JP2011232021A - Thermal apparatus structural member, and method of manufacturing the same - Google Patents

Thermal apparatus structural member, and method of manufacturing the same Download PDF

Info

Publication number
JP2011232021A
JP2011232021A JP2011071023A JP2011071023A JP2011232021A JP 2011232021 A JP2011232021 A JP 2011232021A JP 2011071023 A JP2011071023 A JP 2011071023A JP 2011071023 A JP2011071023 A JP 2011071023A JP 2011232021 A JP2011232021 A JP 2011232021A
Authority
JP
Japan
Prior art keywords
oxide
film
structural member
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011071023A
Other languages
Japanese (ja)
Other versions
JP5611877B2 (en
Inventor
Akio Sayano
顕生 佐谷野
Masashi Takahashi
雅士 高橋
Hiroshi Sugano
博 菅野
Shuichi Inagaki
修一 稲垣
Yoshihide Yanagihara
佳英 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011071023A priority Critical patent/JP5611877B2/en
Publication of JP2011232021A publication Critical patent/JP2011232021A/en
Application granted granted Critical
Publication of JP5611877B2 publication Critical patent/JP5611877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal apparatus structural member which suppresses the chemical reaction of chromium and calcium and is excellently inexpensive, and to provide a method of manufacturing the same.SOLUTION: There is provided the method of manufacturing the thermal apparatus structural member, the member including: a metal member containing at least chromium; a ceramic coating formed on the metal member; and a member formed on the coating and containing at least calcium oxide.

Description

本発明は,バイオマス燃焼炉,廃棄物焼却炉,火力発電機器,化学プラント等の熱機器を構成する熱機器構造部材,およびその製造方法に関する。   The present invention relates to a thermal equipment structural member constituting a thermal equipment such as a biomass combustion furnace, a waste incinerator, a thermal power generation equipment, and a chemical plant, and a manufacturing method thereof.

種々の熱機器(例えば,バイオマス燃焼炉,廃棄物焼却炉,火力発電機器,化学プラント)が用いられている。例えば,バイオマス燃焼炉では,家畜排泄物や生ゴミ,木くずなどの動植物から生まれた再生可能な有機性資源(バイオマス)を利用して発電等を行う試みがなされている。   Various thermal equipment (for example, biomass burning furnace, waste incinerator, thermal power generation equipment, chemical plant) is used. For example, in a biomass combustion furnace, attempts are being made to generate electricity using renewable organic resources (biomass) born from animals and plants such as livestock excrement, garbage, and wood scraps.

一般的に,これらの熱機器の燃焼室を構成する構造材料として,耐熱性,耐酸化性,耐食性,高温強度,コスト等の観点からステンレス鋼等のクロムを含有する金属が多く用いられる。また,燃焼室で発生した熱を外へ逃がさないために,ステンレス鋼の外側に保温材が配置され,発生した熱の有効利用が図られる。   In general, a metal containing chromium such as stainless steel is often used as a structural material constituting the combustion chamber of these thermal devices from the viewpoint of heat resistance, oxidation resistance, corrosion resistance, high temperature strength, cost, and the like. In addition, in order to prevent the heat generated in the combustion chamber from escaping to the outside, a heat insulating material is arranged outside the stainless steel so that the generated heat can be effectively used.

従来,燃焼室の保温材としては,アスベストが使用されてきた。アスベストは断熱性(保温特性),耐熱性,耐食性,電気絶縁性などに優れ,かつ安価であるため広く使用されてきた。しかし,現在では健康被害を引き起こす確率が高いとされ使われなくなっている。   Conventionally, asbestos has been used as a heat insulating material for the combustion chamber. Asbestos has been widely used because it has excellent heat insulation (heat retention characteristics), heat resistance, corrosion resistance, electrical insulation, and the like, and is inexpensive. However, it is no longer used because it has a high probability of causing health damage.

現在では,燃焼室等の保温材として,主として,カルシウムシリケート(酸化カルシウムと酸化シリコンの複酸化物)を主成分とする保温材が用いられる。カルシウムシリケートが安全であるとともに,断熱性(保温特性),耐熱性,耐食性に優れ,またコストにおいても安価であることによる。   At present, as a heat insulating material for a combustion chamber or the like, a heat insulating material mainly composed of calcium silicate (a double oxide of calcium oxide and silicon oxide) is mainly used. This is because calcium silicate is safe, has excellent heat insulation (heat retention characteristics), heat resistance, and corrosion resistance, and is inexpensive.

しかしながら,燃焼室等において,ステンレス鋼等のクロムを含有する金属と保温材を接触させて長期間使用した場合,六価クロムが形成される可能性があると指摘されている(例えば,非特許文献1参照)。即ち,ステンレス鋼等の表面Cr皮膜と保温材のカルシウム成分が次のように反応し,六価クロムが形成される。
2Cr+4CaO+3O→ 4CaCrO
However, it has been pointed out that hexavalent chromium may be formed when a heat insulating material is brought into contact with a metal containing chromium such as stainless steel in a combustion chamber or the like (for example, non-patented). Reference 1). That is, the surface Cr 2 O 3 film of stainless steel or the like and the calcium component of the heat insulating material react as follows to form hexavalent chromium.
2Cr 2 O 3 + 4CaO + 3O 2 → 4CaCrO 4

この六価クロムの形成は,バイオマス燃焼炉に限らず,廃棄物焼却炉,火力発電機器(車室),化学プラント等多くの高温機器において,発生する。即ち,クロムを含有する構造部材と,それに接触し,カルシウムを含む保温材とが存在すれば,六価クロムが形成される可能性がある。この現象は,クロム含有量の多い金属部材においてより顕著となる。また,この現象(六価クロムの形成)は,カルシウムを含む保温材に限定されず,カリウム,マグネシウム,ナトリウムのいずれかを含む保温材についても生じる。   This hexavalent chromium formation occurs not only in biomass combustion furnaces but also in many high-temperature equipment such as waste incinerators, thermal power generation equipment (cabinet), and chemical plants. That is, if there is a structural member containing chromium and a heat insulating material that contacts and contains calcium, hexavalent chromium may be formed. This phenomenon becomes more prominent in metal members having a high chromium content. Moreover, this phenomenon (formation of hexavalent chromium) is not limited to a heat insulating material containing calcium, but also occurs for a heat insulating material containing any of potassium, magnesium, and sodium.

これに対し,例えば,次のような対策が検討されている。(1)使用する材料を変更する。例えば,クロムに替え,モリブデンやシリコン等を添加して,耐食性を向上させる(実質的にクロムを含まない金属を使用する)。あるいは,カルシウム等を含む保温材に替えて,耐熱性の高いセラミックスを使用する。(2)冷却システムを設け,金属部材と保温材の界面が高温にならないようにする。   In response to this, for example, the following measures have been studied. (1) Change the material to be used. For example, instead of chromium, molybdenum or silicon is added to improve corrosion resistance (use a metal that does not substantially contain chromium). Alternatively, use ceramics with high heat resistance instead of heat insulating materials containing calcium. (2) Provide a cooling system so that the interface between the metal member and the heat insulating material does not become high temperature.

「腐食センターニュース」,No.034,2005年6月1日,腐食防食協会発行"Corrosion Center News", No.034, published on June 1, 2005, Corrosion Protection Association

しかしながら,上記の対策はいずれも十分とは言えず,いずれも実用化に至っていないのが現状である。即ち,(1)モリブデンやシリコン等の添加,セラミックスの使用は,コストを上げることになる。(2)冷却システムを設ける場合,コストを上げると同時に,機器システムの効率も下がる。   However, none of the above measures are sufficient, and none of them have been put into practical use. (1) Addition of molybdenum, silicon, etc. and the use of ceramics increase the cost. (2) When a cooling system is provided, the cost increases and the efficiency of the equipment system decreases.

本発明は,カルシウム,カリウム,マグネシウム,ナトリウムの少なくともいずれかと,クロムとの化学反応が抑制され,かつコストに優れる熱機器構造部材及びその製造方法を提供することを目的とする。   An object of the present invention is to provide a thermal equipment structural member and a method for producing the same, in which a chemical reaction between chromium and at least one of calcium, potassium, magnesium, and sodium is suppressed and the cost is excellent.

本発明の一態様に係る熱機器構造部材は,少なくともクロムを含む金属部材と,前記金属部材上に形成され,セラミックからなる皮膜と,前記皮膜上に形成され,酸化カルシウム,酸化カリウム,酸化マグネシウム,酸化ナトリウムの少なくともいずれかを含む部材と,を具備する。   A thermal equipment structural member according to an aspect of the present invention includes a metal member containing at least chromium, a film formed on the metal member and made of ceramic, and formed on the film, such as calcium oxide, potassium oxide, and magnesium oxide. And a member containing at least one of sodium oxide.

本発明の一態様に係る熱機器構造部材の製造方法は,前述の熱機器構造部材を製造する方法であって,セラミックスの前駆体を含む溶液を前記金属部材表面に塗布する工程と,加熱処理により前記セラミックスの前駆体を分解して,前記皮膜を形成する工程と,を具備する。   A method for manufacturing a thermal device structural member according to an aspect of the present invention is a method for manufacturing the above-described thermal device structural member, the step of applying a solution containing a ceramic precursor to the surface of the metal member, and a heat treatment Decomposing the ceramic precursor to form the coating.

本発明によれば,カルシウム,カリウム,マグネシウム,ナトリウムの少なくともいずれかと,クロムとの化学反応が抑制され,かつコストに優れる熱機器構造部材及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the thermal equipment structural member which can suppress the chemical reaction with at least any one of calcium, potassium, magnesium, and sodium and chromium, and is excellent in cost, and its manufacturing method can be provided.

本発明の一実施形態に係る構造部材10を模式的に表す横断面図である。It is a transverse cross section showing typically structural member 10 concerning one embodiment of the present invention. 本発明の一実施形態に係る構造部材10の製造方法の一例を表すフローチャートである。It is a flowchart showing an example of the manufacturing method of the structural member 10 which concerns on one Embodiment of this invention.

本発明者らは,熱機器における金属部材と保温材との反応により生じる六価クロムの発生を抑えるための方法について鋭意研究を重ねた。その結果,金属部材の表面にセラミックスの皮膜を形成することにより,金属部材表面に存在するクロム成分と保温材中のカルシウム成分とを隔離し,六価クロムの発生を抑制できることを見出した。   The inventors of the present invention have made extensive studies on a method for suppressing generation of hexavalent chromium caused by a reaction between a metal member and a heat insulating material in a thermal apparatus. As a result, it was found that by forming a ceramic film on the surface of the metal member, the chromium component existing on the surface of the metal member and the calcium component in the heat insulating material can be isolated and the generation of hexavalent chromium can be suppressed.

図1は,本発明の一実施形態に係る構造部材10を模式的に表す横断面図である。構造部材10は,バイオマス燃焼炉,廃棄物焼却炉,火力発電機器,化学プラント等の熱機器(特に,その燃焼室)を構成し,金属部材11,皮膜12,保温材13を有する。   FIG. 1 is a cross-sectional view schematically showing a structural member 10 according to an embodiment of the present invention. The structural member 10 constitutes a thermal device (particularly its combustion chamber) such as a biomass combustion furnace, a waste incinerator, a thermal power generation device, a chemical plant, and the like, and has a metal member 11, a film 12, and a heat insulating material 13.

金属部材11は,少なくともクロムを含有する。金属部材11はステンレス鋼が望ましい。これは,ステンレス鋼は耐熱性,耐食性,高温強度が優れると同時にコストについても比較的安価であるためである。ここで,ステンレス鋼とはクロムを11%以上含む鋼と定義され,マルテンサイト系ステンレス鋼,フェライト系ステンレス鋼 ,オーステナイト系ステンレス鋼 ,オーステナイト・フェライト二相ステンレス鋼 ,析出硬化ステンレス鋼 に分類される。   The metal member 11 contains at least chromium. The metal member 11 is preferably stainless steel. This is because stainless steel has excellent heat resistance, corrosion resistance, and high-temperature strength, and at the same time is relatively inexpensive. Here, stainless steel is defined as steel containing 11% or more of chromium, and is classified into martensitic stainless steel, ferritic stainless steel, austenitic stainless steel, austenitic / ferritic duplex stainless steel, and precipitation hardened stainless steel. .

皮膜12は,セラミックスからなり,金属部材11の表面に形成される。ここで,セラミックスとは酸化物セラミックス,窒化物セラミックス,炭化物セラミックス,珪化物セラミックス等の非金属化合物である。   The film 12 is made of ceramics and is formed on the surface of the metal member 11. Here, ceramics are non-metallic compounds such as oxide ceramics, nitride ceramics, carbide ceramics, silicide ceramics and the like.

ここでセラミックスとしては,酸化物セラミックス,特に酸化チタン,酸化ジルコニウム,酸化アルミニウム,酸化ケイ素から選ばれる少なくとも1種からなることが望ましい。これは,これらの酸化物が,耐食性,耐熱性,高温強度に優れると同時にコスト的にも比較的安価であるためである。   Here, the ceramic is preferably made of oxide ceramics, particularly at least one selected from titanium oxide, zirconium oxide, aluminum oxide, and silicon oxide. This is because these oxides are excellent in corrosion resistance, heat resistance, and high-temperature strength, and at the same time are relatively inexpensive.

ここで,セラミックス皮膜の膜厚は0.01μm以上,100μm以下であることが好ましい。セラミックス皮膜の膜厚を,0.01μm以上に限定したのは,皮膜が0.01μmより小さい場合には,部分的に皮膜の形成されていない部位が生じたり,あるいはわずかな摩耗により皮膜が失われてしまい,反応抑制膜として十分な機能を果たすことができないためである。一方,100μm以下に限定したのは,皮膜の膜厚が100μmより厚い場合には密着強度が減少し,はがれ等が発生し実質的に皮膜としての機能を果たせないからである。   Here, the thickness of the ceramic film is preferably 0.01 μm or more and 100 μm or less. The film thickness of the ceramic film was limited to 0.01 μm or more. If the film was smaller than 0.01 μm, a part of the film was not formed or the film was lost due to slight wear. This is because it cannot be used as a reaction suppression film. On the other hand, the reason why the thickness is limited to 100 μm or less is that when the film thickness is greater than 100 μm, the adhesion strength decreases, peeling occurs, and the function as a film cannot be substantially achieved.

保温材13は,熱機器内で発生する熱の外部への移動を制限するための部材(断熱部材)である。このため,保温材13は,その内部に多数の空孔を有する。保温材13の空孔率(保温材13の体積中に空孔が示す割合,気孔率とも言う)は,好ましくは,80%以上,より好ましくは,90%以上である。   The heat insulating material 13 is a member (heat insulating member) for limiting the movement of heat generated in the thermal equipment to the outside. For this reason, the heat insulating material 13 has a large number of holes therein. The porosity of the heat insulating material 13 (ratio indicated by the voids in the volume of the heat insulating material 13, also referred to as porosity) is preferably 80% or more, more preferably 90% or more.

保温材13は,カルシウム,カリウム,マグネシウム,ナトリウムから選ばれる少なくとも1種の酸化物を含み,皮膜12と接触して配置される。保温材13は,酸化カルシウムと酸化シリコンの複合酸化物を主成分とするものが望ましい。これは,酸化カルシウムと酸化シリコンの複合酸化物を主成分する保温材は,保温効果に優れると同時に耐熱性,耐酸化性,高温強度等が優れており,さらにコストにおいても比較的安価であるためである。   The heat insulating material 13 includes at least one oxide selected from calcium, potassium, magnesium, and sodium, and is disposed in contact with the coating 12. The heat insulating material 13 is preferably composed mainly of a composite oxide of calcium oxide and silicon oxide. This is because the heat insulating material mainly composed of a composite oxide of calcium oxide and silicon oxide has an excellent heat retaining effect, as well as excellent heat resistance, oxidation resistance, high temperature strength, etc., and is relatively inexpensive. Because.

(構造部材10の製造方法)
次に構造部材10の製造方法について説明する。
図2は,本発明の一実施形態に係る構造部材10の製造方法の一例を表すフローチャートである。構造部材10は,金属部材11上への皮膜12の形成(ステップS11,S12),皮膜12上への保温材13の配置(ステップS13)によって形成される。
(Method for manufacturing structural member 10)
Next, a method for manufacturing the structural member 10 will be described.
FIG. 2 is a flowchart showing an example of the manufacturing method of the structural member 10 according to the embodiment of the present invention. The structural member 10 is formed by forming the film 12 on the metal member 11 (steps S11 and S12) and disposing the heat insulating material 13 on the film 12 (step S13).

皮膜12は,金属部材11の表面にセラミックスの前駆体を含む溶液を塗布,乾燥する工程(ステップS11)と,加熱処理により前記セラミックスの前駆体を分解(焼成)する工程(ステップS12)とによって,形成できる。   The coating 12 is formed by applying and drying a solution containing a ceramic precursor on the surface of the metal member 11 (step S11) and decomposing (firing) the ceramic precursor by heat treatment (step S12). , Can be formed.

ここでセラミックス前駆体としては,例えば,酸化チタンの前駆体溶液,または酸化ジルコニウムの前駆体溶液,または酸化アルミニウムの前駆体溶液,または酸化シリコンの前駆体溶液,又はこれらの混合溶液等を使用することができる。酸化チタンの前駆体溶液としては,チタンのアルコキシド,アシレート,キレート,塩,ゾル等が挙げられる。酸化ジルコニウムの前駆体溶液としては,ジルコニウムのアルコキシド,アシレート,キレート,塩,ゾル等が挙げられる。酸化アルミニウムの前駆体溶液としては,アルミニウムのアルコキシド,アシレート,キレート,塩,ゾル等が挙げられる。酸化シリコンの前駆体溶液としては,シリコンのアルコキシド,アシレート,キレート,塩,ゾル等が挙げられる。   Here, as the ceramic precursor, for example, a titanium oxide precursor solution, a zirconium oxide precursor solution, an aluminum oxide precursor solution, a silicon oxide precursor solution, or a mixed solution thereof is used. be able to. Examples of the titanium oxide precursor solution include titanium alkoxides, acylates, chelates, salts, and sols. Examples of the zirconium oxide precursor solution include zirconium alkoxides, acylates, chelates, salts, and sols. Examples of the aluminum oxide precursor solution include aluminum alkoxides, acylates, chelates, salts, and sols. Examples of the silicon oxide precursor solution include silicon alkoxides, acylates, chelates, salts, and sols.

例えば,ディップコーティング,スプレーコーティング,フローコーティング,スピンコーティング,ロールコーティング等の湿式コーティングにより,コーティング組成物(セラミックスの前駆体を含む溶液)を塗布し,金属部材11を覆う。   For example, the coating composition (solution containing a ceramic precursor) is applied by wet coating such as dip coating, spray coating, flow coating, spin coating, roll coating, and the metal member 11 is covered.

コーティング組成物を乾燥させて,セラミックス前駆体の皮膜を形成することができる。乾燥は,常温で放置することにより行っても良いし,加熱して行ってもよく,これらを適宜組み合わせて行うこともできる。セラミックス前駆体の皮膜を加熱し,分解することで,セラミックからなる皮膜12が形成される。   The coating composition can be dried to form a ceramic precursor film. Drying may be performed by leaving at room temperature, may be performed by heating, or may be performed by appropriately combining these. The ceramic precursor film 12 is formed by heating and decomposing the ceramic precursor film.

皮膜12(金属部材11)に,保温材13が固定される。即ち,皮膜12の表裏それぞれに金属部材11および保温材13が配置され,皮膜12によって金属部材11と保温材13の接触が防止される。この固定には,機械的な手法を採用できる。金属部材11の皮膜12上に保温材13を配置し,例えば,耐熱性の金属(例えば,ニッケル等)からなる針金等を巻きつけることで,金属部材11に保温材13が固定される。   A heat insulating material 13 is fixed to the film 12 (metal member 11). That is, the metal member 11 and the heat insulating material 13 are disposed on the front and back surfaces of the film 12, and the film 12 prevents the metal member 11 and the heat insulating material 13 from contacting each other. A mechanical method can be used for this fixation. The heat insulating material 13 is fixed on the metal member 11 by disposing the heat insulating material 13 on the film 12 of the metal member 11 and winding a wire made of a heat-resistant metal (for example, nickel).

以下,本発明の実施例につき,比較例を参照しながら,説明する。
なお,本実施例及び比較例においては,図1に示したように,少なくともクロムを含有する金属部材11の表面にセラミックスからなる皮膜12を形成し,さらに少なくともカルシウムを含む部材(保温材)13をセラミックスからなる皮膜12と接触させて配置した。
Hereinafter, examples of the present invention will be described with reference to comparative examples.
In this example and the comparative example, as shown in FIG. 1, a film 12 made of ceramics is formed on the surface of a metal member 11 containing at least chromium, and a member (heat insulating material) 13 containing at least calcium is further formed. Was placed in contact with the coating 12 made of ceramics.

また,評価については,上記構造部材10を600℃で500時間保持した後,金属部材11と保温材13の界面を目視で観察し,反応生成物が認められた場合にはX線回折によりこの反応生成物を同定した。   As for evaluation, after holding the structural member 10 at 600 ° C. for 500 hours, the interface between the metal member 11 and the heat insulating material 13 was visually observed, and if a reaction product was observed, this was confirmed by X-ray diffraction. The reaction product was identified.

(実施例1)
寸法50×50×10mmのSUS304角板試験体の表面全体にTiOのアルコキシ金属塩(溶媒はイソプロピルアルコール)をディッピングにより塗布した。その後,大気中で,400℃,30分熱処理することにより基材表面にTiOのコーティング皮膜を形成した。このときのコーティング皮膜の膜厚は0.5μmであった。
Example 1
An TiO 2 alkoxy metal salt (solvent is isopropyl alcohol) was applied by dipping on the entire surface of a SUS304 square plate specimen having dimensions of 50 × 50 × 10 mm. Thereafter, in the air, 400 ° C., to form a coating film of TiO 2 on the surface of the substrate by heat treatment for 30 minutes. The thickness of the coating film at this time was 0.5 μm.

一方,酸化カルシウムと酸化シリコンの複合酸化物を主成分する保温材(商品名:ロックウール)を準備し,これを50×50×10mmの寸法に加工した。   On the other hand, a heat insulating material (trade name: Rockwool) mainly composed of a composite oxide of calcium oxide and silicon oxide was prepared and processed into a size of 50 × 50 × 10 mm.

コーティング施工したステンレス鋼SUS304の角板試験体と酸化カルシウムと酸化シリコンの複合酸化物を主成分する保温材を50×50mmの面で接触させた状態で大気中にて熱処理した。熱処理条件は,600℃,500時間とした。   The coated stainless steel SUS304 square plate specimen and a heat insulating material mainly composed of a composite oxide of calcium oxide and silicon oxide were heat-treated in the air in a state of being in contact with a 50 × 50 mm surface. The heat treatment conditions were 600 ° C. and 500 hours.

熱処理を行った後,ステンレスSUS304鋼角板試験体及び酸化カルシウムと酸化シリコンの複合酸化物を主成分する保温材の両者の接触表面を目視により観察した。その結果,反応生成物等による変化は認められなかった。   After the heat treatment, the contact surfaces of both the stainless steel SUS304 steel square plate specimen and the heat insulating material mainly composed of a composite oxide of calcium oxide and silicon oxide were visually observed. As a result, no change due to the reaction product was observed.

(実施例2)
コーティング皮膜の材質をZrOとした他は実施例1と同様の方法で皮膜を形成し,実施例1と同様の方法で保温材との反応を評価した。その結果,反応生成物等による変化は認められなかった。
(Example 2)
A film was formed by the same method as in Example 1 except that the material of the coating film was ZrO 2 , and the reaction with the heat insulating material was evaluated by the same method as in Example 1. As a result, no change due to the reaction product was observed.

(実施例3)
コーティング皮膜の材質をAlとした他は実施例1と同様の方法で皮膜を形成し,実施例1と同様の方法で保温材との反応を評価した。その結果,反応生成物等による変化は認められなかった。
(Example 3)
A film was formed by the same method as in Example 1 except that the material of the coating film was Al 2 O 3 , and the reaction with the heat insulating material was evaluated by the same method as in Example 1. As a result, no change due to the reaction product was observed.

(実施例4)
コーティング皮膜の材質をSiOとした他は実施例1と同様の方法で皮膜を形成し,実施例1と同様の方法で保温材との反応を評価した。その結果,反応生成物等による変化は認められなかった。
Example 4
A film was formed by the same method as in Example 1 except that the material of the coating film was SiO 2 , and the reaction with the heat insulating material was evaluated by the same method as in Example 1. As a result, no change due to the reaction product was observed.

(実施例5)
コーティング皮膜の膜厚を0.01μmとした他は実施例1と同様の方法で皮膜を形成し,実施例1と同様の方法で保温材との反応を評価した。その結果,反応生成物等による変化は認められなかった。
(Example 5)
A film was formed by the same method as in Example 1 except that the coating film thickness was 0.01 μm, and the reaction with the heat insulating material was evaluated by the same method as in Example 1. As a result, no change due to the reaction product was observed.

(実施例6)
コーティング皮膜の膜厚を2μmとした他は実施例1と同様の方法で皮膜を形成し,実施例1と同様の方法で保温材との反応を評価した。その結果,反応生成物等による変化は認められなかった。
(Example 6)
A film was formed by the same method as in Example 1 except that the thickness of the coating film was 2 μm, and the reaction with the heat insulating material was evaluated by the same method as in Example 1. As a result, no change due to the reaction product was observed.

(実施例7)
コーティング皮膜の膜厚を100μmとした他は実施例1と同様の方法で皮膜を形成し,実施例1と同様の方法で保温材との反応を評価した。その結果,反応生成物等による変化は認められなかった。
(Example 7)
A film was formed by the same method as in Example 1 except that the thickness of the coating film was 100 μm, and the reaction with the heat insulating material was evaluated by the same method as in Example 1. As a result, no change due to the reaction product was observed.

(比較例1)
SUS304ステンレス鋼にコーティングをせず,実施例1と同様の方法で保温材との反応を評価した。その結果,目視によりステンレス鋼表面に反応生成物が認められたため,X線回折により反応生成物を同定した。その結果,クロムとカルシウムの複合酸化物が確認された。また,クロムとマグネシウムの複合酸化物も微量検出された。
(Comparative Example 1)
SUS304 stainless steel was not coated, and the reaction with the heat insulating material was evaluated in the same manner as in Example 1. As a result, a reaction product was visually observed on the surface of the stainless steel, and the reaction product was identified by X-ray diffraction. As a result, a complex oxide of chromium and calcium was confirmed. A trace amount of complex oxide of chromium and magnesium was also detected.

(比較例2)
コーティング皮膜の膜厚を9nm(0.009μm)とした他は実施例1と同様の方法で皮膜を形成し,実施例1と同様の方法で保温材との反応を評価した。その結果,目視によりステンレス鋼表面に反応生成物が認められたため,X線回折により反応生成物を同定した。その結果,クロムとカルシウムの複合酸化物が確認された。
(Comparative Example 2)
A film was formed by the same method as in Example 1 except that the thickness of the coating film was 9 nm (0.009 μm), and the reaction with the heat insulating material was evaluated by the same method as in Example 1. As a result, a reaction product was visually observed on the surface of the stainless steel, and the reaction product was identified by X-ray diffraction. As a result, a complex oxide of chromium and calcium was confirmed.

(比較例3)
コーティング皮膜の膜厚を110μmとした他は実施例1と同様の方法で皮膜を形成したが,皮膜のはがれが生じ,以後の実験が実施できなかった。
(Comparative Example 3)
The film was formed by the same method as in Example 1 except that the film thickness of the coating film was 110 μm. However, the film peeled off, and subsequent experiments could not be performed.

(比較例4)
保温材の材質を商品名撥水性パーライト(SiOを主成分とし,NaOを約7%含む)とした他は比較例1同様の方法で反応を評価した結果,X線回折によりクロムとナトリウムの複合酸化物が認められた。
(Comparative Example 4)
As a result of evaluating the reaction in the same manner as in Comparative Example 1 except that the material of the heat insulating material was trade name water-repellent perlite (containing SiO 2 as a main component and containing about 7% of Na 2 O), Sodium complex oxide was observed.

(比較例5)
保温材の材質を商品名ケイカルエース・スーパーシリカ(ケイ酸カルシウムを主成分し,少量のカリウムを含む)とした他は比較例1同様の方法で反応を評価した。この結果,X線回折によりクロムとカルシウムの複合酸化物が認められた。また,クロムとカリウムの複合酸化物も微量検出された。
(Comparative Example 5)
The reaction was evaluated in the same manner as in Comparative Example 1 except that the material of the heat insulating material was the trade name Keical Ace Super Silica (which contains calcium silicate as a main component and contains a small amount of potassium). As a result, a complex oxide of chromium and calcium was observed by X-ray diffraction. A trace amount of complex oxide of chromium and potassium was also detected.

(その他の実施形態)
本発明の実施形態は上記の実施形態に限られず拡張,変更可能であり,拡張,変更した実施形態も本発明の技術的範囲に含まれる。
(Other embodiments)
Embodiments of the present invention are not limited to the above-described embodiments, and can be expanded and modified. The expanded and modified embodiments are also included in the technical scope of the present invention.

10 構造部材
11 金属部材
12 皮膜
13 保温材
DESCRIPTION OF SYMBOLS 10 Structural member 11 Metal member 12 Film | membrane 13 Heat insulating material

Claims (7)

少なくともクロムを含む金属部材と,
前記金属部材上に形成され,セラミックからなる皮膜と,
前記皮膜上に形成され,酸化カルシウム,酸化カリウム,酸化マグネシウム,酸化ナトリウムの少なくともいずれかを含む部材と,
を具備する熱機器構造部材。
A metal member containing at least chromium;
A film formed on the metal member and made of ceramic;
A member formed on the film and containing at least one of calcium oxide, potassium oxide, magnesium oxide, and sodium oxide;
A thermal equipment structural member comprising:
前記部材の気孔率が80%以上である
ことを特徴とする請求項1記載の熱機器構造部材。
The heat equipment structural member according to claim 1, wherein the porosity of the member is 80% or more.
前記金属部材が,ステンレス鋼である
ことを特徴とする請求項1又は2記載の熱機器構造部材。
The thermal device structural member according to claim 1, wherein the metal member is stainless steel.
前記部材が,酸化カルシウムと酸化シリコンの複合酸化物を主成分とする
ことを特徴とする請求項1乃至3記載の熱機器構造部材。
The thermal device structural member according to claim 1, wherein the member contains a composite oxide of calcium oxide and silicon oxide as a main component.
前記皮膜は,酸化チタン,酸化ジルコニウム,酸化アルミニウム,酸化ケイ素から選ばれる少なくとも1種からなる
ことを特徴とする請求項1乃至4記載の熱機器構造部材。
5. The thermal equipment structural member according to claim 1, wherein the coating is made of at least one selected from titanium oxide, zirconium oxide, aluminum oxide, and silicon oxide.
前記セラミックからなる皮膜の膜厚が,0.01μm以上,100μm以下である
ことを特徴とする請求項1乃至5のいずれか1項記載の熱機器構造部材。
The thermal equipment structural member according to any one of claims 1 to 5, wherein a film thickness of the ceramic film is 0.01 µm or more and 100 µm or less.
請求項1乃至6記載の熱機器構造部材の製造方法であって,
セラミックスの前駆体を含む溶液を前記金属部材表面に塗布する工程と,
加熱処理により前記セラミックスの前駆体を分解して,前記皮膜を形成する工程と,
を具備する熱機器構造部材の製造方法。
A method for manufacturing a thermal equipment structural member according to claim 1,
Applying a solution containing a ceramic precursor to the surface of the metal member;
Decomposing the ceramic precursor by heat treatment to form the film;
The manufacturing method of the thermal equipment structural member which comprises this.
JP2011071023A 2010-04-08 2011-03-28 Thermal equipment structural member and manufacturing method thereof Active JP5611877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071023A JP5611877B2 (en) 2010-04-08 2011-03-28 Thermal equipment structural member and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010089216 2010-04-08
JP2010089216 2010-04-08
JP2011071023A JP5611877B2 (en) 2010-04-08 2011-03-28 Thermal equipment structural member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011232021A true JP2011232021A (en) 2011-11-17
JP5611877B2 JP5611877B2 (en) 2014-10-22

Family

ID=45321509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071023A Active JP5611877B2 (en) 2010-04-08 2011-03-28 Thermal equipment structural member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5611877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU500133A1 (en) 2020-06-16 2021-12-16 Ingrid Lipp Metal hot part insulation element to prevent or reduce the formation of heavy metal compounds that are harmful to the environment and/or health
WO2021255125A1 (en) 2020-06-16 2021-12-23 Ingrid Lipp Hot-metal-part insulating element for preventing or reducing the formation of heavy-metal compounds which are harmful to the environment and/or to health

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594824A (en) * 1982-06-29 1984-01-11 Toshiba Corp Structure of hot gas turbine combustor unit
JPH04278111A (en) * 1991-03-05 1992-10-02 Nobuaki Debari Incinerator
JPH1179871A (en) * 1997-08-27 1999-03-23 Harima Ceramic Co Ltd Lining structure of incinerator
WO2001068555A1 (en) * 2000-03-14 2001-09-20 Krosakiharima Coporation Monolithic refractory for waste pyrolysis furnace and waste pyrolysis furnace using the same
JP2001349675A (en) * 2000-06-09 2001-12-21 Kawasaki Heavy Ind Ltd External heating rotary kiln
JP2003042403A (en) * 2001-07-25 2003-02-13 Babcock Hitachi Kk Furnace-wall structural material and furnace structure comprising structural material
JP2005213120A (en) * 2004-01-30 2005-08-11 Kurosaki Harima Corp Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP2009507206A (en) * 2005-09-07 2009-02-19 ケムレック アクチェボラグ Method of deploying a chemical barrier in a black liquor gasification reactor, chemical gasification reactor, reactor barrier layer, and method of manufacturing a building block for such a barrier layer
JP2009204264A (en) * 2008-02-28 2009-09-10 Mhi Environment Engineering Co Ltd Refractory structure for boiler lower hopper and boiler comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594824A (en) * 1982-06-29 1984-01-11 Toshiba Corp Structure of hot gas turbine combustor unit
JPH04278111A (en) * 1991-03-05 1992-10-02 Nobuaki Debari Incinerator
JPH1179871A (en) * 1997-08-27 1999-03-23 Harima Ceramic Co Ltd Lining structure of incinerator
WO2001068555A1 (en) * 2000-03-14 2001-09-20 Krosakiharima Coporation Monolithic refractory for waste pyrolysis furnace and waste pyrolysis furnace using the same
JP2001349675A (en) * 2000-06-09 2001-12-21 Kawasaki Heavy Ind Ltd External heating rotary kiln
JP2003042403A (en) * 2001-07-25 2003-02-13 Babcock Hitachi Kk Furnace-wall structural material and furnace structure comprising structural material
JP2005213120A (en) * 2004-01-30 2005-08-11 Kurosaki Harima Corp Monolithic refractory for waste melting furnace and waste melting furnace using the same for lining
JP2009507206A (en) * 2005-09-07 2009-02-19 ケムレック アクチェボラグ Method of deploying a chemical barrier in a black liquor gasification reactor, chemical gasification reactor, reactor barrier layer, and method of manufacturing a building block for such a barrier layer
JP2009204264A (en) * 2008-02-28 2009-09-10 Mhi Environment Engineering Co Ltd Refractory structure for boiler lower hopper and boiler comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU500133A1 (en) 2020-06-16 2021-12-16 Ingrid Lipp Metal hot part insulation element to prevent or reduce the formation of heavy metal compounds that are harmful to the environment and/or health
WO2021255125A1 (en) 2020-06-16 2021-12-23 Ingrid Lipp Hot-metal-part insulating element for preventing or reducing the formation of heavy-metal compounds which are harmful to the environment and/or to health

Also Published As

Publication number Publication date
JP5611877B2 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
CN100535069C (en) Heat resistant paint for iron and steel
JP7367020B2 (en) Coating and surface modification to calm SiC cladding during light water reactor operation
CN110359006A (en) A method of improving the resistance to liquid metal corrosion of heat resisting steel
CN103014612B (en) Method for performing high-speed aluminizing on slurry without protective atmosphere or protective layer under atmospheric conditions
JP5611877B2 (en) Thermal equipment structural member and manufacturing method thereof
ATE446281T1 (en) METAL OXIDE CERAMIC FIREPROOF ELEMENT COATED WITH A PLATINUM GROUP METAL OR A PLATINUM GROUP METAL ALLOY
CN112144008A (en) Method for improving high-temperature-resistant liquid metal corrosion resistance of oxide dispersion strengthened steel through pre-oxidation
RU2012107462A (en) DETAIL CONTAINING A SUBSTRATE WITH A CERAMIC COATING LAYER
JP2013500398A5 (en)
Singh et al. High temperature corrosion behavior of Ni-based superalloy Superni-75 in the real service environment of medical waste incinerator
JP5110608B2 (en) Sulfide corrosion prevention method, sulfide corrosion resistant high temperature member and heat transfer tube repair method
Moskal et al. Degradation of the TBC system during the static oxidation test
CN102070299A (en) Protective technology of stainless steel high-temperature surface
JP5774355B2 (en) Thermal equipment structure
CN110616420A (en) Preparation method of composite anti-corrosion coating for inner wall of waste incinerator
Li et al. Adhesion and mechanical properties of Zr/SiC interfaces: Insight from characteristics of structure and bonding by first-principles calculations
Chun et al. Materials challenges in cyclic carburizing and oxidizing environments for petrochemical applications
You et al. Oxidation behavior of NiFe 2 O 4 spinel-coated interconnects in wet air
Mishra et al. Erosion–corrosion behaviour of nickel and iron based superalloys in boiler environment
Bajpai et al. Hot corrosion of stabilized zirconia thermal barrier coatings and the role of Mg inhibitor
CN102424948A (en) Method of preparing CoAlNi coating on Ni-based high-temperature alloy through pack cementation
CN107142479A (en) A kind of forming method of coating for environmental protection equipment
CN103017916B (en) Novel high-temperature erosion-resistant thermocouple protection sleeve and production method thereof
JP2014157002A (en) Joined body and thermal equipment structure
KR101198863B1 (en) Fabrication method of functional compound layer for nuclear fuel cladding inner-wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R151 Written notification of patent or utility model registration

Ref document number: 5611877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151