JP2011232011A - Cooling machine and refrigeration cycle device - Google Patents

Cooling machine and refrigeration cycle device Download PDF

Info

Publication number
JP2011232011A
JP2011232011A JP2010105416A JP2010105416A JP2011232011A JP 2011232011 A JP2011232011 A JP 2011232011A JP 2010105416 A JP2010105416 A JP 2010105416A JP 2010105416 A JP2010105416 A JP 2010105416A JP 2011232011 A JP2011232011 A JP 2011232011A
Authority
JP
Japan
Prior art keywords
evaporator
expansion valve
cooler
outlet temperature
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010105416A
Other languages
Japanese (ja)
Other versions
JP5174084B2 (en
Inventor
Hirosuke Shimazu
裕輔 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010105416A priority Critical patent/JP5174084B2/en
Publication of JP2011232011A publication Critical patent/JP2011232011A/en
Application granted granted Critical
Publication of JP5174084B2 publication Critical patent/JP5174084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling machine and a refrigeration cycle device for improving performance of an evaporator by lowering a target SH, ensuring reliability, and preventing an increase in cost.SOLUTION: In the cooling machine 10 configuring the refrigeration cycle device by being connected with a compressor 3 and a condenser 4 by refrigerant pipes 7, 8, the cooling machine 10 includes an expansion valve 12 and the evaporator 13. The evaporator 13 has a distributor 14 for branching an inlet of the evaporator 13 into a plurality of paths 15a-15d, capillary tubes 16s-16d, a header 17 for collecting a plurality of evaporator path outlets 18a-18d of the evaporator 13, an evaporator outlet temperature sensor 12a, and an equivalent evaporation temperature detecting means 12b. The capillary tube 16a of one of the plurality of paths 15a-15d has flow channel resistance larger than those of the capillary tubes 16b-16c of the other paths, and an opening of the expansion valve 12 is controlled so that an evaporator superheating degree determined from the an evaporator outlet temperature detected by the evaporator outlet temperature sensor 12 and an evaporation temperature detected by the equivalent evaporation temperature detecting means 12b, reaches a predetermined target value.

Description

本発明は、冷却機及びこの冷却機に流れる冷媒流量を、冷却機内の膨張弁と膨張弁制御手段で制御する冷凍サイクル装置に関するものである。   The present invention relates to a cooler and a refrigeration cycle apparatus that controls the flow rate of refrigerant flowing through the cooler with an expansion valve and an expansion valve control means in the cooler.

従来の冷蔵・冷凍用途、例えば別置きショーケースや別置きクーラーなどの冷凍サイクル装置は、圧縮機、凝縮器、膨張弁、蒸発器を配管で順に接続して回路を形成するが、圧縮機と凝縮器からなる熱源機と、膨張弁と蒸発器からなる冷却機に区別される。熱源機と冷却機は、凝縮器出口と膨張弁入口の間と、蒸発器出口と圧縮機入口の間とを、それぞれ延長配管で接続する。ここで熱源機と冷却機は同一メーカーの場合よりも、異なるメーカーであることが一般的である。このため、熱源機と冷却機間での冷媒情報などの相互通信は期待できず、情報伝達は冷却機発停時の低圧変化のみである。   Conventional refrigeration and refrigeration applications, for example, refrigeration cycle devices such as separate showcases and separate coolers, form a circuit by connecting a compressor, a condenser, an expansion valve, and an evaporator in order by piping. A heat source machine composed of a condenser and a cooler composed of an expansion valve and an evaporator are distinguished. The heat source device and the cooler are connected by an extension pipe between the condenser outlet and the expansion valve inlet, and between the evaporator outlet and the compressor inlet, respectively. Here, the heat source device and the cooler are generally different manufacturers, rather than the same manufacturer. For this reason, mutual communication such as refrigerant information between the heat source device and the cooler cannot be expected, and information transmission is only a low-pressure change at the time of starting and stopping the cooler.

また、熱源機と冷却機の機種選定は、設計事務所や設備業者といった熱源機メーカー、冷却機メーカーとは異なる第三者が実施する。さらに冷却機の膨張弁仕様は冷却機メーカーではなく、前述の第三者が決定するのが一般的である。   In addition, the model selection of the heat source machine and the cooler is performed by a third party different from the heat source machine manufacturer and the cooler manufacturer, such as a design office and an equipment contractor. Furthermore, the specification of the expansion valve of the cooler is generally determined by the aforementioned third party, not by the cooler manufacturer.

このような状況で性能や能力改善を実現するには、ハード・ソフト共にシステム全体による改善が困難であり、構成要素ごとの改善が現実的である。熱源機は圧縮機、インジェクション回路、エコノマイザ回路など、構成要素や冷媒回路で改善対象が多く含まれるが、対する冷却機は蒸発器の伝熱性能など、改善対象が限定されており、残りの膨張弁での改善はあまりない。さらに市場からのコスト削減要求が強く、性能改善に多くのコストをかける状況ではない。また従来の手法で蒸発器過熱度(以下、SHという)が設定されることも想定し、設定SHを今まで通り大きく設定することにも対応させる必要がある。   In order to realize performance and capability improvement in such a situation, it is difficult to improve the entire system in both hardware and software, and improvement for each component is realistic. Heat source equipment includes many components and refrigerant circuits such as compressors, injection circuits, economizer circuits, etc., but the cooling equipment is limited for improvement, such as the heat transfer performance of the evaporator, and the remaining expansion There is not much improvement in the valve. In addition, there is a strong demand for cost reduction from the market, and it is not a situation where much cost is required for performance improvement. Further, assuming that the degree of superheat of the evaporator (hereinafter referred to as SH) is set by a conventional method, it is necessary to cope with setting the setting SH as large as before.

膨張弁は冷却機を通過する冷媒流量を規定するもので、流路抵抗が可変である温度式膨張弁や電子膨張弁がよく使用される。膨張弁の開度調整は、SHを制御対象とし、SHは(蒸発器出口温度)−(蒸発温度)で求めるものである。蒸発器出口温度は蒸発器出口に設けた温度センサ、蒸発温度は蒸発器内の二相冷媒が存在する箇所に設けた温度センサ、あるいは蒸発圧力を検知する圧力センサから飽和温度を演算して求める。   The expansion valve defines the flow rate of the refrigerant passing through the cooler, and a temperature type expansion valve or an electronic expansion valve with variable flow path resistance is often used. The adjustment of the opening degree of the expansion valve is to be controlled by SH, and SH is obtained by (evaporator outlet temperature) − (evaporation temperature). The evaporator outlet temperature is obtained by calculating the saturation temperature from the temperature sensor provided at the evaporator outlet, the evaporation temperature is obtained from the temperature sensor provided at the location where the two-phase refrigerant exists in the evaporator, or the pressure sensor detecting the evaporation pressure. .

冷蔵・冷凍用途では、圧縮機入口の液バック状態を回避して信頼性を優先させるため、冷凍サイクル装置の運転状態を設定する前述の第三者が目標SHを大きく設定して制御安定性のマージンを大きく確保することが多い。SHを過大に設定するため、蒸発器内で過熱ガス領域が大きく、ただでさえ改善対象の少ない冷却機にあって、蒸発器性能が低下する。   In refrigeration / refrigeration applications, to avoid the liquid back state at the compressor inlet and prioritize reliability, the above-mentioned third party who sets the operating state of the refrigeration cycle apparatus sets the target SH to a large extent to achieve control stability. A large margin is often secured. Since SH is set to be excessive, the superheated gas region is large in the evaporator, and even in a cooler that is not much to be improved, the evaporator performance deteriorates.

このような問題を解決するために、蒸発器出口温度を検知する温度式膨張弁の感温筒と、検知対象である蒸発器出口配管との間に、感度調整用の部材を設けて設置することで、コストをかけずに制御安定性を向上させ、目標SHを低減可能で性能改善を計る方式が提案されている(例えば、特許文献1参照)。   In order to solve such a problem, a sensitivity adjusting member is provided and installed between the temperature sensing cylinder of the temperature type expansion valve that detects the evaporator outlet temperature and the evaporator outlet pipe that is the detection target. Thus, a method has been proposed in which control stability can be improved without cost and the target SH can be reduced to improve performance (see, for example, Patent Document 1).

特開平10−231950号公報(第3―4頁、図1)Japanese Patent Laid-Open No. 10-231950 (page 3-4, FIG. 1)

特許文献1に記載の技術では、温度センサである感温筒に簡単な熱抵抗体を設けることで、温度式膨張弁の制御安定性を向上させている。しかし、感温筒と配管を接触させて温度検知をしており、制御安定性の要である感度をさらに接触部位を増やして対応するため制御安定性を本来の目標ほど得ることができず、その結果目標SHは過大なままとなっている。
電子式膨張弁は構造上で目標SHに制約がないが、目標SHは正の値であることが必要であり、電子式膨張弁であっても同様のことが言える。
In the technique described in Patent Document 1, the control stability of the temperature expansion valve is improved by providing a simple thermal resistor in a temperature sensing cylinder that is a temperature sensor. However, temperature detection is performed by bringing the temperature sensing cylinder and piping into contact with each other, and the control stability cannot be obtained as much as the original target in order to cope with the sensitivity that is the key to control stability by increasing the contact area. As a result, the target SH remains excessive.
The electronic expansion valve has no restriction on the target SH because of its structure, but the target SH needs to be a positive value, and the same can be said for the electronic expansion valve.

本発明は、上記のような課題を解決するためになされたもので、その目的は目標SHを低下させて蒸発器性能を改善し、なおかつ信頼性の確保とコストの増大を抑制することができる冷却機及び冷凍サイクル装置を提供するものである。   The present invention has been made to solve the above-described problems, and its purpose is to lower the target SH to improve the evaporator performance, and to ensure the reliability and suppress the increase in cost. A cooler and a refrigeration cycle apparatus are provided.

本発明に係る冷却機は、圧縮機及び凝縮器と冷媒配管で接続されて冷凍サイクル装置を構成する冷却機において、冷却機は、膨張弁と蒸発器とからなり、蒸発器は、この蒸発器の入口を複数のパスに分岐する分配器、キャピラリーチューブ、蒸発器の複数の蒸発器パス出口を集約するヘッダー、蒸発器出口温度センサ、及び蒸発温度相当検出手段を有し、複数のパスのうちの1つのキャピラリーチューブを他のパスのキャピラリーチューブより流路抵抗を大きく形成し、蒸発器出口温度センサが検知する蒸発器出口温度と、蒸発温度相当検出手段が検知する蒸発温度とから求められる蒸発器過熱度が所定の目標値になるように膨張弁の開度を制御するようにしたものである。
また、本発明に係る冷凍サイクル装置は、圧縮機及び凝縮器と、上記のいずれかの冷却機とを冷媒配管で接続して冷凍サイクルを構成したものである。
The cooler according to the present invention is a cooler connected to a compressor and a condenser by a refrigerant pipe to constitute a refrigeration cycle apparatus. The cooler includes an expansion valve and an evaporator. The evaporator is an evaporator. A distributor for branching the inlet of the gas into a plurality of paths, a capillary tube, a header for collecting a plurality of evaporator path outlets of the evaporator, an evaporator outlet temperature sensor, and a means for detecting an evaporation temperature. Evaporation obtained from the evaporator outlet temperature detected by the evaporator outlet temperature sensor and the evaporation temperature detected by the evaporation temperature equivalent detection means The opening degree of the expansion valve is controlled so that the degree of superheat of the vessel becomes a predetermined target value.
Moreover, the refrigerating cycle apparatus which concerns on this invention comprises a refrigerating cycle by connecting a compressor and a condenser, and said either cooler with refrigerant | coolant piping.

本発明によれば、制御安定性を確保するために膨張弁の蒸発器過熱度の目標値を大きく設定しても、蒸発器全体としての蒸発器過熱度を低減させることができ、性能を改善することができる。   According to the present invention, even if the target value of the evaporator superheat degree of the expansion valve is set large in order to ensure control stability, the evaporator superheat degree as the whole evaporator can be reduced and the performance is improved. can do.

本発明の実施の形態1における冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device in Embodiment 1 of the present invention. 本発明の実施の形態2における冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device in Embodiment 2 of the present invention. 本発明の実施の形態3における冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device in Embodiment 3 of the present invention.

実施の形態1.
図1は本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。
1は冷凍サイクル装置で、2は熱源機、10は冷却機、7は液延長配管、8はガス延長配管であり、図に示すように接続されている。熱源機2において、3は圧縮機、4は凝縮器、5は液溜、6はアキュームレータである。冷却機10において、11は開閉弁、12は制御手段を備えた温度式膨張弁、13は蒸発器を構成する熱交換器である。温度式膨張弁12において、12aは温度検知機能を備えた感温筒、12bは均圧管、12cはダイアフラムである。また、蒸発器13において、14は分配器、15a〜15dは複数のパス、17はヘッダーで、各パス15a〜15dにおいて、16a〜16dはバランスキャピラリー、18a〜18dは各パス15a〜15dの蒸発器パス出口である。18はヘッダー17で集約された後の蒸発器の出口、19は冷却機10の出口で、これらは図に示すように接続されている。
なお、熱源機2と冷却機10は離れた場所に設置されており、凝縮器4と蒸発器13はそれぞれ雰囲気温度が異なる。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
Reference numeral 1 denotes a refrigeration cycle apparatus, 2 a heat source machine, 10 a cooler, 7 a liquid extension pipe, and 8 a gas extension pipe, which are connected as shown in the figure. In the heat source device 2, 3 is a compressor, 4 is a condenser, 5 is a liquid reservoir, and 6 is an accumulator. In the cooler 10, 11 is an on-off valve, 12 is a temperature expansion valve provided with a control means, and 13 is a heat exchanger constituting an evaporator. In the temperature type expansion valve 12, 12a is a temperature sensing cylinder provided with a temperature detection function, 12b is a pressure equalizing pipe, and 12c is a diaphragm. In the evaporator 13, 14 is a distributor, 15a to 15d are a plurality of passes, 17 is a header, and in each of the passes 15a to 15d, 16a to 16d are balance capillaries, and 18a to 18d are evaporations of the passes 15a to 15d. This is a container path exit. 18 is an outlet of the evaporator after being aggregated by the header 17, 19 is an outlet of the cooler 10, and these are connected as shown in the figure.
In addition, the heat source device 2 and the cooler 10 are installed in a remote place, and the condenser 4 and the evaporator 13 have different atmospheric temperatures.

次に、上記のように構成した冷凍サイクル装置の動作について説明する。熱源機2内の圧縮機3で冷媒は圧縮され高温高圧の過熱ガスとなり、凝縮器4により図示されない凝縮器ファンによって外気が搬送されて熱交換され、冷媒は高圧低温の飽和液、また飽和液に近い状態となる。ついで、液溜5、液延長配管7を通過して冷却機10内に至る。このとき開閉弁11は開であり、温度式膨張弁12を通過した冷媒は減圧され、低乾き度の二相状態となる。そして、蒸発器13において、図示されない蒸発器ファンにより庫内空気が搬送されて冷媒と熱交換され、庫内空気が冷却されて、冷媒は低圧の過熱ガス、または高乾き度の二相状態となる。その後、出口19からガス延長配管8、アキュームレータ6を経て圧縮機3へ至る。   Next, the operation of the refrigeration cycle apparatus configured as described above will be described. The refrigerant is compressed by the compressor 3 in the heat source unit 2 to become a high-temperature and high-pressure superheated gas, and the outside air is conveyed by a condenser fan (not shown) by the condenser 4 to exchange heat. It becomes a state close to. Next, it passes through the liquid reservoir 5 and the liquid extension pipe 7 and reaches the inside of the cooler 10. At this time, the on-off valve 11 is open, and the refrigerant that has passed through the temperature type expansion valve 12 is depressurized to be in a two-phase state with low dryness. In the evaporator 13, the internal air is conveyed by an evaporator fan (not shown) to exchange heat with the refrigerant, the internal air is cooled, and the refrigerant is in a low-pressure superheated gas or a two-phase state with high dryness. Become. Thereafter, the outlet 19 reaches the compressor 3 through the gas extension pipe 8 and the accumulator 6.

蒸発器13内の経路は、入口部において分配器14で複数に分岐され、蒸発器13の各パス15a〜15dを通過し、蒸発器13の各パスの蒸発器パス出口18a〜18dからヘッダー17に集約され、蒸発器出口18へ至る。このように複数に分岐させたのは、蒸発器13の圧損を低減させるためである。なお、蒸発器13の各パス15a〜15dの入口にあるバランスキャピラリー16a〜16dは、各パス15a〜15dの冷媒流量を調整するために流量抵抗が異なる場合もあるし、単純に接続させる機能しか持たない場合もある。   The path in the evaporator 13 is branched into a plurality by the distributor 14 at the inlet, passes through the paths 15 a to 15 d of the evaporator 13, and the header 17 from the evaporator path outlets 18 a to 18 d of each path of the evaporator 13. To the evaporator outlet 18. The reason for branching in this way is to reduce the pressure loss of the evaporator 13. The balance capillaries 16a to 16d at the inlets of the paths 15a to 15d of the evaporator 13 may have different flow resistances in order to adjust the refrigerant flow rate of the paths 15a to 15d. It may not have.

冷却機10はエンドユーザーが冷却を目的として使用する。冷却機10の吸込み温度が被冷却物を収納する冷蔵庫の庫内温度であるとみなし、庫内温度がエンドユーザーが望む所定の目標値となるように冷凍サイクル装置を運転する。庫内温度がある切値より小さければ開閉弁11を閉とし、庫内温度がある入値より大きければ開閉弁11を開とする。庫内温度は冷却機10の吹出し温度、または冷却機10の吸込み温度と吹出し温度の平均値であってもよい。   The cooler 10 is used by an end user for cooling purposes. The refrigeration cycle apparatus is operated so that the suction temperature of the cooler 10 is the internal temperature of the refrigerator storing the object to be cooled, and the internal temperature becomes a predetermined target value desired by the end user. If the internal temperature is smaller than a certain cut value, the on-off valve 11 is closed, and if the internal temperature is larger than a certain input value, the on-off valve 11 is opened. The inside temperature may be the blowout temperature of the cooler 10 or the average value of the suction temperature and the blowout temperature of the cooler 10.

開閉弁11から圧縮機3までの経路の圧力が低下し、図示しない制御部に設定された設定値以下となると図示しない圧力スイッチが作動して圧縮機3が停止する。圧力低下分の冷媒は液溜5に収納される。その後庫内温度が上昇すると開閉弁11が開となり、開閉弁11から圧縮機3までの経路の圧力が上昇し、目標値以上となると図示しない圧力スイッチが作動して圧縮機3が運転を開始する。アキュームレータ6はこのような発停時や運転状態が過渡的に変化する場合に、液冷媒が圧縮機3に入らないようにして信頼性を向上させる、過渡的なバッファーの役割がある。   When the pressure in the path from the on-off valve 11 to the compressor 3 decreases and becomes equal to or lower than a set value set in a control unit (not shown), a pressure switch (not shown) is activated and the compressor 3 is stopped. The refrigerant corresponding to the pressure drop is stored in the liquid reservoir 5. After that, when the internal temperature rises, the on-off valve 11 is opened, the pressure in the path from the on-off valve 11 to the compressor 3 rises, and when it exceeds the target value, a pressure switch (not shown) is activated and the compressor 3 starts operation. To do. The accumulator 6 has a role of a transient buffer that improves the reliability by preventing the liquid refrigerant from entering the compressor 3 at the time of such start / stop and when the operation state changes transiently.

次に、温度式膨張弁12の動作について説明する。感温筒12aは蒸発器13の1つのパス15aの蒸発器パス出口18aに設置され、冷媒温度を検知する(以下の説明では、感温筒12aを蒸発器出口温度センサと記すことがある)。均圧管12bは各蒸発器パス出口18a〜18dが集約されたヘッダー17aの後の蒸発器出口18に接続される。感温筒12aとダイアフラム12cとは配管で接続されており、冷凍サイクルとは異なる冷媒が封入されている。そして、(感温筒12aの検知温度により決定されるダイアフラム12c内の圧力)と、(蒸発温度に関連する均圧管12b内の圧力)+(温度式膨張弁12内の図示しないばねによる力)÷(ダイアフラムの受圧面積)の大小によって、温度式膨張弁12の開度が決定される。前述のばねによる力は、第三者が調整するものであり、目標SHに相当する(以下の説明では、均圧管12bを蒸発温度相当検出手段と記すことがある)。感温筒12aと均圧管12bにより機械的に演算されるSHが目標SHより大きい場合は、温度式膨張弁12の流路抵抗が低下し、冷媒循環量が増大することで、SHが減少して目標SHに近づく。逆にSHが目標SHより小さい場合は、温度式膨張弁12の流路抵抗が増大し、冷媒循環量が減少することで、SHが増加して目標SHに近づく。このように、膨張弁の制御手段が機械的に温度式膨張弁12に組み込まれている。   Next, the operation of the temperature type expansion valve 12 will be described. The temperature sensing cylinder 12a is installed at the evaporator path outlet 18a of one path 15a of the evaporator 13 to detect the refrigerant temperature (in the following description, the temperature sensing cylinder 12a may be referred to as an evaporator outlet temperature sensor). . The pressure equalizing pipe 12b is connected to the evaporator outlet 18 after the header 17a where the evaporator path outlets 18a to 18d are aggregated. The temperature sensing cylinder 12a and the diaphragm 12c are connected by piping, and a refrigerant different from that in the refrigeration cycle is enclosed. And (the pressure in the diaphragm 12c determined by the temperature detected by the temperature sensing cylinder 12a) and (the pressure in the pressure equalizing pipe 12b related to the evaporation temperature) + (the force by the spring (not shown) in the temperature type expansion valve 12) The opening degree of the temperature type expansion valve 12 is determined by the size of ÷ (diaphragm pressure receiving area). The force by the spring described above is adjusted by a third party and corresponds to the target SH (in the following description, the pressure equalizing pipe 12b may be referred to as an evaporating temperature equivalent detecting means). When the SH mechanically calculated by the temperature sensing cylinder 12a and the pressure equalizing pipe 12b is larger than the target SH, the flow resistance of the temperature type expansion valve 12 decreases and the refrigerant circulation amount increases, thereby reducing SH. Approaches the target SH. Conversely, when SH is smaller than the target SH, the flow path resistance of the temperature type expansion valve 12 increases and the refrigerant circulation amount decreases, so that SH increases and approaches the target SH. Thus, the expansion valve control means is mechanically incorporated into the temperature expansion valve 12.

ここで感温筒12aが設置されている蒸発器13のパス15aに対応するバランスキャピラリー16aは、他のパスのバランスキャピラリー16b〜16dと比較して流路抵抗が大きくなるように、キャピラリー長が大きい。このため、パス15aの冷媒循環量は、他のパス15b〜15dの冷媒循環量より小さく、その結果蒸発器パス出口18aでのSHは、他の蒸発器パス出口18b〜18dでのSHより大きい。また蒸発器パス出口18aでのSHは、集約した箇所の蒸発器出口18におけるSHより大きい。   Here, the balance capillary 16a corresponding to the path 15a of the evaporator 13 in which the temperature sensing cylinder 12a is installed has a capillary length so that the flow path resistance is larger than the balance capillaries 16b to 16d of the other paths. large. For this reason, the refrigerant circulation amount of the path 15a is smaller than the refrigerant circulation amount of the other paths 15b to 15d, and as a result, the SH at the evaporator path outlet 18a is larger than the SH at the other evaporator path outlets 18b to 18d. . Further, the SH at the evaporator path outlet 18a is larger than the SH at the evaporator outlet 18 at the concentrated portion.

以上のように、感温筒12aが設置された蒸発器13のパス15aにおけるバランスキャピラリー16aを他のバランスキャピラリー16b〜16dよりキャピラリー長さを大きく設定したので、温度式膨張弁12の制御対象であるSHは従来通り大きいままで、蒸発器13全体のSHを小さくすることができる。このため、蒸発器SHを小さくしても制御安定性が確保できるので、冷却機10の能力拡大、冷凍サイクル装置の性能改善が実現できる。
また、1つのバランスキャピラリー16aのキャピラリー長さを増加させるだけなので、コスト低減効果が十分大きいし、温度式膨張弁12自体は変更がないので、市場流通性がよく、コスト低減効果を得ることができる。
さらに、温度式膨張弁12の制御対象であるSHと、蒸発器13全体のSHとは相関があるので、第三者が容易に設定できる。この場合、温度式膨張弁12のSHと蒸発器13全体のSHの相関をあらかじめ把握しておき、この関係を示した相関表を準備しておけば、冷凍サイクル装置1の調整を行う設備業者は、温度式膨張弁12のSHを調整すれば、望むべき蒸発器13全体のSHを実施することができる。
また感温筒12aを全体の蒸発器出口18に設置しなおすことで、従来の手法が実現できる。
As described above, since the capillary length of the balance capillary 16a in the path 15a of the evaporator 13 in which the temperature sensing cylinder 12a is installed is set larger than that of the other balance capillaries 16b to 16d, the temperature-type expansion valve 12 is controlled. A certain SH remains large as before, and the SH of the entire evaporator 13 can be reduced. For this reason, since control stability can be secured even if the evaporator SH is made small, the capacity expansion of the cooler 10 and the performance improvement of the refrigeration cycle apparatus can be realized.
Further, since only the capillary length of one balance capillary 16a is increased, the cost reduction effect is sufficiently large, and the temperature expansion valve 12 itself is not changed, so that the market distribution is good and the cost reduction effect can be obtained. it can.
Furthermore, since there is a correlation between the SH that is the control target of the temperature type expansion valve 12 and the SH of the entire evaporator 13, it can be easily set by a third party. In this case, if the correlation between the SH of the temperature type expansion valve 12 and the SH of the entire evaporator 13 is grasped in advance and a correlation table showing this relationship is prepared, the equipment supplier who adjusts the refrigeration cycle apparatus 1 If the SH of the temperature type expansion valve 12 is adjusted, the SH of the entire evaporator 13 to be desired can be performed.
Moreover, the conventional method is realizable by re-installing the temperature sensing cylinder 12a in the whole evaporator exit 18. FIG.

上記の説明では、熱源機2や冷却機10が1台の場合であるが、熱源機2が複数台並列に接続され、冷却機10が複数台並列に接続される場合であっても同様の効果を得ることができる。また、バランスキャピラリー16aの流路抵抗を変化させるためにキャピラリー長さを変化させたが、キャピラリーの内径を変化させてもよい。また、均圧管12bの接続箇所は、蒸発器パス出口18aであってもよい。なお、凝縮器4は空冷を想定しているが、水冷であってもよく、さらには凝縮器4を熱源機2から離れた場所に設置してもよい。   In the above description, the heat source device 2 and the cooler 10 are one, but the same applies even when the heat source device 2 is connected in parallel and the cooler 10 is connected in parallel. An effect can be obtained. Further, although the capillary length is changed in order to change the flow path resistance of the balance capillary 16a, the inner diameter of the capillary may be changed. Further, the connection point of the pressure equalizing pipe 12b may be the evaporator path outlet 18a. Although the condenser 4 is assumed to be air-cooled, it may be water-cooled, and further, the condenser 4 may be installed at a location away from the heat source device 2.

実施の形態2.
図2は本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。なお、実施の形態1と同じ部分には同じ符号を付し、説明を省略する。
20は高低圧熱交換器であり、高圧部が開閉弁11と温度式膨張弁12の間に接続され、低圧部は、感温筒12aが設けてある蒸発器のパス15aにおける蒸発器パス出口18aとヘッダー17との間に接続される。なお、感温筒12aは内部熱交換器20の低圧部とヘッダー17の間に設けられる。
Embodiment 2. FIG.
FIG. 2 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the same part as Embodiment 1, and description is abbreviate | omitted.
20 is a high-low pressure heat exchanger, a high-pressure part is connected between the on-off valve 11 and the temperature type expansion valve 12, and the low-pressure part is an evaporator path outlet in an evaporator path 15a provided with a temperature sensing cylinder 12a. 18a and the header 17 are connected. The temperature sensitive cylinder 12 a is provided between the low pressure portion of the internal heat exchanger 20 and the header 17.

次に動作について説明する。実施の形態1と同一の動作については説明を省略する。高低圧熱交換器20において、高圧の液冷媒と、蒸発器パス出口18aを出た低圧冷媒とは熱交換されて高圧液冷媒は冷却され、低圧冷媒は加熱される。このため、感温筒12aが設置された蒸発器パス出口18aの出口SHは小さいが、温度式膨張弁12が検知するSHは大きく、全体の蒸発器SHは小さい。   Next, the operation will be described. The description of the same operation as that of Embodiment 1 is omitted. In the high-low pressure heat exchanger 20, heat exchange is performed between the high-pressure liquid refrigerant and the low-pressure refrigerant exiting the evaporator path outlet 18a to cool the high-pressure liquid refrigerant and heat the low-pressure refrigerant. For this reason, although the outlet SH of the evaporator path outlet 18a in which the temperature sensitive cylinder 12a is installed is small, the SH detected by the temperature type expansion valve 12 is large, and the entire evaporator SH is small.

以上のように、感温筒12aが設置された蒸発器のパス15aを通過する冷媒を高低圧熱交換器20で加熱させるので、温度式膨張弁12の制御対象であるSHは従来通り大きいままで、蒸発器全体のSHを小さくすることができる。このため、蒸発器SHを小さくしても制御安定性が確保できるので、冷却機10の能力拡大、冷凍サイクル装置の性能改善が実現でき、すべてのパス15a〜15dのSHが小さいので、さらに効果が大きい。
また、高低圧熱交換器20の大きさは、圧力損失と熱伝達の観点から高圧液部よりも低圧ガス部が支配的である。よって1つのパスの冷媒循環量に対応する高低圧熱交換器20があればよく、コスト増大を抑制できる。
As described above, since the refrigerant passing through the evaporator path 15a in which the temperature sensing cylinder 12a is installed is heated by the high / low pressure heat exchanger 20, SH that is the control target of the temperature expansion valve 12 remains large as before. Thus, the SH of the entire evaporator can be reduced. For this reason, control stability can be ensured even if the evaporator SH is made small, so that the capacity of the cooler 10 can be increased and the performance of the refrigeration cycle apparatus can be improved. Is big.
Further, the size of the high-low pressure heat exchanger 20 is more dominant in the low-pressure gas portion than in the high-pressure liquid portion from the viewpoint of pressure loss and heat transfer. Therefore, it is sufficient if there is a high / low pressure heat exchanger 20 corresponding to the refrigerant circulation amount in one pass, and the cost increase can be suppressed.

実施の形態3.
図3は本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。なお、他の実施の形態と同じ部分には同じ番号を付し、説明は省略する。
31は電子式膨張弁で、21は温度センサ、22は圧力センサであり、冷却機10の出口19かそれより上流側に設けてある。30は電子式膨張弁31が備えた膨張弁演算装置であり、電気的に温度センサ21、圧力センサ22、電子式膨張弁31と接続されている。そして、高低圧熱交換器20の高圧部が開閉弁11と電子式膨張弁31の間に接続され、低圧部は全体の蒸発器出口18と温度センサ21の位置との間に接続される。
Embodiment 3 FIG.
FIG. 3 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to Embodiment 3 of the present invention. In addition, the same number is attached | subjected to the part same as other embodiment, and description is abbreviate | omitted.
31 is an electronic expansion valve, 21 is a temperature sensor, 22 is a pressure sensor, and is provided at the outlet 19 of the cooler 10 or upstream thereof. Reference numeral 30 denotes an expansion valve arithmetic unit provided in the electronic expansion valve 31, which is electrically connected to the temperature sensor 21, pressure sensor 22, and electronic expansion valve 31. The high pressure portion of the high / low pressure heat exchanger 20 is connected between the on-off valve 11 and the electronic expansion valve 31, and the low pressure portion is connected between the entire evaporator outlet 18 and the position of the temperature sensor 21.

次に動作について説明する。なお、他の実施の形態と同一の動作については説明を省略する。膨張弁演算装置30では、SH=(温度センサ21の検知値)−(圧力センサ22の検知値を演算処理して求めた飽和温度)よりSHを演算する。そしてSH>目標SHであれば電子式膨張弁31の流路抵抗を減少させ、冷媒循環量を増大することで目標SHに近づけ、逆に目標SH>SHであれば電子式膨張弁31の流路抵抗を増加させ、冷媒循環量を減少させることで目標SHに近づける。
高低圧熱交換器20において、高圧の液冷媒と、蒸発器出口18を出た低圧冷媒は熱交換され、高圧液冷媒は冷却され、低圧冷媒は加熱される。このため、蒸発器出口18でのSHは小さいが、温度センサ21で検値するSHは大きい。
Next, the operation will be described. Note that description of the same operation as that of the other embodiments is omitted. In the expansion valve arithmetic unit 30, SH is calculated from SH = (detection value of the temperature sensor 21) − (saturation temperature obtained by calculating the detection value of the pressure sensor 22). If SH> target SH, the flow resistance of the electronic expansion valve 31 is decreased, and the refrigerant circulation amount is increased to approach the target SH. Conversely, if target SH> SH, the flow of the electronic expansion valve 31 is increased. The road resistance is increased and the refrigerant circulation amount is decreased to approach the target SH.
In the high-low pressure heat exchanger 20, the high-pressure liquid refrigerant and the low-pressure refrigerant exiting the evaporator outlet 18 are heat-exchanged, the high-pressure liquid refrigerant is cooled, and the low-pressure refrigerant is heated. For this reason, although SH at the evaporator outlet 18 is small, SH detected by the temperature sensor 21 is large.

なお、電子式膨張弁31の制御対象であるSHと蒸発器出口18におけるSHとは相関がある。この相関を予め把握して膨張弁演算装置30に記憶させておけば、冷凍サイクル装置1の調整を行う設備業者は、蒸発器出口18におけるSHの目標値を設定するだけで、膨張弁演算装置30が制御対象であるSHを制御することで、蒸発器出口18におけるSHを実現することができる。   Note that there is a correlation between SH that is the control target of the electronic expansion valve 31 and SH at the evaporator outlet 18. If this correlation is grasped in advance and stored in the expansion valve arithmetic unit 30, the equipment supplier who adjusts the refrigeration cycle apparatus 1 only sets the target value of SH at the evaporator outlet 18, and then the expansion valve arithmetic unit. By controlling SH as a control target 30, SH at the evaporator outlet 18 can be realized.

本実施の形態は上記のように構成されているので、電子式膨張弁31の制御対象であるSHは従来通り大きいままで、蒸発器全体のSHを小さくすることができる。また、内部熱交換器20の高圧部で液冷媒が冷却されることで、蒸発器13の入口乾き度が低下するため、蒸発器13の各パス15a〜15dの分配が向上する。また、高低圧熱交換器20の低圧部で低圧冷媒が加熱され、さらに、蒸発器13の出口乾き度を若干湿り気味にすることで蒸発器13の性能を改善できるし、出口乾き部で冷凍機油が滞留することがないので、圧縮機3の信頼性が向上する。   Since the present embodiment is configured as described above, the SH to be controlled by the electronic expansion valve 31 remains large as before, and the SH of the entire evaporator can be reduced. In addition, since the liquid refrigerant is cooled at the high pressure portion of the internal heat exchanger 20, the degree of dryness of the inlet of the evaporator 13 is reduced, so that the distribution of the paths 15 a to 15 d of the evaporator 13 is improved. Further, the low-pressure refrigerant is heated in the low-pressure part of the high-low pressure heat exchanger 20, and further, the performance of the evaporator 13 can be improved by making the outlet dryness of the evaporator 13 slightly wet. Since the machine oil does not stay, the reliability of the compressor 3 is improved.

1 冷凍サイクル装置、2 熱源機、3 圧縮機、4 凝縮器、5 液溜、6 アキュームレータ、7 液延長配管、8 ガス延長配管、10 冷却機、11 開閉弁、12 温度式膨張弁、12a 感温筒(蒸発器出口温度センサ)、12b 均圧管(蒸発温度相当検出手段)、12c ダイアフラム、13 蒸発器、14 分配器、15a〜15d 蒸発器の各パス、16a〜16d バランスキャピラリー、17 ヘッダー、18 蒸発器の出口、18a〜18d 蒸発器の各パスの出口、19 冷却機の出口、20 高低圧熱交換器、21 温度センサ、22 圧力センサ、30 膨張弁演算装置、31 電子式膨張弁。   DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus, 2 Heat source machine, 3 Compressor, 4 Condenser, 5 Liquid reservoir, 6 Accumulator, 7 Liquid extension piping, 8 Gas extension piping, 10 Cooling machine, 11 On-off valve, 12 Temperature type expansion valve, 12a Sense Warm tube (evaporator outlet temperature sensor), 12b Pressure equalizing tube (evaporation temperature equivalent detection means), 12c Diaphragm, 13 Evaporator, 14 Distributor, 15a-15d Evaporator paths, 16a-16d Balance capillary, 17 Header, 18 outlet of evaporator, 18a-18d outlet of each path of evaporator, 19 outlet of cooler, 20 high / low pressure heat exchanger, 21 temperature sensor, 22 pressure sensor, 30 expansion valve arithmetic unit, 31 electronic expansion valve.

Claims (12)

圧縮機及び凝縮器と冷媒配管で接続されて冷凍サイクル装置を構成する冷却機において、
該冷却機は、膨張弁と蒸発器とからなり、
前記蒸発器は、該蒸発器の入口を複数のパスに分岐する分配器、キャピラリーチューブ、前記蒸発器の複数の蒸発器パス出口を集約するヘッダー、蒸発器出口温度センサ、及び蒸発温度相当検出手段を有し、
前記複数のパスのうちの1つのキャピラリーチューブを他のパスのキャピラリーチューブより流路抵抗を大きく形成し、
前記蒸発器出口温度センサが検知する蒸発器出口温度と、蒸発温度相当検出手段が検知する蒸発温度とから求められる蒸発器過熱度が所定の目標値になるように前記膨張弁の開度を制御することを特徴とする冷却機。
In the cooler constituting the refrigeration cycle apparatus connected with the compressor and the condenser and the refrigerant pipe,
The cooler comprises an expansion valve and an evaporator,
The evaporator includes a distributor that branches the inlet of the evaporator into a plurality of paths, a capillary tube, a header that aggregates a plurality of evaporator path outlets of the evaporator, an evaporator outlet temperature sensor, and an evaporation temperature equivalent detection means Have
One capillary tube of the plurality of paths is formed with a larger flow resistance than the capillary tube of the other path,
The opening degree of the expansion valve is controlled so that the degree of superheat of the evaporator determined from the evaporator outlet temperature detected by the evaporator outlet temperature sensor and the evaporation temperature detected by the evaporation temperature equivalent detection means becomes a predetermined target value. Cooling machine characterized by doing.
圧縮機及び凝縮器と冷媒配管で接続されて冷凍サイクル装置を構成する冷却機において、
該冷却機は、膨張弁と蒸発器とからなり、
前記蒸発器は、該蒸発器の入口を複数のパスに分岐する分配器、キャピラリーチューブ、前記蒸発器の複数の蒸発器パス出口を集約するヘッダー、蒸発器出口温度センサ、及び蒸発温度相当検出手段を有し、
前記冷却機内に高低圧熱交換器を設け、該高低圧熱交換器の高圧部が前記凝縮器と膨張弁との間に接続され、前記高低圧熱交換器の低圧部が前記蒸発器とヘッダーとの間の1つのパスに接続され、前記高低圧熱交換器の低圧部とヘッダーとの間に前記蒸発器出口温度センサを設置し、
前記蒸発器出口温度センサが検知する蒸発器出口温度と、蒸発温度相当検出手段が検知する蒸発温度とから求められる蒸発器過熱度が所定の目標値になるように前記膨張弁の開度を制御することを特徴とする冷却機。
In the cooler constituting the refrigeration cycle apparatus connected with the compressor and the condenser and the refrigerant pipe,
The cooler comprises an expansion valve and an evaporator,
The evaporator includes a distributor that branches the inlet of the evaporator into a plurality of paths, a capillary tube, a header that aggregates a plurality of evaporator path outlets of the evaporator, an evaporator outlet temperature sensor, and an evaporation temperature equivalent detection means Have
A high-low pressure heat exchanger is provided in the cooler, a high-pressure portion of the high-low pressure heat exchanger is connected between the condenser and an expansion valve, and a low-pressure portion of the high-low pressure heat exchanger is connected to the evaporator and the header The evaporator outlet temperature sensor between the low pressure part of the high and low pressure heat exchanger and the header,
The opening degree of the expansion valve is controlled so that the degree of superheat of the evaporator determined from the evaporator outlet temperature detected by the evaporator outlet temperature sensor and the evaporation temperature detected by the evaporation temperature equivalent detection means becomes a predetermined target value. Cooling machine characterized by doing.
前記所定の目標値が、前記ヘッダーの出口温度より定まる過熱度が正になるように設定されることを特徴とする請求項1または2記載の冷却機。   3. The cooler according to claim 1, wherein the predetermined target value is set so that a degree of superheat determined by an outlet temperature of the header becomes positive. 前記蒸発器出口温度センサをヘッダーの出口部に設置したことを特徴とする請求項1〜3のいずれかに記載の冷却機。   The cooler according to any one of claims 1 to 3, wherein the evaporator outlet temperature sensor is installed at an outlet portion of a header. 圧縮機及び凝縮器と冷媒配管で接続され冷凍サイクル装置を構成する冷却機において、
該冷却機は、膨張弁と蒸発器とからなり、
前記蒸発器は、該蒸発器の入口を複数のパスに分岐する分配器、キャピラリーチューブ、前記蒸発器の複数の蒸発器パス出口を集約するヘッダー、蒸発器出口温度センサ、蒸発温度相当検出手段、及び膨張弁演算装置を有し、
前記冷却機内に高低圧熱交換器が設けられ、該高低圧熱交換器の高圧部が前記凝縮器と膨張弁との間に接続され、前記高低圧熱交換器の低圧部が蒸発器出口と圧縮機の間に接続され、前記高低圧熱交換器の低圧部と圧縮機との間に前記蒸発器出口温度センサ及び蒸発器温度相当センサが接続され、
前記膨張弁演算装置は、前記蒸発器出口温度センサが検知する蒸発器出口温度と、蒸発温度相当検出手段が検知する蒸発温度とから求められる蒸発器過熱度が所定の目標値になるように前記膨張弁の開度を制御することを特徴とする冷却機。
In the cooler constituting the refrigeration cycle apparatus connected to the compressor and the condenser with the refrigerant pipe,
The cooler comprises an expansion valve and an evaporator,
The evaporator includes a distributor that branches the inlet of the evaporator into a plurality of paths, a capillary tube, a header that aggregates a plurality of evaporator path outlets of the evaporator, an evaporator outlet temperature sensor, an evaporation temperature equivalent detection means, And an expansion valve arithmetic unit,
A high and low pressure heat exchanger is provided in the cooler, a high pressure portion of the high and low pressure heat exchanger is connected between the condenser and an expansion valve, and a low pressure portion of the high and low pressure heat exchanger is connected to an evaporator outlet. Connected between the compressors, the evaporator outlet temperature sensor and the evaporator temperature equivalent sensor are connected between the low pressure part of the high-low pressure heat exchanger and the compressor,
The expansion valve arithmetic unit is configured so that an evaporator superheat degree obtained from an evaporator outlet temperature detected by the evaporator outlet temperature sensor and an evaporation temperature detected by an evaporation temperature equivalent detecting unit becomes a predetermined target value. A cooler that controls the opening of an expansion valve.
前記所定の目標値が、前記蒸発器の出口の冷媒が概ね飽和ガスとなるように設定されることを特徴とする請求項5記載の冷却機。   The cooler according to claim 5, wherein the predetermined target value is set so that a refrigerant at an outlet of the evaporator is substantially saturated gas. 前記蒸発器出口温度センサを前記ヘッダーと高低圧熱交換器の低圧部に設置したことを特徴とする請求項5または6記載の冷却機。   The cooler according to claim 5 or 6, wherein the evaporator outlet temperature sensor is installed in the header and a low pressure part of the high and low pressure heat exchanger. 前記膨張弁は、温度式膨張弁であることを特徴とする請求項1〜7のいずれかに記載の冷却機。   The said expansion valve is a temperature type expansion valve, The cooler in any one of Claims 1-7 characterized by the above-mentioned. 前記所定の目標値と、前記ヘッダーの出口温度から定まる前記蒸発器の過熱度または前記ヘッダーの出口の冷媒状態との相関を予め把握した相関表を作成し、該相関表に基づいて所定目標値を定めることを特徴とする請求項8に記載の冷却機。   Create a correlation table that grasps in advance the correlation between the predetermined target value and the degree of superheat of the evaporator determined from the outlet temperature of the header or the refrigerant state of the outlet of the header, and the predetermined target value based on the correlation table The cooler according to claim 8, wherein: 前記膨張弁は、電気的に開度を変更できる電子式膨張弁であることを特徴とする請求項1〜7のいずれかに記載の冷却機。   The cooler according to claim 1, wherein the expansion valve is an electronic expansion valve whose opening degree can be electrically changed. 前記所定の目標値と、
前記ヘッダーの出口温度から定まる前記蒸発器の過熱度または前記ヘッダーの出口の冷媒状態との相関を予め把握して前記膨張弁演算装置に記憶させ、該膨張弁演算装置により所定目標値を定めることを特徴とする、請求項10に記載の冷却機。
The predetermined target value;
A correlation between the degree of superheat of the evaporator determined from the outlet temperature of the header or the refrigerant state at the outlet of the header is previously grasped and stored in the expansion valve arithmetic device, and a predetermined target value is determined by the expansion valve arithmetic device. The cooler according to claim 10, wherein:
圧縮機及び凝縮器と、請求項1〜11のいずれかに記載の冷却機とを冷媒配管で接続して冷凍サイクルを構成したことを特徴とする冷凍サイクル装置。   A refrigeration cycle apparatus comprising a compressor and a condenser and the refrigerator according to any one of claims 1 to 11 connected by a refrigerant pipe to constitute a refrigeration cycle.
JP2010105416A 2010-04-30 2010-04-30 Refrigerator and refrigeration cycle apparatus Active JP5174084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105416A JP5174084B2 (en) 2010-04-30 2010-04-30 Refrigerator and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105416A JP5174084B2 (en) 2010-04-30 2010-04-30 Refrigerator and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2011232011A true JP2011232011A (en) 2011-11-17
JP5174084B2 JP5174084B2 (en) 2013-04-03

Family

ID=45321501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105416A Active JP5174084B2 (en) 2010-04-30 2010-04-30 Refrigerator and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP5174084B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058236A1 (en) 2011-10-21 2013-04-25 高園テクノロジー株式会社 Medicine supply device
CN105371546A (en) * 2014-08-25 2016-03-02 谢德音 Method capable of changing refrigerant evaporation flow and controlling refrigerant channels
EP3051219A1 (en) 2015-01-29 2016-08-03 Fujitsu General Limited Outdoor unit of air conditioner and air conditioner
EP2980510A4 (en) * 2013-03-26 2016-11-30 Mitsubishi Electric Corp Expansion valve and cooling cycle device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628562U (en) * 1992-06-30 1994-04-15 株式会社東洋製作所 Refrigeration equipment
JP2000111206A (en) * 1998-10-06 2000-04-18 Toshiba Ave Co Ltd Embedment-in-ceiling type air conditioner
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628562U (en) * 1992-06-30 1994-04-15 株式会社東洋製作所 Refrigeration equipment
JP2000111206A (en) * 1998-10-06 2000-04-18 Toshiba Ave Co Ltd Embedment-in-ceiling type air conditioner
JP2009162388A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Refrigerating/air-conditioning device, outdoor unit of refrigerating/air-conditioning device, and control device of refrigerating/air-conditioning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058236A1 (en) 2011-10-21 2013-04-25 高園テクノロジー株式会社 Medicine supply device
EP3042855A1 (en) 2011-10-21 2016-07-13 Takazono Technology Incorporated Medicine supply apparatus
EP2980510A4 (en) * 2013-03-26 2016-11-30 Mitsubishi Electric Corp Expansion valve and cooling cycle device using same
CN105371546A (en) * 2014-08-25 2016-03-02 谢德音 Method capable of changing refrigerant evaporation flow and controlling refrigerant channels
EP3051219A1 (en) 2015-01-29 2016-08-03 Fujitsu General Limited Outdoor unit of air conditioner and air conditioner
JP2016138733A (en) * 2015-01-29 2016-08-04 株式会社富士通ゼネラル Air conditioning device
US20160223240A1 (en) * 2015-01-29 2016-08-04 Fujitsu General Limited Outdoor unit of air conditioner and air conditioner
CN105841254A (en) * 2015-01-29 2016-08-10 富士通将军股份有限公司 Outdoor unit of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP5174084B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP6081033B1 (en) Air conditioner
US8459051B2 (en) Air conditioner and method of controlling the same
JP5446064B2 (en) Heat exchange system
JP5639984B2 (en) Air conditioner
JP2010507770A (en) Refrigeration system with expander bypass
US20120186284A1 (en) Refrigerant system and method for controlling the same
JP5355016B2 (en) Refrigeration equipment and heat source machine
JPWO2013080244A1 (en) Refrigeration air conditioner
JP5318057B2 (en) Refrigerator, refrigeration equipment and air conditioner
WO2020220989A1 (en) Freezer device, refrigeration system, and control method therefor
KR20150065173A (en) Refrigerator
CN110925940A (en) Two-stage compression air supplementing device, air conditioning system and air supplementing control method
JP5174084B2 (en) Refrigerator and refrigeration cycle apparatus
JP5218107B2 (en) Refrigeration air conditioner
JP2005076933A (en) Refrigeration cycle system
JP2012189238A (en) Refrigerating air conditioning apparatus
JP6436196B1 (en) Refrigeration equipment
JP6246394B2 (en) Air conditioner
JP2012141070A (en) Refrigerating device
CN111043723A (en) Air conditioner and control method thereof
JP7284381B2 (en) refrigeration equipment
JP2011179764A (en) Refrigeration cycle device
JP2004226025A (en) Air-conditioner
JP2020094781A (en) Refrigerating apparatus
JP2014070835A (en) Refrigeration device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R150 Certificate of patent or registration of utility model

Ref document number: 5174084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250