JP2011230671A - Power generation control device of hybrid vehicle - Google Patents

Power generation control device of hybrid vehicle Download PDF

Info

Publication number
JP2011230671A
JP2011230671A JP2010103436A JP2010103436A JP2011230671A JP 2011230671 A JP2011230671 A JP 2011230671A JP 2010103436 A JP2010103436 A JP 2010103436A JP 2010103436 A JP2010103436 A JP 2010103436A JP 2011230671 A JP2011230671 A JP 2011230671A
Authority
JP
Japan
Prior art keywords
power generation
lower limit
correction
efficiency
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010103436A
Other languages
Japanese (ja)
Other versions
JP5322994B2 (en
Inventor
Kentaro Maki
健太郎 牧
Atsushi Yokoyama
篤 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2010103436A priority Critical patent/JP5322994B2/en
Publication of JP2011230671A publication Critical patent/JP2011230671A/en
Application granted granted Critical
Publication of JP5322994B2 publication Critical patent/JP5322994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To promptly recover the electricity storage amount while preferentially performing efficient power generation in power generation using engine drive force of a hybrid vehicle which uses an engine and a motor as a source of driving force.SOLUTION: In the hybrid vehicle which uses the engine and the motor as a source of driving force, when an electric storage device is in a predetermined charging required state, power generation is performed by using the surplus part of the engine drive force when the gas pedal is ON. In this case, according to the difference of the target electricity storage amount and the actual electricity storage amount, and time change of the difference, the value of power generation permission lower limit efficiency which is a threshold to permit power generation is changed (S506), and power generation at efficiency below power generation permission lower limit efficiency is forbidden (S512). Thereby recovery of the electricity storage amount is promptly enabled without lapsing into shortage of the electricity storage amount, while preferentially performing efficient power generation in any traveling conditions.

Description

本発明はハイブリッド車両の発電制御装置に関するものである。   The present invention relates to a power generation control device for a hybrid vehicle.

地球環境への配慮から,駆動力源としてエンジンとモータを備えたハイブリッド自動車の開発が進められている。ハイブリッド自動車は,エンジンの低効率運転領域におけるモータ走行や,エンジンの高効率運転,および制動エネルギーの回収などにより,低燃費を実現し,温室効果ガスの低減に効果がある。   In consideration of the global environment, the development of hybrid vehicles equipped with engines and motors as driving force sources is underway. Hybrid vehicles achieve low fuel consumption and reduce greenhouse gas emissions by driving the motor in the low-efficiency operation region of the engine, high-efficiency operation of the engine, and recovery of braking energy.

ハイブリッド自動車におけるバッテリの充電機会として,減速時のエネルギー回生の他に,エンジンの駆動余力を用いた発電(以下,発電走行という)が挙げられる。発電走行では,ドライバーが要求する駆動トルク以上のトルクをエンジンで出力し,図1に示す駆動余力にあたるエンジントルクの余剰分を発電トルクにまわしてモータにおける発電に用いる。   As an opportunity for charging a battery in a hybrid vehicle, in addition to energy regeneration during deceleration, there is power generation using the remaining driving power of the engine (hereinafter referred to as power generation traveling). In power generation traveling, torque equal to or higher than the driving torque required by the driver is output by the engine, and the surplus of engine torque corresponding to the driving surplus power shown in FIG. 1 is used for power generation in the motor.

発電走行時のエンジンおよびモータの動作点(回転数,トルク)の例を図2と図3に示す。両図において,エンジン,モータのそれぞれについて等効率線を示す。ここで,エンジンの効率とは,投入したガソリンがもつ熱量のうちエンジン軸における動力として出力可能な割合であり,モータの効率(発電側)とは,外部からモータ軸に与えられた回転エネルギーのうち電力として蓄電可能な割合である。図中の点P1,Q1は発電未実施時のエンジン,モータそれぞれの動作点であり,発電実施時は,動作点が点P2,Q2に移動する。一般的に,発電走行時のエンジンの動作点は高効率運転可能なトルク付近に設定され,走行に必要なトルクとの差分で発電に充てられるトルク(以下,発電トルクという)の大きさが決まる。図2における破線は,各回転数において最高効率運転が可能な動作点を結んだ線(以下,燃費最適線という)である。発電走行時のエンジン動作点は燃費最適線付近に設定されることが知られている(例えば,特許文献1参照)。   Examples of operating points (rotation speed, torque) of the engine and motor during power generation traveling are shown in FIGS. In both figures, the isoefficiency lines are shown for each of the engine and motor. Here, the engine efficiency is the proportion of the calorific value of gasoline that can be output as power in the engine shaft, and the motor efficiency (power generation side) is the rotational energy given to the motor shaft from the outside. It is the ratio that can be stored as electric power. Points P1 and Q1 in the figure are operating points of the engine and the motor when power generation is not performed. When power generation is performed, the operating point moves to points P2 and Q2. In general, the operating point of the engine during power generation running is set near the torque at which high-efficiency operation is possible, and the magnitude of torque (hereinafter referred to as power generation torque) used for power generation is determined by the difference from the torque required for running . The broken line in FIG. 2 is a line connecting operating points at which the maximum efficiency operation can be performed at each rotation speed (hereinafter referred to as a fuel efficiency optimum line). It is known that the engine operating point during power generation traveling is set near the fuel efficiency optimum line (see, for example, Patent Document 1).

パラレルハイブリッド自動車におけるエンジンおよびモータ動作点は走行条件(車速・負荷)と関係がある。発電走行時の発電効率(エンジン効率とモータ効率との積)は,車速から決まるエンジンおよびモータの回転数ならびに発電トルクの大きさによって左右されるため,多様な走行条件が混在する実走行において,常に高効率な発電が可能とは限らない。また,バッテリの蓄電量は,効率的なエネルギーマネジメントを行う観点から,過充電状態でも過放電状態でもない適正な範囲に制御する必要があり,充電が必要な状態にあるときには,目標とする蓄電量まで速やかに回復することが望ましい。   The engine and motor operating points in a parallel hybrid vehicle are related to driving conditions (vehicle speed / load). The power generation efficiency (product of engine efficiency and motor efficiency) during power generation travel depends on the engine and motor speed determined by the vehicle speed and the magnitude of the power generation torque, so in actual travel where various travel conditions are mixed, Highly efficient power generation is not always possible. In addition, from the viewpoint of efficient energy management, the amount of power stored in the battery must be controlled within an appropriate range that is neither overcharged nor overdischarged. When the battery needs to be charged, It is desirable to recover quickly to the amount.

エネルギー効率の向上を実現するためには,高効率な発電を選択的に行いつつ,バッテリの蓄電量を速やかに回復する必要がある。蓄電装置が充電が必要な所定の状態にあるとき,ナビ情報を取得する。現在はエンジンを効率よく運転可能な高効率走行条件下でなく,近い将来に高効率走行条件を満たすことが予測されている場合には,高効率走行条件に至ってから蓄電装置が充電されるように,現在の発電を禁止する自動車制御方法が知られている(例えば,特許文献2参照)。   In order to improve the energy efficiency, it is necessary to quickly recover the amount of charge stored in the battery while selectively performing highly efficient power generation. The navigation information is acquired when the power storage device is in a predetermined state that requires charging. If it is predicted that the high-efficiency driving condition will be satisfied in the near future instead of the high-efficiency driving condition where the engine can be operated efficiently, the power storage device will be charged after the high-efficiency driving condition is reached. In addition, an automobile control method for prohibiting current power generation is known (see, for example, Patent Document 2).

特開2004−144041号公報JP 2004-144041 A 特開2008−94233号公報JP 2008-94233 A

特許文献1および2に開示された発明によると, エンジンとモータとを駆動力源とするハイブリッド車両のエンジン駆動力を用いた発電において,高効率な発電を優先的に行いつつ,蓄電量を速やかに回復するよう,バッテリの蓄電量に応じた柔軟な制御ができないという問題がある。   According to the inventions disclosed in Patent Documents 1 and 2, in the power generation using the engine driving force of the hybrid vehicle using the engine and the motor as the driving force source, the highly efficient power generation is preferentially performed and the storage amount is quickly increased. Therefore, there is a problem that flexible control according to the amount of power stored in the battery is not possible.

請求項1に記載の発電制御装置は,ハイブリッド車両に搭載し、エンジンが発生する発電トルクに応じてバッテリを充電するためのモータによる発電を制御する発電制御装置であって、ハイブリッド車両の車速とアクセル開度とに基づきハイブリッド車両の駆動に必要な要求駆動トルクを演算するとともに、車速と要求駆動トルクとに基づき発電トルクを演算するトルク演算手段と、車速と要求駆動トルクと発電トルクとに基づき、発電トルクに応じたバッテリの充電効率に関する物理量を演算する物理量演算手段と、バッテリの充電に必要な充電量を演算する充電量演算手段と、物理量が所定の下限値を下回るとき、発電を禁止する発電禁止手段と、バッテリの蓄電量の蓄電量時間変化率が第1の所定範囲に含まれないとき、所定の下限値を補正する補正手段とを備え、所定の下限値は、必要な充電量が大きいほど小さいことを特徴とする。   The power generation control device according to claim 1 is a power generation control device that is mounted on a hybrid vehicle and controls power generation by a motor for charging a battery in accordance with power generation torque generated by an engine. Calculates the required driving torque required for driving the hybrid vehicle based on the accelerator opening, and calculates the power generation torque based on the vehicle speed and the required driving torque, and based on the vehicle speed, the required driving torque, and the power generating torque. , Physical quantity calculating means for calculating the physical quantity related to the charging efficiency of the battery according to the power generation torque, charge amount calculating means for calculating the charging quantity necessary for charging the battery, and prohibiting power generation when the physical quantity falls below a predetermined lower limit value When the power generation prohibition means to perform and the rate of change of the stored amount of the battery with respect to time are not included in the first predetermined range, the predetermined lower limit value And a correction correcting means, the predetermined lower limit value, characterized in that the larger the amount of charge required small.

本発明によれば,バッテリの蓄電量に応じて高効率な発電を優先的に行い,蓄電量を速やかに回復することが可能となる。   According to the present invention, high-efficiency power generation is preferentially performed according to the amount of electricity stored in the battery, and the amount of electricity stored can be quickly recovered.

発電走行時のトルク配分を表す図である。It is a figure showing the torque distribution at the time of electric power generation driving | running | working. 発電走行実施時の発電トルクとエンジン動作点変化を表す図である。It is a figure showing the electric power generation torque at the time of electric power generation driving | running | working, and an engine operating point change. 発電走行実施時の発電トルクとモータ動作点変化を表す図である。It is a figure showing the electric power generation torque at the time of electric power generation driving | running | working, and a motor operating point change. 第1の実施の形態におけるハイブリッド車両のハード構成図である。It is a hardware block diagram of the hybrid vehicle in 1st Embodiment. 第1の実施の形態における制御全体の流れを表す図である。It is a figure showing the flow of the whole control in 1st Embodiment. 発電許可下限効率の算出方法を表す図である。It is a figure showing the calculation method of power generation permission lower limit efficiency. 発電目標蓄電量の設定例を表す図である。It is a figure showing the example of a setting of electric power generation target electrical storage amount. 発電許可下限効率線の補正方法を表す図である。It is a figure showing the correction method of a power generation permission lower limit efficiency line. 蓄電量時間変化率の算出方法を表す図である。It is a figure showing the calculation method of the electrical storage amount time change rate. 発電許可効率範囲の補正例を表す図である。It is a figure showing the example of amendment of the power generation permission efficiency range. 発電許可効率範囲の補正解除条件の設定方法を表す図である。It is a figure showing the setting method of the correction | amendment cancellation | release conditions of a power generation permission efficiency range. 発電走行時の転がり抵抗による損失を表す図である。It is a figure showing the loss by rolling resistance at the time of power generation driving. 第2の実施の形態における制御全体の流れを表す図である。It is a figure showing the flow of the whole control in 2nd Embodiment. 発電時効率向上量の大小を表す図である。It is a figure showing the magnitude of the power generation efficiency improvement amount. 発電許可下限効率向上量の算出方法を表す図である。It is a figure showing the calculation method of power generation permission lower limit efficiency improvement amount. 発電許可下限効率向上量線の補正方法を表す図である。It is a figure showing the correction method of a power generation permission lower limit efficiency improvement amount line. 発電許可効率向上量範囲の補正例を表す図である。It is a figure showing the example of amendment of power generation permission efficiency improvement amount range. 低蓄電量停車に関係する発電許可効率範囲の補正方法を表す図である。It is a figure showing the correction | amendment method of the electric power generation permission efficiency range relevant to a low electrical storage amount stop. エンジン水温に関係する発電許可効率範囲の補正方法を表す図である。It is a figure showing the correction method of the power generation permission efficiency range related to engine water temperature.

−−−第1の実施の形態−−−
以下,本発明のハイブリッド車両の発電制御装置として,ハイブリッド自動車における実施形態を,図面を用いて説明する。以下に示す各実施形態において,ハイブリッド自動車は,前輪をエンジンによって駆動し,後輪をモータによって駆動する構成とする。ただし,実用的には,エンジン,モータの配置に関わらず,エンジンとモータが共に駆動に用いられるいわゆるパラレルハイブリッド自動車の構成において,同様の制御が適用可能である。 また,シリーズ・パラレルハイブリッド自動車におけるパラレルモードでの走行時にも適用可能である。さらに,本発明のハイブリッド車両には,上記ハイブリッド自動車のほかに同様の構成を有する産業車両も含まれる。
--- First embodiment ---
Hereinafter, embodiments of a hybrid vehicle as a power generation control device for a hybrid vehicle of the present invention will be described with reference to the drawings. In each embodiment described below, the hybrid vehicle has a configuration in which the front wheels are driven by an engine and the rear wheels are driven by a motor. However, practically, the same control can be applied to the configuration of a so-called parallel hybrid vehicle in which both the engine and the motor are used for driving regardless of the arrangement of the engine and the motor. It can also be applied when running in parallel mode on series / parallel hybrid vehicles. Furthermore, the hybrid vehicle of the present invention includes an industrial vehicle having a similar configuration in addition to the hybrid vehicle.

図4を用いて,本発明の対象となるハイブリッド自動車を構成する各装置を説明する。本発明のハイブリッド自動車の発電制御装置は,例えばECU411に適用される。エンジン401による駆動力は,クラッチ402,トランスミッション403,およびフロントディファレンシャルギア404を通して,前輪405に伝達され,路面413に対し駆動力を生む。後輪側の駆動力源であるモータ408は,インバータ407によって制御されるバッテリ406の電力を使用してトルクを発生する。モータ408のトルクはリアディファレンシャルギア409を通して,後輪410に伝達され,路面413に対し駆動力を生む。ECU411は,エンジン状態検知手段412からエンジン回転数とエンジン推定トルクとエンジン冷却水温度等の温度情報とを,インバータ407からモータ回転数とモータトルクを,TPMS(Tire Pressure Monitoring System)416からタイヤ空気圧を得ることができる。さらに,バッテリコントローラ415からバッテリ406の蓄電量および電流値,温度情報を得ることができる。ECU411は,そのようにして取得した各種情報に基づいてエンジン出力およびモータ出力を決定し,エンジン401,クラッチ402,およびインバータ407に指令を送る。また,補機類414はバッテリ406から電力を供給される。図4において,各装置間を結ぶ実線は各種情報が転送される制御バスを表し,破線は電荷の流れを表し,二重線は力の伝導を表している。   With reference to FIG. 4, each device constituting the hybrid vehicle that is the subject of the present invention will be described. The hybrid vehicle power generation control device of the present invention is applied to, for example, the ECU 411. The driving force by the engine 401 is transmitted to the front wheels 405 through the clutch 402, the transmission 403, and the front differential gear 404, and generates driving force for the road surface 413. A motor 408, which is a driving force source on the rear wheel side, generates torque using the electric power of the battery 406 controlled by the inverter 407. The torque of the motor 408 is transmitted to the rear wheel 410 through the rear differential gear 409 and generates a driving force for the road surface 413. The ECU 411 receives the engine speed, the estimated engine torque, temperature information such as the engine coolant temperature from the engine state detection means 412, the motor speed and the motor torque from the inverter 407, and the tire pressure from the TPMS (Tire Pressure Monitoring System) 416. Can be obtained. Further, the storage amount, current value, and temperature information of the battery 406 can be obtained from the battery controller 415. The ECU 411 determines the engine output and the motor output based on the various information thus obtained, and sends commands to the engine 401, the clutch 402, and the inverter 407. The auxiliary machinery 414 is supplied with power from the battery 406. In FIG. 4, a solid line connecting the devices represents a control bus to which various information is transferred, a broken line represents a flow of charges, and a double line represents conduction of force.

次に,本発明の制御の全体概要を図5を用いて説明する。本制御は,ECU411によって実行される。ステップS501で充電要求がある場合,ステップS502で,車両状態として,車速,エンジン回転数,蓄電量およびアクセル開度を取得する。蓄電量が,所定の許容下限蓄電量を下回っているかまたは等しい場合は,発電の許可/禁止を判断する制御を実施せず,強制発電を実施する(ステップS513)。許容下限蓄電量は,バッテリのサイクル寿命よりも必要とされる寿命が短くならないように決定される。許容下限蓄電量が小さいと,バッテリ充放電深度が深くなるために,バッテリのサイクル寿命が必要とされる寿命よりも短くなってしまう。ステップS511で強制発電を実施したときおよびステップS501で充電要求が無いときは本制御を終了する。   Next, the overall outline of the control of the present invention will be described with reference to FIG. This control is executed by the ECU 411. If there is a charge request in step S501, in step S502, the vehicle speed, the engine speed, the storage amount, and the accelerator opening are acquired as the vehicle state. If the charged amount is less than or equal to the predetermined allowable lower limit charged amount, forced power generation is performed without performing control for determining permission / prohibition of power generation (step S513). The allowable lower limit storage amount is determined such that the required life is not shorter than the cycle life of the battery. If the allowable lower limit storage amount is small, the battery charge / discharge depth becomes deep, and the cycle life of the battery becomes shorter than the required life. When forced power generation is performed in step S511 and when there is no charge request in step S501, this control is terminated.

ステップS503において,蓄電量が許容下限蓄電量より大きい場合には,発電トルクΔTeを演算する(ステップS504)。発電トルクとは,発電実施時のエンジントルクTeGenと,発電未実施時のエンジントルクTeDrvとの差である。発電未実施時のエンジントルクTeDrvは,車軸における要求駆動トルクTaxsDrvとトランスミッション403の変速比(減速比)とに基づき算出される。要求駆動トルクTaxsDrvおよびトランスミッションの変速比は,予め用意されたマップを参照して,車速VSPとアクセル開度APOとに基づき算出される。
TeDrv = TaxsDrv(VSP, APO) / (RatioTm(VSP, APO) * GfF) (1)
TeDrv 発電未実施時エンジントルク
TaxsDrv 車軸における要求駆動トルク
VSP 車速
APO アクセル開度
RatioTm トランスミッションの減速比
GfF フロントファイナルギア減速比
In step S503, if the charged amount is larger than the allowable lower limit charged amount, the power generation torque ΔTe is calculated (step S504). The power generation torque is the difference between the engine torque TeGen when power generation is performed and the engine torque TeDrv when power generation is not performed. The engine torque TeDrv when power generation is not performed is calculated based on the required drive torque TaxsDrv on the axle and the transmission gear ratio (reduction ratio) of the transmission 403. The required drive torque TaxsDrv and the transmission gear ratio are calculated based on the vehicle speed VSP and the accelerator opening APO with reference to a map prepared in advance.
TeDrv = TaxsDrv (VSP, APO) / (RatioTm (VSP, APO) * GfF) (1)
TeDrv Engine torque when not generating electricity
TaxsDrv Required drive torque on axle
VSP vehicle speed
APO accelerator opening
RatioTm Transmission reduction ratio
GfF Front final gear reduction ratio

発電実施時のエンジントルクTeGenは,発電未実施時のエンジン回転数Neを保ったまま,理想的にはエンジンの燃費最適線上に設定される。エンジン回転数Neは車速VSPとトランスミッション403の変速比とに基づいて求められる。そのようにして決められた発電実施時のエンジントルクTeGenに基づき,上述したように発電トルクΔTeが求められる。発電トルクΔTeがモータの発電トルク限界を上回る場合は,発電トルク限界の値で制限される。発電トルク限界は,回転数Nmに応じて定格として定められている他,バッテリの温度によって小さく設定される。   The engine torque TeGen when power generation is performed is ideally set on the fuel efficiency optimum line of the engine while maintaining the engine speed Ne when power generation is not performed. The engine speed Ne is obtained based on the vehicle speed VSP and the transmission gear ratio of the transmission 403. Based on the engine torque TeGen at the time of power generation determined as described above, the power generation torque ΔTe is obtained as described above. When the power generation torque ΔTe exceeds the power generation torque limit of the motor, it is limited by the value of the power generation torque limit. The power generation torque limit is set as a rating according to the rotational speed Nm, and is set smaller depending on the battery temperature.

次に,ステップS505において,発電トルクΔTeによる発電走行を仮定した場合のバッテリ406の充電効率に関する物理量として,発電動作点効率を演算する。発電動作点効率は,以下の式(2)に示すように発電実施時の式(3)に示すエンジン動作点効率ηEngGenと式(4)に示すモータ動作点効率ηMotGenとの積で定義する。式(3)および(4)において,右辺のf(x,y)は,左辺がxおよびyの関数であることを意味する。
ηGen = ηEngGen * ηMotGen (2)
ηEngGen = f(Ne, TeDrv + ΔTe) (3)
ηMotGen = f(Nm, TmGen) (4)
TmGen = (-1) * TeGen * RatioTm * GfF / GfR (5)
ηGen 発電動作点効率
ηEngGen 発電実施時のエンジン動作点(図2に示す点P2)効率
ηMotGen 発電実施時のモータ動作点(図3に示す点Q2)効率
Ne エンジン回転数
Nm モータ回転数
TmGen 発電トルク(モータ軸での値)
GfR リアファイナルギア減速比
Next, in step S505, the power generation operating point efficiency is calculated as a physical quantity related to the charging efficiency of the battery 406 when power generation traveling with the power generation torque ΔTe is assumed. The power generation operating point efficiency is defined by the product of the engine operating point efficiency ηEngGen shown in the equation (3) and the motor operating point efficiency ηMotGen shown in the equation (4) as shown in the following equation (2). In equations (3) and (4), f (x, y) on the right side means that the left side is a function of x and y.
ηGen = ηEngGen * ηMotGen (2)
ηEngGen = f (Ne, TeDrv + ΔTe) (3)
ηMotGen = f (Nm, TmGen) (4)
TmGen = (-1) * TeGen * RatioTm * GfF / GfR (5)
ηGen Power generation operating point efficiency ηEngGen Engine operating point during power generation (point P2 shown in FIG. 2) Efficiency ηMotGen Motor operating point during power generation (point Q2 shown in FIG. 3) Efficiency
Ne engine speed
Nm Motor speed
TmGen Power generation torque (value at motor shaft)
GfR Rear final gear reduction ratio

続いて,ステップS506において,発電の許可/禁止の閾値効率である発電許可下限効率線を設定する。発電許可下限効率線の設定については後述する。ステップS507において,ECU411が予め記憶している目標蓄電量と,ECU411がステップS502にて取得した現在の蓄電量との差分として求められる,バッテリ406の充電に必要な充電量(以下,必要充電量という)が演算される。ステップS508において,ステップS507にて演算された必要充電量と,ステップS506にて設定された発電許可下限効率線とに基づいて,発電許可下限効率が演算される。ステップS509で,発電動作点効率が発電許可下限効率を上回れば,ステップS510に進む。発電動作点効率が発電許可下限効率を下回った場合または等しい場合は,発電を禁止し(ステップS512),本制御を終了する。   Subsequently, in step S506, a power generation permission lower limit efficiency line that is a threshold efficiency of permission / prohibition of power generation is set. The setting of the power generation permission lower limit efficiency line will be described later. In step S507, the amount of charge required for charging the battery 406 (hereinafter referred to as required amount of charge), which is obtained as a difference between the target amount of electricity stored in advance by the ECU 411 and the current amount of electricity acquired by the ECU 411 in step S502. Is calculated). In step S508, the power generation permission lower limit efficiency is calculated based on the required charge amount calculated in step S507 and the power generation permission lower limit efficiency line set in step S506. If the power generation operating point efficiency exceeds the power generation permission lower limit efficiency in step S509, the process proceeds to step S510. If the power generation operating point efficiency is lower than or equal to the power generation permission lower limit efficiency, power generation is prohibited (step S512), and this control is terminated.

ステップS510では,ECU411に蓄積された現在までの所定時間における走行履歴(車速,負荷)あるいはカーナビゲーションなどの外部情報による走行予測(車速,負荷)に基づき,発電走行がエネルギー効率の改善に有効か否かを判定する。高速巡航が継続する場合は,発電走行で蓄えた蓄電エネルギーを放電する機会に乏しい。また,高速巡航におけるエンジントルクTeGenはエンジンの燃費最適線付近にあり,放電時のエンジン走行に対する効率向上代が小さいため,発電走行の許可がエンジン効率の低下を招き,エネルギー効率の改善にマイナスの効果を及ぼすことがある。この傾向は,エンジン排気量が小さい場合に顕著である。ステップS510における判定の基準は車両出荷時にエンジンおよびモータの体格に合わせて設定されているものとする。ステップS510で発電走行がエネルギー効率の改善に有効と判定された場合は,発電を許可して(ステップS511)本制御を終了し,そうでなければステップS512で発電を禁止して本制御を終了する。   In step S510, whether the power generation travel is effective for improving energy efficiency based on the travel history (vehicle speed, load) for a predetermined time accumulated in the ECU 411 or the travel prediction (vehicle speed, load) based on external information such as car navigation. Determine whether or not. When high-speed cruising continues, there is little opportunity to discharge the energy stored in power generation. In addition, the engine torque TeGen for high-speed cruises is near the optimal fuel efficiency line of the engine, and the efficiency improvement margin for engine driving during discharge is small. Therefore, permission for power generation driving causes a decrease in engine efficiency and negatively improves energy efficiency. May have an effect. This tendency is remarkable when the engine displacement is small. Assume that the determination criterion in step S510 is set in accordance with the physique of the engine and motor at the time of vehicle shipment. If it is determined in step S510 that the power generation travel is effective for improving the energy efficiency, power generation is permitted (step S511), and this control is terminated. Otherwise, power generation is prohibited in step S512 and this control is terminated. To do.

発電許可下限効率の演算(ステップS506)について詳細を説明する。ステップS508において,発電許可下限効率は,図6に示すように,ステップS507にて演算された必要充電量を入力とし,ステップS506にて設定された発電許可下限効率線に基づいて決められる。必要充電量の演算に用いられる目標蓄電量は,上述したようにECU411によって予め記憶されている。現在の蓄電量は上述したようにステップS502においてECU411によって取得される。目標蓄電量の設定は許容される上限蓄電量以下で一定値とする他に,図7に示す発電目標蓄電量のように高車速で低い値とすることも考えられる。高車速のときは,減速回生で得られるエネルギーが大きくなる。発電目標蓄電量と上限蓄電量との差が小さいと,その減速回生で得られるエネルギーすべてをバッテリ406の充電に用いるということができずに一部を無駄にすることとなるため,エネルギー効率が低くなる。発電目標蓄電量は,所定の停車時目標蓄電量に対し,停車までに減速回生で得られると予測される蓄電量分の余裕を持たせた設定となっている。   Details of the calculation of the power generation permission lower limit efficiency (step S506) will be described. In step S508, as shown in FIG. 6, the power generation permission lower limit efficiency is determined based on the power generation permission lower limit efficiency line set in step S506 with the required charge amount calculated in step S507 as an input. The target power storage amount used for calculating the required charge amount is stored in advance by the ECU 411 as described above. As described above, the current power storage amount is acquired by the ECU 411 in step S502. In addition to setting the target power storage amount to a constant value below the allowable upper limit power storage amount, it is also conceivable to set a low value at a high vehicle speed, such as the power generation target power storage amount shown in FIG. When the vehicle speed is high, the energy obtained by deceleration regeneration increases. If the difference between the power generation target power storage amount and the upper limit power storage amount is small, all of the energy obtained by the deceleration regeneration cannot be used for charging the battery 406, and a part of the energy is wasted. Lower. The power generation target power storage amount is set so as to have a margin for the power storage amount that is predicted to be obtained by deceleration regeneration before the vehicle stops, with respect to the predetermined target power storage amount at the time of stopping.

発電許可下限効率線は,必要充電量と発電を許可/禁止する閾値効率との関係を表す。図6に示すように,必要充電量が小さいほど,すなわち発電の緊急性が低いほど,低効率での発電を禁止し,必要充電量が大きい,すなわち発電の緊急性が高い場合には,いかなる効率での発電も許可するように設定される。上述した高速巡航における発電走行については,エネルギー効率の改善に有効なときに許可されることとなる。このような設定とすることで,発電の緊急性に応じて柔軟な発電制御が可能であり,ハイブリッド自動車のエネルギー効率向上に寄与する。   The power generation permission lower limit efficiency line represents the relationship between the required charge amount and the threshold efficiency at which power generation is permitted / prohibited. As shown in Fig. 6, the smaller the required amount of charge, that is, the lower the urgency of power generation, the lower the efficiency of power generation. The higher the required charge amount, that is, the higher the urgency of power generation, It is set to allow power generation with efficiency. The power generation traveling in the above-described high-speed cruise is permitted when it is effective for improving energy efficiency. With this setting, flexible power generation control is possible according to the urgency of power generation, which contributes to improving the energy efficiency of hybrid vehicles.

発電許可下限効率線は図6の形状に限定されず,必要充電量が小さいときに低効率発電を禁止する形状であることを特徴とし,ECU411に入力される各種入力情報に基づいて決定する。各種入力情報とは,例えばエンジン401およびモータ408のコンポーネント特性,ならびにバッテリ406の容量および充放電サイクル数である。本発明の制御ではさらに,発電許可下限効率線を,別途計算される蓄電量時間変化率に基づき補正する。   The power generation permission lower limit efficiency line is not limited to the shape shown in FIG. 6, and has a shape that prohibits low-efficiency power generation when the required charge amount is small, and is determined based on various input information input to the ECU 411. The various input information includes, for example, the component characteristics of the engine 401 and the motor 408, the capacity of the battery 406, and the number of charge / discharge cycles. In the control of the present invention, the power generation permission lower limit efficiency line is further corrected based on the separately calculated power storage amount time change rate.

ECU411によって行われる発電許可下限効率線の補正方法について,図8により説明する。ステップS801において,発電許可下限効率線として,ECU411が記憶している発電許可下限効率基準線を読み出して仮設定し,ステップS802の蓄電量時間変化率の算出へ進む。   A method for correcting the power generation permission lower limit efficiency line performed by the ECU 411 will be described with reference to FIG. In step S801, the power generation permission lower limit efficiency reference line stored in the ECU 411 is read and temporarily set as the power generation permission lower limit efficiency line, and the process proceeds to calculation of the storage amount time change rate in step S802.

ステップS802の蓄電量時間変化率算出について図9を用いて説明する。蓄電量時間変化率は,本制御実行タイミング以前の所定時間Δtにおける蓄電量増加量である。ただし,車速が大きくなるとモータ回転数が大きくなるために蓄電量時間変化率が大きくなり,車速が小さくなるとモータ回転数が小さくなるために蓄電量時間変化率が小さくなる。後述するステップS804における判定処理を簡便にするため,ここでは蓄電量時間変化率が大きくなり過ぎず,かつ小さくなり過ぎないよう,所定の参照車速範囲を定めることとする。所定時間Δtは,車速が所定の参照車速範囲に含まれており,かつ,アクセル開度が正である時間について,カウントされる。図9では,本制御実行タイミング直前は車速が参照車速範囲の上限である参照上限速度を上回っているため,所定時間Δtには含めない。また,車速が,参照車速範囲を頻繁に逸脱する場合は,逸脱していない部分について所定時間Δt分のデータを集計し,蓄電量時間変化率を算出する。本制御実行タイミングから遡って所定時間Δtまでの間で車速が参照車速範囲を逸脱した部分を控除することとしても良いが,蓄電量時間変化率の算出にはΔt≠0である必要がある。   The calculation of the storage amount time change rate in step S802 will be described with reference to FIG. The storage amount time change rate is the amount of increase in the storage amount during a predetermined time Δt before this control execution timing. However, when the vehicle speed increases, the motor rotation speed increases, so the rate of change of the stored electricity amount increases. When the vehicle speed decreases, the motor rotation speed decreases, and the rate of change of the stored electricity amount decreases. In order to simplify the determination process in step S804, which will be described later, here, a predetermined reference vehicle speed range is determined so that the rate of change of the charged amount time does not become too large and does not become too small. The predetermined time Δt is counted for a time in which the vehicle speed is included in a predetermined reference vehicle speed range and the accelerator opening is positive. In FIG. 9, the vehicle speed exceeds the reference upper limit speed, which is the upper limit of the reference vehicle speed range, immediately before the execution timing of this control, so it is not included in the predetermined time Δt. Further, when the vehicle speed frequently deviates from the reference vehicle speed range, the data for a predetermined time Δt is totaled for the portion not deviating to calculate the storage amount time change rate. A portion where the vehicle speed deviates from the reference vehicle speed range from the control execution timing to a predetermined time Δt may be subtracted, but Δt ≠ 0 needs to be calculated in order to calculate the storage amount time change rate.

ステップS803では,ステップS802で算出した蓄電量時間変化率を予め用意された蓄電量時間変化率上限および蓄電量時間変化率下限と比較し,異常の有無を判定する。異常が発生する理由は,たとえばバッテリSOHの低下,タイヤ空気圧の低下,路面摩擦係数の低下または補機使用電力の増加である。蓄電量時間変化率が蓄電量時間変化率上限を超えていた場合,もしくは,蓄電量時間変化率が蓄電量時間変化率下限未満であった場合には,ステップS804において異常ありと判定し,発電許可下限効率線の補正を実施する(ステップS805)。図10に示すように,蓄電量時間変化率が蓄電量時間変化率上限を超えていた場合,発電が開始されるとバッテリ406の蓄電量が早く上限蓄電量に達する可能性があるため,発電許可下限効率線として,発電許可下限効率上方補正線を採用することにより低効率での発電走行を防止する。蓄電量時間変化率が蓄電量時間変化率下限未満であった場合,発電が開始されてもバッテリ406の蓄電量が上限蓄電量に達するのが遅くなる可能性があるため,発電許可下限効率線として,発電許可下限効率下方補正線を採用することによりバッテリ406の蓄電量不足を防止する。発電許可下限効率基準線と発電許可下限効率上方補正線と発電許可下限効率下方補正線は,図10の形状に限定されず,効率の高い方から発電許可下限効率上方補正線,発電許可下限効率基準線,発電許可下限効率下方補正線の順であり,いずれの線も交差することが無いように予め設定される。   In step S803, the power storage amount time change rate calculated in step S802 is compared with a power storage amount time change rate upper limit and a power storage amount time change rate lower limit prepared in advance to determine whether there is an abnormality. The reason why the abnormality occurs is, for example, a decrease in the battery SOH, a decrease in the tire air pressure, a decrease in the road surface friction coefficient, or an increase in the power used by the auxiliary equipment. If the storage amount time change rate exceeds the storage amount time change rate upper limit, or if the storage amount time change rate is less than the storage amount time change rate lower limit, it is determined in step S804 that there is an abnormality, and power generation is performed. The allowable lower limit efficiency line is corrected (step S805). As shown in FIG. 10, when the power storage amount time change rate exceeds the power storage amount time change rate upper limit, when power generation is started, the power storage amount of the battery 406 may reach the upper limit power storage amount earlier. By adopting the power generation permission lower limit efficiency upward correction line as the permitted lower limit efficiency line, power generation traveling at low efficiency is prevented. If the storage amount time change rate is less than the storage amount time change rate lower limit, the power storage amount of the battery 406 may reach the upper limit storage amount even if power generation is started. As described above, the power generation permission lower limit efficiency downward correction line is employed to prevent the battery 406 from being insufficiently charged. The power generation permission lower limit efficiency reference line, the power generation permission lower limit efficiency upper correction line, and the power generation permission lower limit efficiency lower correction line are not limited to the shapes shown in FIG. The reference line and the power generation permission lower limit efficiency downward correction line are in this order, and are set in advance so that none of the lines intersect.

ステップS805のように発電許可下限効率線を設定することにより,上述した理由で異常が発生して蓄電量の増加速度が鈍くなっている(すなわち蓄電量時間変化率が小さい)場合には,発電許可効率範囲が通常より低効率側に拡大され,走行中の発電機会が増加する。したがって,通常よりも低効率でも発電を優先させることで蓄電量を速やかに回復することができる。また,上述した理由で異常が発生して蓄電量の増加速度が速くなっている(すなわち蓄電量時間変化率が大きい)場合には,発電許可効率範囲が通常より狭く設定され,走行中の発電機会が高効率側に限定される。蓄電量時間変化率が大きいので,たとえ必要充電量が大きくても発電走行が開始されれば通常よりも短時間で蓄電量を速やかに回復することができる。したがって,通常よりも高効率の場合に限って発電を許可するので,低効率での発電走行を防止することができる。こうして,蓄電量の速やかな回復と,発電走行の効率が両立される。   By setting the power generation permission lower limit efficiency line as in step S805, if an abnormality occurs for the reason described above and the increase rate of the storage amount is slow (that is, the storage amount time change rate is small), The permitted efficiency range will be expanded to a lower efficiency side than usual, and the power generation opportunities while driving will increase. Therefore, even if the efficiency is lower than usual, the power storage amount can be quickly recovered by giving priority to power generation. In addition, when an abnormality occurs for the above-described reason and the increase rate of the storage amount is fast (that is, the storage amount time change rate is large), the power generation permission efficiency range is set narrower than usual, and Opportunities are limited to the high efficiency side. Since the power storage time change rate is large, even if the required charge amount is large, the power storage amount can be quickly recovered in a shorter time than usual if power generation travel is started. Therefore, since power generation is permitted only when the efficiency is higher than usual, it is possible to prevent power generation traveling with low efficiency. In this way, both the rapid recovery of the amount of stored electricity and the efficiency of power generation travel are achieved.

発電許可下限効率線に上方または下方の補正が実施された場合,ステップS806において,発電許可下限効率線の補正解除条件の設定を行う。補正解除条件の設定については後述する。ステップS807で補正解除条件が成立するまで補正を維持し,補正解除条件が成立した場合は,ステップS808において補正を解除する。ここで補正の解除とは,発電許可下限効率線の設定を,発電許可下限効率基準線に戻すことを意味する。   When the upward or downward correction is performed on the power generation permission lower limit efficiency line, the correction cancellation condition for the power generation permission lower limit efficiency line is set in step S806. The setting of the correction cancellation condition will be described later. The correction is maintained until the correction cancellation condition is satisfied in step S807. If the correction cancellation condition is satisfied, the correction is canceled in step S808. Here, canceling the correction means returning the setting of the power generation permission lower limit efficiency line to the power generation permission lower limit efficiency reference line.

ここで,図8ステップS806の発電許可下限効率線補正解除条件の設定について,図11を用いて説明する。ステップS1101で,発電中蓄電量時間変化率を算出する。発電中蓄電量時間変化率は,蓄電量時間変化率のうち発電走行を実施している時間のみについて蓄電量変化分を累積し,蓄電量変化分の累積値と発電走行を実施している時間の合計値とに基づいて蓄電量の時間変化率を計算したものである。続いて,発電中蓄電量時間変化率が理想変化率範囲を逸脱しているか否かを判定する(ステップS1102)。理想変化率範囲とは,一時的な走行条件の変化によって発電中蓄電量時間変化率が変化する範囲をいう。理想変化率範囲は,例えば車速,走行負荷,エンジン401およびモータ408ののコンポーネント特性,ならびにバッテリ406の容量に基づき,理論的に,または実験によって求められる。   Here, the setting of the power generation permission lower limit efficiency line correction cancellation condition in step S806 in FIG. 8 will be described with reference to FIG. In step S1101, a power storage time change rate during power generation is calculated. The power storage amount time change rate during power generation is calculated by accumulating the amount of change in power storage amount only for the time during which power generation running is performed out of the power storage amount time change rate. The time change rate of the charged amount is calculated based on the total value. Subsequently, it is determined whether or not the power storage time change rate during power generation deviates from the ideal change rate range (step S1102). The ideal change rate range refers to a range in which the rate of change in the amount of stored electricity during power generation changes due to a temporary change in driving conditions. The ideal change rate range is obtained theoretically or experimentally based on, for example, the vehicle speed, the running load, the component characteristics of the engine 401 and the motor 408, and the capacity of the battery 406.

ステップS1102において,逸脱がない場合には,蓄電量時間変化率の異常は,発電系の異常ではなく,一時的な走行条件の変化によるものであると言えるので,補正の解除条件として発電許可下限効率線の補正が実施されてからの所定時間の経過を設定する(ステップS1107)。例えば追い越し走行の際,アクセル開度が増加してモータが強制駆動されるため,バッテリ406の放電量が増加して蓄電量時間変化率が異常となる可能性があるが,追い越し走行に必要な所定時間(例えば30秒)の経過後には通常の走行条件に復帰していることが推定される。このように推定される一時的な走行条件の変化に応じて所定時間が設定される。発電中蓄電量時間変化率が理想変化率範囲から逸脱している場合は,蓄電量時間変化率の異常は発電系の異常によるものと推定する。後述する表1参照に示す発電中蓄電量時間変化率の異常に影響し得るパラメータのそれぞれが,表1に示す想定範囲を逸脱しているか否かを判定する(ステップS1103および1104)。表1に示す想定範囲はECU411によって予め記憶されている。   If there is no departure in step S1102, it can be said that the abnormality in the rate of change of the storage amount time is not an abnormality in the power generation system, but is due to a temporary change in driving conditions. The elapse of a predetermined time after the correction of the efficiency line is set (step S1107). For example, during overtaking, the accelerator opening is increased and the motor is forcibly driven. Therefore, the amount of discharge of the battery 406 may increase, and the rate of change in the amount of charge over time may become abnormal, but this is necessary for overtaking. After a predetermined time (for example, 30 seconds), it is estimated that the vehicle has returned to normal driving conditions. The predetermined time is set according to the temporary change of the driving condition estimated as described above. If the rate of change in the amount of stored electricity during power generation deviates from the ideal rate of change range, it is estimated that the abnormality in the rate of change in amount of stored electricity over time is due to an abnormality in the power generation system. It is determined whether or not each of the parameters that can affect the abnormality in the rate of change in the amount of stored electricity during power generation shown in Table 1 described later deviates from the assumed range shown in Table 1 (steps S1103 and 1104). The assumed range shown in Table 1 is stored in advance by the ECU 411.

ステップS1104において,想定範囲を逸脱したパラメータが発見された場合には,ステップS1105で,補正解除条件を,該当パラメータが対応する想定範囲に復帰すること,と設定する。複数のパラメータについて,想定範囲を逸脱したパラメータが発見された場合には,いずれかひとつのパラメータが想定範囲に復帰することを,発電許可効率線補正解除条件とする。ステップS1104で,想定範囲を逸脱したパラメータが発見されなかった場合には,ステップS1106において,発電中蓄電量時間変化率の理想変化率範囲復帰を補正解除条件に設定する。   If a parameter deviating from the assumed range is found in step S1104, the correction cancellation condition is set to return to the assumed range corresponding to the parameter in step S1105. For a plurality of parameters, when a parameter that deviates from the assumed range is found, the return of any one parameter to the assumed range is a power generation permission efficiency line correction cancellation condition. If no parameter deviating from the assumed range is found in step S1104, the ideal change rate range return of the stored electricity amount time change rate during power generation is set as the correction cancellation condition in step S1106.

ここで,ステップS1103でチェックを行うパラメータの例について説明する。表1は,発電中蓄電量時間変化率に影響を与えるパラメータの例を示す表である。なお,ステップS1103でチェックを行うパラメータは表1のパラメータに限定されることなく,発電中蓄電量時間変化に影響を与え得るもので,かつセンサ等で監視可能なものであればよい。

Figure 2011230671
Here, an example of parameters to be checked in step S1103 will be described. Table 1 is a table showing examples of parameters that affect the rate of change in the amount of stored electricity during power generation. Note that the parameters to be checked in step S1103 are not limited to the parameters shown in Table 1, but may be any parameters that can affect the change in the amount of stored electricity during power generation and can be monitored by a sensor or the like.
Figure 2011230671

バッテリ406の劣化に関係するパラメータであるSOH(State Of Health)は,バッテリコントローラ415における計測値(電流,温度など)を用いた推定で値を得ることができ,SOHの低下はバッテリ406の劣化が進んでいることを示す。バッテリ406の使用履歴,すなわち充放電電流履歴,温度履歴,経時履歴などとSOHとの関係を表す計算式またはデータテーブルを予め実験で求めておき,その計算式またはデータテーブルを参照してSOHを推定する。バッテリは劣化が進むと電極表面に電気伝導性およびイオン電導性が少ない電解液・電極間物質が成長し,充放電時の抵抗が増加するため,発電走行による蓄電量増加速度が鈍くなる。SOHの閾値として例えば80%と設定し,推定されたSOHがそれ以下であれば,想定範囲逸脱と判定する。   SOH (State Of Health), which is a parameter related to the deterioration of the battery 406, can be obtained by estimation using measured values (current, temperature, etc.) in the battery controller 415. The decrease in SOH is caused by the deterioration of the battery 406. Indicates that is progressing. A calculation formula or a data table representing the relationship between the use history of the battery 406, that is, the charge / discharge current history, the temperature history, the time history, etc., and the SOH is obtained in advance by experiment, and the SOH is determined by referring to the calculation formula or data table. presume. As the battery deteriorates, an electrolyte / interelectrode material with less electrical and ionic conductivity grows on the electrode surface, and the resistance during charging / discharging increases, so the rate of increase in the amount of electricity stored during power generation becomes slow. For example, 80% is set as the threshold value of the SOH, and if the estimated SOH is less than that, it is determined that the estimated range is out of range.

タイヤ空気圧は,TPMS416でモニタリングされる。本実施形態の発電制御装置を有するハイブリッド自動車400の構成は,フロントにエンジン401,リアにモータ408が配置され,モータ408の発電によってバッテリ406が充電されるというものである。図12に示すように,エンジン401で発生した発電トルクをモータ408に伝える間に,エンジン401によって駆動される前輪405,路面413,路面413との間の転がり抵抗によって駆動されてモータ408を駆動する後輪410を経由する。したがって,タイヤ空気圧が低下し,前輪405および後輪410と路面413との間の転がり抵抗が増加すると,発電トルクが損失し,発電走行による蓄電量増加速度が鈍くなる。タイヤ空気圧の閾値として,例えば対象車両の標準空気圧の80%と設定し,TPMSでモニタリングされるタイヤ空気圧がそれ以下であれば,想定範囲逸脱と判定する。   Tire pressure is monitored by TPMS 416. The configuration of the hybrid vehicle 400 having the power generation control device of the present embodiment is such that the engine 401 is disposed at the front and the motor 408 is disposed at the rear, and the battery 406 is charged by the power generation by the motor 408. As shown in FIG. 12, while transmitting the power generation torque generated by the engine 401 to the motor 408, the motor 408 is driven by the rolling resistance between the front wheels 405, the road surface 413, and the road surface 413 driven by the engine 401. Through the rear wheel 410. Therefore, when the tire air pressure decreases and the rolling resistance between the front wheels 405 and the rear wheels 410 and the road surface 413 increases, the power generation torque is lost, and the rate of increase in the amount of stored electricity due to power generation traveling becomes slow. As the tire air pressure threshold, for example, 80% of the standard air pressure of the target vehicle is set. If the tire air pressure monitored by the TPMS is lower than that, it is determined that the tire is deviating from the assumed range.

路面摩擦係数は,ABS(Antilock Brake System)やVDC(Vehicle Dynamics Control)といった不図示の車両運動に関する安全装置で推定が行われる。路面摩擦係数が低下し,前輪405および後輪410と路面413との間における駆動力の伝達率が悪化すると,発電トルクが損失し,発電走行による蓄電量増加速度が鈍くなる。路面摩擦係数の閾値として,例えば濡れたアスファルトと同程度の0.8と設定し,推定された路面摩擦係数がそれ以下であれば,想定範囲逸脱と判定する。   The road surface friction coefficient is estimated by a safety device related to vehicle motion (not shown) such as ABS (Antilock Brake System) or VDC (Vehicle Dynamics Control). When the road surface friction coefficient decreases and the driving force transmission rate between the front wheels 405 and the rear wheels 410 and the road surface 413 deteriorates, the power generation torque is lost, and the rate of increase in the amount of power storage due to power generation traveling becomes slow. As the threshold value of the road surface friction coefficient, for example, 0.8, which is about the same as that of wet asphalt, is set.

補機使用電力は,バッテリコントローラ415における電流計測値から得られる。補機類414はエアコン,カーオーディオ,および冷却用の電動ウォーターポンプなどであり,これらが多くの電力を消費している場合には,発電走行中の蓄電量増加速度が鈍くなる。補機使用電力の閾値として,予め実験等で決めた閾値を設定し,補機使用電力がそれを上回っていれば,想定範囲逸脱と判定する。   The power used by the auxiliary equipment is obtained from the current measurement value in the battery controller 415. The auxiliary machinery 414 is an air conditioner, a car audio system, an electric water pump for cooling, and the like, and when these devices consume a lot of power, the rate of increase in the amount of stored electricity during power generation traveling becomes slow. A threshold value determined in advance through experiments or the like is set as a threshold value for power consumption of auxiliary equipment. If the power consumption of auxiliary equipment exceeds the threshold, it is determined that the estimated range is out of range.

第1の実施の形態の発電制御装置は,以下の作用効果を奏する。
(1)本実施の形態の発電制御装置は,ハイブリッド自動車400の車速Vspとアクセル開度APOとに基づき,ハイブリッド自動車400の駆動に必要な発電未実施時エンジントルクTeDrvを演算する。車速Vspに対応するエンジン回転数Neと発電未実施時エンジントルクTeDrvとに基づき発電トルクΔTeを演算する。車速Vspに対応するエンジン回転数Neと発電未実施時エンジントルクTeDrvと発電トルクΔTeとに基づき,発電トルクΔTeに応じた発電動作点効率ηGenを演算する。バッテリの充電に必要な必要充電量を演算し,発電動作点効率ηGenが発電を許可/禁止する閾値効率を下回るとき,発電を禁止する。発電を許可/禁止する閾値効率と必要充電量との関係は発電許可下限効率線で表され,発電を許可/禁止する閾値効率は必要充電量が大きいほど小さい値をとる。バッテリ406の蓄電量の蓄電量時間変化率が,蓄電量時間変化率上限と蓄電量時間変化率下限との間の範囲に含まれないとき,発電を許可/禁止する閾値効率を補正する。こうしたバッテリの蓄電量に応じた柔軟な発電制御により,蓄電量に余裕があるときは高効率な発電を優先的に行いつつ,蓄電量に余裕が無いときは蓄電量を速やかに回復することを両立できるという作用効果を奏する。
The power generation control device of the first embodiment has the following operational effects.
(1) The power generation control device of the present embodiment calculates the engine torque TeDrv when power generation is not performed, which is necessary for driving the hybrid vehicle 400, based on the vehicle speed Vsp of the hybrid vehicle 400 and the accelerator opening APO. A power generation torque ΔTe is calculated based on the engine speed Ne corresponding to the vehicle speed Vsp and the engine torque TeDrv when power generation is not performed. Based on the engine speed Ne corresponding to the vehicle speed Vsp, the engine torque TeDrv when power generation is not performed, and the power generation torque ΔTe, the power generation operating point efficiency ηGen corresponding to the power generation torque ΔTe is calculated. The necessary amount of charge necessary for charging the battery is calculated, and power generation is prohibited when the power generation operating point efficiency ηGen falls below the threshold efficiency at which power generation is permitted / prohibited. The relationship between the threshold efficiency for permitting / prohibiting power generation and the required charge amount is represented by a power generation permission lower limit efficiency line, and the threshold efficiency for permitting / prohibiting power generation takes a smaller value as the required charge amount is larger. When the storage amount time change rate of the storage amount of the battery 406 is not included in the range between the storage amount time change upper limit and the storage amount time change lower limit, the threshold efficiency for permitting / prohibiting power generation is corrected. By flexible power generation control according to the amount of electricity stored in the battery, high-efficiency power generation is given priority when there is a margin in the amount of electricity stored, and when there is no margin in the amount of electricity stored, the amount of electricity stored can be recovered quickly. There is an effect of being compatible.

(2)本実施の形態の発電制御装置は,蓄電量時間変化率が蓄電量時間変化率上限を上回るとき,発電を許可/禁止する閾値効率を引き上げ,蓄電量時間変化率が蓄電量時間変化率下限を下回るとき,発電を許可/禁止する閾値効率を引き下げる。こうしたバッテリの蓄電量時間変化率に応じた柔軟な発電制御により,蓄電量時間変化率が大きいときは高効率な発電を優先的に行いつつ,蓄電量時間変化率が小さいときは蓄電量を速やかに回復することを両立できるという作用効果を奏する。 (2) The power generation control device according to the present embodiment raises the threshold efficiency for permitting / prohibiting power generation when the power storage time change rate exceeds the power storage time change rate upper limit, and the power storage time change rate changes the power storage time change. When the rate falls below the lower limit, the threshold efficiency for enabling / disabling power generation is reduced. With such flexible power generation control according to the rate of change in the amount of charge of the battery, high-efficiency power generation is preferentially performed when the rate of change in the amount of charge is large, while the amount of charge is quickly adjusted when the rate of change in the amount of charge is small. There is an effect that it is possible to achieve both recovery.

−−−第2の実施の形態−−−
第1の実施の形態では,発電制御の許可/禁止を判定するために,図5のステップS507に示すような発電動作点効率と発電許可下限効率との比較を実施するが,代わりに,図13に示す処理手順に従って発電時効率向上量と発電許可下限効率向上量との比較に基づき判定してもよい。発電時効率向上量は,発電走行を仮定した場合のバッテリ406の充電効率に関する物理量であり,その詳細は後述する。図13について以下にて説明するが,図5と異なるステップS1305,S1306,S1307,S1308およびS1309についてのみ説明する。
--- Second Embodiment ---
In the first embodiment, in order to determine permission / prohibition of power generation control, the power generation operating point efficiency and the power generation permission lower limit efficiency are compared as shown in step S507 in FIG. The determination may be made based on the comparison between the power generation efficiency improvement amount and the power generation permission lower limit efficiency improvement amount according to the processing procedure shown in FIG. The power generation efficiency improvement amount is a physical amount related to the charging efficiency of the battery 406 when power generation traveling is assumed, and details thereof will be described later. Although FIG. 13 will be described below, only steps S1305, S1306, S1307, S1308, and S1309 different from FIG. 5 will be described.

発電時効率向上量は,発電実施時のエンジン効率と発電未実施時のエンジン効率との差として与えられる。発電実施時のエンジン効率は,図14に示す発電実施時動作点(点P1bまたはP2b)におけるエンジン効率であり,発電未実施時のエンジン効率は,図14に示す発電未実施時動作点(点P1aまたはP1b)におけるエンジン効率である。発電未実施時動作点から,ステップS1304で演算された発電トルクΔTeに応じて定まる発電実施時動作点へ,動作点が移動する。ステップS1305では以下の式(6)および(7)に従って発電時効率向上量ΔηGenを算出する。図14の左側のグラフ(a)に示すように,発電時効率向上量が小さいときは発電時効率向上量ΔηGenも小さく,図14の右側のグラフ(b)に示すように,発電時効率向上量が大きいときは発電時効率向上量ΔηGenも大きくなる。
ΔηGen = ηEngGen - ηEngNoGen =f(Ne, ΔTe) (6)
ηEngNoGen = f(Ne, TeDrv) (7)
ηEngNoGen 発電未実施時エンジン効率
The amount of improvement in power generation efficiency is given as the difference between the engine efficiency when power generation is performed and the engine efficiency when power generation is not performed. The engine efficiency when power generation is performed is the engine efficiency at the power generation operation point (point P1b or P2b) shown in FIG. 14. The engine efficiency when power generation is not performed is the operation point (points when power generation is not performed) shown in FIG. Engine efficiency in P1a or P1b). The operating point moves from the operating point when power generation is not performed to the operating point when power generation is performed that is determined according to the power generation torque ΔTe calculated in step S1304. In step S1305, the power generation efficiency improvement amount ΔηGen is calculated according to the following equations (6) and (7). As shown in the left graph (a) of FIG. 14, when the power generation efficiency improvement amount is small, the power generation efficiency improvement amount ΔηGen is also small, and as shown in the right graph (b) of FIG. When the amount is large, the power generation efficiency improvement amount ΔηGen also increases.
ΔηGen = ηEngGen-ηEngNoGen = f (Ne, ΔTe) (6)
ηEngNoGen = f (Ne, TeDrv) (7)
ηEngNoGen Engine efficiency when not generating electricity

続いて,ステップS1306において,発電の許可/禁止の閾値である発電許可下限効率向上量線を設定する。発電許可下限効率向上量線の設定については後述する。ステップS1307において,ECU411が予め記憶している目標蓄電量と,ECU411がステップS1302にて取得した現在の蓄電量との差分として求められる必要充電量が演算される。ステップS1308において,ステップS1307にて演算された必要充電量と,ステップS1306にて設定された発電許可下限効率向上量線とに基づいて,発電許可下限効率向上量が演算される。ステップS1309で,発電時効率向上量が発電許可下限効率向上量を上回れば,ステップS1310に進む。発電時効率向上量が発電許可下限効率向上量を下回った場合または等しい場合は,発電を禁止する(ステップS1312)。   Subsequently, in step S1306, a power generation permission lower limit efficiency improvement amount line that is a threshold value for permission / prohibition of power generation is set. The setting of the power generation permission lower limit efficiency improvement amount line will be described later. In step S1307, the required charge amount calculated as a difference between the target power storage amount stored in advance by the ECU 411 and the current power storage amount acquired by the ECU 411 in step S1302 is calculated. In step S1308, the power generation permission lower limit efficiency improvement amount is calculated based on the necessary charge amount calculated in step S1307 and the power generation permission lower limit efficiency improvement amount line set in step S1306. If the power generation efficiency improvement amount exceeds the power generation permission lower limit efficiency improvement amount in step S1309, the process proceeds to step S1310. When the power generation efficiency improvement amount is less than or equal to the power generation permission lower limit efficiency improvement amount, power generation is prohibited (step S1312).

ステップS1308において,発電許可下限効率向上量は,図15に示すように,ステップS1307にて演算された必要充電量を入力とし,ステップS1306にて設定された発電許可下限効率向上量線に基づいて決められる。発電許可下限効率向上量線は,必要充電量と発電を許可/禁止する閾値である効率向上量との関係を表す図15に示すように,必要充電量が小さいほど,すなわち発電の緊急性が低いほど,効率向上量が小さい発電を禁止し,必要充電量が所定の値より大きい,すなわち発電の緊急性が高い場合には,いかなる効率向上量の発電も許可するように設定される。このような設定とすることで,発電の緊急性に応じて柔軟な発電制御が可能であり,ハイブリッド自動車のエネルギー効率向上に寄与する。発電許可下限効率向上量線は図15の形状に限定されず,必要充電量が小さいときに効率向上量の小さな発電を禁止する形状であることを特徴とし,ECU411に入力される各種入力情報に基づいて決定する。各種入力情報とは,例えばエンジン401およびモータ408のコンポーネント特性,ならびにバッテリ406の容量および充放電サイクル数である。本発明の制御では,発電許可下限効率向上量線を,別途計算される蓄電量時間変化率に基づき補正する。   In step S1308, the power generation permission lower limit efficiency improvement amount is input based on the power generation permission lower limit efficiency improvement amount line set in step S1306 with the required charge amount calculated in step S1307 as an input, as shown in FIG. It is decided. The power generation permission lower limit efficiency improvement amount line shows the relationship between the required charge amount and the efficiency improvement amount which is a threshold value for permitting / prohibiting power generation. As shown in FIG. The lower the value, the smaller the efficiency improvement amount is forbidden, and when the required charge amount is larger than a predetermined value, that is, the urgency of power generation is high, the power generation of any efficiency improvement amount is permitted. With this setting, flexible power generation control is possible according to the urgency of power generation, which contributes to improving the energy efficiency of hybrid vehicles. The power generation permission lower limit efficiency improvement amount line is not limited to the shape of FIG. 15, and is a shape that prohibits power generation with a small efficiency improvement amount when the required charge amount is small, and includes various input information input to the ECU 411. Determine based on. The various input information includes, for example, the component characteristics of the engine 401 and the motor 408, the capacity of the battery 406, and the number of charge / discharge cycles. In the control according to the present invention, the power generation permission lower limit efficiency improvement amount curve is corrected based on a separately calculated power storage amount time change rate.

発電許可下限効率向上量線の補正方法について,図16により説明する。ステップS1601において,発電許可下限効率向上量線として,ECU411が記憶している発電許可下限効率向上量基準線を読み出して仮設定し,ステップS1602の蓄電量時間変化率の算出へ進む。ステップS1602の蓄電量時間変化率算出については第1の実施の形態のステップS802と共通であるため省略する。   A method for correcting the power generation permission lower limit efficiency improvement amount line will be described with reference to FIG. In step S1601, the power generation permission lower limit efficiency improvement amount reference line stored in the ECU 411 is read and temporarily set as the power generation permission lower limit efficiency improvement amount line, and the process proceeds to calculation of the storage amount time change rate in step S1602. The calculation of the stored electricity amount time change rate in step S1602 is the same as that in step S802 in the first embodiment, and is therefore omitted.

ステップS1603では,ステップS1602で算出した蓄電量時間変化率を予め用意された蓄電量時間変化率上限および蓄電量時間変化率下限と比較し,異常の有無を判定する。異常が発生する理由は,たとえばバッテリSOHの低下,タイヤ空気圧の低下,路面摩擦係数の低下または補機使用電力の増加である。蓄電量時間変化率が蓄電量時間変化率上限を超えていた場合,もしくは,蓄電量時間変化率が蓄電量時間変化率下限未満であった場合には,ステップS1604において異常ありと判定し,発電許可下限効率向上量線の補正を実施する(ステップS1605)。図17に示すように,蓄電量時間変化率が蓄電量時間変化率上限を超えていた場合,発電許可下限効率向上量線として,発電許可下限効率向上量上方補正線を採用し,蓄電量時間変化率が蓄電量時間変化率下限未満であった場合,発電許可下限効率向上量線として,発電許可下限効率向上量下方補正線を採用する。発電許可下限効率向上量基準線と発電許可下限効率向上量上方補正線と発電許可下限効率向上量下方補正線は,図17の形状に限定されず,効率の高い方から発電許可下限効率向上量上方補正線,発電許可下限効率向上量基準線,発電許可下限効率向上量下方補正線の順であり,いずれの線も交差することが無いように予め設定される。   In step S1603, the power storage amount time change rate calculated in step S1602 is compared with a power storage amount time change rate upper limit and a power storage amount time change rate lower limit prepared in advance to determine whether there is an abnormality. The reason why the abnormality occurs is, for example, a decrease in the battery SOH, a decrease in the tire air pressure, a decrease in the road surface friction coefficient, or an increase in the power used by the auxiliary equipment. If the storage amount time change rate exceeds the storage amount time change rate upper limit, or if the storage amount time change rate is less than the storage amount time change rate lower limit, it is determined in step S1604 that there is an abnormality, The permission lower limit efficiency improvement amount curve is corrected (step S1605). As shown in FIG. 17, when the power storage time change rate exceeds the power storage time change rate upper limit, the power generation permission lower limit efficiency improvement amount upward correction line is adopted as the power generation permission lower limit efficiency improvement amount line, and the power storage time When the rate of change is less than the lower limit of the storage amount time change rate, the power generation permission lower limit efficiency improvement lower correction line is adopted as the power generation permission lower limit efficiency improvement amount line. The power generation permission lower limit efficiency improvement amount reference line, the power generation permission lower limit efficiency improvement amount upward correction line, and the power generation permission lower limit efficiency improvement amount lower correction line are not limited to the shape of FIG. The order is an upper correction line, a power generation permission lower limit efficiency improvement amount reference line, and a power generation permission lower limit efficiency improvement lower correction line, which are set in advance so that none of the lines intersect.

ステップS1605のように発電許可下限効率向上量線を設定することにより,上述した理由で異常が発生して蓄電量の増加速度が鈍くなっている(すなわち蓄電量時間変化率が小さい)場合には,発電許可効率範囲が通常より低効率側に拡大され,走行中の発電機会が増加する。したがって,通常よりも低効率でも発電を優先させることで蓄電量を速やかに回復することができる。また,上述した理由で異常が発生して蓄電量の増加速度が速くなっている(すなわち蓄電量時間変化率が大きい)場合には,発電許可効率範囲が通常より狭く設定され,走行中の発電機会が高効率側に限定される。蓄電量時間変化率が大きいので,たとえ必要充電量が大きくても発電走行が開始されれば通常よりも短時間で蓄電量を速やかに回復することができる。したがって,通常よりも高効率の場合に限って発電を許可するので,低効率での発電走行を防止することができる。こうして,蓄電量の速やかな回復と,発電走行の効率が両立される。   By setting the power generation permission lower limit efficiency improvement amount line as in step S1605, when the abnormality occurs for the reason described above and the increase rate of the storage amount is slow (that is, the storage amount time change rate is small). , The power generation permission efficiency range is expanded to the lower efficiency side than usual, and the power generation opportunities while driving are increased. Therefore, even if the efficiency is lower than usual, the power storage amount can be quickly recovered by giving priority to power generation. In addition, when an abnormality occurs for the above-described reason and the increase rate of the storage amount is fast (that is, the storage amount time change rate is large), the power generation permission efficiency range is set narrower than usual, and Opportunities are limited to the high efficiency side. Since the power storage time change rate is large, even if the required charge amount is large, the power storage amount can be quickly recovered in a shorter time than usual if power generation travel is started. Therefore, since power generation is permitted only when the efficiency is higher than usual, it is possible to prevent power generation traveling with low efficiency. In this way, both the rapid recovery of the amount of stored electricity and the efficiency of power generation travel are achieved.

発電許可下限効率向上量線に上方または下方の補正が実施された場合,ステップS1606において,発電許可下限効率向上量線の補正解除条件の設定を行う。補正解除条件の設定については第1の実施の形態と共通であるため説明を省略する。ステップS1607で補正解除条件が成立するまで補正を維持し,補正解除条件が成立した場合は,ステップS1608において補正を解除する。ここで補正の解除とは,発電許可下限効率向上量線の設定を,発電許可下限効率向上量基準線に戻すことを意味する。   When the upward or downward correction is performed on the power generation permission lower limit efficiency improvement amount line, a correction cancellation condition for the power generation permission lower limit efficiency improvement amount line is set in step S1606. Since the setting of the correction cancellation condition is the same as that of the first embodiment, the description thereof is omitted. The correction is maintained until the correction cancellation condition is satisfied in step S1607. If the correction cancellation condition is satisfied, the correction is canceled in step S1608. Here, canceling the correction means returning the setting of the power generation permission lower limit efficiency improvement amount line to the power generation permission lower limit efficiency improvement amount reference line.

第2の実施の形態の発電制御装置は,以下の作用効果を奏する。
(1)本実施の形態の発電制御装置は,ハイブリッド自動車400の車速Vspとアクセル開度APOとに基づき,ハイブリッド自動車400の駆動に必要な発電未実施時エンジントルクTeDrvを演算する。車速Vspに対応するエンジン回転数Neと発電未実施時エンジントルクTeDrvとに基づき発電トルクΔTeを演算する。車速Vspに対応するエンジン回転数Neと発電未実施時エンジントルクTeDrvと発電トルクΔTeとに基づき,発電トルクΔTeに応じた発電時効率向上量ΔηGenを演算する。バッテリの充電に必要な必要充電量を演算し,発電時効率向上量ΔηGenが発電を許可/禁止する閾値である効率向上量を下回るとき,発電を禁止する。発電を許可/禁止する閾値である効率向上量と必要充電量との関係は発電許可下限効率向上量線で表され,発電を許可/禁止する閾値である効率向上量は必要充電量が大きいほど小さい値をとる。バッテリ406の蓄電量の蓄電量時間変化率が,蓄電量時間変化率上限と蓄電量時間変化率下限との間の範囲に含まれないとき,発電を許可/禁止する閾値である効率向上量を補正する。こうしたバッテリの蓄電量に応じた柔軟な発電制御により,蓄電量に余裕があるときは高効率な発電を優先的に行いつつ,蓄電量に余裕が無いときは蓄電量を速やかに回復することを両立できるという作用効果を奏する。
The power generation control device of the second embodiment has the following operational effects.
(1) The power generation control device of the present embodiment calculates the engine torque TeDrv when power generation is not performed, which is necessary for driving the hybrid vehicle 400, based on the vehicle speed Vsp of the hybrid vehicle 400 and the accelerator opening APO. A power generation torque ΔTe is calculated based on the engine speed Ne corresponding to the vehicle speed Vsp and the engine torque TeDrv when power generation is not performed. A power generation efficiency improvement amount ΔηGen corresponding to the power generation torque ΔTe is calculated based on the engine speed Ne corresponding to the vehicle speed Vsp, the engine torque TeDrv when power generation is not performed, and the power generation torque ΔTe. A necessary charge amount necessary for charging the battery is calculated, and power generation is prohibited when the power generation efficiency improvement amount ΔηGen falls below an efficiency improvement amount that is a threshold value for permitting / prohibiting power generation. The relationship between the efficiency improvement amount that is a threshold value for permitting / prohibiting power generation and the required charge amount is represented by a power generation permission lower limit efficiency improvement amount line, and the efficiency improvement amount that is a threshold value for permitting / prohibiting power generation increases as the required charge amount increases. Take a small value. When the storage amount time change rate of the storage amount of the battery 406 is not included in the range between the storage amount time change upper limit and the storage amount time change lower limit, an efficiency improvement amount that is a threshold value for permitting / prohibiting power generation is set. to correct. By flexible power generation control according to the amount of electricity stored in the battery, high-efficiency power generation is given priority when there is a margin in the amount of electricity stored, and when there is no margin in the amount of electricity stored, the amount of electricity stored can be recovered quickly. There is an effect of being compatible.

(2)本実施の形態の発電制御装置は,蓄電量時間変化率が蓄電量時間変化率上限を上回るとき,発電を許可/禁止する閾値である効率向上量を引き上げ,蓄電量時間変化率が蓄電量時間変化率下限を下回るとき,発電を許可/禁止する閾値である効率向上量を引き下げる。こうしたバッテリの蓄電量時間変化率に応じた柔軟な発電制御により,蓄電量時間変化率が大きいときは高効率な発電を優先的に行いつつ,蓄電量時間変化率が小さいときは蓄電量を速やかに回復することを両立できるという作用効果を奏する。 (2) The power generation control device according to the present embodiment raises the efficiency improvement amount, which is a threshold value for permitting / prohibiting power generation, when the power storage time change rate exceeds the power storage time change rate upper limit. When the stored energy amount time change rate lower limit is not reached, the efficiency improvement amount, which is a threshold value for permitting / prohibiting power generation, is reduced. With such flexible power generation control according to the rate of change in the amount of charge of the battery, high-efficiency power generation is preferentially performed when the rate of change in the amount of charge is large, while the amount of charge is quickly adjusted when the rate of change in the amount of charge is small. There is an effect that it is possible to achieve both recovery.

−−−変形例−−−
以上で説明した実施の形態の発電制御装置を,次のように変形することもできる。
(1)第1の実施の形態の発電許可下限効率線の補正に,蓄電量情報以外の情報を加味することも考えられる。経路誘導情報を利用する変形例を示す。発電許可下限効率の演算(図5,ステップS506)における発電許可下限効率線の補正としては,蓄電量時間変化率と蓄電量時間変化率上限および蓄電量時間変化率下限との比較結果による補正(図8,ステップS804〜808)に加え,図18に示すような補正を行うこともできる。すなわち,近い将来に停車する際に必要な蓄電量を下回る蓄電量での停車が経路誘導情報などにより予測される場合には(ステップS1801,1802),発電許可下限効率下方補正線を採用(ステップS1803)する。
---- Modified example ---
The power generation control apparatus of the embodiment described above can be modified as follows.
(1) It is also conceivable to add information other than the storage amount information to the correction of the power generation permission lower limit efficiency line of the first embodiment. The modification using route guidance information is shown. As the correction of the power generation permission lower limit efficiency line in the calculation of the power generation permission lower limit efficiency (FIG. 5, step S506), the correction based on the comparison result between the storage amount time change rate, the storage amount time change upper limit and the storage amount time change lower limit ( In addition to FIG. 8, steps S804 to 808), correction as shown in FIG. 18 can also be performed. That is, when stopping at a storage amount lower than the storage amount necessary for stopping in the near future is predicted by route guidance information (steps S1801 and 1802), a power generation permission lower limit efficiency lower correction line is employed (step S1801, 1802). S1803).

本補正は,停車時に必要な蓄電量以下の蓄電量で停車すると,停車の間に補機消費電力によって蓄電量が減少し,許容下限蓄電量を下回ることにより,次回発進時に強制発電を実施せざるを得なくなることを抑制する目的で実行される。停車する際に必要な蓄電量は,許容下限蓄電量より大きく,目標蓄電量より小さい値であり,許容下限蓄電量との差分は,補機消費電力が大きいほど大きく設定されるべきである。ステップS1803で発電許可下限効率下方補正線を採用した場合には,ステップS1804で補正解除条件が設定される。補正解除条件は,例えば蓄電量が停車時に必要な蓄電量より大きくなることか,または停車予定が取り消されることである。   This correction allows forced power generation to be performed at the next start by stopping when the vehicle stops at an amount less than the amount of electricity required when the vehicle is stopped, and the amount of electricity stored is reduced by the auxiliary machine power consumption while the vehicle is stopped. It is executed for the purpose of suppressing unavoidable circumstances. The amount of electricity necessary for stopping is larger than the allowable lower limit amount of electricity and smaller than the target amount of electricity stored, and the difference from the allowable lower limit amount of electricity should be set larger as the auxiliary machine power consumption is larger. When the power generation permission lower limit efficiency downward correction line is adopted in step S1803, a correction cancellation condition is set in step S1804. The correction cancellation condition is, for example, that the charged amount becomes larger than the charged amount required when the vehicle is stopped or that the scheduled stop is cancelled.

なお当該補正は,第2の実施の形態の発電許可下限効率向上量の演算(図13,ステップS1306)における発電許可下限効率向上量の補正に関しても適用可能である。   The correction can also be applied to the correction of the power generation permission lower limit efficiency improvement amount in the calculation of the power generation permission lower limit efficiency improvement amount (FIG. 13, step S1306) of the second embodiment.

変形例(1)の発電制御装置は,ハイブリッド自動車400の停車の予定があり、停車が予定されている停車予定地にハイブリッド自動車400が停車する際のバッテリ406の蓄電量の予測値が,ハイブリッド自動車400が近い将来に停車する際に必要な蓄電量を下回るとき,発電を許可/禁止する閾値効率または効率向上量を引き下げる。これにより,ハイブリッド自動車400の停車中にバッテリ406の蓄電量が許容下限蓄電量を下回る可能性を低減し,強制発電の実施を抑制することができるという作用効果がある。   In the power generation control device of the modification (1), the hybrid vehicle 400 is scheduled to stop, and the predicted value of the storage amount of the battery 406 when the hybrid vehicle 400 stops at the planned stoppage location is When the amount of power storage required when the automobile 400 stops in the near future, the threshold efficiency or the efficiency improvement amount for permitting / prohibiting power generation is lowered. Thereby, there is an effect that the possibility that the charged amount of the battery 406 falls below the allowable lower limit charged amount while the hybrid vehicle 400 is stopped can be reduced, and the forced power generation can be suppressed.

(2)第1の実施の形態の発電許可下限効率線の補正に,蓄電量情報および経路誘導情報以外の情報を加味することも考えられる。エンジン401の状態を考慮する例を示す。発電許可下限効率の演算(図5,ステップS506)における発電許可下限効率線の補正としては,蓄電量時間変化率と蓄電量時間変化率上限および蓄電量時間変化率下限との比較結果による補正(図8,ステップS804〜808)に加え,図19に示すような補正を行うこともできる。すなわち,エンジン水温が,ECU411が予め記憶する所定の既定水温よりも低い場合には(ステップS1901),発電許可下限効率下方補正線を採用(ステップS1902)する。本補正は,エンジンを高負荷で使用する発電走行を許可されやすくし,エンジン水温が低いことで排気触媒の温度が低下して排気効率が悪化することを抑制する目的で実行される。ステップS1902で発電許可下限効率下方補正線を採用した場合には,ステップS1903で補正解除条件が設定される。補正解除条件は,例えばエンジン水温が既定水温以上となることである。 (2) It is also conceivable to add information other than the storage amount information and the route guidance information to the correction of the power generation permission lower limit efficiency line of the first embodiment. An example that considers the state of the engine 401 is shown. As the correction of the power generation permission lower limit efficiency line in the calculation of the power generation permission lower limit efficiency (FIG. 5, step S506), the correction based on the comparison result between the storage amount time change rate, the storage amount time change upper limit and the storage amount time change lower limit ( In addition to FIG. 8, steps S804 to 808), correction as shown in FIG. 19 can also be performed. That is, when the engine water temperature is lower than a predetermined water temperature stored in advance by the ECU 411 (step S1901), the power generation permission lower limit efficiency lower correction line is adopted (step S1902). This correction is executed for the purpose of facilitating permission for power generation running using the engine at a high load and suppressing deterioration of exhaust efficiency due to a decrease in the temperature of the exhaust catalyst due to a low engine water temperature. When the power generation permission lower limit efficiency downward correction line is adopted in step S1902, a correction cancellation condition is set in step S1903. The correction cancellation condition is, for example, that the engine water temperature is equal to or higher than a predetermined water temperature.

なお当該補正は,第2の実施の形態の発電許可下限効率向上量の演算(図13,ステップS1306)における発電許可下限効率向上量の補正に関しても適用可能である。   The correction can also be applied to the correction of the power generation permission lower limit efficiency improvement amount in the calculation of the power generation permission lower limit efficiency improvement amount (FIG. 13, step S1306) of the second embodiment.

変形例(2)の発電制御装置は,エンジンを冷却する冷却水温度が,ECU411が予め記憶する所定の既定水温よりも低いとき,発電を許可/禁止する閾値効率または効率向上量を引き下げる。これにより,エンジンを高負荷で使用する発電走行を許可されやすくし,エンジン水温が低いことで排気触媒の温度が低下して排気効率が悪化することを抑制するという作用効果がある。   The power generation control device of the modified example (2) lowers the threshold efficiency or the efficiency improvement amount that permits / inhibits power generation when the temperature of the cooling water that cools the engine is lower than a predetermined water temperature that the ECU 411 stores in advance. As a result, it is possible to easily permit power generation running using the engine at a high load, and to suppress deterioration in exhaust efficiency due to a decrease in the temperature of the exhaust catalyst due to a low engine water temperature.

400 ハイブリッド自動車
401 エンジン
402 クラッチ
403 トランスミッション
404 フロントディファレンシャルギア
405 前輪
406 バッテリ
407 インバータ
408 モータ
409 リアディファレンシャルギア
410 後輪
411 ECU
412 エンジン状態検知手段
413 路面
414 補機類
415 バッテリコントローラ
416 TPMS(Tire Pressure Monitoring System)
400 Hybrid vehicle 401 Engine 402 Clutch 403 Transmission 404 Front differential gear 405 Front wheel 406 Battery 407 Inverter 408 Motor 409 Rear differential gear 410 Rear wheel 411 ECU
412 Engine state detection means 413 Road surface 414 Auxiliary machinery 415 Battery controller 416 TPMS (Tire Pressure Monitoring System)

Claims (9)

ハイブリッド車両に搭載し、エンジンが発生する発電トルクに応じてバッテリを充電するためのモータによる発電を制御する発電制御装置であって、
前記ハイブリッド車両の車速とアクセル開度とに基づき前記ハイブリッド車両の駆動に必要な要求駆動トルクを演算するとともに、前記車速と前記要求駆動トルクとに基づき前記発電トルクを演算するトルク演算手段と、
前記車速と前記要求駆動トルクと前記発電トルクとに基づき、前記発電トルクに応じた前記バッテリの充電効率に関する物理量を演算する物理量演算手段と、
前記バッテリの充電に必要な充電量を演算する充電量演算手段と、
前記物理量が所定の下限値を下回るとき、前記発電を禁止する発電禁止手段と、
前記バッテリの蓄電量の蓄電量時間変化率が第1の所定範囲に含まれないとき、前記所定の下限値を補正する補正手段とを備え、
前記所定の下限値は、前記必要な充電量が大きいほど小さいことを特徴とする発電制御装置。
A power generation control device that is mounted on a hybrid vehicle and controls power generation by a motor for charging a battery according to power generation torque generated by an engine,
Torque calculation means for calculating the required driving torque necessary for driving the hybrid vehicle based on the vehicle speed and the accelerator opening of the hybrid vehicle, and calculating the power generation torque based on the vehicle speed and the required driving torque;
Based on the vehicle speed, the required drive torque, and the power generation torque, a physical quantity calculation means for calculating a physical quantity related to the charging efficiency of the battery according to the power generation torque;
A charge amount calculating means for calculating a charge amount necessary for charging the battery;
Power generation prohibiting means for prohibiting the power generation when the physical quantity falls below a predetermined lower limit;
Correction means for correcting the predetermined lower limit value when the storage amount time change rate of the storage amount of the battery is not included in the first predetermined range;
The power generation control device, wherein the predetermined lower limit value is smaller as the required charge amount is larger.
請求項1に記載の発電制御装置において、
前記補正手段は、前記蓄電量時間変化率が前記第1の所定範囲の上限を上回るとき、前記所定の下限値を引き上げ、前記蓄電量時間変化率が前記第1の所定範囲を下回るとき、前記所定の下限値を引き下げることを特徴とする発電制御装置。
The power generation control device according to claim 1,
The correction means raises the predetermined lower limit value when the storage amount time change rate exceeds an upper limit of the first predetermined range, and when the storage amount time change rate falls below the first predetermined range, A power generation control device characterized by lowering a predetermined lower limit value.
請求項2に記載の発電制御装置において、
前記補正手段による前記所定の下限値の補正を解除する補正解除手段をさらに備え、
前記補正手段が前記所定の下限値を補正したときであって、前記発電時における前記蓄電量の発電中蓄電量時間変化率が第2の所定範囲を逸脱した場合においては、前記発電中蓄電量時間変化率が前記第2の所定範囲内へ回復した時、前記補正解除手段は前記補正を解除することを特徴とする発電制御装置。
The power generation control device according to claim 2,
A correction cancellation unit that cancels the correction of the predetermined lower limit value by the correction unit;
When the correction means corrects the predetermined lower limit value and the power storage amount time change rate during power generation during power generation deviates from a second predetermined range, the power storage amount during power generation The power generation control device according to claim 1, wherein when the rate of time change is restored to the second predetermined range, the correction canceling unit cancels the correction.
請求項2に記載の発電制御装置において、
前記ハイブリッド車両の動作状態を示すセンサ情報を取得する取得手段と、
前記補正手段による前記所定の下限値の補正を解除する補正解除手段とをさらに備え、
前記補正手段が前記所定の下限値を補正したときであって、前記発電時における前記蓄電量の発電中蓄電量時間変化率が第2の所定範囲を逸脱し、かつ前記センサ情報が示す前記動作状態が所定のレベルを逸脱した場合においては、前記動作状態が前記所定のレベルへの復帰した時、前記補正解除手段は前記補正を解除することを特徴とする発電制御装置。
The power generation control device according to claim 2,
Obtaining means for obtaining sensor information indicating an operating state of the hybrid vehicle;
Correction cancellation means for canceling the correction of the predetermined lower limit value by the correction means,
The operation when the correction means corrects the predetermined lower limit value, and the rate of change of the charged amount during power generation during power generation deviates from a second predetermined range, and the sensor information indicates When the state deviates from a predetermined level, the correction canceling unit cancels the correction when the operating state returns to the predetermined level.
請求項2に記載の発電制御装置において、
前記補正手段による前記所定の下限値の補正を解除する補正解除手段をさらに備え、
前記補正手段が前記所定の下限値を補正したときであって、前記発電時における前記蓄電量の発電中蓄電量時間変化率が第2の所定範囲内にある場合においては、前記補正手段が前記所定の下限値を補正してから所定時間が経過した時、前記補正解除手段は前記補正を解除することを特徴とする発電制御装置。
The power generation control device according to claim 2,
A correction cancellation unit that cancels the correction of the predetermined lower limit value by the correction unit;
When the correction means corrects the predetermined lower limit value, and the power storage amount time change rate during power generation during the power generation is within a second predetermined range, the correction means The power generation control device according to claim 1, wherein when the predetermined time has elapsed after correcting the predetermined lower limit value, the correction canceling unit cancels the correction.
請求項1〜5のいずれか1項に記載の発電制御装置において、
前記ハイブリッド車両の停車の予定があるとき、前記停車が予定されている停車予定地に前記ハイブリッド車両が停車する際の前記蓄電量の予測値が所定の蓄電量を下回るか否かを検出する検出手段をさらに備え、
前記検出手段が、前記予測値が前記所定の蓄電量を下回ることを検出したとき、前記補正手段は、前記所定の下限値を引き下げることを特徴とする発電制御装置。
In the electric power generation control apparatus of any one of Claims 1-5,
When the hybrid vehicle is scheduled to stop, detection is performed to detect whether or not a predicted value of the storage amount when the hybrid vehicle stops at a planned stop location where the stop is scheduled is less than a predetermined storage amount Further comprising means,
When the detection unit detects that the predicted value is less than the predetermined storage amount, the correction unit reduces the predetermined lower limit value.
請求項1〜6のいずれか1項に記載の発電制御装置において、
前記エンジンを冷却する冷却水温度が所定温度よりも低いとき、前記補正手段は、前記所定の下限値を引き下げることを特徴とする発電制御装置。
In the electric power generation control apparatus of any one of Claims 1-6,
The power generation control device according to claim 1, wherein when the temperature of the cooling water for cooling the engine is lower than a predetermined temperature, the correction means lowers the predetermined lower limit value.
請求項1〜7のいずれか1項に記載の発電制御装置において、
前記物理量は、前記発電トルクに応じた前記発電時の発電動作点効率であることを特徴とする発電制御装置。
In the electric power generation control apparatus of any one of Claims 1-7,
The power generation control device according to claim 1, wherein the physical quantity is a power generation operating point efficiency at the time of power generation according to the power generation torque.
請求項1〜7のいずれか1項に記載の発電制御装置において、
前記物理量は、前記発電トルクに応じて前記モータが発電する時の前記エンジンの動作点効率と、前記モータが発電しない時の前記エンジンの動作点効率との差であることを特徴とする発電制御装置。
In the electric power generation control apparatus of any one of Claims 1-7,
The physical quantity is a difference between an operating point efficiency of the engine when the motor generates power according to the power generation torque and an operating point efficiency of the engine when the motor does not generate power. apparatus.
JP2010103436A 2010-04-28 2010-04-28 Power generation control device for hybrid vehicle Active JP5322994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010103436A JP5322994B2 (en) 2010-04-28 2010-04-28 Power generation control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010103436A JP5322994B2 (en) 2010-04-28 2010-04-28 Power generation control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2011230671A true JP2011230671A (en) 2011-11-17
JP5322994B2 JP5322994B2 (en) 2013-10-23

Family

ID=45320440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103436A Active JP5322994B2 (en) 2010-04-28 2010-04-28 Power generation control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5322994B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910088A (en) * 2012-11-09 2013-02-06 苏州海格新能源汽车电控系统科技有限公司 Electric vehicle speed control method
JP2015205599A (en) * 2014-04-21 2015-11-19 トヨタ自動車株式会社 hybrid vehicle
CN105453381A (en) * 2013-08-09 2016-03-30 日立汽车系统株式会社 Battery control system and vehicle control system
JP2016205386A (en) * 2015-04-14 2016-12-08 カルソニックカンセイ株式会社 Power generation control device
CN116118511A (en) * 2023-04-18 2023-05-16 中国第一汽车股份有限公司 Safety monitoring method and device for power battery outage function of electric vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104605A (en) * 1996-06-13 1998-01-06 Toyota Motor Corp Hybrid vehicle
JP2000236601A (en) * 1999-02-17 2000-08-29 Nissan Motor Co Ltd Driving power controller for vehicle
JP2001268709A (en) * 2000-03-21 2001-09-28 Nissan Motor Co Ltd Hybrid vehicle control device
JP2004144041A (en) * 2002-10-25 2004-05-20 Toyota Motor Corp Automobile
JP2005295617A (en) * 2004-03-31 2005-10-20 Fuji Heavy Ind Ltd Power generation controller of hybrid vehicle
JP2006341708A (en) * 2005-06-08 2006-12-21 Fuji Heavy Ind Ltd Controller for hybrid vehicle
JP2008094233A (en) * 2006-10-11 2008-04-24 Toyota Motor Corp Automobile and control method therefor
JP2009184647A (en) * 2008-02-08 2009-08-20 Mitsubishi Heavy Ind Ltd Driving control device for parallel-hybrid vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104605A (en) * 1996-06-13 1998-01-06 Toyota Motor Corp Hybrid vehicle
JP2000236601A (en) * 1999-02-17 2000-08-29 Nissan Motor Co Ltd Driving power controller for vehicle
JP2001268709A (en) * 2000-03-21 2001-09-28 Nissan Motor Co Ltd Hybrid vehicle control device
JP2004144041A (en) * 2002-10-25 2004-05-20 Toyota Motor Corp Automobile
JP2005295617A (en) * 2004-03-31 2005-10-20 Fuji Heavy Ind Ltd Power generation controller of hybrid vehicle
JP2006341708A (en) * 2005-06-08 2006-12-21 Fuji Heavy Ind Ltd Controller for hybrid vehicle
JP2008094233A (en) * 2006-10-11 2008-04-24 Toyota Motor Corp Automobile and control method therefor
JP2009184647A (en) * 2008-02-08 2009-08-20 Mitsubishi Heavy Ind Ltd Driving control device for parallel-hybrid vehicle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910088A (en) * 2012-11-09 2013-02-06 苏州海格新能源汽车电控系统科技有限公司 Electric vehicle speed control method
CN105453381A (en) * 2013-08-09 2016-03-30 日立汽车系统株式会社 Battery control system and vehicle control system
EP3032695A1 (en) * 2013-08-09 2016-06-15 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
EP3032695A4 (en) * 2013-08-09 2017-05-03 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
US10005373B2 (en) 2013-08-09 2018-06-26 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
CN105453381B (en) * 2013-08-09 2018-06-29 日立汽车系统株式会社 Battery control system, vehicle control system
JP2015205599A (en) * 2014-04-21 2015-11-19 トヨタ自動車株式会社 hybrid vehicle
JP2016205386A (en) * 2015-04-14 2016-12-08 カルソニックカンセイ株式会社 Power generation control device
CN116118511A (en) * 2023-04-18 2023-05-16 中国第一汽车股份有限公司 Safety monitoring method and device for power battery outage function of electric vehicle

Also Published As

Publication number Publication date
JP5322994B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
CN110239356B (en) Fuel cell system mounted on vehicle and control method thereof
JP6011541B2 (en) Charge control device and charge control method
JP5048824B2 (en) Vehicle power generation control device
EP3725615B1 (en) Method and device for controlling hybrid vehicle
JP5679072B2 (en) Control device for hybrid vehicle
JP2015059639A (en) Control device for vehicle
JP5609898B2 (en) Travel control device
EP2567845B1 (en) Control apparatus for hybrid electric vehicle
JP4595829B2 (en) Secondary battery control device and control method
JP5136265B2 (en) Idle stop control device for hybrid vehicle
JP5733112B2 (en) Vehicle and vehicle control method
JP5322994B2 (en) Power generation control device for hybrid vehicle
KR101786707B1 (en) System and method for a hybrid vehicle regenerative braking control
JP2011255824A (en) Device for control of hybrid vehicle
WO2009019991A1 (en) Hybrid vehicle, hybrid vehicle control method, and computer-readable recording medium containing a program for causing a computer to execute the control method
KR101720641B1 (en) Control device of vehicle
JP2016155439A (en) Control system of vehicle
JP6075018B2 (en) Electric vehicle control device, electric vehicle including the same, and electric vehicle control method
JP2015091693A (en) Method of operating hybrid vehicle and power train for hybrid vehicle
JP5803594B2 (en) Output characteristic control method
JPWO2015029507A1 (en) Power generation control device and power generation control method
JP2014222988A (en) Regeneration control apparatus for electric automobile
CN115107732A (en) Vehicle monitoring strategy for detecting unexpected acceleration during speed control
JP5582056B2 (en) Vehicle and vehicle control method
JP6696358B2 (en) Control device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5322994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250