JP2011229250A - High output volume ratio power generator - Google Patents

High output volume ratio power generator Download PDF

Info

Publication number
JP2011229250A
JP2011229250A JP2010095835A JP2010095835A JP2011229250A JP 2011229250 A JP2011229250 A JP 2011229250A JP 2010095835 A JP2010095835 A JP 2010095835A JP 2010095835 A JP2010095835 A JP 2010095835A JP 2011229250 A JP2011229250 A JP 2011229250A
Authority
JP
Japan
Prior art keywords
stator
silicon steel
volume ratio
magnetic flux
output volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010095835A
Other languages
Japanese (ja)
Inventor
Guo Sheng Liu
國勝 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hercules Electronics Co Ltd
Original Assignee
Hercules Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hercules Electronics Co Ltd filed Critical Hercules Electronics Co Ltd
Priority to JP2010095835A priority Critical patent/JP2011229250A/en
Publication of JP2011229250A publication Critical patent/JP2011229250A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high output volume ratio power generator.SOLUTION: In a high output volume ratio power generator, a plurality of silicon steel plates and voids or plastic plates are installed while being separated to each other so as to configure a magnetic path specified by a stator, a needle or a rotor of the power generator and each clearance (that is a thickness or width of the silicon steel plate, the void or the plastic plate) is provided extremely small. Therefore, when the needle or the rotor is moved for one clearance, a magnetic flux amount or direction of the magnetic path of an induction coil wound around the stator can be changed primarily and a relatively high voltage can be induced in the induction coil by the speedy change, thereby increasing an output volume ratio of the power generator remarkably.

Description

本発明は一種の高出力体積比発電機に係り、特に一種のスピーディーに磁路の磁束量とその方向を変化させられ、不動磁路上の(すなわち固定子stater)の誘導コイルに比較的高い電圧を誘導させられ、ゆえに、同じ体積の伝統的な発電機に較べ、可動磁路すなわち可動子(mover)或いは回転子(roter)の同様の移動速度或いは回転速度にあって、大幅に出力電力を増加できる高出力体積比発電機に関する。   The present invention relates to a kind of high-output volume ratio generator, and in particular, a kind of speed, the amount of magnetic flux in a magnetic path and its direction can be changed, and a relatively high voltage is applied to an induction coil on a stationary magnetic path (ie, stator stator). Therefore, compared to traditional generators of the same volume, the output speed can be greatly increased with the same moving speed or rotational speed of the movable magnetic path, that is, the mover or the rotor. It relates to a high power volume ratio generator that can be increased.

発電機の原理は、一種の自然現象に由来し、すなわち、導体を磁場中で移動させることで誘導電圧を発生させる。その公式はE=NBιVであり、そのうち、Eは電圧、Bは磁束密度(flux density)、ιは導体長さ、Vは速度、Nはコイル巻数である。別の原理は、固定されて不動の導体が変化する磁場で誘導電圧を発生する、というもので、その公式は、上述の公式から演算により獲得され、すなわち、E=NBιV=NBιS/t=NBA/t=Nψ/t=Ndψ/dtであり、そのうち、Sは距離、tは時間、Aは磁路面積、ψは磁束(flux)である。dψ/dtは単位時間あたりの磁束の変化量である。   The principle of the generator is derived from a kind of natural phenomenon, that is, an induced voltage is generated by moving a conductor in a magnetic field. The formula is E = NBιV, where E is voltage, B is flux density, ι is conductor length, V is speed, and N is the number of coil turns. Another principle is that the induced voltage is generated in a magnetic field with a fixed and immovable conductor changing, the formula obtained from the above formula by operation: E = NBιV = NBιS / t = NBA / T = Nψ / t = Ndψ / dt, where S is the distance, t is the time, A is the magnetic path area, and ψ is the magnetic flux (flux). dψ / dt is the amount of change in magnetic flux per unit time.

前述の導体移動或いは磁束変化のいずれも、原動機(prime mover)の動力より発生し、公式より電圧は時間と反比例し、N及びBAと正比例することがわかる。ケイ素鋼板のBは飽和し得て、通常は1〜2Teslaだけでそれ以上は大きくならず、面積Aが発電機の体積に関与し、Aが増加すると、体積も増加する。また、コイル巻数が増加しても、体積が増加する。   Any of the above-described conductor movement or magnetic flux change is generated by the power of the prime mover, and it can be seen from the formula that the voltage is inversely proportional to time and directly proportional to N and BA. B of the silicon steel plate can saturate, usually only 1 to 2 Tesla does not increase any more, the area A is related to the volume of the generator, and as A increases, the volume also increases. Moreover, even if the number of coil turns increases, the volume increases.

発電機が発生する出力P=E2/RLであり、そのうち、RLは負荷の抵抗とされ、コイル内部抵抗より遥かに大きくなければならず、すなわち、それとそれと正比例して増加し、内部抵抗とコイル巻数は正比例し、ゆえに、巻数が多く、電圧が高くとも、却ってRLも増加するため、Pの低下をもたらす。このため、同様の発電機体積では、その出力を増すためには、すなわち、出力体積比を増すためには、変化する磁束の時間tを短縮することによってのみ、磁束にスピーディーに変化を発生させられる。発電機が発明されてすでに一世紀以上になり、その理論と技術は半世紀前にはすでに成熟しており、すなわち、50年来、大きな改善はなされていない。伝統的な線形発電機は図1に示されるようで、回転式発電機は図7に示されるようであり、変化する磁束の時間tにはいずれも制限があり、これについて、本発明の内容において詳しく説明する。 The output P = E 2 / R L generated by the generator, of which R L is the resistance of the load and must be much larger than the internal resistance of the coil, ie it increases in direct proportion to it and the internal The resistance and the number of turns of the coil are directly proportional to each other. Therefore, even if the number of turns is large and the voltage is high, R L is also increased. For this reason, with the same generator volume, in order to increase the output, that is, to increase the output volume ratio, the magnetic flux is rapidly changed only by shortening the time t of the changing magnetic flux. It is done. It has been over a century since the generator was invented, and its theory and technology were already mature half a century ago, that is, no major improvements have been made since 50 years. The traditional linear generator is as shown in FIG. 1, the rotary generator is as shown in FIG. 7, and there is a limit to the time t of the changing magnetic flux. Will be described in detail.

発電機の出力体積比を改善することで、コストダウンでき、特に低速度の原動機例えば大型風力発電用タービンと波力発電用タービン等にはより重要である。現在、大型風力発電用タービンに直接駆動式(Direct Drive)発電機を用いると、体積が膨大となり価格が高く、上述のt時間と回転速度が反比例するため、ほとんどギアボックスを増設して回転速度をアップすることで同期発電機或いは誘導発電機の発電に対応させている。しかし、ギアボックスは重くまた高価であり、これがすなわち、風力発電のコストを伝統的な発電機と競争させられない主要な原因の一つである。波力発電にも、効率的な線形発電機(Liner motion generator)が欠乏しており、商業化運転にはほとんど至っていない。また、太陽熱発電に適合するstirling engineは、その線形発電機の体積が過大であるため、実用的でない。   By improving the output volume ratio of the generator, the cost can be reduced, and is particularly important for a low-speed prime mover such as a large wind turbine and a wave power turbine. At present, when a direct drive generator is used for a large wind turbine, the volume is huge and the price is high, and the t time and the rotational speed are in inverse proportion. By increasing the power, it is made to correspond to the power generation of the synchronous generator or the induction generator. However, gearboxes are heavy and expensive, which is one of the main reasons why the cost of wind power cannot be competed with traditional generators. Wave power generation also lacks efficient linear generators and has hardly reached commercial operation. Further, a still engine suitable for solar thermal power generation is not practical because the volume of the linear generator is excessive.

高出力体積比発電機は各種の領域において必要とされており、例えば自動車に搭載される電気設備は益々多くなっているし、また、ハイブリッドカーはいずれも発電機の出力アップを必要としているが、自動車の容積は有限であり、これによっても発電機の出力体積比をアップすることは、より重要である。   High-power volume ratio generators are required in various fields, for example, the electrical equipment mounted on automobiles is increasing more and more, and all hybrid cars require increased output of the generator. The volume of the automobile is finite, and it is more important to increase the output volume ratio of the generator.

本発明の主要な目的は、一種の高出力体積比発電機を提供し、発電機を同じ原動機の移動速度或いは回転速度下で、伝統的な発電機と較べて各単位体積当たりの出力パワーを増加できるようにすることにある。   The main object of the present invention is to provide a kind of high output volume ratio generator, which can be used for the output power per unit volume as compared with a traditional generator under the same moving speed or rotational speed of the prime mover. It is to be able to increase.

前述の高出力体積比発電機は、固定子と可動子或いは回転子の規定する磁路にあって、複数のケイ素鋼板と空隙或いはプラスチック板で隔てられることで、可動子或いは回転子がある間距(すなわち、ケイ素鋼板或いは空隙或いはプラスチック板の厚さ或いは幅)を移動すると、固定子のケイ素鋼板と可動子或いは回転子が相互にアライン或いはアライン解除し、アライン時には全体の磁路の磁束量が大きく、アライン解除時には磁束量が小さい。公式E=Ndψ/dtにより、磁束量が変化すると、固定子上のコイルにあって電圧を誘導し、電力を出力する。各ケイ素鋼板或いは空隙或いはプラスチック板の厚さ或いは幅は一様であり、そのサイズは非常に小さく、dtは可動子或いは回転子がこの間距を移動する時間であり、このため、dtは非常に小さく、このため誘導電圧Eは大きくなり、出力Pは大幅に高くなる。   The aforementioned high output volume ratio generator is in a magnetic path defined by the stator and the mover or rotor, and is separated by a plurality of silicon steel plates and gaps or plastic plates, so that the distance between the mover and the rotor is between. (Ie, the thickness or width of the silicon steel plate or gap or plastic plate), the silicon steel plate of the stator and the mover or rotor are mutually aligned or unaligned. Large and the amount of magnetic flux is small when the alignment is canceled. When the amount of magnetic flux changes according to the formula E = Ndψ / dt, a voltage is induced in the coil on the stator, and electric power is output. The thickness or width of each silicon steel plate or gap or plastic plate is uniform, its size is very small, dt is the time for the mover or rotor to move the distance during this time, so dt is very As a result, the induced voltage E increases and the output P increases significantly.

前述の高出力体積比発電機は、二つの磁力線が対向する磁路を合併した場合、その磁束は一斉に誘導コイルを通過し、一組の磁束が増大すると、もう一組は減少し、すなわち、固定子のコイル上の磁路は、磁束の変化を発生するのみならず、正、逆の方向の変化も発生し、可動子或いは回転子が一つの間距を移動する毎に、磁路上の磁束は正から逆に、逆から正に、方向の変化を発生する。   In the high power volume ratio generator described above, when two magnetic field lines are merged, the magnetic flux passes through the induction coil all at once, and when one set of magnetic flux increases, the other set decreases, that is, The magnetic path on the stator coil not only changes the magnetic flux, but also changes in the forward and reverse directions. Each time the mover or rotor moves one distance, the magnetic path The magnetic flux changes direction from positive to reverse and from reverse to positive.

前述の高出力体積比発電機は、線形発電機或いは回転式発電機とされ、また単相或いは三相とされ得る。   The high power volume ratio generator described above may be a linear generator or a rotary generator, and may be single phase or three phase.

前述の高出力体積比発電機は、その磁路の磁束が永久磁石或いは外部励磁或いは自己励磁を用いて励磁されるか、或いは、永久磁石と自己励磁を合併させて励磁されるか、或いは、自己励磁と外部励磁を合併して励磁される。そのうち、永久磁石はケイ素鋼板内に嵌め込まれ、外部励磁は、外部直流電源を励磁コイルに通すことで磁束を発生させる。自己励磁は、ケイ素鋼板の残磁発電後に、整流して直流とした電力を励磁コイルに通して磁束を発生させる。永久磁石と自己励磁の合併は、まず永久磁石の磁束発電後に、さらに自己励磁によりさらに大きな磁束を発生させる。外部励磁に自己励磁の合併励磁は、外部直流電源で励磁発電後、さらに自己励磁によりさらに大きな磁束を発生させ、二つの回路はそれぞれ一つのダイオードを加えることで、相互短絡を防止する必要がある。   The above-mentioned high output volume ratio generator has a magnetic path whose magnetic flux is excited using a permanent magnet or external excitation or self-excitation, or is combined with a permanent magnet and self-excitation, or Excited by combining self-excitation and external excitation. Among them, the permanent magnet is fitted in a silicon steel plate, and external excitation generates magnetic flux by passing an external DC power source through the excitation coil. In self-excitation, after remanent power generation of a silicon steel plate, electric power that has been rectified and converted into direct current is passed through an exciting coil to generate magnetic flux. The merger of the permanent magnet and self-excitation first generates a larger magnetic flux by self-excitation after the magnetic flux generation of the permanent magnet. Combined excitation with external excitation and self-excitation requires excitation power generation with an external DC power supply, then generates a larger magnetic flux by self-excitation, and the two circuits must each add one diode to prevent mutual short circuit. .

前述の高出力体積比発電機は、そのうちのケイ素鋼板がその他の高導磁材料に交換可能であり、プラスチック板はその他の低導磁材料に交換可能である。ケイ素鋼板は複数の薄板を積み重ねてなり、渦電流損(Eddy current loss)を減らす。   In the high power volume ratio generator described above, silicon steel plates can be replaced with other highly magnetically conductive materials, and plastic plates can be replaced with other low magnetically conductive materials. A silicon steel plate is formed by stacking a plurality of thin plates to reduce eddy current loss.

前述の高出力体積比発電機は、そのうちの可動子或いは回転子上にコイル或いは導体或いは永久磁石がなく、既存の同期発電機、誘導発電機及び直流発電機がいずれもロータにコイル或いは導体或いは永久磁石が取り付けられているのとは異なっている。ゆえに、その製造は容易で強固であり、出力体積比を高め、材料を節約でき、伝統的な発電機に較べてコストダウンできる。   The high power volume ratio generator described above has no coils, conductors or permanent magnets on the mover or rotor, and existing synchronous generators, induction generators and DC generators all have coils or conductors on the rotor. It is different from a permanent magnet attached. Therefore, its manufacture is easy and robust, the output volume ratio can be increased, the material can be saved, and the cost can be reduced compared with the traditional generator.

本発明は一種の発電機を提供し、それは、同じ原動機の移動速度或いは回転速度下で、伝統的な発電機に較べて大幅に各単位体積あたりの出力を増加している。本発明は実用的な設計であり、新規性を有する発明である。   The present invention provides a kind of generator, which greatly increases the output per unit volume compared to traditional generators under the same prime mover speed or rotational speed. The present invention is a practical design and a novel invention.

周知の線形移動発電機の構造図である。1 is a structural diagram of a known linear mobile generator. 本発明の方形線形移動発電機の立体図である。It is a three-dimensional view of the square linear mobile generator of the present invention. 図2の正面図である。FIG. 3 is a front view of FIG. 2. 図3Aの可動子を一つの間距移動させた後の正面図である。It is a front view after moving the mover of Drawing 3A one distance. 磁束量の変化を説明する図である。It is a figure explaining the change of magnetic flux amount. 本発明の可動子のプラスチック板をパッキングシート或いはパッキングリングに交換した実施例図である。It is the Example figure which replaced | exchanged the plastic plate of the needle | mover of this invention for the packing sheet | seat or the packing ring. 図2の固定子と回転子を円形状とした実施例図である。It is the Example figure which made the stator and rotor of FIG. 2 circular shape. 周知の回転式発電機の構造図である。1 is a structural diagram of a known rotary generator. 本発明の回転式発電機に応用した正面図である。It is the front view applied to the rotary generator of this invention. 図8Aの回転子を一つの間距回転させた後の正面図である。It is a front view after rotating the rotor of FIG. 8A one distance. 図8Bのコイルを空隙に巻いた正面図である。It is the front view which wound the coil of Drawing 8B in the space. 本発明の3相回転式発電機の実施例の側面図である。It is a side view of the Example of the three-phase rotary generator of this invention.

図1は従来の技術の線形移動発電機構造図である。図示されるように、そのうち、固定子10は、変圧器のケイ素鋼板で構成され、励磁装置(exciter)11は直流電源とコイルを包含し、固定子10にN極とS極の磁束(φ)を発生させるか、或いは、永久磁石を固定子10内に用い、固定子10に同様に磁束(φ)を発生させることもできる。移動可能な可動子12は、固定子10の方向と垂直に往復運動を行ない、それが矢印に示されるような往復運動を行う時、固定子10は空隙13を発生して磁束が不通となり、これにより固定子10の磁束(φ)に変化が発生する。上述の公式により、誘導コイル14が電圧Eを誘導し、並びに負荷15(RL )にあって電気エネルギーPの出力を発生し、この負荷15は純抵抗とされ得て、インダクタンス性負荷(変圧器或いはモータ)或いはコンデンサ性など、任意の形態の負荷とされ得る。 FIG. 1 is a structural diagram of a conventional linear mobile generator. As shown in the figure, the stator 10 is composed of a silicon steel plate of a transformer, the exciter 11 includes a DC power source and a coil, and the stator 10 has a magnetic flux (φ ) Or a permanent magnet can be used in the stator 10 to similarly generate a magnetic flux (φ) in the stator 10. The movable movable element 12 reciprocates perpendicularly to the direction of the stator 10, and when it reciprocates as indicated by the arrow, the stator 10 generates a gap 13 and the magnetic flux is interrupted. As a result, a change occurs in the magnetic flux (φ) of the stator 10. According to the above formula, the induction coil 14 induces the voltage E and generates an output of electric energy P in the load 15 (R L ), which can be made a pure resistance, so that an inductive load (transformer) Or any other type of load such as a capacitor or a motor.

図2、3A及び図3Bを共に参照されたい。これらは本発明の、方形線形移動発電機に用いられた立体図、正面図、及び可動子が一つの間距を移動する正面図である。図2中、固定子20は各二組の固定子ケイ素鋼板21a、21bを包含し、前述したように、各組のケイ素鋼板は複数の同じ薄いケイ素鋼板を積み重ねてなる。図3A中、固定子ケイ素鋼板21aは、第1組と第3組のケイ素鋼板の正面図とされ、図3B中、固定子ケイ素鋼板21bは第2組と第4組のケイ素鋼板の正面図とされる。この二つの図を比較すると、その差異は、固定子ケイ素鋼板21aの突出する部分が、上下であり、固定子ケイ素鋼板21bの突出する部分は左右であることであるが、実際には、固定子ケイ素鋼板21aと固定子ケイ素鋼板21bは完全に同じであり、ただ図2のように置かれる時、位相差が90度であるにすぎない。このような配置で、該固定子20は空隙22a、22b(すなわち縞模様部分)を形成し、そのうち、誘導コイル26、負荷27が包含され、及びコンデンサ28が誘導コイル26のインダクタンス抵抗の補償に用いられ、これにより出力因子(power factor)を改善する。及び、軸29を包含し、矢印が運動方向30が線形往復運動であることを示す。   Please refer to FIGS. 2, 3A and 3B together. These are a three-dimensional view, a front view, and a front view in which the mover moves one distance, used in the rectangular linear mobile generator of the present invention. In FIG. 2, the stator 20 includes two sets of stator silicon steel plates 21a and 21b. As described above, each set of silicon steel plates is formed by stacking a plurality of the same thin silicon steel plates. In FIG. 3A, the stator silicon steel plate 21a is a front view of the first and third sets of silicon steel plates, and in FIG. 3B, the stator silicon steel plate 21b is a front view of the second and fourth sets of silicon steel plates. It is said. Comparing these two figures, the difference is that the protruding part of the stator silicon steel plate 21a is up and down, and the protruding part of the stator silicon steel plate 21b is left and right. The sub-silicon steel plate 21a and the stator silicon steel plate 21b are completely the same, and the phase difference is only 90 degrees when placed as shown in FIG. With such an arrangement, the stator 20 forms gaps 22a and 22b (that is, striped portions), of which the induction coil 26 and the load 27 are included, and the capacitor 28 is used to compensate the inductance resistance of the induction coil 26. Used, thereby improving the power factor. And including the axis 29, the arrow indicates that the direction of motion 30 is a linear reciprocating motion.

図3Aを参照されたい。そのうち、永久磁石31に励磁コイル32が加えられて、自己励磁回路33に接続されているが、自己励磁のみを用いてもよい。図3B中、外部励磁電源34が自己励磁回路33に加えられているが、自己励磁のみを用いてもよい。自己励磁は負荷端で整流後の直流電源に接続され、ダイオード35、36は自己励磁と外部励磁電源の相互短絡を阻止するためのものである。   See FIG. 3A. Among them, an excitation coil 32 is added to the permanent magnet 31 and connected to the self-excitation circuit 33, but only self-excitation may be used. In FIG. 3B, an external excitation power supply 34 is added to the self-excitation circuit 33, but only self-excitation may be used. Self-excitation is connected to a DC power supply after rectification at the load end, and diodes 35 and 36 are for preventing mutual short-circuit between the self-excitation and the external excitation power supply.

図2を参照されたい。可動子23は複数の可動子ケイ素鋼板24とプラスチック板25(すなわち縞模様部分)で構成され、可動子ケイ素鋼板24の厚さは固定子ケイ素鋼板21aと21bと同じである。固定子ケイ素鋼板21aの突出部分は可動子ケイ素鋼板24とアラインし、固定子ケイ素鋼板21bの突出部分はプラスチック板25とアラインしている。これにより、図3Aに示される固定子ケイ素鋼板21aの磁束は大きく、固定子ケイ素鋼板21bの磁束は小さく、ゆえに、その磁束方向37a、38a(磁力線)は図3Aの点線に示されるとおりである。この図からわかるように、二つの磁力線の方向が互いに逆方向であり、そのうち磁束方向37aは時計回りであり、磁束方向38aは逆時計方向である。   Please refer to FIG. The mover 23 is composed of a plurality of mover silicon steel plates 24 and plastic plates 25 (that is, striped portions), and the thickness of the mover silicon steel plate 24 is the same as that of the stator silicon steel plates 21a and 21b. The protruding portion of the stator silicon steel plate 21 a is aligned with the mover silicon steel plate 24, and the protruding portion of the stator silicon steel plate 21 b is aligned with the plastic plate 25. Thereby, the magnetic flux of the stator silicon steel plate 21a shown in FIG. 3A is large, and the magnetic flux of the stator silicon steel plate 21b is small. Therefore, the magnetic flux directions 37a, 38a (lines of magnetic force) are as shown by the dotted lines in FIG. 3A. . As can be seen from this figure, the directions of the two lines of magnetic force are opposite to each other, of which the magnetic flux direction 37a is clockwise and the magnetic flux direction 38a is counterclockwise.

可動子23が一つの固定子ケイ素鋼板21a或いは可動子ケイ素鋼板24の間距を移動する時、すなわち、図3bに示されるように、固定子ケイ素鋼板21bと可動子ケイ素鋼板24がアラインし、固定子ケイ素鋼板21aと可動子ケイ素鋼板24が乖離し、この時、固定子ケイ素鋼板21bの磁束が大きく、固定子ケイ素鋼板21aの磁束が小さく、これにより、その磁束方向は図3Bの磁束方向37b、38bに示されるようであり、この二つの磁力線方向が互いに逆(反対方向)となる。図3Aの磁束方向37a、38a及び図3Bの磁束方向37b、38bを比較するとわかるように、その誘導コイル26における磁束方向が互いに反対方向であり、すなわち、磁束に変化が発生し、これにより、誘導コイル26が電圧を誘導し、負荷27を通して電気エネルギーを出力する。   When the mover 23 moves a distance between one stator silicon steel plate 21a or the mover silicon steel plate 24, that is, as shown in FIG. 3b, the stator silicon steel plate 21b and the mover silicon steel plate 24 are aligned and fixed. The child silicon steel plate 21a and the mover silicon steel plate 24 are separated from each other. At this time, the magnetic flux of the stator silicon steel plate 21b is large, and the magnetic flux of the stator silicon steel plate 21a is small. As a result, the magnetic flux direction is the magnetic flux direction 37b of FIG. , 38b, and these two magnetic field lines are opposite to each other (opposite directions). As can be seen by comparing the magnetic flux directions 37a, 38a of FIG. 3A and the magnetic flux directions 37b, 38b of FIG. 3B, the magnetic flux directions in the induction coil 26 are opposite to each other, i.e., a change occurs in the magnetic flux. An induction coil 26 induces voltage and outputs electrical energy through a load 27.

図2中には僅かに4つの固定子ケイ素鋼板セットが記載されているが、間距(すなわち、固定子ケイ素鋼板21a、21b或いは可動子ケイ素鋼板24或いはプラスチック板25の厚さ)が非常に小さいことから、固定子20には非常に多くのケイ素鋼板セットが包含されうる。間距を仮に0.3cmとし、可動子23が毎回運動する距離を3cmとすると、毎回運動する度に、その磁束量は10回変化するが、伝統的な線形発電機では図1のように一回しか変化せず、ゆえに、本願発明は伝統的な線形発電機に対して、発生する誘導電圧は10倍となり得て、出力パワーは100倍となり得る。ゆえに、出力体積比は訳100倍に高められ得る。   Although only four stator silicon steel sheet sets are shown in FIG. 2, the distance (that is, the thickness of the stator silicon steel sheets 21a and 21b, the movable silicon steel sheet 24, or the plastic plate 25) is very small. Therefore, the stator 20 can include a great number of silicon steel sheet sets. Assuming that the distance is 0.3 cm and the distance that the mover 23 moves every time is 3 cm, the amount of magnetic flux changes 10 times each time it moves, but in a conventional linear generator, as shown in FIG. Thus, the present invention can generate 10 times the induced voltage and 100 times the output power compared to traditional linear generators. Therefore, the output volume ratio can be increased by a factor of 100.

誘導コイル26内の磁束の変化を明かに説明するため、図4の直角座標を参照されたい。そのうち、縦軸は磁束量(φ)を代表し、横軸は時間tを代表し、φaは図3Aの磁束方向37a(磁束量)の曲線を代表し、φbは図3Bの磁束方向38b(磁束量)の曲線を代表し、φcは両者を相加の後の、真正の磁束方向の曲線であり、可動子23が図3Aの位置の時、時間はt0或いはt4で、図3Bの位置に移動した時、時間はt2であり、この図から、φaとφbの方向は互いに反対であり、ゆえに、φcはt0とt4にあって+φとされ、t1とt3では0であり、t2では−φであり、ゆえに、+φから−φに変化し、さらに、−φから+φへと変化し、すなわち、磁束量が変化するのみならず、その方向も変化する。   To clearly illustrate the change in magnetic flux in the induction coil 26, see the rectangular coordinates of FIG. Among them, the vertical axis represents the magnetic flux amount (φ), the horizontal axis represents time t, φa represents the curve of the magnetic flux direction 37a (magnetic flux amount) in FIG. 3A, and φb represents the magnetic flux direction 38b ( Is representative of the curve of the magnetic flux), φc is a curve in the true magnetic flux direction after adding both, and when the mover 23 is at the position of FIG. 3A, the time is t0 or t4, the position of FIG. 3B , The time is t2, and from this figure, the directions of φa and φb are opposite to each other, so φc is + φ at t0 and t4, and is 0 at t1 and t3, and at t2 Therefore, it changes from + φ to -φ, and further changes from -φ to + φ. That is, not only the amount of magnetic flux changes but also the direction thereof changes.

図5に図2も合わせて参照されたい。そのうち、プラスチック板25はパッキングシート39或いはパッキンリングに交換可能であり、このパッキングシート39は方形或いは円形とされ得て、その厚さは可動子ケイ素鋼板24とほぼ同じであるが、幅は小さく、ケイ素鋼板或いは任意の絶縁硬質材料とされ得て、軸29で直列に接続されて、空隙25aを発生する。図面では説明のために非常に広く描かれているが、実際には、パッキングシート39の厚さはプラスチック板25と同様の幅であり、これにより材料と重量を節約できる。   Please refer to FIG. 5 together with FIG. Among them, the plastic plate 25 can be replaced with a packing sheet 39 or a packing ring. The packing sheet 39 can be square or circular, and the thickness thereof is almost the same as that of the mover silicon steel plate 24, but the width is small. It can be a silicon steel plate or any insulating hard material and is connected in series with a shaft 29 to generate a gap 25a. Although depicted very broadly for purposes of illustration in the drawings, in practice the thickness of the packing sheet 39 is as wide as the plastic plate 25, thereby saving material and weight.

この方形線形発電機の固定子と回転子は各種形状とされ得て、例えば円形とされ、その正面は図6のようである。そのうち、固定子ケイ素鋼板21c、21d及び可動子ケイ素鋼板24aは、それぞれ図2中の固定子ケイ素鋼板21a、21bと可動子ケイ素鋼板24に対応するが、形状が円形に改められており、そのプラスチック板もまた円形とされる。   The stator and rotor of this square linear generator can be of various shapes, for example circular, and the front is as shown in FIG. Among them, the stator silicon steel plates 21c and 21d and the mover silicon steel plate 24a correspond to the stator silicon steel plates 21a and 21b and the mover silicon steel plate 24 in FIG. 2, respectively, but the shape has been changed to a circle, The plastic plate is also round.

図7は既存の技術の回転式発電機であり、それは、固定子40、回転子41及び磁極42を包含する。磁極42には励磁コイル43が巻かれ、励磁電源44に接続され、回転子41が回転する時、回転子41に巻かれた誘導コイル45が磁力線を切って誘導電圧出力を発生する。   FIG. 7 is a conventional rotary generator, which includes a stator 40, a rotor 41 and a magnetic pole 42. An excitation coil 43 is wound around the magnetic pole 42 and connected to the excitation power supply 44. When the rotor 41 rotates, the induction coil 45 wound around the rotor 41 cuts the lines of magnetic force and generates an induced voltage output.

該発電機は一周回転すると二回磁束変化し、四極であれば、四回変化し、これにより、極数が多くなるほど、磁束変化も速くなり、誘導電圧も高くなり、出力も大きくなる。
しかし、図7からその磁極42には励磁コイル43が巻かれ、極数をあまり多くすることができず、また、もし磁極が多すぎると磁極の幅が狭くなり、磁束量が減るため、現在、全ての伝統的な発電機はその出力体積比をアップすることができない。
When the generator rotates once, the magnetic flux changes twice, and if it has four poles, the magnetic flux changes four times. As the number of poles increases, the magnetic flux changes faster, the induced voltage increases, and the output increases.
However, from FIG. 7, an exciting coil 43 is wound around the magnetic pole 42, so that the number of poles cannot be increased too much, and if there are too many magnetic poles, the width of the magnetic pole becomes narrow and the amount of magnetic flux decreases. All traditional generators cannot increase their output volume ratio.

図8Aに示されるのは、本発明の回転式発電機の正面図である。そのうち、発電機固定子52は固定子磁路52A、52B、52C、52D、52E、52F、52G、52H等、8段を包含し、回転子51の外側はケイ素鋼板53bと空隙54bが互い違いに配置されてなり、幅はほぼ同じとされる。固定子磁路52A、52B、52C、52D等、4段のうち側はケイ素鋼板53a及び空隙54aが互い違いに配置されてなり、幅はほぼ同じとされる。52E、52Fには励磁コイル55Aと55Bが巻かれ、外部励磁電源57が供給されるか、磁石より供給されるか或いは自己励磁回路58が合併して励磁される。或いは自己励磁される。ダイオード62、63の作用は、外部励磁と自己励磁電源の短絡を防止することにある。固定子磁路52Gと52Hには誘導コイル56A、56Bが巻かれ、負荷59が接続されている。   FIG. 8A shows a front view of the rotary generator of the present invention. Among them, the generator stator 52 includes eight stages such as stator magnetic paths 52A, 52B, 52C, 52D, 52E, 52F, 52G, and 52H, and the outer side of the rotor 51 includes silicon steel plates 53b and gaps 54b alternately. The width is almost the same. Of the four stages, such as the stator magnetic paths 52A, 52B, 52C, and 52D, the silicon steel plates 53a and the gaps 54a are alternately arranged on the sides, and the widths are substantially the same. Excitation coils 55A and 55B are wound around 52E and 52F, and an external excitation power source 57, a magnet, or a self-excitation circuit 58 is excited in combination. Or it is self-excited. The function of the diodes 62 and 63 is to prevent a short circuit between the external excitation and the self-excitation power source. Inductor coils 56A and 56B are wound around the stator magnetic paths 52G and 52H, and a load 59 is connected thereto.

固定子磁路52Aと52Bのケイ素鋼板と回転子51のケイ素鋼板は乖離し、固定子磁路52Cと52Dのケイ素鋼板と回転子ケイ素鋼板はアラインしている。これにより励磁コイル55Aの磁力線はN極より固定子磁路52Dをとおり回転子に至り、さらに固定子磁路52Cより固定子磁路52H上のコイル56BをとおりS極に至る。その磁束方向60b(点線の矢印で表示)は、励磁コイル55Bの磁力線はN極より固定子磁路52G上のコイル56A及び固定子磁路52Dをとおり、回転子に至り、さらに固定子磁路52CよりS極に至り、その磁束方向60aと60bの磁力線の方向は反対である。回転子51が一つのケイ素鋼板53bの幅の距離を回転する時、図8Bのようになり、その固定子磁路52A、52Bのケイ素鋼板と 回転子51のケイ素鋼板がアラインし、固定子磁路52C、52Dのケイ素鋼板と回転子51が乖離し、これにより励磁コイル55Aの磁力線は、コイル56A及び固定子磁路52B及び52AをとおりS極に至り、その磁束方向60a(点線の矢印)方向は前図と反対であり、励磁コイル55Bの磁力線は固定子磁路52B、52A及びコイル56B及び固定子磁路52CをとおりS極に至り、その磁束方向60b(点線の矢印方向)は全図と反対となる。これにより、コイル56A、56B内の磁束量及びその方向に変化が発生し、これにより電圧を誘導し、負荷59を通して電気エネルギーを出力する。コンデンサ61は出力因子を高め、符号50は回転軸とされる。   The silicon steel plates of the stator magnetic paths 52A and 52B are separated from the silicon steel plate of the rotor 51, and the silicon steel plates and the rotor silicon steel plates of the stator magnetic paths 52C and 52D are aligned. As a result, the magnetic field lines of the exciting coil 55A reach from the N pole through the stator magnetic path 52D to the rotor, and further from the stator magnetic path 52C through the coil 56B on the stator magnetic path 52H to the S pole. In the magnetic flux direction 60b (indicated by a dotted arrow), the magnetic field lines of the exciting coil 55B pass from the N pole through the coil 56A and the stator magnetic path 52D on the stator magnetic path 52G to the rotor, and further to the stator magnetic path. From 52C to the S pole, the direction of the magnetic force lines of the magnetic flux directions 60a and 60b are opposite. When the rotor 51 rotates the distance of the width of one silicon steel plate 53b, as shown in FIG. 8B, the silicon steel plate of the stator magnetic paths 52A and 52B and the silicon steel plate of the rotor 51 are aligned, and the stator magnet The silicon steel plates of the paths 52C and 52D and the rotor 51 are separated from each other, so that the magnetic lines of force of the exciting coil 55A reach the south pole through the coils 56A and the stator magnetic paths 52B and 52A, and the magnetic flux direction 60a (dotted arrow) The direction is opposite to the previous figure, and the magnetic field lines of the exciting coil 55B pass through the stator magnetic paths 52B and 52A, the coil 56B and the stator magnetic path 52C to the S pole, and the magnetic flux direction 60b (the direction of the dotted arrow) is all. The opposite of the figure. As a result, a change occurs in the amount and direction of the magnetic flux in the coils 56 </ b> A and 56 </ b> B, thereby inducing a voltage and outputting electric energy through the load 59. The capacitor 61 increases the output factor, and reference numeral 50 is a rotation axis.

ケイ素鋼板53a或いは53bの幅が非常に小さく、仮に0.3cmであり、回転子51の直径が10cmであると、すなわち約100個の間距を有し(50個のケイ素鋼板53bと50個の空隙54b)、すなわち、回転子51が一周回転すると、その磁束は100回変化し、同様のコイル巻数では、その誘導する電圧は、図7の伝統的な発電機(10極と仮定)より10倍大きく、その出力体積比は約100倍となる。   If the width of the silicon steel plate 53a or 53b is very small and is 0.3 cm, and the diameter of the rotor 51 is 10 cm, that is, it has a distance of about 100 (50 silicon steel plates 53b and 50 pieces). When the air gap 54b), that is, the rotor 51 rotates once, its magnetic flux changes 100 times, and with the same number of coil turns, the induced voltage is 10 from the traditional generator (assuming 10 poles) in FIG. The output volume ratio is about 100 times larger.

誘導コイル56A、56Bもまた空隙に巻かれ得て、図9は空隙64に巻かれた状態であり、これによりコイル巻数を増し、さらに出力体積比を増すことができる。   The induction coils 56A and 56B can also be wound in the gap, and FIG. 9 shows the state wound in the gap 64, which can increase the number of coil turns and further increase the output volume ratio.

図10は本発明の発電機を多相式とした実施例を示し、それは3個の、図8Aの固定子71A、71B、71Cを直列に接続して一つの回転子72を共用して構成された一組の三相発電機である。その方法は、図10の下方に示されるようであり、そのうち、ケイ素鋼板73aは固定子71Aの一つの磁路のケイ素鋼板とされ、ケイ素鋼板73bは固定子71Bの一つの磁路のケイ素鋼板とされ、ケイ素鋼板73cは固定子71Cの一つの磁路のケイ素鋼板とされる。74a、74b、74cはそれぞれ空隙とされ、ケイ素鋼板75は回転子72のケイ素鋼板とされ、76は空隙である。第1の固定子71Aのケイ素鋼板73aとケイ素鋼板75がアラインする時、第2の固定子71Bのケイ素鋼板73bはただ1/3がケイ素鋼板75とアラインし、すなわち、120°が後れており、第3の固定子71Cのケイ素鋼板73cは1/3の距離を進まなければ、ケイ素鋼板73cとアラインできず、すなわち、240°後れている。この3組の発電機が同時に出力し、そのコイルはY或いは三角形に接続されて、3相電源出力をなす。同様の方式で、3相線形発電機を構成することもできる。   FIG. 10 shows an embodiment in which the generator of the present invention is a multiphase type, which is configured by connecting three stators 71A, 71B, 71C of FIG. 8A in series and sharing one rotor 72. It is a set of three-phase generator. The method is as shown in the lower part of FIG. 10, in which the silicon steel plate 73a is a silicon steel plate of one magnetic path of the stator 71A, and the silicon steel plate 73b is a silicon steel plate of one magnetic path of the stator 71B. The silicon steel plate 73c is a silicon steel plate having one magnetic path of the stator 71C. 74a, 74b, and 74c are air gaps, the silicon steel plate 75 is the silicon steel plate of the rotor 72, and 76 is the air gap. When the silicon steel plate 73a of the first stator 71A and the silicon steel plate 75 are aligned, the silicon steel plate 73b of the second stator 71B is only 1/3 aligned with the silicon steel plate 75, that is, 120 ° behind. In addition, the silicon steel plate 73c of the third stator 71C cannot be aligned with the silicon steel plate 73c unless the distance of 3 is advanced, that is, 240 ° behind. These three sets of generators output simultaneously, and their coils are connected to Y or a triangle to form a three-phase power output. A three-phase linear generator can be configured in the same manner.

10 固定子 11 励磁装置
12 可動子 13 空隙
14 誘導コイル 15 負荷
20 固定子 21a、21b 固定子ケイ素鋼板
21c、21d 固定子ケイ素鋼板 22a、22b 空隙
23 可動子 24 可動子ケイ素鋼板
24a 可動子ケイ素鋼板 25 プラスチック板
25a 空隙 26 誘導コイル
27 負荷 28 コンデンサ
29 軸 30 運動方向
31 永久磁石 32 励磁コイル
33 自己励磁回路 34 外部励磁電源
35、36 ダイオード 37a、37b 磁束方向(磁力線)
38a、38b 磁束方向(磁力線)
39 パッキングシート 40 固定子
41 回転子 42 磁極
43 励磁コイル 44 励磁電源
45 誘導コイル 50 回転軸
51 回転子 52 固定子
52A、52B、52C、52D、52E、52F、52G、52H 固定子磁路
53a、53b ケイ素鋼板 54a、54b 空隙
55A、55B 励磁コイル 56A、56B コイル
57 外部励磁電源 58 自己励磁回路
59 負荷 60a、60b 磁束方向(磁力線)
61 コンデンサ 62、63 ダイオード
64 空隙 71A、71B、71C 固定子
72 回転子 73a、73b、73c ケイ素鋼板
74a、74b、74c 空隙 75 ケイ素鋼板
76 空隙
DESCRIPTION OF SYMBOLS 10 Stator 11 Exciter 12 Movable element 13 Space | gap 14 Induction coil 15 Load 20 Stator 21a, 21b Stator silicon steel plate 21c, 21d Stator silicon steel plate 22a, 22b Air gap 23 Movable element 24 Movable silicon steel sheet 24a Movable silicon steel sheet 25 Plastic plate 25a Air gap 26 Inductive coil 27 Load 28 Capacitor 29 Axis 30 Movement direction 31 Permanent magnet 32 Excitation coil 33 Self-excitation circuit 34 External excitation power supply 35, 36 Diodes 37a, 37b Magnetic flux direction (lines of magnetic force)
38a, 38b Magnetic flux direction (lines of magnetic force)
39 Packing sheet 40 Stator 41 Rotor 42 Magnetic pole 43 Excitation coil 44 Excitation power supply 45 Induction coil 50 Rotating shaft 51 Rotor 52 Stator 52A, 52B, 52C, 52D, 52E, 52F, 52G, 52H Stator magnetic path 53a, 53b Silicon steel plates 54a, 54b Gap 55A, 55B Excitation coil 56A, 56B Coil 57 External excitation power supply 58 Self-excitation circuit 59 Load 60a, 60b Magnetic flux direction (lines of magnetic force)
61 Capacitor 62, 63 Diode 64 Air gap 71A, 71B, 71C Stator 72 Rotor 73a, 73b, 73c Silicon steel plates 74a, 74b, 74c Air gap 75 Silicon steel plate 76 Air gap

Claims (5)

高出力体積比発電機において、複数のケイ素鋼板と空隙或いはプラスチック板で、線形移動発電機或いは回転式発電機を構成する固定子と可動子或いは回転子が界磁する磁路を区画し、各間距すなわちケイ素鋼板或いは空隙或いはプラスチック板の厚さ或いは幅を非常に小さく設けて、可動子或いは回転子が一つの間距を移動すると、固定子に巻かれた誘導コイルの磁路の磁束量及び方向がスピーディ−に変化するようにして、誘導コイルに高い電圧を感応させて、大幅に発電機の出力体積比をアップすることを特徴とする、高出力体積比発電機。   In a high output volume ratio generator, a plurality of silicon steel plates and gaps or plastic plates divide a magnetic path in which a stator and a mover or a rotor constituting a linear moving generator or a rotary generator form a magnetic field, When the distance, ie, the thickness or width of the silicon steel plate, the gap or the plastic plate is very small, and the mover or the rotor moves one distance, the magnetic flux amount and direction of the magnetic path of the induction coil wound around the stator A high output volume ratio generator characterized by significantly changing the output volume ratio of the generator by making the induction coil sensitive to a high voltage so as to change rapidly. 請求項1記載の高出力体積比発電機において、磁束は固定子に取り付けられた永久磁石により供給されることを特徴とする、高出力体積比発電機。   2. The high output volume ratio generator according to claim 1, wherein the magnetic flux is supplied by a permanent magnet attached to the stator. 請求項1記載の高出力体積比発電機において、磁束は外部励磁電源或いは自己励磁により供給されるか、或いは外部励磁電源に自己励磁が組み合わされて供給され、その励磁コイルは固定子に取り付けられることを特徴とする、高出力体積比発電機。   2. The high output volume ratio generator according to claim 1, wherein the magnetic flux is supplied by an external excitation power source or self-excitation, or is supplied in combination with the external excitation power source, and the excitation coil is attached to the stator. A high output volume ratio generator characterized by that. 請求項1記載の高出力体積比発電機において、磁束は永久磁石に自己励磁が組み合わされて供給され、該永久磁石と励磁コイルは固定子に取り付けられることを特徴とする、高出力体積比発電機。   2. The high output volume ratio generator according to claim 1, wherein the magnetic flux is supplied in combination with a permanent magnet and self-excitation, and the permanent magnet and the excitation coil are attached to a stator. Machine. 請求項1記載の高出力体積比発電機において、磁路は時計回り方向或いは逆時計回り方向の二つの磁力線が合併されたものとされ、それはそれぞれが一つの励磁装置と誘導コイルを有し、そのうち一つの磁路の固定子のケイ素鋼板と回転子のケイ素鋼板がアラインする時、もう一つの磁路は乖離し、アライン状態の磁束量を大きく変化させ、乖離状態の磁束量は小さく変化し、両者が誘導コイル上の磁路に相加されて、磁束量と方向の変化を発生することを特徴とする、高出力体積比発電機。   The high power volume ratio generator according to claim 1, wherein the magnetic path is a combination of two lines of magnetic force in a clockwise direction or a counterclockwise direction, each having one exciter and an induction coil, When the silicon steel plate of the stator of one magnetic path and the silicon steel plate of the rotor are aligned, the other magnetic path is dissociated, greatly changing the amount of magnetic flux in the aligned state, and changing the amount of magnetic flux in the dissociated state small. A high output volume ratio generator characterized in that both are added to the magnetic path on the induction coil to generate a change in the amount and direction of magnetic flux.
JP2010095835A 2010-04-19 2010-04-19 High output volume ratio power generator Pending JP2011229250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010095835A JP2011229250A (en) 2010-04-19 2010-04-19 High output volume ratio power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095835A JP2011229250A (en) 2010-04-19 2010-04-19 High output volume ratio power generator

Publications (1)

Publication Number Publication Date
JP2011229250A true JP2011229250A (en) 2011-11-10

Family

ID=45043998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095835A Pending JP2011229250A (en) 2010-04-19 2010-04-19 High output volume ratio power generator

Country Status (1)

Country Link
JP (1) JP2011229250A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913807U (en) * 1972-05-12 1974-02-05
JPS4933284Y1 (en) * 1969-11-01 1974-09-09
JP2001275321A (en) * 2000-03-27 2001-10-05 Shr Ltd Bvi Inductor type ac power generator
JP2002369491A (en) * 2001-06-05 2002-12-20 Hiwin Mikrosystem Corp Secondary-side structure for linear pulse motor and manufacturing method therefor
JP2003180059A (en) * 2001-12-10 2003-06-27 Denso Corp Alternating-current rotating electric machine for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933284Y1 (en) * 1969-11-01 1974-09-09
JPS4913807U (en) * 1972-05-12 1974-02-05
JP2001275321A (en) * 2000-03-27 2001-10-05 Shr Ltd Bvi Inductor type ac power generator
JP2002369491A (en) * 2001-06-05 2002-12-20 Hiwin Mikrosystem Corp Secondary-side structure for linear pulse motor and manufacturing method therefor
JP2003180059A (en) * 2001-12-10 2003-06-27 Denso Corp Alternating-current rotating electric machine for vehicle

Similar Documents

Publication Publication Date Title
Almoraya et al. Development of a double-sided consequent pole linear vernier hybrid permanent-magnet machine for wave energy converters
Li et al. Consequent-pole toroidal-winding outer-rotor Vernier permanent-magnet machines
Hua et al. Novel parallel hybrid excited machines with separate stators
Zhao et al. A novel dual-rotor, axial field, fault-tolerant flux-switching permanent magnet machine with high-torque performance
JP5719369B2 (en) Multiphase stator device
CN101662172B (en) Composite excitation type magnetic flux reverse motor
Jang et al. Design and analysis of high speed slotless PM machine with Halbach array
Wan et al. A novel transverse flux machine for vehicle traction aplications
CN104967275A (en) Double-salient-pole permanent magnet linear motor and motor module group using same
Husain et al. Design of a modular E-Core flux concentrating axial flux machine
Luo et al. Development of a consequent pole transverse flux permanent magnet linear machine with passive secondary structure
US20110254386A1 (en) Power generator with high power-to-volume ratio
CN105406682B (en) A kind of plate straight line switch flux linkage motor and its side set displacement system of selection
Wei et al. New dual-PM spoke-type flux-reversal machines for direct-drive applications
CN107276350B (en) Double-stator hybrid excitation motor
CN201536282U (en) Flux reversal motor with magnetic field regulating capabilities
Chen et al. Analysis of magnetic gearing effect in field-modulated transverse flux linear generator for direct drive wave energy conversion
CA2907803A1 (en) Flux switching modulated pole machine
Raihan et al. Investigation of a doubly salient Halbach array linear permanent magnet machine for wave energy converters
Shen et al. Design and analysis of a novel modular six-phase linear permanent-magnet vernier machine
Zaim et al. Structures of low speed doubly salient permanent magnet machine
Qin et al. A novel electric machine employing torque magnification and flux concentration effects
Dobzhanskyi Comparison analysis of cylindrical and rectangular linear permanent magnet transverse-flux machines for wave energy applications
JP2011229250A (en) High output volume ratio power generator
Masoumi et al. A comprehensive comparison between four different c-core hybrid reluctance motors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325