
前記走査型プローブ顕微鏡は、化学的機械的研磨における前記砥粒と前記半導体用ウエハ間、前記CMP用パッドと前記半導体用ウエハ間、前記CMP用ドレスと前記半導体用ウエハ間、前記CMP用ドレスと前砥粒間、前記CMP用パッドと前記砥粒間、前記CMP用パッドと前記CMP用ドレス間の少なくとも一つにおいて、摩擦、吸着、凝着、反発のうち少なくとも一つを測定し、
その測定した情報を用いて、前記半導体用ウエハの研磨速度、前記CMP用パッドの寿命、前記CMP用ドレスの寿命のうちの少なくとも何れかを予測する速度・寿命予測手段を備える
ことを特徴とするCMPの検査装置。
The CMP inspection apparatus according to claim 12, wherein
The scanning probe microscope includes the abrasive grains in the chemical mechanical polishing and the semiconductor wafer, the CMP pad and the semiconductor wafer, the CMP dress and the semiconductor wafer, and the CMP dress. Measuring at least one of friction, adsorption, adhesion, and repulsion between at least one of the previous abrasive grains, between the CMP pad and the abrasive grain, and between the CMP pad and the CMP dress;
A speed / life prediction means for predicting at least one of the polishing speed of the semiconductor wafer, the life of the CMP pad, and the life of the CMP dress using the measured information is provided. CMP inspection equipment.
請求項1から請求項8の何れか一項記載の走査型プローブ顕微鏡を備え、
ハードディスク用のヘッドを磁気記録媒体から一定の間隔で浮上させ、データの書き込みを行う磁気記録装置における前記ヘッドと前記磁気記録媒体のうち何れか一方の部材が前記板ばねの先端部に取り付けられるとともに他方の部材が前記試料台の上に固定され、
前記水平走査機構または前記垂直走査機構で前記試料台の上の部材を走査させることにより、摩擦、吸着、凝着、反発のうち少なくとも一つを測定する
ことを特徴とするハードディスクの検査装置。
A scanning probe microscope according to any one of claims 1 to 8, comprising:
A head for a hard disk is levitated from the magnetic recording medium at a predetermined interval, and either one of the head and the magnetic recording medium in a magnetic recording apparatus for writing data is attached to the tip of the leaf spring. The other member is fixed on the sample stage,
A hard disk inspection apparatus, wherein at least one of friction, adsorption, adhesion, and repulsion is measured by scanning a member on the sample stage with the horizontal scanning mechanism or the vertical scanning mechanism.
請求項14記載のハードディスクの検査装置において、
前記ハードディスク用のヘッドと前記磁気記録媒体間の、摩擦、吸着、凝着、反発のうち少なくとも一つが測定され、
その測定した情報を用いて、書き込みエラーの発生率を予測するエラー予測手段を備える
ことを特徴とするハードディスクの検査装置。
The hard disk inspection device according to claim 14,
At least one of friction, adsorption, adhesion, and repulsion between the head for the hard disk and the magnetic recording medium is measured,
An apparatus for inspecting a hard disk, comprising error prediction means for predicting a write error occurrence rate using the measured information.
JP2010102818A 2010-04-28 2010-04-28 Probe microscope and frictional sliding, cmp, and hard disk inspection device including the same Pending JP2011232177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102818A JP2011232177A (en) 2010-04-28 2010-04-28 Probe microscope and frictional sliding, cmp, and hard disk inspection device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102818A JP2011232177A (en) 2010-04-28 2010-04-28 Probe microscope and frictional sliding, cmp, and hard disk inspection device including the same

Publications (1)

Publication Number Publication Date
JP2011232177A true JP2011232177A (en) 2011-11-17

Family

ID=45321633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102818A Pending JP2011232177A (en) 2010-04-28 2010-04-28 Probe microscope and frictional sliding, cmp, and hard disk inspection device including the same

Country Status (1)

Country Link
JP (1) JP2011232177A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156678A (en) * 2015-02-24 2016-09-01 日本ゼオン株式会社 Powder adhesiveness measuring method and thermo-hygrostat room forming jig
CN107817459A (en) * 2017-11-24 2018-03-20 中国石油大学(北京) Magnetic domain in-situ observation system during a kind of reciprocating friction
CN108225151A (en) * 2016-12-22 2018-06-29 卡尔蔡司工业测量技术有限公司 The rotation of coordinate measuring machine/pivot sensing system
CN109406831A (en) * 2017-09-08 2019-03-01 西南交通大学 A kind of design of rectangle micro-cantilever beam probe and processing method applied to the measurement of nanoscale single-contact ultralow friction coefficient
CN109406829A (en) * 2017-08-17 2019-03-01 中国科学院物理研究所 The probe of scanning probe microscopy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156678A (en) * 2015-02-24 2016-09-01 日本ゼオン株式会社 Powder adhesiveness measuring method and thermo-hygrostat room forming jig
CN108225151A (en) * 2016-12-22 2018-06-29 卡尔蔡司工业测量技术有限公司 The rotation of coordinate measuring machine/pivot sensing system
CN109406829A (en) * 2017-08-17 2019-03-01 中国科学院物理研究所 The probe of scanning probe microscopy
CN109406829B (en) * 2017-08-17 2021-02-19 中国科学院物理研究所 Scanning head of scanning probe microscope
CN109406831A (en) * 2017-09-08 2019-03-01 西南交通大学 A kind of design of rectangle micro-cantilever beam probe and processing method applied to the measurement of nanoscale single-contact ultralow friction coefficient
CN107817459A (en) * 2017-11-24 2018-03-20 中国石油大学(北京) Magnetic domain in-situ observation system during a kind of reciprocating friction
CN107817459B (en) * 2017-11-24 2024-03-08 中国石油大学(北京) Magnetic domain in-situ observation system in reciprocating friction process

Similar Documents

Publication Publication Date Title
Butt et al. Surface and interfacial forces
Palacio et al. Normal and lateral force calibration techniques for AFM cantilevers
Bhushan et al. Atomic-scale friction measurements using friction force microscopy: part II—application to magnetic media
Eaton et al. Atomic force microscopy
DeVecchio et al. Localized surface elasticity measurements using an atomic force microscope
JP5036802B2 (en) Nano indenter
US8443461B2 (en) Interatomic force measurements using passively drift compensated non-contact in situ calibrated atomic force microscopy—quantifying chemical bond forces between electronic orbitals by direct force measurements at subatomic lateral resolution
JP2011232177A (en) Probe microscope and frictional sliding, cmp, and hard disk inspection device including the same
WO2022057277A1 (en) Atomic force microscope based measurement method and device for rapid in-situ switching of integrated double probe
Dienwiebel et al. Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity
Chung et al. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy
Varenberg et al. Nanoscale fretting wear study by scanning probe microscopy
CN102401637A (en) Three-dimensional shape measuring device
Hwu et al. A hybrid scanning probe microscope (SPM) module based on a DVD optical head
CN102575975A (en) Wear-less operation of a material surface with a scanning probe microscope
WO2014158290A1 (en) Optical beam positioning unit for atomic force microscope
Sikora Quantitative normal force measurements by means of atomic force microscopy towards the accurate and easy spring constant determination
Tian et al. Structure design and experimental investigation of a multi-function stylus profiling system for characterization of engineering surfaces at micro/nano scales
JP2006220597A (en) Surface information measurement device
Hwu et al. High-performance spinning device for DVD-based micromechanical signal transduction
Khandelwal et al. NANOTRIBOLOGY-The road to no WEAR!
Grigoriev et al. Measurement of contact adhesion and attraction between the engineering surfaces
Bhushan Nanotribology, nanomechanics, and materials characterization
Fern et al. Influence of additional rotational movements on the measurement uncertainty of nanomeasuring, nanopositioning and nanofabrication machines
Bhushan Nanotribology, nanomechanics, and materials characterization