JP2011231366A - Valuable metal recovery method - Google Patents

Valuable metal recovery method Download PDF

Info

Publication number
JP2011231366A
JP2011231366A JP2010101935A JP2010101935A JP2011231366A JP 2011231366 A JP2011231366 A JP 2011231366A JP 2010101935 A JP2010101935 A JP 2010101935A JP 2010101935 A JP2010101935 A JP 2010101935A JP 2011231366 A JP2011231366 A JP 2011231366A
Authority
JP
Japan
Prior art keywords
metal
valuable
metals
aqueous solution
recovering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010101935A
Other languages
Japanese (ja)
Inventor
Toshio Igarashi
淑郎 五十嵐
Takanori Fushiki
貴法 伏木
Koichi Murakami
功一 村上
Toshiiku Takemori
利郁 竹森
Norihiro Yoshida
憲弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Ibaraki University NUC
Original Assignee
Maruzen Petrochemical Co Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd, Ibaraki University NUC filed Critical Maruzen Petrochemical Co Ltd
Priority to JP2010101935A priority Critical patent/JP2011231366A/en
Priority to PCT/JP2011/058756 priority patent/WO2011135991A1/en
Publication of JP2011231366A publication Critical patent/JP2011231366A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valuable metal recovery method that has excellent valuable metal selectivity and recovery efficiency, and furthermore is capable of reusing materials that have been used in the recovery of a valuable metal.SOLUTION: The valuable metal recovery method is characterized by including the following steps (a) to (c): (a) a step for preparing an aqueous solution that contains valuable metal ions and a pH-responsive polymer using formula (I) as a constituent unit and that has a pH higher than 6.4; (b) a step for lowering the pH of the aqueous solution below 6.4 and forming an aggregate of the pH-responsive polymer and the valuable metal; and (c) a step for recovering the aggregate from the aqueous solution.

Description

本発明は、特定の構造を有するpH応答性ポリマーを利用した選択的でかつ効率的な有価金属の回収方法に関する。   The present invention relates to a selective and efficient method for recovering valuable metals using a pH-responsive polymer having a specific structure.

現在の高度先端技術を支えているのが「レアメタル」である。私たちの日常生活に欠くことのできないものとなった携帯電話やパソコンなどの電子機器、あるいは家電製品にもレアメタルは使われている。これらの電子機器や家電製品は、使用後産業廃棄物として処分されることが多く、近年では、山中や町中に捨てられているのを目にするようになった。   “Rare metal” supports the current advanced technology. Rare metals are also used in electronic devices such as mobile phones and personal computers, which are indispensable for our daily lives, as well as home appliances. These electronic devices and home appliances are often disposed of as industrial waste after use, and in recent years, they have come to be discarded in the mountains and towns.

これらはリサイクルできる資源、貴金属やレアメタルを含んでいるため、「都市鉱山」と呼ばれている。日本は1年間で世界の約10%の鉱物資源を使う国でありながら、レアメタルのほとんどを輸入に頼り、100%自給できるものは皆無に近いと言われるほど国内資源の乏しい国である。   These are called "urban mines" because they contain recyclable resources, precious metals and rare metals. Although Japan is a country that uses about 10% of the world's mineral resources in one year, it is a country with scarce domestic resources that it is said that almost all of the rare metals depend on imports, and that almost 100% can be self-sufficient.

しかし、実は都市鉱山は地下鉱山よりも資源の採掘率が高いため、都市鉱山は資源の宝庫であり、これらの都市鉱山からレアメタルをリサイクルし、資源を確保することが非常に有用である(非特許文献1)。   However, in fact, urban mines have higher resource mining rates than underground mines, so urban mines are a treasure trove of resources, and it is very useful to secure resources by recycling rare metals from these urban mines (non- Patent Document 1).

一方、分析化学における金属の分離法としては、互いに混ざり合わない二種類の溶媒を用いた溶媒抽出法が主に用いられる。しかし、溶媒抽出法は抽出物の移動が水相と有機相の界面を通じて行われるので、抽出効率を上げるために激しい振とうと時間が必要であること、分液漏斗などの器具の操作が煩雑であること、目的物質の抽出や器具の洗浄に大量の有機溶媒を必要とし、かつ大量の廃液がでることなどの問題点が挙げられる。   On the other hand, as a method for separating metals in analytical chemistry, a solvent extraction method using two kinds of solvents that do not mix with each other is mainly used. However, in the solvent extraction method, the movement of the extract is performed through the interface between the aqueous phase and the organic phase, so that vigorous shaking is required to increase the extraction efficiency, and the operation of equipment such as a separatory funnel is complicated. There are problems such as that a large amount of organic solvent is required for extraction of the target substance and cleaning of the apparatus, and a large amount of waste liquid is produced.

これらの問題を解決できる新たな溶媒抽出法として、均一溶液からの相分離を利用する分離濃縮法が提案されている。この分離濃縮法は、迅速かつ簡単な操作で分離濃縮でき、均一溶液からの相分離後の析出形態の違いにより、均一液液抽出法(非特許文献2)、均一固相抽出法(非特許文献3)、および水性二相抽出法(非特許文献4)に分類できる。中でも均一固相抽出法は、析出相が固体であることから、相分離後の取り扱いが容易であるという利点を持っている。   As a new solvent extraction method that can solve these problems, a separation and concentration method using phase separation from a homogeneous solution has been proposed. This separation and concentration method can be separated and concentrated by a quick and simple operation. Depending on the precipitation form after phase separation from a homogeneous solution, a uniform liquid-liquid extraction method (Non-patent Document 2), a homogeneous solid-phase extraction method (Non-patent) Document 3) and aqueous two-phase extraction method (Non-patent Document 4). Among these, the homogeneous solid-phase extraction method has an advantage that it is easy to handle after phase separation because the precipitated phase is solid.

均一固相抽出法の捕集媒体として、これまで主に溶液温度の変化に伴って親水性および疎水性の可逆的な相転移を起こす温度応答性ポリマーが用いられており、この凝集相に金属錯体(非特許文献5)や疎水性有機化合物(非特許文献6、7)の分離濃縮に応用した研究が報告されている。   As a collection medium for homogeneous solid-phase extraction, temperature-responsive polymers that have undergone reversible hydrophilic and hydrophobic phase transitions with changes in solution temperature have been used so far. Research applied to the separation and concentration of complexes (Non-Patent Document 5) and hydrophobic organic compounds (Non-Patent Documents 6 and 7) has been reported.

しかしながら、これらの方法ではレアメタルを含む有価金属の選択性や回収効率が悪い、有価金属の回収に用いた物質が再利用できない場合が多いなどの問題があった。   However, these methods have problems such as poor selectivity and recovery efficiency of valuable metals including rare metals, and often the substances used for recovering valuable metals cannot be reused.

山口英一、「レアメタルの科学」、日刊工業新聞社、(2008).Eiichi Yamaguchi, “Science of Rare Metals”, Nikkan Kogyo Shimbun, (2008). 五十嵐淑郎、押手茂克、「ぶんせき」9、p702−709(1997).Igarashi Goro, Oshite Shigekatsu, “Bunseki” 9, p702-709 (1997). 齋藤徹、松原チヨ、平出正孝、「分析化学」、Vol.52、No.4、p221−229(2003).Toru Saito, Chiyo Matsubara, Masataka Hiraide, “Analytical Chemistry”, Vol. 52, No. 4, p221-229 (2003). 安西祐二、赤間美文、「分析化学」、Vol.52、No.5、p337−340(2003).Yanji Anzai, Yoshifumi Akama, “Analytical Chemistry”, Vol. 52, No. 5, p337-340 (2003). 田鎖和代、上原伸夫、清水得夫、「分析化学」、Vol.50、No.4、p257−262(2001).Kazuyo Tachain, Nobuo Uehara, Tokuo Shimizu, “Analytical Chemistry”, Vol. 50, No. 4, p257-262 (2001). 齋藤徹、吉田由紀、松原チヨ、「分析化学」、Vol.51、No.10、p969−971(2002).Toru Saito, Yuki Yoshida, Chiyo Matsubara, “Analytical Chemistry”, Vol. 51, No. 10, p969-971 (2002). 松原チヨ、菊池信之、高村喜代子、「分析化学」、Vol.44、No.4、p311−312(1995).Matsubara Chiyo, Kikuchi Nobuyuki, Takamura Kiyoko, “Analytical Chemistry”, Vol. 44, No. 4, p 311-312 (1995).

従って、本発明の課題は、有価金属の選択性や回収効率が良く、しかも、有価金属の回収に用いた物質が再利用できる有価金属の回収方法を提供することである。   Therefore, an object of the present invention is to provide a method for recovering valuable metals that has good selectivity and recovery efficiency of valuable metals and that can reuse a material used for recovering valuable metals.

本発明者らは、上記課題を解決するために鋭意研究した結果、特定の構造を有するpH応答性ポリマーを金属の回収に利用することにより、金属の中でも有価金属の選択性や回収率の向上と、前記回収に用いたpH応答性ポリマーを再利用できることを見出し、本発明を完成させた。   As a result of diligent research to solve the above problems, the present inventors have improved the selectivity and recovery rate of valuable metals among metals by utilizing a pH-responsive polymer having a specific structure for metal recovery. And the present inventors have found that the pH-responsive polymer used for the recovery can be reused.

すなわち、本発明は以下の工程(a)〜(c)、
(a)下記式(I)

Figure 2011231366
を構成単位とするpH応答性ポリマーと有価金属イオンを含有し、そのpHが6
.4より高い水溶液を調製する工程
(b)前記水溶液のpHを6.4より低くし、pH応答性ポリマーと有価金属の凝集物
を形成させる工程
(c)前記水溶液から凝集物を回収する工程
を含むことを特徴とする有価金属の回収方法である。 That is, the present invention includes the following steps (a) to (c),
(A) The following formula (I)
Figure 2011231366
A pH-responsive polymer having a structural unit and a valuable metal ion, and the pH is 6
A step of preparing an aqueous solution higher than .4 (b) a step of lowering the pH of the aqueous solution below 6.4 to form an aggregate of a pH-responsive polymer and valuable metals (c) a step of recovering the aggregate from the aqueous solution A method for recovering valuable metals.

本発明の有価金属の回収方法は、特定の構造を有するpH応答性ポリマーを用いることにより、混合、pHの調整、ろ過等の簡単な操作により、携帯電話やパソコンなどの電子機器、あるいは家電製品等から有価金属を選択性良く回収することができる。特に、本発明の有価金属の回収方法でIn、Au、Ru、Pd、Pb、Hg、Cd、Cu、Al、Feおよびランタノイド金属のイオンを回収する場合には、他の金属が含有されている場合であっても選択的に効率良く回収することができる。   The method for recovering valuable metals according to the present invention uses a pH-responsive polymer having a specific structure, enables easy operations such as mixing, pH adjustment, filtration, etc., such as electronic devices such as mobile phones and personal computers, or home appliances. Valuable metals can be recovered with good selectivity. In particular, when recovering ions of In, Au, Ru, Pd, Pb, Hg, Cd, Cu, Al, Fe, and lanthanoid metals by the valuable metal recovery method of the present invention, other metals are contained. Even in this case, it can be selectively and efficiently recovered.

また、本発明の有価金属の回収方法は、有価金属の回収に使用したpH応答性ポリマーも回収でき、再利用することができる。   The valuable metal recovery method of the present invention can also recover and reuse the pH-responsive polymer used for recovering the valuable metal.

参考例3で製造されたPoly(VEBA)sの1H-NMRスペクトルである(0〜10ppm)。 1 is a 1 H-NMR spectrum of Poly (VEBA) s produced in Reference Example 3 (0 to 10 ppm). 参考例3で製造されたPoly(VEBA)sの13C-NMRスペクトルである(0〜200ppm)。It is a 13 C-NMR spectrum of Poly (VEBA) s produced in Reference Example 3 (0 to 200 ppm). 実施例5における吸光度測定の結果を示す図面である(図中、AはPoly(VEBA)sを回収前のろ液のスペクトル、BはPoly(VEBA)sを回収後のろ液のスペクトル)。It is a figure which shows the result of the light absorbency measurement in Example 5 (In the figure, A is the spectrum of the filtrate before collection | recovery of Poly (VEBA) s, B is the spectrum of the filtrate after collection | recovery of Poly (VEBA) s).

本発明の有価金属の回収方法(以下、「本発明回収方法」という)の工程(a)では、下記式(I)を構成単位とするpH応答性ポリマーと有価金属イオンを含有し、そのpHが6.4より高い水溶液を調製する。

Figure 2011231366
In the step (a) of the valuable metal recovery method of the present invention (hereinafter referred to as “the present invention recovery method”), a pH-responsive polymer having the following formula (I) as a structural unit and valuable metal ions are contained, and the pH An aqueous solution is prepared with a pH greater than 6.4.
Figure 2011231366

上記式(I)を構成単位とするpH応答性ポリマー(以下、単に「pH応答性ポリマー」という)はpH6.4付近で親水性および疎水性の可逆的な相転移を起こす。そのためpH応答性ポリマーはpH6.4より高いpH領域では水に均一に溶解するが、pH6.4より低いpH領域ではpH6.4付近でポリマーの急激な脱水和およびそれに伴う疎水性相互作用による相転移が起こり、結果として水に不溶となる特徴を有する。   A pH-responsive polymer (hereinafter, simply referred to as “pH-responsive polymer”) having the above formula (I) as a structural unit causes a reversible hydrophilic and hydrophobic phase transition around pH 6.4. Therefore, the pH-responsive polymer is uniformly dissolved in water in the pH range higher than pH 6.4, but in the pH range lower than pH 6.4, the phase due to the rapid dehydration of the polymer near pH 6.4 and the accompanying hydrophobic interaction. It has the characteristic that a transition takes place, resulting in insolubility in water.

また、このpH応答性ポリマーの分子量は、重量平均分子量(Mw)が5,000〜100,000、好ましくは15,000〜40,000であり、分子量分布(Mw/Mn)が1.0〜2.0、好ましくは1.4〜1.6であるものが挙げられる。この分子量分布は1に近いほどシャープな相転移挙動を示す。   The pH-responsive polymer has a molecular weight of 5,000 to 100,000, preferably 15,000 to 40,000, and a molecular weight distribution (Mw / Mn) of 1.0 to 10,000. Examples thereof include 2.0, preferably 1.4 to 1.6. The closer the molecular weight distribution is to 1, the sharper the phase transition behavior is.

なお、本発明で使用されるpH応答性ポリマーは通常の有機溶媒に不溶なため、上記した重量平均分子量、数平均分子量および分子量分布は、前駆体であるポリ(4−[2−(ビニロキシ)−エトキシ]−安息香酸エチル)の重量平均分子量、数平均分子量および分子量分布から推定している。具体的にポリ(4−[2−(ビニロキシ)−エトキシ]−安息香酸エチル)の重量平均分子量、数平均分子量および分子量分布はゲルパーミエーションクロマトグラフィー(GPC)法により標準ポリスチレンの検量線から求めた。   Since the pH-responsive polymer used in the present invention is insoluble in ordinary organic solvents, the above-mentioned weight average molecular weight, number average molecular weight and molecular weight distribution are poly (4- [2- (vinyloxy)) which is a precursor. -Ethoxy] -ethyl benzoate) is estimated from the weight average molecular weight, number average molecular weight and molecular weight distribution. Specifically, the weight average molecular weight, number average molecular weight and molecular weight distribution of poly (4- [2- (vinyloxy) -ethoxy] -ethyl benzoate) are determined from a standard polystyrene calibration curve by gel permeation chromatography (GPC). It was.

上記pH応答性ポリマーの調製方法は、式(I)の化合物が調製できるよう、適宜前駆体や重合条件を選択すればよく、特に限定されない。例えば、pH応答性ポリマーは、4−ヒドロキシ安息香酸エチルとクロロエチルビニルエーテルを反応させて得られる4−(ビニロキシエトキシ)安息香酸エチル(VEBAE)を、アルゴン等の不活性気体下および氷温下で、イソブチルビニルエーテルと酢酸を反応させて得られる1−ブトキシエチルアセテート(IBEA)を開始種として塩化スズ等の活性化剤とともに1時間程度リビングカチオン重合させることにより調製することができる。   The method for preparing the pH-responsive polymer is not particularly limited as long as the precursor and the polymerization conditions are appropriately selected so that the compound of formula (I) can be prepared. For example, the pH-responsive polymer is obtained by reacting ethyl 4-hydroxybenzoate with ethyl chloroethyl vinyl ether (ethyl 4- (vinyloxyethoxy) benzoate (VEBAE) under an inert gas such as argon and under ice temperature. Thus, 1-butoxyethyl acetate (IBEA) obtained by reacting isobutyl vinyl ether and acetic acid as a starting species can be prepared by living cationic polymerization with an activator such as tin chloride for about 1 hour.

一方、上記有価金属イオンとは重金属および軽金属から選ばれる金属のイオンである。ここで重金属とは、Ti、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Nb、Ru、Pd、Cd、In、Ta、Au、Hg、Pb、Biおよびランタノイド金属から選ばれる金属である。また、軽金属とは、Sc、Alおよびアルカリ土類金属からなる群から選ばれる金属である。これら有価金属イオンの中でも、Be、Sc、Y、Fe、Ru、Pd、Cu、Au、Cd、Al、Ga、In、Pbおよびランタノイド金属から選ばれる金属のイオンが好ましい。   On the other hand, the valuable metal ion is a metal ion selected from heavy metals and light metals. Here, the heavy metal is a metal selected from Ti, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Ru, Pd, Cd, In, Ta, Au, Hg, Pb, Bi, and a lanthanoid metal. It is. The light metal is a metal selected from the group consisting of Sc, Al and alkaline earth metals. Among these valuable metal ions, ions of metals selected from Be, Sc, Y, Fe, Ru, Pd, Cu, Au, Cd, Al, Ga, In, Pb, and lanthanoid metals are preferable.

上記有価金属イオンは、これら有価金属イオンを含有すると思われる各種試料や、携帯電話やパソコンなどの電子機器、あるいは家電製品等を適度な大きさに粉砕し、王水、硫酸、塩酸、硝酸等の酸溶液に溶解して得られる溶液等から調製されたものであってもよい。   The above valuable metal ions are obtained by crushing various samples that are thought to contain these valuable metal ions, electronic devices such as mobile phones and personal computers, or home appliances to an appropriate size, aqua regia, sulfuric acid, hydrochloric acid, nitric acid, etc. It may be prepared from a solution obtained by dissolving in an acid solution.

上記pH応答性ポリマーと有価金属イオンを含有し、そのpHが6.4より高い水溶液の調製は、特に制限されない。例えば、この水溶液は、pH応答性ポリマーと有価金属イオンを室温(15〜20℃程度)の水に添加した後、この水溶液のpHを当該分野において既知のpH調整法、例えば、水酸化ナトリウム等のアルカリ性物質や塩酸等の酸性物質を添加して6.4より高く、好ましくは9〜11とすることにより調製できるが、有機金属の回収を効率良く行うために、pH応答性ポリマーを0.1〜0.4質量%(以下、単に「%」という)、好ましくは0.2〜0.3%含有させた水溶液のpHを上記と同様にしてpHを6.4より高く、好ましくはpH9〜11とした後、pH応答性ポリマーが十分に溶解するまで撹拌し、更にこの水溶液に有価金属イオンを総量として0.1〜10ppm、好ましくは1〜2ppmの濃度になるように添加し、最終的に水溶液のpHを上記と同様にして6.4より高く、好ましくは9〜11とすることにより調製できる。   The preparation of an aqueous solution containing the pH-responsive polymer and valuable metal ions and having a pH higher than 6.4 is not particularly limited. For example, the aqueous solution is prepared by adding a pH-responsive polymer and valuable metal ions to water at room temperature (about 15 to 20 ° C.), and then adjusting the pH of the aqueous solution by a pH adjustment method known in the art, such as sodium hydroxide. It can be prepared by adding an alkaline substance or an acidic substance such as hydrochloric acid to be higher than 6.4, preferably 9 to 11. The pH of the aqueous solution containing 1 to 0.4% by mass (hereinafter simply referred to as “%”), preferably 0.2 to 0.3% is the same as above, and the pH is higher than 6.4, preferably pH 9 Then, the pH-responsive polymer is stirred until it is sufficiently dissolved, and further, valuable metal ions are added to this aqueous solution to a concentration of 0.1 to 10 ppm, preferably 1 to 2 ppm. Water It can be prepared by setting the pH of the solution to be higher than 6.4, preferably 9 to 11, in the same manner as described above.

なお、上記で調製された水溶液には、本発明回収方法で回収できないアルカリ金属や、Cr、Mo、W等の周期律表6族の金属イオンやSe等の非金属元素が含まれていてもよい。   The aqueous solution prepared above may contain alkali metals that cannot be recovered by the recovery method of the present invention, metal ions of Group 6 of the periodic table such as Cr, Mo, W, and nonmetallic elements such as Se. Good.

上記工程(a)で調製した水溶液は、次に、工程(b)で水溶液のpHを6.4より低く、好ましくはpH5〜6とし、pH応答性ポリマーと有価金属の凝集物を形成させる。このpHの調整は、上記と同様にして行うことができる。   Next, the aqueous solution prepared in the step (a) is adjusted to a pH of 6.4 lower than 6.4, preferably 5 to 6 in the step (b), and a pH-responsive polymer and valuable metal aggregates are formed. This pH adjustment can be performed in the same manner as described above.

上記工程(b)で得られた凝集物は、次に、工程(c)で水溶液から回収される。水溶液から凝集物を回収する方法は、特に制限されず、当該分野において既知の分離方法が利用できる。また、この分離方法の条件も、特に制限されず、生じた沈殿に応じて適宜設定すればよい。本発明においては、分離方法の中でも一般的なろ紙、親水性PTFEフィルター、ガラス繊維フィルター、ガラスプレフィルター等のろ材を用いたろ過が好ましく、特に前記ろ材を用いた吸引ろ過が好ましい。   The aggregate obtained in step (b) is then recovered from the aqueous solution in step (c). A method for collecting the aggregate from the aqueous solution is not particularly limited, and a separation method known in the art can be used. Further, the conditions for this separation method are not particularly limited, and may be set as appropriate according to the generated precipitate. In the present invention, filtration using a filter medium such as a general filter paper, a hydrophilic PTFE filter, a glass fiber filter, or a glass prefilter is preferable among the separation methods, and suction filtration using the filter medium is particularly preferable.

上記工程(a)〜(c)により有価金属をpH応答性ポリマーの凝集物として回収することができるが、更に、以下の工程(d)
(d)回収した凝集物にpHが6.4より高い水溶液を添加し、有価金属を回収する工程を行うことにより有価金属のみを回収することができる。
The valuable metals can be recovered as aggregates of the pH-responsive polymer by the above steps (a) to (c). Furthermore, the following step (d)
(D) Only valuable metals can be recovered by adding an aqueous solution having a pH higher than 6.4 to the collected aggregates and performing a step of recovering valuable metals.

具体的に工程(d)は、上記工程(c)で回収された凝集物に、pHが6.4より高い、好ましくはpH12〜13の水溶液を添加し、有価金属を回収する。この工程(d)で凝集物中のpH応答性ポリマーに相転移が起こるため、pH応答性ポリマーは前記水溶液に溶解し、有価金属は析出する。この工程で用いられるpHが6.4より高い水溶液としては上記と同様のものが挙げられる。また、このpHが6.4より高い水溶液の凝集物への添加方法は特に制限されず、例えば、上記工程(c)で分離された凝集物を回収した後、pH6.4より高い水溶液中に凝集物を浸漬し、金属を回収してもよいが、上記工程(c)でろ材上に分離された凝集物に、直接pHが6.4より高い水溶液を通過させることが好ましい。こうすることによりろ材上に有価金属が回収され、ろ液にpH応答性ポリマーが回収される。   Specifically, in the step (d), an aqueous solution having a pH higher than 6.4, preferably pH 12 to 13, is added to the aggregate collected in the step (c) to recover valuable metals. Since phase transition occurs in the pH-responsive polymer in the aggregate in this step (d), the pH-responsive polymer is dissolved in the aqueous solution, and valuable metals are precipitated. Examples of the aqueous solution having a pH higher than 6.4 used in this step include those described above. The method for adding the aqueous solution having a pH higher than 6.4 to the aggregate is not particularly limited. For example, after the aggregate separated in the step (c) is recovered, the aqueous solution having a pH higher than 6.4 is collected. Although the agglomerates may be immersed to recover the metal, it is preferable to pass an aqueous solution having a pH higher than 6.4 directly through the agglomerates separated on the filter medium in the step (c). By doing so, valuable metals are recovered on the filter medium, and pH-responsive polymer is recovered in the filtrate.

更に、上記工程(d)で有価金属を回収した後の水溶液にはpH応答性ポリマーが含有されているため、そのpHを6.4より低く、好ましくは5〜6とし、相転移により凝集したpH応答性ポリマーを回収することができる。この水溶液のpHの調整は、上記と同様にして行うことができる。また、ここで回収されたpH応答性ポリマーは、本発明回収方法やその他の用途に再利用することができる。   Furthermore, since the aqueous solution after recovering the valuable metal in the step (d) contains a pH-responsive polymer, the pH is lower than 6.4, preferably 5 to 6, and aggregates due to phase transition. The pH responsive polymer can be recovered. The pH of this aqueous solution can be adjusted in the same manner as described above. Further, the pH-responsive polymer recovered here can be reused for the recovery method of the present invention and other applications.

以下、本発明を実施例を挙げて詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples at all.

実施例中の各特性の分析は、下記方法に従って行った。
(1)pH応答性ポリマーの重量平均分子量、数平均分子量および分子量分布
pH応答性ポリマーの重量平均分子量、数平均分子量および分子量分布は、前駆体であるポリ(4−[2−(ビニロキシ)−エトキシ]−安息香酸エチル)の重量平均分子量、数平均分子量および分子量分布から推定した。ポリ(4−[2−(ビニロキシ)−エトキシ]−安息香酸エチル)の重量平均分子量、数平均分子量および分子量分布は下記RI検出器を用いたゲルパーミエーションクロマトグラフィー(GPC)法により標準ポリスチレンの検量線から求めた。
GPC装置:HLC−8220GPC((株)東ソー製)
カラム:KF804L(Shodex社製)×3本
溶離液:テトラヒドロフラン
(2)金属濃度の測定
金属イオンの濃度はICP発光分光分析装置(OPTI-MA3300DV型:Perkin−Elmer製)を用いて測定した。
(3)吸光度の測定
吸光度は分光光度計(V−570スペクトフォトメーター:日本分光社製)を用いて測定した。
(4)pHの測定
pHはpHメーター(F−51:HORIBA製)を用いて測定した。
(5)NMRの測定
NMRは日本電子製JEOL−AL400を用いて測定した。
Each characteristic in the examples was analyzed according to the following method.
(1) Weight average molecular weight, number average molecular weight and molecular weight distribution of pH responsive polymer The weight average molecular weight, number average molecular weight and molecular weight distribution of the pH responsive polymer are determined by poly (4- [2- (vinyloxy)- Ethoxy] -ethyl benzoate) was estimated from the weight average molecular weight, number average molecular weight and molecular weight distribution. The weight average molecular weight, number average molecular weight and molecular weight distribution of poly (4- [2- (vinyloxy) -ethoxy] -ethyl benzoate) were measured by gel permeation chromatography (GPC) using the following RI detector. Obtained from the calibration curve.
GPC device: HLC-8220GPC (manufactured by Tosoh Corporation)
Column: KF804L (manufactured by Shodex) x 3 Eluent: Tetrahydrofuran (2) Measurement of metal concentration The concentration of metal ions was measured using an ICP emission spectrophotometer (OPTI-MA3300DV type: manufactured by Perkin-Elmer).
(3) Measurement of absorbance The absorbance was measured using a spectrophotometer (V-570 spectrophotometer: manufactured by JASCO Corporation).
(4) Measurement of pH The pH was measured using a pH meter (F-51: manufactured by HORIBA).
(5) Measurement of NMR NMR was measured using JEOL-AL400 made by JEOL.

参 考 例 1
1−ブトキシエチルアセテート(IBEA)の合成:
500mLの三口フラスコに、イソブチルビニルエーテル(東京化成製)272g(2.72mol)、酢酸(WAKO社製)120.4g(2.00mol)を添加し、60℃で24時間撹拌した。反応終了後、得られた液体に水素化カルシウムを添加して蒸留精製することにより、1−ブトキシエチルアセテートを得た。
Reference example 1
Synthesis of 1-butoxyethyl acetate (IBEA):
To a 500 mL three-necked flask, 272 g (2.72 mol) of isobutyl vinyl ether (manufactured by Tokyo Chemical Industry) and 120.4 g (2.00 mol) of acetic acid (manufactured by WAKO) were added and stirred at 60 ° C. for 24 hours. After completion of the reaction, 1-butoxyethyl acetate was obtained by adding calcium hydride to the resulting liquid and purifying it by distillation.

参 考 例 2
4−(ビニロキシエトキシ)安息香酸エチル(VEBAE)の合成:
1Lの三口フラスコに、4−ヒドロキシ安息香酸エチル(東京化成社製)100g(0.60mol)、炭酸カリウム(WAKO社製)150g(1.09mol)を添加し、N−メチルピロリドン溶媒中60℃に保った後、滴下漏斗を用いてクロロエチルビニルエーテル(東京化成社製)77g(0.72mol)を滴下した。次いで100℃に昇温して24時間反応した。
Reference example 2
Synthesis of ethyl 4- (vinyloxyethoxy) benzoate (VEBAE):
To a 1 L three-necked flask, 100 g (0.60 mol) of ethyl 4-hydroxybenzoate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 150 g (1.09 mol) of potassium carbonate (manufactured by WAKO) were added, and 60 ° C. in N-methylpyrrolidone solvent. Then, 77 g (0.72 mol) of chloroethyl vinyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise using a dropping funnel. Next, the temperature was raised to 100 ° C. and reacted for 24 hours.

得られた反応溶液を水で希釈後、酢酸エチルで抽出し、溶剤を留去することにより4−(ビニロキシエトキシ)安息香酸エチルの粗結晶を得た。さらに得られた粗結晶をトルエンに溶解させ水で洗浄し、溶剤を留去した後、該粗結晶をヘキサンに溶解させ再結晶することにより、4−(ビニロキシエトキシ)安息香酸エチルの針状結晶を得た。収量は108g(収率68%)であった。   The obtained reaction solution was diluted with water, extracted with ethyl acetate, and the solvent was distilled off to obtain crude crystals of ethyl 4- (vinyloxyethoxy) benzoate. Further, the obtained crude crystals were dissolved in toluene, washed with water, and the solvent was distilled off. Then, the crude crystals were dissolved in hexane and recrystallized to obtain needles of ethyl 4- (vinyloxyethoxy) benzoate. Crystals were obtained. The yield was 108 g (68% yield).

参 考 例 3
ポリ(4−[2−(ビニロキシ)−エトキシ]−安息香酸)の合成:
500mlの三口フラスコに、4−(ビニロキシエトキシ)安息香酸エチル(VEBAE)62g(0.85M)を入れ、真空乾燥およびアルゴン置換を3回実施した。次に、これにトルエン300ml、開始種として1−ブトキシエチルアセテート(IBEA)0.09ml(2mM)および酢酸エチル30ml(1M)を入れ、アルゴン置換下、0℃で30分間撹拌した。その後、これに活性化剤として0.5Mの塩化スズ(IV)3ml(5mM)を入れ、アルゴン置換下、0℃で1時間撹拌して反応させた。最後に、これにメタノール12mlを入れ、反応を停止させポリマー溶液を得た。
Reference example 3
Synthesis of poly (4- [2- (vinyloxy) -ethoxy] -benzoic acid):
A 500 ml three-necked flask was charged with 62 g (0.85 M) of ethyl 4- (vinyloxyethoxy) benzoate (VEBAE), followed by vacuum drying and argon substitution three times. Next, 300 ml of toluene, 0.09 ml (2 mM) of 1-butoxyethyl acetate (IBEA) and 30 ml (1 M) of ethyl acetate as starting species were added, and the mixture was stirred at 0 ° C. for 30 minutes under argon substitution. Thereafter, 3 ml (5 mM) of 0.5 M tin (IV) chloride as an activating agent was added thereto, and the mixture was reacted by stirring at 0 ° C. for 1 hour under argon substitution. Finally, 12 ml of methanol was added thereto, and the reaction was stopped to obtain a polymer solution.

上記で得られたポリマー溶液に対し、2.5%の活性アルミナを加え攪拌した後、アドバンテック社製の5Cの濾紙を用いてろ過した。ろ液からトルエンを減圧下にて留去することにより弾性的な褐色固体を55.1g(収率88.9%)得た。このポリ(4−[2−(ビニロキシ)−エトキシ]−安息香酸エチル)の重量平均分子量、数平均分子量および分子量分布は、それぞれ21,400、14,700および1.45であった。   To the polymer solution obtained above, 2.5% activated alumina was added and stirred, followed by filtration using 5C filter paper manufactured by Advantech. Toluene was distilled off from the filtrate under reduced pressure to obtain 55.1 g (yield: 88.9%) of an elastic brown solid. The weight average molecular weight, number average molecular weight, and molecular weight distribution of this poly (4- [2- (vinyloxy) -ethoxy] -ethyl benzoate) were 21,400, 14,700, and 1.45, respectively.

次いで、1Lナス型フラスコに、前記ポリマー、ジメチルスルホキシド600g、5M水酸化ナトリウム水溶液600gを仕込み、100℃で20時間攪拌した。得られた反応溶液を水で希釈し、5M塩酸水溶液で希釈・析出させることで粗ポリ(4−(ビニロキシエトキシ)安息香酸)を得た。該ポリマーをイオン交換水で洗浄し、真空乾燥(80℃、4晩)させて、白色固体を46.8g(収率84%)得た。   Next, 600 g of the polymer, dimethyl sulfoxide, and 600 g of 5M aqueous sodium hydroxide solution were charged into a 1 L eggplant-shaped flask and stirred at 100 ° C. for 20 hours. The obtained reaction solution was diluted with water, and diluted and precipitated with a 5M aqueous hydrochloric acid solution to obtain crude poly (4- (vinyloxyethoxy) benzoic acid). The polymer was washed with ion-exchanged water and vacuum-dried (80 ° C., 4 nights) to obtain 46.8 g (yield 84%) of a white solid.

上記で得られた褐色固体についてNMR測定を行った結果、以下の式(I)を構成単位とするポリマー(Poly(VEBA)s)であることがわかった(図1および図2)。

Figure 2011231366
また、このPoly(VEBA)sの溶液特性を調べたところ、pH6.4付近で相転移を起こすことがわかった。 As a result of carrying out NMR measurement about the brown solid obtained above, it turned out that it is a polymer (Poly (VEBA) s) which has the following formula (I) as a structural unit (FIG. 1 and FIG. 2).
Figure 2011231366
Further, when the solution characteristics of this Poly (VEBA) s were examined, it was found that a phase transition occurred around pH 6.4.

実 施 例 1
金属の回収(1):
50mlのサンプル管に、参考例1で合成したPoly(VEBA)s0.04gおよび0.1Mの水酸化ナトリウム水溶液2mlを入れ、振盪機(MULTI SHAKER −MMs−300:東京理化器械製)でPoly(VEBA)sが完全に溶解するまで撹拌した。なお、この溶液のpHは9であった。次にこれに表1に示す金属イオンを1ppmの濃度で入れ、その後、硝酸溶液でpHを5.5に調整して、Poly(VEBA)sと金属の凝集物を形成させた。更に、この溶液をろ材としてPTFEフィルターを用いて吸引濾過でろ過し、PTFEフィルター上に凝集物を回収した。なお、ろ液中の金属濃度を測定し、それから金属の回収率を算出した。その結果も表1に示した。
Example 1
Metal recovery (1):
In a 50 ml sample tube, 0.04 g of Poly (VEBA) s synthesized in Reference Example 1 and 2 ml of a 0.1 M sodium hydroxide aqueous solution were placed, and the poly (with a shaker (MULTI SHAKER-MMs-300: manufactured by Tokyo Rika Kikai Co., Ltd.)) VEBA) s were stirred until completely dissolved. The pH of this solution was 9. Next, metal ions shown in Table 1 were added thereto at a concentration of 1 ppm, and then the pH was adjusted to 5.5 with a nitric acid solution to form poly (VEBA) s and metal aggregates. Further, this solution was filtered by suction filtration using a PTFE filter as a filter medium, and aggregates were collected on the PTFE filter. The metal concentration in the filtrate was measured, and the metal recovery rate was calculated therefrom. The results are also shown in Table 1.

Figure 2011231366
Figure 2011231366

上記より、Poly(VEBA)sは、Be、Sr、Ba、Sc、Y、Ti、Zr、Nb、Ta、Mn、Fe、Ru、Co、Ni、Pd、Cu、Au、Zn、Cd、Hg、Al、Ga、In、Pb、Biおよびランタノイド金属(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)から選ばれる金属のイオンを好適に回収することができ、特にBe、Sc、Y、Fe、Ru、Pd、Cu、Au、Cd、Al、Ga、In、Pbおよびランタノイド金属から選ばれる金属のイオンを回収することができることがわかった。   From the above, Poly (VEBA) s is Be, Sr, Ba, Sc, Y, Ti, Zr, Nb, Ta, Mn, Fe, Ru, Co, Ni, Pd, Cu, Au, Zn, Cd, Hg, A metal ion selected from Al, Ga, In, Pb, Bi and a lanthanoid metal (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) is preferably used. It was found that ions of metals selected from Be, Sc, Y, Fe, Ru, Pd, Cu, Au, Cd, Al, Ga, In, Pb and lanthanoid metals can be recovered. .

実 施 例 2
金属の回収(2):
50mlのサンプル管に、参考例1で合成したPoly(VEBA)s0.04gおよび0.1Mの水酸化ナトリウム水溶液2mlを入れ、振盪機でPoly(VEBA)sが完全に溶解するまで撹拌した。なお、この溶液のpHは9であった。次にこれに14種のランタノイド(La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)金属イオンを、それぞれ1ppmの濃度で入れ、その後、硝酸溶液でpHを5.5に調製して、Poly(VEBA)sと金属の凝集物を形成させた。更に、この溶液をろ材としてPTFEフィルターを用いて吸引濾過でろ過し、PTFEフィルター上に凝集物を回収した。また、実施例1と同様に14種のランタノイド金属の回収率を算出した。その結果、ランタノイド金属は14種が混合された状態であったにもかかわらず全てが100%の回収率であった。
Example 2
Metal recovery (2):
In a 50 ml sample tube, 0.04 g of Poly (VEBA) s synthesized in Reference Example 1 and 2 ml of a 0.1 M sodium hydroxide aqueous solution were placed, and stirred with a shaker until the Poly (VEBA) s was completely dissolved. The pH of this solution was 9. Next, 14 kinds of lanthanoids (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) metal ions are added at a concentration of 1 ppm each, and then The pH was adjusted to 5.5 with a nitric acid solution to form poly (VEBA) s and metal aggregates. Further, this solution was filtered by suction filtration using a PTFE filter as a filter medium, and aggregates were collected on the PTFE filter. Further, the recovery rate of 14 lanthanoid metals was calculated in the same manner as in Example 1. As a result, all of the lanthanoid metals were in a state where 14 kinds were mixed, and the recovery rate was 100%.

実 施 例 3
金属の回収(3):
実施例2において、14種のランタノイド金属イオンと同時に、実施例1において相転移を示さなかった金属(Cr、W、Rh、Ag、Ge)イオンをそれぞれ1ppmの濃度で添加する以外は、実施例2と同様にして金属の回収を行い、その回収率を算出した。その結果、相転移を示さなかった金属を、相転移した金属と混在させても、全てのランタノイド金属は100%の回収率であった。
Example 3
Metal recovery (3):
In Example 2, except that 14 kinds of lanthanoid metal ions and metal (Cr, W, Rh, Ag, Ge) ions that did not show phase transition in Example 1 were added at a concentration of 1 ppm, respectively. The metal was recovered in the same manner as 2 and the recovery rate was calculated. As a result, even when a metal that did not exhibit a phase transition was mixed with a metal that had undergone a phase transition, all the lanthanoid metals had a recovery rate of 100%.

実 施 例 4
金属の回収(4):
実施例2において、ろ材として使用したPTFE(ポリテトラフルオロエチレン)フィルター(孔径1.0μm)に代えてPTFEフィルター(孔径0.2μm)、ガラス繊維フィルター(孔径1.0μm)およびセルロース含有フィルター(孔径0.2μm)とする以外は実施例2と同様にしてランタノイド金属の回収率を算出した。その結果、何れのフィルターであってもランタノイド金属の回収率は100%であった。
Example 4
Metal recovery (4):
In Example 2, instead of the PTFE (polytetrafluoroethylene) filter (pore size 1.0 μm) used as the filter medium, a PTFE filter (pore size 0.2 μm), a glass fiber filter (pore size 1.0 μm), and a cellulose-containing filter (pore size) The recovery rate of the lanthanoid metal was calculated in the same manner as in Example 2 except that 0.2 μm). As a result, the recovery rate of the lanthanoid metal was 100% in any filter.

実 施 例 5
金属の回収およびポリマーの再利用:
実施例2と同様にしてPTFEフィルター上に分離回収した凝集物に、更に、1.0Mの水酸化ナトリウム溶液を添加しながら吸引ろ過を行った。吸引ろ過後、フィルター上には金属が残っていた。これは水酸化ナトリウム溶液を凝集物に添加することにより、凝集物中のPoly(VEBA)sが相転移し、ろ液に溶解してフィルターを通過したものと考えられる。また、吸引ろ過後、実施例2と同様にしてランタノイド金属の回収率を算出したところ100%であった。
Example 5
Metal recovery and polymer reuse:
The agglomerates separated and collected on the PTFE filter in the same manner as in Example 2 were further subjected to suction filtration while adding a 1.0 M sodium hydroxide solution. After suction filtration, metal remained on the filter. This is considered to be because Poly (VEBA) s in the aggregate undergoes phase transition by adding a sodium hydroxide solution to the aggregate, dissolves in the filtrate, and passes through the filter. Further, after suction filtration, the recovery rate of the lanthanoid metal calculated in the same manner as in Example 2 was 100%.

また、吸引ろ過後に得られたろ液のpHを硝酸溶液で5.5としてPoly(VEBA)sを相転移させ凝集させた後、ろ液の吸光度を測定した。次に、このろ液をPTFEフィルターでろ過し、Poly(VEBA)sを回収した。Poly(VEBA)s回収後のろ液の吸光度を測定したところ、Poly(VEBA)sを相転移させ凝集させた後のろ液で認められたスペクトルが完全に認められなくなっていた(図3)。これによりPoly(VEBA)sがこの操作により100%回収でき、再利用が可能であることが示された。   Further, the pH of the filtrate obtained after the suction filtration was set to 5.5 with a nitric acid solution, and Poly (VEBA) s was phase-aggregated and aggregated, and then the absorbance of the filtrate was measured. Next, this filtrate was filtered with a PTFE filter to collect Poly (VEBA) s. When the absorbance of the filtrate after recovery of Poly (VEBA) s was measured, the spectrum observed in the filtrate after phase transition and aggregation of Poly (VEBA) s was not completely observed (FIG. 3). . This indicates that Poly (VEBA) s can be recovered 100% by this operation and can be reused.

本発明の有価金属の回収方法は、携帯電話やパソコンなどの電子機器、あるいは家電製品等から有価金属を選択性良く回収することができる。   The method for recovering valuable metals according to the present invention can recover valuable metals with good selectivity from electronic devices such as mobile phones and personal computers, or home appliances.

従って、本発明の有価金属の回収方法は金属資源の再利用に貢献することができる。

以 上
Therefore, the valuable metal recovery method of the present invention can contribute to the reuse of metal resources.

more than

Claims (7)

以下の工程(a)〜(c)、
(a)下記式(I)
Figure 2011231366
を構成単位とするpH応答性ポリマーと有価金属イオンを含有し、そのpHが6
.4より高い水溶液を調製する工程
(b)前記水溶液のpHを6.4より低くし、pH応答性ポリマーと有価金属の凝集物
を形成させる工程
(c)前記水溶液から凝集物を回収する工程
を含むことを特徴とする有価金属の回収方法。
The following steps (a) to (c),
(A) The following formula (I)
Figure 2011231366
A pH-responsive polymer having a structural unit and a valuable metal ion, and the pH is 6
A step of preparing an aqueous solution higher than .4 (b) a step of lowering the pH of the aqueous solution below 6.4 to form an aggregate of a pH-responsive polymer and valuable metals (c) a step of recovering the aggregate from the aqueous solution A method for recovering valuable metals, comprising:
有価金属イオンが、重金属および軽金属から選ばれる金属のイオンである請求項1記載の有価金属の回収方法。   The method for recovering valuable metals according to claim 1, wherein the valuable metal ions are ions of a metal selected from heavy metals and light metals. 重金属が、Ti、Fe、Co、Ni、Cu、Zn、Ga、Y、Zr、Nb、Ru、Pd、Cd、In、Ta、Au、Hg、Pb、Biおよびランタノイド金属からなる群から選ばれるものである請求項2記載の有価金属の回収方法。   Heavy metal selected from the group consisting of Ti, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Ru, Pd, Cd, In, Ta, Au, Hg, Pb, Bi and lanthanoid metals The method for recovering valuable metals according to claim 2. 軽金属が、Sc、Alおよびアルカリ土類金属からなる群から選ばれるものである請求項2記載の有価金属の回収方法。   The method for recovering a valuable metal according to claim 2, wherein the light metal is selected from the group consisting of Sc, Al and alkaline earth metals. 有価金属イオンが、Be、Sc、Y、Ga、In、Au、Ru、Pd、Pb、Cd、Cu、Al、Feおよびランタノイド金属からなる群から選ばれる金属のイオンである請求項1記載の有価金属の回収方法。   2. The valuable metal ion according to claim 1, wherein the valuable metal ion is an ion of a metal selected from the group consisting of Be, Sc, Y, Ga, In, Au, Ru, Pd, Pb, Cd, Cu, Al, Fe, and a lanthanoid metal. Metal recovery method. 更に、工程(d)
(d)回収した凝集物にpHが6.4より高い水溶液を添加し、有価金属を回収する工
程を含む請求項1から5の何れかに記載の有価金属の回収方法。
Furthermore, step (d)
(D) The method for recovering valuable metals according to any one of claims 1 to 5, comprising a step of adding an aqueous solution having a pH higher than 6.4 to the collected aggregates and recovering the valuable metals.
工程(d)において、有価金属を回収した後の水溶液のpHを6.4より低くし、pH応答性ポリマーを回収する請求項6記載の有価金属の回収方法。
The method for recovering a valuable metal according to claim 6, wherein in step (d), the pH of the aqueous solution after recovering the valuable metal is lowered to less than 6.4 to recover the pH-responsive polymer.
JP2010101935A 2010-04-27 2010-04-27 Valuable metal recovery method Pending JP2011231366A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010101935A JP2011231366A (en) 2010-04-27 2010-04-27 Valuable metal recovery method
PCT/JP2011/058756 WO2011135991A1 (en) 2010-04-27 2011-04-07 Valuable metal recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010101935A JP2011231366A (en) 2010-04-27 2010-04-27 Valuable metal recovery method

Publications (1)

Publication Number Publication Date
JP2011231366A true JP2011231366A (en) 2011-11-17

Family

ID=44861305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010101935A Pending JP2011231366A (en) 2010-04-27 2010-04-27 Valuable metal recovery method

Country Status (2)

Country Link
JP (1) JP2011231366A (en)
WO (1) WO2011135991A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030139A (en) * 2010-07-28 2012-02-16 Hitachi Ltd Rare earth metal flocculant
US10023937B2 (en) 2013-03-25 2018-07-17 National Institute Of Advanced Industrial Science And Technology Adsorbent for rare earth element and method for recovering rare earth element
US11326228B2 (en) 2017-10-20 2022-05-10 National Institute Of Advanced Industrial Science And Technology Method for separating rare earth element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109913647B (en) * 2019-04-25 2020-10-27 江西自立环保科技有限公司 Wet processing method for recovering copper and zinc in bismuth middling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424286A (en) * 1977-07-26 1979-02-23 Hitachi Chem Co Ltd Heavy metals capturing agnet
JP5439691B2 (en) * 2007-03-06 2014-03-12 日立化成株式会社 High valent metal ion scavenger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030139A (en) * 2010-07-28 2012-02-16 Hitachi Ltd Rare earth metal flocculant
US10023937B2 (en) 2013-03-25 2018-07-17 National Institute Of Advanced Industrial Science And Technology Adsorbent for rare earth element and method for recovering rare earth element
US11326228B2 (en) 2017-10-20 2022-05-10 National Institute Of Advanced Industrial Science And Technology Method for separating rare earth element

Also Published As

Publication number Publication date
WO2011135991A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
WO2011135991A1 (en) Valuable metal recovery method
WO2015032113A1 (en) Metalporphyrin complex, preparation method therefor and method for preparing polycarbonate
JP2013216966A (en) Valuable metal extraction agent and valuable metal extraction method using the extraction agent
JP5734268B2 (en) Nickel extraction method
JP5518514B2 (en) Metal extractant, palladium extraction method using the same, and zirconium extraction method
CN102250332B (en) Synthesis method of water reducing agent macromonomer methyl end capping MAOH polyoxyethylene ether
CN113563389A (en) Tri-pyridyl cobalt organic complex, tri-pyridyl cobalt organic supramolecular hydrogel, and preparation method and application thereof
CN101701067A (en) Tetramethyl-diphenol type polyarylether ketone (polyarylether sulphone) containing bromine at phenmethyl position and preparation method thereof
JP2011235236A (en) Metal adsorbent, method for manufacturing metal adsorbent and method for adsorbing metal
CN102276823B (en) Synthetic method of water reducer macromer methyl-terminiated acrylic polyether
JP2013227608A (en) Method for selectively recovering noble metal
CN103897166B (en) Preparation and the catalysis behavior thereof of the polymolecularity glutaric acid zinc catalyst taking silanization modified molecular screen as carrier
JP5598918B2 (en) Detection of rare earth metals using calixarene derivatives
CN101962389B (en) Rare-earth compound olefin monomer and preparation method and application thereof
JP2011178853A (en) Polymer, method for producing the same and method for recovering noble metal
JP5837756B2 (en) Novel compounds, metal extractants and their applications
JP6708806B2 (en) Electrical response technology
CN111039879B (en) Triazole compound/polymer containing sulfonyl and preparation method and application thereof
CN106366307A (en) Monomer polyether for polycarboxylic-acid water reducing agent and synthesis method for monomer polyether
CN105152903A (en) Preparation method for aliphatic dicarboxylic acids
CN110643822A (en) Method for extracting and enriching gold element by utilizing selenoether
CN105753821A (en) Preparation method of 2,5-furandicarboxylic acid
CN104403024B (en) Along the synthetic method of loading chitosan on a kind of cup [6] arene derivatives
CN111205298A (en) Preparation method of forbitasvir RRRS type isomer
CN112876634B (en) Polymer piezochromic material and preparation method and application thereof