JP2011231289A - Cyclopentadithiophene-based polymer - Google Patents

Cyclopentadithiophene-based polymer Download PDF

Info

Publication number
JP2011231289A
JP2011231289A JP2010105308A JP2010105308A JP2011231289A JP 2011231289 A JP2011231289 A JP 2011231289A JP 2010105308 A JP2010105308 A JP 2010105308A JP 2010105308 A JP2010105308 A JP 2010105308A JP 2011231289 A JP2011231289 A JP 2011231289A
Authority
JP
Japan
Prior art keywords
group
polymer
formula
substituent
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010105308A
Other languages
Japanese (ja)
Inventor
Takafumi Izawa
隆文 伊澤
Takashi Sugioka
尚 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2010105308A priority Critical patent/JP2011231289A/en
Publication of JP2011231289A publication Critical patent/JP2011231289A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cyclopentadithiophene-based polymer suitable as an electroconductive material excellent in processability because of high solubility; and to provide an electroconductive material comprising the same.SOLUTION: Provided are a polymer having a structural unit represented by formula (1), and a polymer obtained by doping the former polymer with an anion. In the formula, Rand Rare each independently a 1-20C hydrocarbon group or alkoxyl group which may have a substituent; Rand Rare each independently a hydrogen atom or a 1-20C hydrocarbon group which may have a substituent; and n is an integer of ≥2.

Description

本発明は、シクロペンタジチオフェン系縮環構造を有する新規重合体に関する。   The present invention relates to a novel polymer having a cyclopentadithiophene-based condensed ring structure.

ピロール、チオフェン、アニリン等のヘテロ原子を含む五員環構造を有する化合物又は芳香環構造を有する化合物を重合して得られる重合体は、導電性材料として好適なため近年盛んに研究が進められている。また、これらの重合体は一般にドーピング量を変えることにより導電率を自在にコントロールすることができるため、各種電極、各種センサー、一次電池、二次電池、固体電解コンデンサー、帯電防止剤、エレクトロクロミック材料等への用途が検討されている。中でも透明電極は軽量化・低コスト化が可能であるという観点から有機材料が着目されている。現在,実用化されている有機導電材料としてはポリ(3,4−エチレンジオキシチオフェン)(PEDOT)とポリ(スチレンスルフォン酸)(PSS)との混合物であるPEDOT:PSSが挙げられる。しかし、PEDOT:PSSは無機材料と比較して低導電性である点、低溶解性であり水分散液としてしか用いることが出来ない点等の問題点が挙げられ、導電性と加工性の向上が未だ求められている。   Since a polymer obtained by polymerizing a compound having a five-membered ring structure containing a hetero atom such as pyrrole, thiophene or aniline or a compound having an aromatic ring structure is suitable as a conductive material, research has been actively conducted in recent years. Yes. In addition, the conductivity of these polymers can generally be controlled freely by changing the doping amount, so various electrodes, various sensors, primary batteries, secondary batteries, solid electrolytic capacitors, antistatic agents, electrochromic materials The use to etc. is examined. Among these, organic materials are attracting attention from the viewpoint that transparent electrodes can be reduced in weight and cost. Currently, PEDOT: PSS, which is a mixture of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (styrene sulfonic acid) (PSS), is used as an organic conductive material that is currently in practical use. However, PEDOT: PSS has problems such as low conductivity compared to inorganic materials and low solubility and can only be used as an aqueous dispersion, improving conductivity and workability. Is still sought after.

有機材料の重合体の構造としては、芳香環同士が単結合を介して連なる構造と複数の芳香環が辺共有して連なり縮合した構造を有するものがある。後者の構造は前者よりも平面性が高く共役平面が広くなるため、高導電性を示す傾向にある。
縮環型の重合体の中でもポリ(4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン)誘導体は、高い導電性を有していることが知られており、4位のアルキル鎖長を変更した様々なポリ(4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン)誘導体が報告されている(例えば、非特許文献1、特許文献1)。また、(4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン)を一つ含み2,7−位に置換基(オリゴマー及びポリマー)を有する誘導体も報告されている(特許文献2)。
しかしながら、ポリ(4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン)誘導体はシクロペンタジチオフェン骨格の3、5位に置換基がないため、重合の際に3、5位が反応してしまい、枝分かれが生じる恐れがあった。また、得られるポリマーの溶解性が低いために、成膜等の操作が困難な面があり改善が望まれていた。
特許文献1には、ポリ(4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン)誘導体について言及されているものの、3,5位に置換基を有する誘導体の具体例は全く開示されていない。また、特許文献2には3,5位にドデシル基を有する(4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン)骨格を含有する共重合体およびその電界効果型トランジスタへの適用が報告されているが、ホモポリマーおよび導電材料用途に関しては何ら具体的に触れられていない。
As a structure of a polymer of an organic material, there is one having a structure in which aromatic rings are connected via a single bond and a structure in which a plurality of aromatic rings are connected in a shared manner and condensed. The latter structure has higher flatness than the former and has a wide conjugate plane, and therefore tends to exhibit high conductivity.
Among condensed ring polymers, poly (4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene) derivatives are known to have high conductivity, and Various poly (4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene) derivatives with different alkyl chain lengths have been reported (for example, Non-Patent Document 1 and Patent Document 1). In addition, a derivative containing one (4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene) and having a substituent (oligomer and polymer) at the 2,7-position has been reported (Patent Document). 2).
However, since the poly (4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene) derivative has no substituent at the 3,5-positions of the cyclopentadithiophene skeleton, the 3,5-positions during polymerization Could react and cause branching. Moreover, since the solubility of the obtained polymer is low, operations such as film formation are difficult, and improvement has been desired.
Although Patent Document 1 mentions a poly (4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene) derivative, there are no specific examples of derivatives having substituents at the 3,5 positions. Not disclosed. Patent Document 2 discloses a copolymer containing a (4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene) skeleton having a dodecyl group at positions 3 and 5 and a field effect transistor thereof. However, no specific mention is made regarding homopolymer and conductive material applications.

特表2009−506519Special table 2009-506519 国際公開WO2009−115413International Publication WO2009-115413

G. Zotti et al., Novel Highly Conducting, and Soluble Polymers from Anodic Coupling of Alkyl-Substituted Cyclopentadithiophene Monomers, Macromolecules, 1994,Vol.27,Issue.7, pp.1938-1942.G. Zotti et al., Novel Highly Conducting, and Soluble Polymers from Anodic Coupling of Alkyl-Substituted Cyclopentadithiophene Monomers, Macromolecules, 1994, Vol. 27, Issue. 7, pp. 1938-1942.

本発明は上記課題を解決するためになされたものであり、溶解性が高いことから加工性に優れる導電性材料として好適なシクロペンタジチオフェン系重合体およびそれからなる導電性材料を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and provides a cyclopentadithiophene polymer suitable as a conductive material excellent in workability due to its high solubility and a conductive material comprising the same. Objective.

上記課題は、下記一般式(1)で示される構成単位を有する重合体を提供することによって解決される。   The said subject is solved by providing the polymer which has a structural unit shown by following General formula (1).

Figure 2011231289
Figure 2011231289

[式中、R及びRは、それぞれ独立して置換基を有してもよい炭素数1〜20の炭化水素基またはアルコキシル基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基であり、nは2以上の整数である。] [Wherein, R 1 and R 2 are each independently a hydrocarbon group or alkoxyl group having 1 to 20 carbon atoms which may have a substituent, and R 3 and R 4 are each independently hydrogen. It is a C1-C20 hydrocarbon group which may have an atom or a substituent, and n is an integer greater than or equal to 2. ]

また、上記課題は、下記一般式(2)で示される構成単位を有する重合体を提供することによっても解決される。   Moreover, the said subject is also solved by providing the polymer which has a structural unit shown by following General formula (2).

Figure 2011231289
Figure 2011231289

[式中、R及びRは、それぞれ独立して置換基を有してもよい炭素数1〜20の炭化水素基またはアルコキシル基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基であり、p+q=1、0<p<1、0<q<1であり、Yはアニオンである。]
このとき、一般式(2)で示される構成単位を有する重合体からなる導電性材料が好適な実施態様である。
[Wherein, R 1 and R 2 are each independently a hydrocarbon group or alkoxyl group having 1 to 20 carbon atoms which may have a substituent, and R 3 and R 4 are each independently hydrogen. It is a C1-C20 hydrocarbon group which may have an atom or a substituent, p + q = 1, 0 <p <1, 0 <q <1, and Y is an anion. ]
At this time, the electroconductive material which consists of a polymer which has a structural unit shown by General formula (2) is a suitable embodiment.

本発明により得られるシクロペンタジチオフェン系重合体は、溶解性が高いことから加工性に優れるとともに、R及びRの置換基の存在によりキノイド構造が安定化されるため導電性が良好であり、導電性材料やエレクトロクロミック材料として特に適している。 The cyclopentadithiophene polymer obtained by the present invention is excellent in processability due to its high solubility, and also has good conductivity because the quinoid structure is stabilized by the presence of substituents R 1 and R 2. And is particularly suitable as a conductive material or an electrochromic material.

本発明によれば、一般式(1)で示される重合体や一般式(2)で示される重合体を提供することができる。以下詳細について述べる。
上記一般式(1)及び(2)において、R及びRは、それぞれ独立して置換基を有してもよい炭素数1〜20の炭化水素基またはアルコキシル基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基であり、Yはアニオンである。
According to the present invention, a polymer represented by the general formula (1) and a polymer represented by the general formula (2) can be provided. Details will be described below.
In the above general formulas (1) and (2), R 1 and R 2 are each independently a hydrocarbon group or alkoxyl group having 1 to 20 carbon atoms which may have a substituent, and R 3 and R 2 4 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, and Y represents an anion.

置換基を有してもよい炭素数1〜20の炭化水素基は、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいシクロアルキル基等が挙げられる。
置換基を有してもよいアルキル基は、直鎖であっても分岐鎖であってもよい。アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、2−エチルヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等が挙げられる。
置換基を有してもよいアルケニル基は、直鎖であっても分岐鎖であってもよい。アルケニル基としては、例えば、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。
置換基を有してもよいアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。
置換基を有してもよいシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプタニル基、シクロオクタニル基、シクロノナニル基、シクロデカニル基、シクロウンデカニル基、シクロドデカニル基等が挙げられる。
かかる置換基としてはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、n−ヘキシル基、イソヘキシル基、2−エチルヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基等のアルキル基,フェニル基、ナフチル基、アントリル基、フェナントリル基等のアリール基,シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプタニル基、シクロオクタニル基、シクロノナニル基、シクロデカニル基、シクロウンデカニル基、シクロドデカニル基等のシクロアルキル基が挙げられる。
The hydrocarbon group having 1 to 20 carbon atoms which may have a substituent may have, for example, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. Examples thereof include a good aryl group and an optionally substituted cycloalkyl group.
The alkyl group which may have a substituent may be linear or branched. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, A tert-pentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and the like can be mentioned.
The alkenyl group which may have a substituent may be linear or branched. Examples of the alkenyl group include a vinyl group, an allyl group, a methylvinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
Examples of the aryl group that may have a substituent include a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group.
Examples of the cycloalkyl group which may have a substituent include, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptanyl group, a cyclooctanyl group, a cyclononanyl group, a cyclodecanyl group, a cycloundecanyl group, a cyclo A dodecanyl group etc. are mentioned.
Such substituents include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert- Alkyl groups such as pentyl group, n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, phenyl group, naphthyl group, anthryl group, phenanthryl Cycloalkyl groups such as aryl groups, cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, cycloheptanyl groups, cyclooctanyl groups, cyclononanyl groups, cyclodecanyl groups, cycloundecanyl groups, cyclododecanyl groups, etc. It is done.

置換基を有してもよい炭素数1〜20のアルコキシ基は、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n−ヘキシルオキシ基、イソヘキシルオキシ基、2−エチルヘキシルオキシ基、n−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基等が挙げられる。これらアルコキシ基は置換基を有していてもよく、かかる置換基としては、炭化水素基の説明のところで例示されたアルコキシ基以外の置換基を用いることができる。   Examples of the alkoxy group having 1 to 20 carbon atoms which may have a substituent include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert- Butoxy group, n-pentyloxy group, isopentyloxy group, neopentyloxy group, n-hexyloxy group, isohexyloxy group, 2-ethylhexyloxy group, n-heptyloxy group, n-octyloxy group, n- Nonyloxy group, n-decyloxy group, etc. are mentioned. These alkoxy groups may have a substituent, and as such a substituent, a substituent other than the alkoxy group exemplified in the description of the hydrocarbon group can be used.

はアニオンであり、ドーパントとして機能するものである。Yの具体例としては、PF 、SbF 、AsF 等の5B族元素のハロゲン化アニオン、BF 等の3B族元素のハロゲン化アニオン、I(I )、Br、Cl等のハロゲンアニオン、ClO 等のハロゲン酸アニオン、AlCl 、FeCl 、SnCl 等の金属ハロゲン化物アニオン、NO で示される硝酸アニオン、SO 2−示される硫酸アニオン、p−トルエンスルホン酸アニオン、ナフタレンスルホン酸アニオン、CHSO 、CFSO 等の有機スルホン酸アニオン、CFCOO、CCOO等のカルボン酸アニオン、および、上記のアニオン種を主鎖または側鎖に有する変性ポリマー等が挙げられる。これらのアニオンは単独で用いてもよいし、2種以上を併用してもよい。また、アニオンの添加方法については特に限定されず、例えば、重合後に所望のアニオンを適宜添加してもよいし、化学酸化重合により重合させる場合には、用いられる酸化剤由来のアニオンをそのまま用いることができる。また、電解重合により重合させる場合には、電解質由来のアニオンをそのまま用いることができる。 Y < - > is an anion and functions as a dopant. Specific examples of Y include halogenated anions of Group 5B elements such as PF 6 , SbF 6 and AsF 6 , halogenated anions of Group 3B elements such as BF 4 , I (I 3 ), Halogen anions such as Br and Cl , halogen acid anions such as ClO 4 , metal halide anions such as AlCl 4 , FeCl 4 and SnCl 5 , nitrate anions represented by NO 3 , SO 4 2− Sulfuric acid anions, p-toluenesulfonic acid anions, naphthalenesulfonic acid anions, organic sulfonic acid anions such as CH 3 SO 3 and CF 3 SO 3 , and carboxylic acids such as CF 3 COO and C 6 H 5 COO Examples thereof include a modified polymer having an anion and the above-mentioned anionic species in the main chain or side chain. These anions may be used alone or in combination of two or more. Further, the method for adding an anion is not particularly limited. For example, a desired anion may be appropriately added after polymerization, or when an anion derived from an oxidizing agent to be used is used as it is when polymerized by chemical oxidative polymerization. Can do. Moreover, when making it superpose | polymerize by electrolytic polymerization, the anion derived from electrolyte can be used as it is.

一般式(1)で示される重合体の形成に用いる4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン誘導体を得る方法としては特に限定されず、例えば次に示す非特許文献1に開示されている製法を適用することで合成が可能である。   The method for obtaining the 4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene derivative used for forming the polymer represented by the general formula (1) is not particularly limited. For example, the following non-patent document 1 can be synthesized by applying the production method disclosed in No. 1.

Figure 2011231289
Figure 2011231289

続いて、4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン誘導体(以下、「モノマー化合物」ということがある。)から、下記化学反応式(I)で示される工程1のように、一般式(2)で示される重合体が得られる。   Subsequently, from 4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene derivative (hereinafter sometimes referred to as “monomer compound”), the step 1 shown in the following chemical reaction formula (I) Thus, a polymer represented by the general formula (2) is obtained.

Figure 2011231289

[式中、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基またはアルコキシル基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基であり、p+q=1、0<p<1、0<q<1であり、Yはアニオンである。]
Figure 2011231289

[Wherein, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms or an alkoxyl group which may have a substituent, and R 3 and R 4 are each independently And a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, p + q = 1, 0 <p <1, 0 <q <1, and Y is an anion. ]

上記工程1は、モノマー化合物から重合反応により一般式(2)で示される重合体を得る工程である。上記一般式(2)される重合体は、ドーピングされた状態を表しており、このことにより導電性を有している。また、アニオンであるYはドーパントとして機能している。一方、後述する工程2より得られる脱ドーピングされた中性状態の重合体は、絶縁体または半導体として機能することとなる。ここで、本発明においてドーピングされた状態とは、重合体の主鎖がプラスにチャージされた状態をいい、脱ドーピングされた状態とは、重合体の主鎖の電荷が中性となった状態をいう。 Step 1 is a step of obtaining a polymer represented by the general formula (2) from a monomer compound by a polymerization reaction. The polymer represented by the general formula (2) represents a doped state, and thus has conductivity. Further, Y which is an anion functions as a dopant. On the other hand, the dedope neutral polymer obtained in step 2 described later functions as an insulator or a semiconductor. Here, the doped state in the present invention refers to a state in which the main chain of the polymer is positively charged, and the undoped state refers to a state in which the charge of the main chain of the polymer is neutral. Say.

上記工程1の重合反応としては特に限定されないが、好適な重合反応は、化学酸化重合又は電解重合である。化学酸化重合としては、酸化剤を用いてモノマー化合物から脱水素することにより重合体を得る方法が好適に採用される。このとき、酸化剤由来のアニオンであるYがドーパントとして機能することとなる。Yとしては、前述に挙げられたものが好適に使用される。
化学酸化重合で用いられる酸化剤としては特に限定されないが、遷移金属塩であることが好ましい。遷移金属塩としては、例えば、塩化第二鉄(FeCl)、硫酸第二鉄(Fe(SO)、炭素数1〜16のアルコキシベンゼンスルホン酸鉄、炭素数1〜16のアルキルベンゼンスルホン酸鉄、ナフタレンスルホン酸鉄、フェノールスルホン酸鉄、スルホイソフタル酸鉄ジアルキルエステル、アルキルスルホン酸鉄、ナフタレンスルホン酸鉄、アルコキシナフタレンスルホン酸鉄、テトラリンスルホン酸鉄、炭素数1〜12のテトラリンスルホン酸鉄などの第二鉄塩や、これら前記化合物の鉄(III)塩の代わりにセリウム(IV)塩、銅(II)塩、マンガン(VII)塩、ルテニウム(III)塩になったもの等を用いることができる。中でも、鉄(III)塩が好適に用いられる。
Although it does not specifically limit as a polymerization reaction of the said process 1, A suitable polymerization reaction is chemical oxidation polymerization or electrolytic polymerization. As chemical oxidative polymerization, a method in which a polymer is obtained by dehydrogenation from a monomer compound using an oxidizing agent is suitably employed. At this time, Y which is an anion derived from the oxidizing agent functions as a dopant. As Y , those mentioned above are preferably used.
Although it does not specifically limit as an oxidizing agent used by chemical oxidative polymerization, It is preferable that it is a transition metal salt. Examples of the transition metal salt include ferric chloride (FeCl 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ), alkoxybenzene sulfonate iron having 1 to 16 carbon atoms, and alkylbenzene having 1 to 16 carbon atoms. Iron sulfonate, iron naphthalene sulfonate, iron phenol sulfonate, iron disulfoisophthalate dialkyl ester, iron alkyl sulfonate, iron naphthalene sulfonate, iron alkoxy naphthalene sulfonate, iron tetralin sulfonate, tetralin sulfone having 1 to 12 carbon atoms Ferric salts such as ferric acid, and cerium (IV) salts, copper (II) salts, manganese (VII) salts, ruthenium (III) salts instead of the iron (III) salts of these compounds, etc. Can be used. Among these, iron (III) salts are preferably used.

上記工程1において、電解重合により重合させる場合、重合原料となるモノマー化合物を溶解させた電解液を作製し、この電解液を介して電極間に電圧印加することによって陽極酸化された重合物が陽極上に得られる方法が好適に採用される。電解液に用いる溶媒としてはニトロメタン、アセトニトリル、プロピレンカーボネート、ニトロベンゼン、シアノベンゼン、o−ジクロロベンゼン、ジメチルスルホオキシド、γ−ブチロラクトン等が例示される。電解液に用いる支持電解質としてリチウムイオン、カリウムイオン、ナトリウムイオン等アルカリ金属類のイオンや四級アンモニウムイオンといったカチオンと、過塩素酸イオン、四フッ化ホウ素イオン、六フッ化リンイオン、ハロゲン原子イオン、六フッ化ヒ素イオン、六フッ化アンチモンイオン、硫酸イオン、硫酸水素イオンといったアニオンの組み合わせからなる支持塩が添加されることが好ましい。また電解液としてはアルキルイミダゾリウム塩、アルキルピリジニウム塩などのイオン液体を用いることもできる。電極材料としては白金、金、ニッケル、ITO等を用いることができる。   In the above step 1, in the case of polymerizing by electrolytic polymerization, an electrolytic solution in which a monomer compound as a polymerization raw material is dissolved is prepared, and a polymer that has been anodized by applying a voltage between the electrodes through this electrolytic solution is an anode. The method obtained above is preferably employed. Examples of the solvent used in the electrolytic solution include nitromethane, acetonitrile, propylene carbonate, nitrobenzene, cyanobenzene, o-dichlorobenzene, dimethyl sulfoxide, and γ-butyrolactone. The supporting electrolyte used in the electrolytic solution is a cation such as lithium ion, potassium ion, sodium ion or other alkali metal ions or quaternary ammonium ion, perchlorate ion, boron tetrafluoride ion, phosphorus hexafluoride ion, halogen atom ion, It is preferable to add a supporting salt made of a combination of anions such as arsenic hexafluoride ion, antimony hexafluoride ion, sulfate ion and hydrogen sulfate ion. As the electrolytic solution, an ionic liquid such as an alkyl imidazolium salt or an alkyl pyridinium salt can also be used. Platinum, gold, nickel, ITO or the like can be used as the electrode material.

上記工程1により得られた一般式(2)で示される重合体は、更に下記化学反応式(II)で示される工程2のようにアンモニア、ヒドラジン等の還元剤を用いて還元することにより、下記一般式(1)で示される脱ドーピングされた重合体を得ることもできる。   The polymer represented by the general formula (2) obtained by the above step 1 is further reduced by using a reducing agent such as ammonia or hydrazine as in the step 2 represented by the following chemical reaction formula (II). A dedope polymer represented by the following general formula (1) can also be obtained.

Figure 2011231289

[式中、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基またはアルコキシル基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基であり、p+q=1、0<p<1、0<q<1であり、Yはアニオンである。]
ここで、上記一般式(2)及び上記一般式(1)で示される重合体の数平均分子量(Mn)は、通常、200〜1,000,000であり、重量平均分子量(Mw)は、通常、200〜1,000,000である。
Figure 2011231289

[Wherein, R 1 and R 2 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms or an alkoxyl group which may have a substituent, and R 3 and R 4 are each independently And a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, p + q = 1, 0 <p <1, 0 <q <1, and Y is an anion. ]
Here, the number average molecular weight (Mn) of the polymer represented by the general formula (2) and the general formula (1) is usually 200 to 1,000,000, and the weight average molecular weight (Mw) is Usually, it is 200-1,000,000.

上記一般式(2)及び上記一般式(1)で示される本発明の新規重合体は平面性が高いため、高度に自己集積化したり、精密な層構造を形成したりできるなどの特性を有するともに、溶剤への溶解性が高く、ポリ(4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン)(CPDT)と比較して溶解性が高く加工性に優れるものである。したがって、例えば、導電性材料、エレクトロクロミック材料、光電変換材料、エレクトロルミネッセンス材料、非線形光学材料、電界効果トランジスタ材料、RF−ID材料、メモリ材料、センサー材料、導電性プリントペースト、インクジェット塗料等に好適に用いられ、中でも、導電性材料としてより好適に用いられる。   Since the novel polymer of the present invention represented by the above general formula (2) and the above general formula (1) has high planarity, it has characteristics such as high self-assembly and precise layer structure. Both have high solubility in a solvent and high solubility and excellent workability compared to poly (4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene) (CPDT). Therefore, for example, suitable for conductive materials, electrochromic materials, photoelectric conversion materials, electroluminescence materials, nonlinear optical materials, field effect transistor materials, RF-ID materials, memory materials, sensor materials, conductive print pastes, inkjet paints, etc. Among them, it is more preferably used as a conductive material.

以下、実施例を用いて本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(合成例1)

Figure 2011231289

窒素雰囲気下、200mL三口フラスコにジエチルエーテル50mLを加え、−70℃以下に冷却した。n―ブチルリチウム21.6mL(33.8mmol)を加え、3−ブロモ−4−メチルチオフェン5.0g(28.2mmol)のエーテル23mL溶液をゆっくり滴下し、−70℃以下で30分間攪拌した。その後、−70℃以下でマグネシウムブロミドエーテル錯体13.6g(52.2mmol)のエーテル70mL溶液をゆっくり加え、1時間攪拌することでグリニヤ試薬を調整した。別途、窒素雰囲気下、300mL三口フラスコにシュウ酸ジエチル3.9g(33.8mmol)を加え−70℃以下に冷却した。調整したグリニヤ試薬を−70℃以下でゆっくり滴下し、−20℃まで昇温した。2N塩酸30mLを加えた後、飽和炭酸水素ナトリウム水溶液10mLを加え、酢酸エチル200mLで抽出した。硫酸ナトリウムで乾燥し、減圧下で溶媒を留去した後に真空下で乾燥することで黄色油状物質として式(3)で表されるエチル 2−オキソ−2−(3−(4−メチルチエニル))グリコキシレート5.3g(95%)を得た。
HNMR: = 8.43(m、1H)、 6.97(m、1H)、 4.12(m、2H)、2.04(s、3H)1.32(t、J=7.6Hz、3H) (Synthesis Example 1)
Figure 2011231289

Under a nitrogen atmosphere, 50 mL of diethyl ether was added to a 200 mL three-necked flask and cooled to −70 ° C. or lower. 21.6 mL (33.8 mmol) of n-butyllithium was added, and a 23 mL ether solution of 5.0 g (28.2 mmol) of 3-bromo-4-methylthiophene was slowly added dropwise, and the mixture was stirred at −70 ° C. or lower for 30 minutes. Thereafter, a 70 ml ether solution of 13.6 g (52.2 mmol) of magnesium bromide ether complex was slowly added at −70 ° C. or less to prepare a Grignard reagent by stirring for 1 hour. Separately, under a nitrogen atmosphere, 3.9 g (33.8 mmol) of diethyl oxalate was added to a 300 mL three-necked flask and cooled to −70 ° C. or lower. The adjusted Grignard reagent was slowly dropped at −70 ° C. or lower, and the temperature was raised to −20 ° C. After adding 30 mL of 2N hydrochloric acid, 10 mL of saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with 200 mL of ethyl acetate. Ethyl 2-oxo-2- (3- (4-methylthienyl) represented by the formula (3) as a yellow oily substance by drying with sodium sulfate, evaporating the solvent under reduced pressure and then drying under vacuum. ) 5.3 g (95%) of glycoxylate was obtained.
1 HNMR: = 8.43 (m, 1H), 6.97 (m, 1H), 4.12 (m, 2H), 2.04 (s, 3H) 1.32 (t, J = 7.6 Hz 3H)

(合成例2)

Figure 2011231289

窒素雰囲気下、200mL三口フラスコにエーテル40mLを加え、−70℃以下に冷却した。N―ブチルリチウム13.7mL(21mmol)を加え、3−ブロモ−4−メチルチオフェン4.4g(22mmol)のエーテル18mL溶液をゆっくり滴下し、−70℃以下で45分間攪拌することでリチオ体を調整した。別途、窒素雰囲気下、300mL三口フラスコにエーテル56mLと式(3)で表される化合物4.36g(22mmol)を加え−70℃以下に冷却した。調整したグリニヤ試薬を−70℃以下でゆっくりと滴下した後に室温まで昇温した。水100mLを加え、酢酸エチル200mLで抽出し、硫酸ナトリウムで乾燥した後に減圧下で溶媒を留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:20)にて精製することで黄色油状物質として式(4)で表されるエチル(3,3’−ビス(4−メチルチエニル)グリコレート4.0g(61%)を得た。
HNMR:=7.05(d、J=3.0Hz、2H)、 6.91(d、J=3.0Hz、2H)、4.01(q、J=7.0Hz、4H)、3.50(s、1H)、2.04(s、6H)、1.32(t、J=7.6Hz、6H) (Synthesis Example 2)
Figure 2011231289

Under a nitrogen atmosphere, 40 mL of ether was added to a 200 mL three-necked flask and cooled to −70 ° C. or lower. 13.7 mL (21 mmol) of N-butyllithium was added, 18 mL of an ether solution of 4.4 g (22 mmol) of 3-bromo-4-methylthiophene was slowly added dropwise, and the mixture was stirred at −70 ° C. or lower for 45 minutes to obtain a lithiated form. It was adjusted. Separately, under a nitrogen atmosphere, 56 mL of ether and 4.36 g (22 mmol) of the compound represented by the formula (3) were added to a 300 mL three-necked flask and cooled to −70 ° C. or lower. The adjusted Grignard reagent was slowly added dropwise at −70 ° C. or lower, and then the temperature was raised to room temperature. 100 mL of water was added, extracted with 200 mL of ethyl acetate, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The resulting crude product is purified by silica gel column chromatography (ethyl acetate: hexane = 1: 20) to give ethyl (3,3′-bis (4- 4.0 g (61%) of methylthienyl) glycolate were obtained.
1 HNMR: = 7.05 (d, J = 3.0 Hz, 2H), 6.91 (d, J = 3.0 Hz, 2H), 4.01 (q, J = 7.0 Hz, 4H), 3 .50 (s, 1H), 2.04 (s, 6H), 1.32 (t, J = 7.6 Hz, 6H)

(合成例3)

Figure 2011231289

200mL三口フラスコに式(4)で表される化合物4.0g(13mmol)とエタノール30mL、水40mLを加え、水酸化カリウム20gを加えた後に室温で1時間攪拌した。減圧下でエタノールを留去した後にpH=4となるまで酢酸を加えた。酢酸エチル100mLで抽出し、硫酸ナトリウムで乾燥した後に減圧下で溶媒を留去した。得られた粗生成物をトルエン100mLに溶解し、飽和炭酸ナトリウム水溶液100mLで洗浄した後に、水層に2N塩酸100mLを加え、攪拌した後にトルエン100mLで抽出した。有機層を硫酸ナトリウムで乾燥し、減圧下で溶媒を留去した後に真空下で乾燥することで黄色固体として式(5)で表されるエチル(3,3’−ビス(4−メチルチエニル)グリコキシリックアシッド1.5g(43%)を得た。
HNMR:=10.1(s、1H)、7.03(d、J=3.0Hz、2H)、 6.95(d、J=3.0Hz、2H)、2.07(s、6H) (Synthesis Example 3)
Figure 2011231289

To a 200 mL three-necked flask, 4.0 g (13 mmol) of the compound represented by the formula (4), 30 mL of ethanol and 40 mL of water were added, and 20 g of potassium hydroxide was added, followed by stirring at room temperature for 1 hour. After distilling off ethanol under reduced pressure, acetic acid was added until pH = 4. After extraction with 100 mL of ethyl acetate and drying with sodium sulfate, the solvent was distilled off under reduced pressure. The obtained crude product was dissolved in 100 mL of toluene and washed with 100 mL of a saturated aqueous sodium carbonate solution. Then, 100 mL of 2N hydrochloric acid was added to the aqueous layer, followed by stirring and extraction with 100 mL of toluene. Ethyl (3,3′-bis (4-methylthienyl) represented by the formula (5) as a yellow solid by drying the organic layer with sodium sulfate, evaporating the solvent under reduced pressure and then drying under vacuum. 1.5 g (43%) of glycoxylic acid was obtained.
1 HNMR: = 10.1 (s, 1H), 7.03 (d, J = 3.0 Hz, 2H), 6.95 (d, J = 3.0 Hz, 2H), 2.07 (s, 6H) )

(合成例4)

Figure 2011231289

窒素雰囲気下、200mL三口フラスコに式(7)で表される化合物1.5g(5.6mmol)と1,2−ジクロロエタン47mLを加え−10℃まで冷却した後に、塩化アルミニウム(III)2.2g(16.8mmol)を加え、還流下で2.5時間攪拌した。反応終了後、室温まで冷却し、2N塩酸20mLを加え有機層を分離した。有機層に飽和炭酸ナトリウム水溶液50mLを加え攪拌した後に、2N塩酸50mLを加えた。水層を塩化メチレン100mLで抽出し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去することで得られた粗生成物をシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製することで黄色油状物質として式(6)で表される4H−4−カルボキシシクロペンタ[2,1−b:3,4−b’]チオフェン0.45g(32%)を得た。
HNMR:=10.1(s、1H)、6.81(s、1H)、4.42(s、1H)、2.29(s、6H) (Synthesis Example 4)
Figure 2011231289

Under a nitrogen atmosphere, 1.5 g (5.6 mmol) of the compound represented by formula (7) and 47 mL of 1,2-dichloroethane were added to a 200 mL three-necked flask and cooled to −10 ° C., and then 2.2 g of aluminum (III) chloride was added. (16.8 mmol) was added and stirred under reflux for 2.5 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, 20 mL of 2N hydrochloric acid was added, and the organic layer was separated. After adding 50 mL of saturated sodium carbonate aqueous solution to the organic layer and stirring, 50 mL of 2N hydrochloric acid was added. The aqueous layer was extracted with 100 mL of methylene chloride and dried over sodium sulfate. The crude product obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (ethyl acetate) to give 4H-4-carboxycyclopenta [4] represented by the formula (6) as a yellow oily substance. 2,5-b: 3,4-b ′] thiophene (0.45 g, 32%) was obtained.
1 HNMR: = 10.1 (s, 1H), 6.81 (s, 1H), 4.42 (s, 1H), 2.29 (s, 6H)

(合成例5)

Figure 2011231289

窒素雰囲気下、50mL三口フラスコに式(6)で表される化合物0.45g(1.8mmol)、銅粉末0.33g(5.2mmol)とキノリン19mLを加え還流下で4時間攪拌した。反応終了後、室温まで冷却し、反応溶液を2N塩酸50mLと氷50gの混合液に注いだ後にトルエン100mLで抽出した。2N塩酸50mLと飽和炭酸水素ナトリウム水溶液50mLで有機層を洗浄し、硫酸ナトリウムで乾燥した。減圧下で溶媒を留去することで得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製することで黄色固体として式(7)で表される化合物4H−シクロペンタ[2,1−b:3,4−b’]チオフェン0.19g(59%)を得た。
HNMR:=6.77(s、2H)、3.30(s、2H)、2.27(s、6H) (Synthesis Example 5)
Figure 2011231289

Under a nitrogen atmosphere, 0.45 g (1.8 mmol) of the compound represented by the formula (6), 0.33 g (5.2 mmol) of copper powder and 19 mL of quinoline were added to a 50 mL three-necked flask and stirred for 4 hours under reflux. After completion of the reaction, the reaction solution was cooled to room temperature, poured into a mixed solution of 50 mL of 2N hydrochloric acid and 50 g of ice, and extracted with 100 mL of toluene. The organic layer was washed with 50 mL of 2N hydrochloric acid and 50 mL of saturated aqueous sodium hydrogen carbonate solution and dried over sodium sulfate. The crude product obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (hexane) to give a compound 4H-cyclopenta [2,1-b represented by the formula (7) as a yellow solid. : 3,4-b ′] thiophene (0.19 g, 59%) was obtained.
1 HNMR: = 6.77 (s, 2H), 3.30 (s, 2H), 2.27 (s, 6H)

(合成例6)

Figure 2011231289

窒素雰囲気下、50mL三口フラスコに式(7)で表される化合物0.16g(0.78mmol)とテトラヒドロフラン12mLを加え0℃以下に冷却した。1.6Mのn−ブチルリチウムヘキサン溶液0.51mL(0.86mmol)をゆっくりと滴下し、室温まで昇温した後に2時間攪拌した。再び0℃以下まで冷却し、臭化オクチル0.16g(0.86mmol)を加えた後に、室温まで昇温し2時間攪拌した。反応終了後、飽和食塩水30mLに注ぎ、酢酸エチル20mLで抽出し、水30mLで洗浄した。有機層を硫酸ナトリウムで乾燥した後に減圧下で溶媒を留去することで得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製することにより黄色固体として式(8)で表される4−オクチルシクロペンタ[2,1−b:3,4−b’]チオフェン0.17g(72%)を得た。
−MeCPDT:HNMR:=6.74(s、2H)、3.78(t、J=4.3Hz、1H)、2.29(s、6H)、2.33−2.10(m、2H)、1.38−1.09(m、12H)、0.84(t、J=7.0Hz、3H) (Synthesis Example 6)
Figure 2011231289

Under a nitrogen atmosphere, 0.16 g (0.78 mmol) of the compound represented by the formula (7) and 12 mL of tetrahydrofuran were added to a 50 mL three-necked flask and cooled to 0 ° C. or lower. A 1.6M n-butyllithium hexane solution (0.51 mL, 0.86 mmol) was slowly added dropwise, and the mixture was warmed to room temperature and stirred for 2 hours. The mixture was cooled again to 0 ° C. or lower, and 0.16 g (0.86 mmol) of octyl bromide was added, and the mixture was warmed to room temperature and stirred for 2 hours. After completion of the reaction, the mixture was poured into 30 mL of saturated brine, extracted with 20 mL of ethyl acetate, and washed with 30 mL of water. The crude product obtained by drying the organic layer over sodium sulfate and then distilling off the solvent under reduced pressure is purified by silica gel column chromatography (hexane) to give 4 represented by the formula (8) as a yellow solid. -0.17 g (72%) of octylcyclopenta [2,1-b: 3,4-b '] thiophene was obtained.
C 8 -MeCPDT: 1 HNMR: = 6.74 (s, 2H), 3.78 (t, J = 4.3 Hz, 1H), 2.29 (s, 6H), 2.33-2.10 ( m, 2H), 1.38-1.09 (m, 12H), 0.84 (t, J = 7.0 Hz, 3H)

(合成例7)

Figure 2011231289

合成例6と同様の方法で臭化オクチルに代えて臭化ブチルを用い、式(9)で表される4−ブチルシクロペンタ[2,1−b:3,4−b’]チオフェンを合成した。
−MeCPDT:HNMR:=6.74(s、2H)、3.77(t、J=4.5Hz、1H)、2.29(s、6H)、2.33−2.10(m、2H)、1.30−1.11(m、2H)、0.76(m、5H) (Synthesis Example 7)
Figure 2011231289

In the same manner as in Synthesis Example 6, 4-butylcyclopenta [2,1-b: 3,4-b ′] thiophene represented by formula (9) was synthesized using butyl bromide instead of octyl bromide. did.
C 4 -MeCPDT: 1 HNMR: = 6.74 (s, 2H), 3.77 (t, J = 4.5 Hz, 1H), 2.29 (s, 6H), 2.33-2.10 ( m, 2H), 1.30-1.11 (m, 2H), 0.76 (m, 5H)

<実施例1>
[式(10)で示される重合体の合成(電解重合)]
ITO膜付ガラス板(表面抵抗値:10Ω/□)を陽極、白金線を陰極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1M過塩素酸テトラブチルアンモニウム/アセトニトリル溶液10mLを加え、合成例5で得た3,5−ジメチル-4H−シクロペンタ[2,1−b:3,4−b’]ジチオフェン20mg(0.1mmol)を溶解させて、窒素置換を行った。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB−151を接続した。ポテンショスタットモードにて0.55Vの定電位で電圧印加し、電解重合を行ったところ、陽極上に下記式(10)で示される膜状の黒色重合体が生成した。化学反応式を以下に示す。生成した膜を脱水アセトニトリルで洗浄後、乾燥させて導電率を四端子法で測定したところ、200S/cmであった。この結果から、式(10)で示される本発明の重合体は、優れた導電性材料であることが分かった。この時生成した膜に対して、サイックリックボルタンメトリー(CV)測定を行い、更に、モノマーのない0.1M過塩素酸リチウム/アセトニトリル溶液中にて印加電圧を変えながら紫外可視吸収スペクトルを測定したところ、ドープ状態では長波長側に新たな吸収ピークが現れ、肉眼でも赤色から濃青色への変化が確認された。
<Example 1>
[Synthesis of polymer represented by formula (10) (electrolytic polymerization)]
0.1M perchlorine was placed in an electrolytic cell with an ITO film-coated glass plate (surface resistance: 10Ω / □) as the anode, platinum wire as the cathode, and silver / silver perchlorate (0.1M acetonitrile solution) as the reference electrode. 10 mL of tetrabutylammonium acid / acetonitrile solution was added to dissolve 20 mg (0.1 mmol) of 3,5-dimethyl-4H-cyclopenta [2,1-b: 3,4-b ′] dithiophene obtained in Synthesis Example 5. Then, nitrogen substitution was performed. A potentiostat / galvanostat HAB-151 manufactured by Hokuto Denko Co., Ltd. was connected to each electrode of this electrolytic cell. When a voltage was applied at a constant potential of 0.55 V in the potentiostat mode and electrolytic polymerization was performed, a film-like black polymer represented by the following formula (10) was formed on the anode. The chemical reaction formula is shown below. The formed film was washed with dehydrated acetonitrile and then dried, and the conductivity was measured by a four-terminal method. As a result, it was 200 S / cm. From this result, it was found that the polymer of the present invention represented by the formula (10) is an excellent conductive material. The film formed at this time was subjected to cyclic voltammetry (CV) measurement, and the UV-visible absorption spectrum was measured while changing the applied voltage in a 0.1M lithium perchlorate / acetonitrile solution without monomer. In the doped state, a new absorption peak appeared on the long wavelength side, and a change from red to dark blue was confirmed even with the naked eye.

Figure 2011231289
Figure 2011231289

<実施例2>
[式(11)で示される重合体の合成(電解重合)]
ITO膜付ガラス板(表面抵抗値:10Ω/□)を陽極、白金線を陰極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1M過塩素酸テトラブチルアンモニウム/アセトニトリル溶液10mLを加え、合成例7で得た3,5−ジメチル-4−ブチル−シクロペンタ[2,1−b:3,4−b’]ジチオフェン28mg(0.1mmol)を溶解させて、窒素置換を行った。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB−151を接続した。ポテンショスタットモードにて0.70Vの定電位で電圧印加し、電解重合を行ったところ、陽極上に下記式(11)で示される膜状の黒色重合体が生成した。化学反応式を以下に示す。生成した膜を脱水アセトニトリルで洗浄後、乾燥させて導電率を四端子法で測定したところ、100S/cmであった。この結果から、式(11)で示される本発明の重合体は、優れた導電性材料であることが分かった。この時生成した膜に対して、サイックリックボルタンメトリー(CV)測定を行い、更に、モノマーのない0.1M過塩素酸リチウム/アセトニトリル溶液中にて印加電圧を変えながら紫外可視吸収スペクトルを測定したところ、ドープ状態では長波長側に新たな吸収ピークが現れ、肉眼でも赤色から濃青色への変化が確認された。
<Example 2>
[Synthesis of polymer represented by formula (11) (electrolytic polymerization)]
0.1M perchlorine was placed in an electrolytic cell with an ITO film-coated glass plate (surface resistance: 10Ω / □) as the anode, platinum wire as the cathode, and silver / silver perchlorate (0.1M acetonitrile solution) as the reference electrode. 10 mL of tetrabutylammonium acid / acetonitrile solution was added, and 28 mg (0.1 mmol) of 3,5-dimethyl-4-butyl-cyclopenta [2,1-b: 3,4-b ′] dithiophene obtained in Synthesis Example 7 was added. After dissolving, nitrogen substitution was performed. A potentiostat / galvanostat HAB-151 manufactured by Hokuto Denko Co., Ltd. was connected to each electrode of this electrolytic cell. When a voltage was applied at a constant potential of 0.70 V in the potentiostat mode and electrolytic polymerization was performed, a film-like black polymer represented by the following formula (11) was formed on the anode. The chemical reaction formula is shown below. The produced film was washed with dehydrated acetonitrile and then dried, and the conductivity was measured by a four-terminal method. As a result, it was 100 S / cm. From this result, it was found that the polymer of the present invention represented by the formula (11) is an excellent conductive material. The film formed at this time was subjected to cyclic voltammetry (CV) measurement, and the UV-visible absorption spectrum was measured while changing the applied voltage in a 0.1M lithium perchlorate / acetonitrile solution without monomer. In the doped state, a new absorption peak appeared on the long wavelength side, and a change from red to dark blue was confirmed even with the naked eye.

Figure 2011231289
Figure 2011231289

<実施例3>
[式(12)で示される重合体の合成(電解重合)]
ITO膜付ガラス板(表面抵抗値:10Ω/□)を陽極、白金線を陰極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1M過塩素酸テトラブチルアンモニウム/アセトニトリル溶液10mLを加え、合成例6で得た3,5−ジメチル-4−オクチル−シクロペンタ[2,1−b:3,4−b’]ジチオフェン30mg(0.1mmol)を溶解させて、窒素置換を行った。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB−151を接続した。ポテンショスタットモードにて0.60Vの定電位で電圧印加し、電解重合を行ったところ、陽極上に下記式(12)で示される膜状の黒色重合体が生成した。化学反応式を以下に示す。生成した膜を脱水アセトニトリルで洗浄後、乾燥させて導電率を四端子法で測定したところ、100S/cmであった。この結果から、式(12)で示される本発明の重合体は、優れた導電性材料であることが分かった。この時生成した膜に対して、サイックリックボルタンメトリー(CV)測定を行い、更に、モノマーのない0.1M過塩素酸リチウム/アセトニトリル溶液中にて印加電圧を変えながら紫外可視吸収スペクトルを測定したところ、ドープ状態では長波長側に新たな吸収ピークが現れ、肉眼でも赤色から濃青色への変化が確認された。
<Example 3>
[Synthesis of polymer represented by formula (12) (electrolytic polymerization)]
0.1M perchlorine was placed in an electrolytic cell with an ITO film-coated glass plate (surface resistance: 10Ω / □) as the anode, platinum wire as the cathode, and silver / silver perchlorate (0.1M acetonitrile solution) as the reference electrode. 10 mL of tetrabutylammonium acid / acetonitrile solution was added, and 30 mg (0.1 mmol) of 3,5-dimethyl-4-octyl-cyclopenta [2,1-b: 3,4-b ′] dithiophene obtained in Synthesis Example 6 was added. After dissolving, nitrogen substitution was performed. A potentiostat / galvanostat HAB-151 manufactured by Hokuto Denko Co., Ltd. was connected to each electrode of this electrolytic cell. When a voltage was applied at a constant potential of 0.60 V in the potentiostat mode and electrolytic polymerization was performed, a film-like black polymer represented by the following formula (12) was formed on the anode. The chemical reaction formula is shown below. The produced film was washed with dehydrated acetonitrile and then dried, and the conductivity was measured by a four-terminal method. As a result, it was 100 S / cm. From this result, it was found that the polymer of the present invention represented by the formula (12) is an excellent conductive material. The film formed at this time was subjected to cyclic voltammetry (CV) measurement, and the UV-visible absorption spectrum was measured while changing the applied voltage in a 0.1M lithium perchlorate / acetonitrile solution without monomer. In the doped state, a new absorption peak appeared on the long wavelength side, and a change from red to dark blue was confirmed even with the naked eye.

Figure 2011231289
Figure 2011231289

<実施例4>
[式(14)で示される重合体の合成(電解重合)]
ITO膜付ガラス板(表面抵抗値:10Ω/□)を陽極、白金線を陰極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1M過塩素酸テトラブチルアンモニウム/アセトニトリル溶液10mLを加え、合成例1および2における3−ブロモ−4−メチルチオフェンに代えて3−ブロモ−4−メトキシチオフェンを用いる以外は同様に合成した3,5−ジメトキシ-4−オクチル−シクロペンタ[2,1−b:3,4−b’]ジチオフェン29mg(0.1mmol)を溶解させて、窒素置換を行った。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB−151を接続した。ポテンショスタットモードにて0.40Vの定電位で電圧印加し、電解重合を行ったところ、陽極上に下記式(14)で示される膜状の黒色重合体が生成した。化学反応式を以下に示す。生成した膜を脱水アセトニトリルで洗浄後、乾燥させて導電率を四端子法で測定したところ、80S/cmであった。この結果から、式(14)で示される本発明の重合体は、優れた導電性材料であることが分かった。この時生成した膜に対して、サイックリックボルタンメトリー(CV)測定を行い、更に、モノマーのない0.1M過塩素酸リチウム/アセトニトリル溶液中にて印加電圧を変えながら紫外可視吸収スペクトルを測定したところ、ドープ状態では長波長側に新たな吸収ピークが現れ、肉眼でも赤色から濃青色への変化が確認された。
<Example 4>
[Synthesis of polymer represented by formula (14) (electrolytic polymerization)]
0.1M perchlorine was placed in an electrolytic cell with an ITO film-coated glass plate (surface resistance: 10Ω / □) as the anode, platinum wire as the cathode, and silver / silver perchlorate (0.1M acetonitrile solution) as the reference electrode. 3,5-dimethoxy-synthesized in the same manner except that 10 mL of tetrabutylammonium acid / acetonitrile solution was added and 3-bromo-4-methoxythiophene was used instead of 3-bromo-4-methylthiophene in Synthesis Examples 1 and 2. Nitrogen substitution was performed by dissolving 29 mg (0.1 mmol) of 4-octyl-cyclopenta [2,1-b: 3,4-b ′] dithiophene. A potentiostat / galvanostat HAB-151 manufactured by Hokuto Denko Co., Ltd. was connected to each electrode of this electrolytic cell. When a voltage was applied at a constant potential of 0.40 V in potentiostat mode and electrolytic polymerization was performed, a film-like black polymer represented by the following formula (14) was formed on the anode. The chemical reaction formula is shown below. The formed film was washed with dehydrated acetonitrile and then dried, and the conductivity was measured by a four-terminal method. As a result, it was 80 S / cm. From this result, it was found that the polymer of the present invention represented by the formula (14) is an excellent conductive material. The film formed at this time was subjected to cyclic voltammetry (CV) measurement, and the UV-visible absorption spectrum was measured while changing the applied voltage in a 0.1M lithium perchlorate / acetonitrile solution without monomer. In the doped state, a new absorption peak appeared on the long wavelength side, and a change from red to dark blue was confirmed even with the naked eye.

Figure 2011231289
Figure 2011231289

<実施例5>
[式(16)で示される重合体の合成(電解重合)]
ITO膜付ガラス板(表面抵抗値:10Ω/□)を陽極、白金線を陰極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1M過塩素酸テトラブチルアンモニウム/アセトニトリル溶液10mLを加え、合成例1および2における3−ブロモ−4−メチルチオフェンに代えて3−ブロモ−4−ヘキシルチオフェンを用いる以外は同様に合成した3,5−ジヘキシル-4−オクチル−シクロペンタ[2,1−b:3,4−b’]ジチオフェン46mg(0.1mmol)を溶解させて、窒素置換を行った。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB−151を接続した。ポテンショスタットモードにて0.55Vの定電位で電圧印加し、電解重合を行ったところ、陽極上に下記式(16)で示される膜状の黒色重合体が生成した。化学反応式を以下に示す。生成した膜を脱水アセトニトリルで洗浄後、乾燥させて導電率を四端子法で測定したところ、80S/cmであった。この結果から、式(16)で示される本発明の重合体は、優れた導電性材料であることが分かった。この時生成した膜に対して、サイックリックボルタンメトリー(CV)測定を行い、更に、モノマーのない0.1M過塩素酸リチウム/アセトニトリル溶液中にて印加電圧を変えながら紫外可視吸収スペクトルを測定したところ、ドープ状態では長波長側に新たな吸収ピークが現れ、肉眼でも赤色から濃青色への変化が確認された。
<Example 5>
[Synthesis of polymer represented by formula (16) (electrolytic polymerization)]
0.1M perchlorine was placed in an electrolytic cell with an ITO film-coated glass plate (surface resistance: 10Ω / □) as the anode, platinum wire as the cathode, and silver / silver perchlorate (0.1M acetonitrile solution) as the reference electrode. 3,5-dihexyl-synthesized in the same manner except that 10-mL tetrabutylammonium acid / acetonitrile solution was added and 3-bromo-4-hexylthiophene was used instead of 3-bromo-4-methylthiophene in Synthesis Examples 1 and 2. Nitrogen substitution was performed by dissolving 46 mg (0.1 mmol) of 4-octyl-cyclopenta [2,1-b: 3,4-b ′] dithiophene. A potentiostat / galvanostat HAB-151 manufactured by Hokuto Denko Co., Ltd. was connected to each electrode of this electrolytic cell. When a voltage was applied at a constant potential of 0.55 V in the potentiostat mode and electrolytic polymerization was performed, a film-like black polymer represented by the following formula (16) was formed on the anode. The chemical reaction formula is shown below. The formed film was washed with dehydrated acetonitrile and then dried, and the conductivity was measured by a four-terminal method. As a result, it was 80 S / cm. From this result, it was found that the polymer of the present invention represented by the formula (16) is an excellent conductive material. The film formed at this time was subjected to cyclic voltammetry (CV) measurement, and the UV-visible absorption spectrum was measured while changing the applied voltage in a 0.1M lithium perchlorate / acetonitrile solution without monomer. In the doped state, a new absorption peak appeared on the long wavelength side, and a change from red to dark blue was confirmed even with the naked eye.

Figure 2011231289
Figure 2011231289

<比較例1>
[式(18)で示される重合体の合成(電解重合)]
ITO膜付ガラス板(表面抵抗値:10Ω/□)を陽極、白金線を陰極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1M過塩素酸テトラブチルアンモニウム/アセトニトリル溶液10mLを加え、合成例1および2における3−ブロモ−4−メチルチオフェンに代えて3−ブロモチオフェンを用いる以外は同様に合成した4−オクチル−シクロペンタ[2,1−b:3,4−b’]ジチオフェン29mg(0.1mmol)を溶解させて、窒素置換を行った。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB−151を接続した。ポテンショスタットモードにて0.60Vの定電位で電圧印加し、電解重合を行ったところ、陽極上に下記式(18)で示される膜状の黒色重合体が生成した。化学反応式を以下に示す。生成した膜を脱水アセトニトリルで洗浄後、乾燥させて導電率を四端子法で測定したところ、10S/cmであった。この結果から、式(18)で示される本発明の重合体は、優れた導電性材料であることが分かった。この時生成した膜に対して、サイックリックボルタンメトリー(CV)測定を行い、更に、モノマーのない0.1M過塩素酸リチウム/アセトニトリル溶液中にて印加電圧を変えながら紫外可視吸収スペクトルを測定したところ、ドープ状態では長波長側に新たな吸収ピークが現れ、肉眼でも赤色から濃青色への変化が確認された。
<Comparative Example 1>
[Synthesis of polymer represented by formula (18) (electrolytic polymerization)]
0.1M perchlorine was placed in an electrolytic cell with an ITO film-coated glass plate (surface resistance: 10Ω / □) as the anode, platinum wire as the cathode, and silver / silver perchlorate (0.1M acetonitrile solution) as the reference electrode. 4-octyl-cyclopenta [2,1-, synthesized in the same manner except that 10 mL of tetrabutylammonium acid / acetonitrile solution was added and 3-bromothiophene was used instead of 3-bromo-4-methylthiophene in Synthesis Examples 1 and 2. b: 3,4-b ′] dithiophene 29 mg (0.1 mmol) was dissolved to perform nitrogen substitution. A potentiostat / galvanostat HAB-151 manufactured by Hokuto Denko Co., Ltd. was connected to each electrode of this electrolytic cell. When a voltage was applied at a constant potential of 0.60 V in the potentiostat mode and electrolytic polymerization was performed, a film-like black polymer represented by the following formula (18) was formed on the anode. The chemical reaction formula is shown below. The produced film was washed with dehydrated acetonitrile and then dried, and the conductivity was measured by a four-terminal method. As a result, it was 10 S / cm. From this result, it was found that the polymer of the present invention represented by the formula (18) is an excellent conductive material. The film formed at this time was subjected to cyclic voltammetry (CV) measurement, and the UV-visible absorption spectrum was measured while changing the applied voltage in a 0.1M lithium perchlorate / acetonitrile solution without monomer. In the doped state, a new absorption peak appeared on the long wavelength side, and a change from red to dark blue was confirmed even with the naked eye.

Figure 2011231289
Figure 2011231289

Figure 2011231289
Figure 2011231289

Claims (3)

下記一般式 (1)で示される構造単位を有する重合体。
Figure 2011231289

[式中、R及びRは、それぞれ独立して置換基を有してもよい炭素数1〜20の炭化水素基またはアルコキシル基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基であり、nは2以上の整数である。]
The polymer which has a structural unit shown by following General formula (1).
Figure 2011231289

[Wherein, R 1 and R 2 are each independently a hydrocarbon group or alkoxyl group having 1 to 20 carbon atoms which may have a substituent, and R 3 and R 4 are each independently hydrogen. It is a C1-C20 hydrocarbon group which may have an atom or a substituent, and n is an integer greater than or equal to 2. ]
下記一般式(2)で示される構造単位を有する重合体。
Figure 2011231289

[式中、R及びRは、それぞれ独立して置換基を有してもよい炭素数1〜20の炭化水素基またはアルコキシル基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1〜20の炭化水素基であり、p+q=1、0<p<1、0<q<1であり、Yはアニオンである。]
The polymer which has a structural unit shown by following General formula (2).
Figure 2011231289

[Wherein, R 1 and R 2 are each independently a hydrocarbon group or alkoxyl group having 1 to 20 carbon atoms which may have a substituent, and R 3 and R 4 are each independently hydrogen. It is a C1-C20 hydrocarbon group which may have an atom or a substituent, p + q = 1, 0 <p <1, 0 <q <1, and Y is an anion. ]
請求項2記載の重合体からなる導電性材料。   A conductive material comprising the polymer according to claim 2.
JP2010105308A 2010-04-30 2010-04-30 Cyclopentadithiophene-based polymer Pending JP2011231289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010105308A JP2011231289A (en) 2010-04-30 2010-04-30 Cyclopentadithiophene-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010105308A JP2011231289A (en) 2010-04-30 2010-04-30 Cyclopentadithiophene-based polymer

Publications (1)

Publication Number Publication Date
JP2011231289A true JP2011231289A (en) 2011-11-17

Family

ID=45320935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010105308A Pending JP2011231289A (en) 2010-04-30 2010-04-30 Cyclopentadithiophene-based polymer

Country Status (1)

Country Link
JP (1) JP2011231289A (en)

Similar Documents

Publication Publication Date Title
US7118692B2 (en) Substituted thienothiophene monomers and conducting polymers
TWI286551B (en) Pentafluorosulfanyl-substituted thienothiophene monomers and conducting polymers
KR101938922B1 (en) Improved synthesis of conjugated polymers via oxidative polymerization and related compositions
Mammo et al. New low band gap alternating polyfluorene copolymer-based photovoltaic cells
JP2015168793A (en) Thiophene copolymer, aqueous solution thereof, thiophene monomer composition and method for producing the same
US8168671B2 (en) Synthesis of thieno[3,4-b]thiophene, thieno[3,4-b]furan, related compounds and their derivatives and use thereof
US7094365B2 (en) Pentafluorosulfanyl-substituted thienothiophene monomers and conducting polymers
US20070238854A1 (en) Heterocyclic Fused Isothiazole and Isoselenazole Monomers and Conducting Polymers
JP2012214730A (en) Thienothiophene copolymer and method for preparing the same
JP2011231289A (en) Cyclopentadithiophene-based polymer
JPWO2010140667A1 (en) Thiophene compound, method for producing the same, and polymer obtained using the same
JP5294255B2 (en) NOVEL COMPOUND, PROCESS FOR PRODUCING THE SAME, AND NOVEL POLYMER OBTAINED BY USING THE SAME
Baghdouche et al. Synthesis, characterization, and electropolymerization of fluorene-thiophene derivatives
JP2010138222A (en) New polymer having thiophene skeleton and application thereof
JPWO2011090026A1 (en) Regioregular polythiophenes and method for producing the same
KR20120043016A (en) Thiophene derivative, method for producing same, and polymer of thiophene derivative
JP2009224216A (en) Conductive material for electronic device containing indolocarbazole polymer substance
JP2012246272A (en) Thienothiophene compound and production method therefor, and method for producing thienothiophene copolymer
JP2013234265A (en) POLYMER HAVING π BACKBONE PLANARITY AND APPLICATION THEREOF
JP2013028585A (en) Crosslinkable dithienopyrrole compound and polymer thereof
JP2012251129A (en) Conductive ink and method for producing the same
JP2005314644A (en) New polymer
Bogale SCHOOL OF GRADUATE STUDIES DEPARMENT OF CHEMISTRYGRADUATE PROJECT (Chem. 774)
JP2013075832A (en) Method for producing alkoxy thiophene derivative