JP2011228585A - Heat dissipation structure - Google Patents

Heat dissipation structure Download PDF

Info

Publication number
JP2011228585A
JP2011228585A JP2010098943A JP2010098943A JP2011228585A JP 2011228585 A JP2011228585 A JP 2011228585A JP 2010098943 A JP2010098943 A JP 2010098943A JP 2010098943 A JP2010098943 A JP 2010098943A JP 2011228585 A JP2011228585 A JP 2011228585A
Authority
JP
Japan
Prior art keywords
layer
heat
heat dissipation
dissipation structure
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010098943A
Other languages
Japanese (ja)
Inventor
Shuhei Onoe
周平 尾上
Tatsuichiro Kin
辰一郎 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010098943A priority Critical patent/JP2011228585A/en
Publication of JP2011228585A publication Critical patent/JP2011228585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize high heat dissipation performance without notably changing an external dimension (appearance) of a heat dissipation structure.SOLUTION: The heat dissipation structure includes a heat conduction layer 1 and an inner layer 2 provided on an inside of the heat conduction layer 1 and having a three-dimensional shape imparting layer on an innermost face-side. In the heat conduction layer 1, a heat conductivity in at least one direction in the layer is 2 W/m K or above, an average thickness is 0.2 to 5 mm and a product of the heat conductivity and the average thickness is 0.01 W/K or above. In the three-dimensional shape imparting layer, a plurality of uneven portions, which have an average valley width of 1 to 20 mm, an average ridge width of 0.5 to 5 mm and an average height that is 1 to 10 times as much as the average valley width, are arranged to be brought into contact with at least a part of a heating unit in 10% or above region of the inner layer. A surface area of a region where the three-dimensional imparting layer is disposed is 1.2 times as much as a case of a flat surface without the uneven portion.

Description

本発明は、発光素子(LED素子、レーザーダイオード、EL素子等)、能動受光素子(CCD等)、中央演算装置(CPU)、画像演算装置(MPU)、インバータ素子(IGBT、FET等)、モーター類、ヒーター素子等、発熱を伴うデバイス類の実装された機器、器具等の放熱対策として用いられる放熱構造体に関するものである。   The present invention includes a light emitting element (LED element, laser diode, EL element, etc.), active light receiving element (CCD, etc.), central processing unit (CPU), image arithmetic unit (MPU), inverter element (IGBT, FET, etc.), motor The present invention relates to a heat dissipation structure that is used as a heat dissipation measure for devices, appliances, and the like in which devices that generate heat such as heaters and heater elements are mounted.

近年、電子/電気機器の中には発熱密度の高いデバイス(LED素子、レーザーダイオード、CPU、MPU等)が多数実装されており、これらデバイス駆動に高い信頼性を確保するための温度コントロール、すなわち放熱対策が極めて重要になってきている。   In recent years, a large number of devices with high heat generation density (LED elements, laser diodes, CPUs, MPUs, etc.) have been mounted in electronic / electrical equipment, and temperature control for ensuring high reliability in driving these devices, that is, Heat dissipation measures are becoming extremely important.

これらの放熱対策としては、熱伝導率の高い金属(銅、アルミニウム、アルミニウム合金、マグネシウム合金等)を押出成形法やダイキャスト成形法等を用いて成形してなる放熱構造体(フィン型ヒートシンク等)を発熱源近傍に配して、外界空気に効率的に熱放散する経路設計を行うことが一般的であった。(例えば特許文献1〜3)   These heat dissipation measures include heat dissipation structures (fin-type heat sinks, etc.) formed by molding metals with high thermal conductivity (copper, aluminum, aluminum alloy, magnesium alloy, etc.) using extrusion molding, die casting, etc. ) In the vicinity of the heat generation source, it is common to design a route that efficiently dissipates heat to the outside air. (For example, Patent Documents 1 to 3)

特開平07−159012号公報Japanese Patent Application Laid-Open No. 07-159012 特開平10−092986号公報JP-A-10-092986 特開2004−071599号公報JP 2004-071599 A

これら従来の放熱対策は、高い放熱性能を実現する上で、放熱構造体の外表面への凸部配置等により、外寸法及び容積が増大してしまうため、機器、器具の小型化や軽量化、及びデザイン性等の市場要求に応えるためには、さらに高い放熱性能が求められている。本発明はこれらの事情に鑑み、放熱体の外寸法(外観)を顕著に変化させることなく、極めて高い放熱性能を実現することを課題として、為されたものである。   These conventional heat dissipation measures increase the external dimensions and volume due to the arrangement of protrusions on the outer surface of the heat dissipation structure in order to achieve high heat dissipation performance. In order to meet market demands such as design, etc., higher heat dissipation performance is required. In view of these circumstances, the present invention has been made with the object of realizing extremely high heat dissipation performance without significantly changing the outer dimension (appearance) of the heat dissipator.

本発明は、熱伝導層と、この内側に設けられ、その最内面側に3次元形状賦型層を有する内皮層とを含む放熱構造体であって、熱伝導層は、層内の少なくとも一方向における熱伝導率が2W/m・K以上、平均厚みが0.2〜5mmであって、熱伝導率と平均厚みの積が0.01W/K以上であり、3次元形状賦型層は、内皮層の10%以上の領域に複数の凹凸部が存在し、凹凸部の平均谷幅1〜20mm、平均山幅が0.5〜5mm、平均高さが平均谷幅の1〜10倍であり、かつ、発熱体の少なくとも一部と接触するように配され、3次元形状賦型層の設けられた領域の表面積が、凹凸部が無い平坦面である場合に比べ1.2倍以上であることを特徴とする放熱構造体である。   The present invention is a heat dissipation structure including a heat conductive layer and an endothelial layer provided on the innermost surface and having a three-dimensional shape shaping layer on the innermost surface side. The heat conductive layer is at least one of the layers. The thermal conductivity in the direction is 2 W / m · K or more, the average thickness is 0.2 to 5 mm, the product of the thermal conductivity and the average thickness is 0.01 W / K or more, and the three-dimensional shape shaping layer is A plurality of uneven portions exist in an area of 10% or more of the endothelial layer, the average valley width of the uneven portion is 1 to 20 mm, the average peak width is 0.5 to 5 mm, and the average height is 1 to 10 times the average valley width. And the surface area of the region in which the three-dimensional shape shaping layer is provided so as to be in contact with at least a part of the heating element is 1.2 times or more compared to a flat surface without an uneven portion. It is a heat dissipation structure characterized by being.

本発明の放熱構造体は、放熱構造体の外寸法及び外観の顕著な変化なく、極めて高い放熱性能を実現することができ、寸法制限のある機器類の放熱対策に特に好適である。   The heat dissipating structure of the present invention can achieve extremely high heat dissipating performance without significant changes in the external dimensions and appearance of the heat dissipating structure, and is particularly suitable for heat dissipating measures for devices with dimensional restrictions.

本発明の放熱構造体の一例(上面・正面から見た断面図)An example of the heat dissipation structure of the present invention (a cross-sectional view seen from the top and front) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の各部寸法に関する説明図(上面からみた断面図)Explanatory drawing about each part dimension of the uneven | corrugated | grooved part shape of the three-dimensional shape shaping layer in the thermal radiation structure of this invention (sectional drawing seen from the upper surface) 本発明の放熱構造体と発熱体の接触部の一例(正面からみた断面図)An example of the contact portion between the heat dissipation structure and the heating element of the present invention (cross-sectional view as seen from the front) 本発明の放熱構造体のLED照明具(照明具内部が空気層の場合)への応用例(正面からみた断面図)Application example of the heat dissipating structure of the present invention to an LED illuminator (when the interior of the illuminator is an air layer) (cross-sectional view seen from the front) 本発明の放熱構造体のLED照明具(照明具内部に電気絶縁層部品がある場合)への応用例(正面からみた断面図)Application example of the heat dissipating structure of the present invention to an LED illuminator (when there is an electrical insulating layer component inside the illuminator) (cross-sectional view seen from the front) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(断面〜斜視図)An example of the uneven portion shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional to perspective view) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(上面・正面・側面から見た断面図)An example of the uneven portion shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional view seen from the top, front, and side) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(断面〜斜視図)An example of the uneven portion shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional to perspective view) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(上面・正面・側面から見た断面図)An example of the uneven portion shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional view seen from the top, front, and side) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(上面・正面から見た断面図)An example of the concavo-convex shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional view seen from the top and front) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(上面・正面から見た断面図)An example of the concavo-convex shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional view seen from the top and front) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(上面・正面・側面から見た断面図)An example of the uneven portion shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional view seen from the top, front, and side) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(上面・正面・側面から見た断面図)An example of the uneven portion shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional view seen from the top, front, and side) 本発明の放熱構造体中の3次元形状賦型層の凹凸部形状の一例(上面・正面・側面から見た断面図)An example of the uneven portion shape of the three-dimensional shape shaping layer in the heat dissipation structure of the present invention (cross-sectional view seen from the top, front, and side) 本発明の放熱構造体の一例(上面・正面から見た断面図)An example of the heat dissipation structure of the present invention (a cross-sectional view seen from the top and front) 本発明の放熱構造体の一例(上面・正面から見た断面図)An example of the heat dissipation structure of the present invention (a cross-sectional view seen from the top and front) 本発明の放熱構造体の一例(上面・正面から見た断面図)An example of the heat dissipation structure of the present invention (a cross-sectional view seen from the top and front) 本発明の放熱構造体の各部寸法に関する説明図(正面からみた断面図)Explanatory drawing about the dimensions of each part of the heat dissipation structure of the present invention (cross-sectional view seen from the front)

本発明は熱伝導層と、この内側に設けられ、最内面側に3次元形状賦型層を有する内皮層とを含む放熱構造体である。以下、本発明の実施の形態について順次詳述する。   The present invention is a heat dissipating structure including a heat conductive layer and an endothelial layer provided on the inner side and having a three-dimensional shape shaping layer on the innermost surface side. Hereinafter, embodiments of the present invention will be described in detail.

[放熱構造体]
本発明の放熱構造体は少なくともその一部が発熱体近傍に配置され、その接触面から発熱体の熱が伝達された後、放熱構造体を通じて熱を輸送し、最終的に放熱構造体の最外層から外部空気等に熱を放散する機能を有する構造体である。本発明の放熱構造体の好ましい態様であるLED素子の放熱部品に用いるケースで説明すると、LED基板側から一旦筺体内部へ放熱された熱量、及び、内部電源基板から筺体内部へ放熱された熱量を、本発明の放熱構造体を介して、放熱筺体への伝熱し放熱を促進する。
[Heat dissipation structure]
At least a part of the heat dissipating structure of the present invention is disposed in the vicinity of the heat generating element, and after the heat of the heat generating element is transferred from the contact surface, the heat is transported through the heat dissipating structure, and finally the outermost part of the heat dissipating structure. It is a structure having a function of dissipating heat from the outer layer to outside air or the like. In the case of using the LED element heat dissipation component which is a preferred embodiment of the heat dissipation structure of the present invention, the amount of heat once dissipated from the LED substrate side into the housing and the amount of heat dissipated from the internal power supply substrate into the housing are described. Through the heat dissipation structure of the present invention, heat is transferred to the heat dissipation housing to promote heat dissipation.

本発明の放熱構造体は熱伝導層とこの内側に設けられた内皮層とを含み、内皮層は最内面側に3次元形状賦型層を有する。熱伝導層は、層内の少なくとも一方向における熱伝導率が2W/m・K以上、平均厚みが0.2〜5mmであって、熱伝導率と平均厚みの積が0.01W/K以上である。3次元形状賦型層は、内皮層の10%以上の領域に複数の凹凸部が存在し、凹凸部の平均谷幅1〜20mm、平均山幅が0.5〜5mm、平均高さが平均谷幅の1〜10倍であり、かつ、発熱体の少なくとも一部と接触するように配される。3次元形状賦型層の設けられた領域の表面積が、凹凸部が無い平坦面である場合に比べ1.2倍以上である。   The heat dissipation structure of the present invention includes a heat conductive layer and an inner skin layer provided on the inner side, and the inner skin layer has a three-dimensional shape shaping layer on the innermost surface side. The thermal conductivity layer has a thermal conductivity of 2 W / m · K or more in at least one direction in the layer, an average thickness of 0.2 to 5 mm, and a product of the thermal conductivity and the average thickness of 0.01 W / K or more. It is. The three-dimensional shape-imparting layer has a plurality of uneven portions in an area of 10% or more of the endothelial layer, the average valley width of the uneven portions is 1 to 20 mm, the average peak width is 0.5 to 5 mm, and the average height is average. It is 1 to 10 times the valley width, and is arranged so as to be in contact with at least a part of the heating element. The surface area of the region where the three-dimensional shape shaping layer is provided is 1.2 times or more compared to the case where the surface is a flat surface having no irregularities.

[3次元形状賦型層]
本発明の放熱構造体における3次元形状賦型層は放熱構造体最内面の表面積を増やし、放熱構造体内部の空気層または機器構成部品、さらには発熱体との接触面積を増やすことにより、放熱構造体最内面と内部空気層または機器構成部品、さらには発熱体との界面の伝熱性を高める目的で形成される。一例として、LED照明具におけるLED素子の放熱部品として、本発明の放熱構造体を用いるケースで説明すると、LED素子の放熱促進の観点では、LED照明具内の熱抵抗をできるだけ小さくすべく、LED照明具内部の空気層または電気絶縁層等の機器構成部品、さらには発熱体となるLED素子実装基板と放熱構造体間の伝熱性を高めることが重要である。これらの伝熱性は伝熱面間の接触面積に大きく依存するので、接触面積をできる限り大きくすることが好ましい。
[Three-dimensional shape shaping layer]
The three-dimensional shape shaping layer in the heat dissipating structure of the present invention increases the surface area of the innermost surface of the heat dissipating structure, and increases the contact area with the air layer or equipment component inside the heat dissipating structure, and further with the heat generating element. It is formed for the purpose of enhancing the heat transfer property at the interface between the innermost surface of the structure and the internal air layer or equipment component, and further the heating element. As an example, the case where the heat dissipation structure of the present invention is used as a heat dissipation component of an LED element in an LED lighting device will be described. From the viewpoint of promoting heat dissipation of the LED element, It is important to improve the heat transfer between the component parts such as the air layer or the electrical insulating layer inside the lighting fixture, and the LED element mounting substrate serving as a heating element and the heat dissipation structure. Since these heat transfer properties greatly depend on the contact area between the heat transfer surfaces, it is preferable to increase the contact area as much as possible.

3次元形状賦型層の形成により、内皮層の表面積は、平坦面である場合に対比して、1.2倍以上であり、好ましくは2倍以上、さらに好ましくは3倍以上であって、上限は可能な形状であればとくには無い。   Due to the formation of the three-dimensional shape shaping layer, the surface area of the endothelial layer is 1.2 times or more, preferably 2 times or more, more preferably 3 times or more, compared to the case of a flat surface, The upper limit is not particularly limited if it is a possible shape.

内皮層の表面積の増加割合は、3次元形状賦型層として形成される凹凸部の形状、サイズ、形成密度等によって決定される。すなわち、凹部の谷幅、凸部の山幅、凸部の高さ、凹凸部の曲率(全体もしくは部分的に曲面が配される場合)等が主な支配要因となる。   The increase ratio of the surface area of the endothelial layer is determined by the shape, size, formation density, and the like of the concavo-convex portion formed as the three-dimensional shape shaping layer. That is, the main control factors are the valley width of the concave portion, the peak width of the convex portion, the height of the convex portion, the curvature of the concave and convex portion (when a curved surface is arranged in whole or in part), and the like.

本発明における3次元表面賦型層とは複数の凹凸部を有しているものであるが、凹凸部の形状としては凹凸部が1次元的に連続的に形成されるもの、あるいは凹凸部が不連続に形成されるものが挙げられる。凹凸部のピッチは一定でも可変でも構わず、得ようとする放熱構造体の形状に合わせて選択してよい。凸部の高さ、大きさ等は一定でも可変でも構わず、得ようとする放熱構造体の形状に合わせて選択することができる。   The three-dimensional surface shaping layer in the present invention has a plurality of uneven portions, but the shape of the uneven portions is one in which the uneven portions are continuously formed one-dimensionally, or the uneven portions are What is formed discontinuously is mentioned. The pitch of the uneven portions may be constant or variable, and may be selected according to the shape of the heat dissipation structure to be obtained. The height, size, and the like of the convex portion may be constant or variable, and can be selected according to the shape of the heat dissipation structure to be obtained.

本発明は、放熱構造体の外寸法(外観)の顕著な変化がないように、放熱構造体の内部の形状コントロールによって放熱性を高めることを特徴としており、放熱構造体内部の形状制約の許す範囲内である程度自由に凹凸部の形状を選定することができるが、発熱体の少なくとも一部と接触するように配する。   The present invention is characterized in that the heat dissipation is enhanced by controlling the shape inside the heat dissipation structure so that there is no significant change in the outer dimension (appearance) of the heat dissipation structure, and the shape restriction inside the heat dissipation structure is allowed. The shape of the concavo-convex portion can be selected freely to some extent within the range, but is arranged so as to be in contact with at least a part of the heating element.

3次元形状賦型層は、内皮層の10%以上の領域に複数の凹凸部が存在し、凹凸部の平均谷幅1〜20mm、平均山幅が0.5〜5mm、平均高さが平均谷幅の1〜10倍である。   The three-dimensional shape-imparting layer has a plurality of uneven portions in an area of 10% or more of the endothelial layer, the average valley width of the uneven portions is 1 to 20 mm, the average peak width is 0.5 to 5 mm, and the average height is average. 1 to 10 times the valley width.

高い放熱性能を実現するためには、凹部の平均谷幅は1〜20mmであるが、好ましくは2〜10mm、さらに好ましくは3〜5mmである。凹部の平均谷幅が1mm未満では、内部空気層との伝熱においては、凹部が狭すぎるために十分な空気の対流が起こらないために、また、機器構成部品との伝熱においては、接触界面の十分な接触が困難なために、放熱効率が悪くなる。逆に20mmを超える場合は、放熱構造体の内皮層の表面積が十分な大きさとならず、空気層または機器構成部品との伝熱が不十分となる。なお、後述するが、凹部の形状パターンは特に限定はなく、多種の形状が可能である。その際、例えば凹凸の断面形状が三角形や半円形の連続であり最下部に平坦部分がない場合など、凹部の谷幅が連続的に変化する場合は、その凹部の谷幅の平均値を平均谷幅とする。   In order to realize high heat dissipation performance, the average valley width of the recesses is 1 to 20 mm, preferably 2 to 10 mm, and more preferably 3 to 5 mm. When the average valley width of the recess is less than 1 mm, the heat transfer with the internal air layer does not cause sufficient air convection because the recess is too narrow. Since sufficient contact at the interface is difficult, the heat dissipation efficiency deteriorates. On the other hand, when the thickness exceeds 20 mm, the surface area of the endothelial layer of the heat dissipation structure is not sufficiently large, and heat transfer with the air layer or device components becomes insufficient. As will be described later, the shape pattern of the recess is not particularly limited, and various shapes are possible. In that case, for example, when the valley width of the concave portion changes continuously, such as when the cross-sectional shape of the concave and convex portions is a continuous triangle or semicircular shape and there is no flat portion at the bottom, the average value of the valley width of the concave portion is averaged. The valley width.

本発明の3次元形状賦型層において、凸部の平均山幅は0.5〜5mmであるが、好ましくは0.8〜4mm、さらに好ましくは1〜3mmである。凸部の平均山幅が0.5mm未満では、凸部の先端まで十分に伝熱が為されず、また、発熱体との接触面積も十分な大きさとならず、放熱効率が悪くなる。逆に5mmを超える場合は、放熱構造体の内皮層の表面積が十分な大きさとならず、空気層または機器構成部品との伝熱が不十分となる。   In the three-dimensional shape shaping layer of the present invention, the average peak width of the convex portions is 0.5 to 5 mm, preferably 0.8 to 4 mm, and more preferably 1 to 3 mm. When the average peak width of the convex portion is less than 0.5 mm, heat transfer is not sufficiently performed to the tip of the convex portion, and the contact area with the heating element is not sufficiently large, resulting in poor heat dissipation efficiency. On the other hand, when the thickness exceeds 5 mm, the surface area of the endothelial layer of the heat dissipating structure is not sufficiently large, and heat transfer with the air layer or device components becomes insufficient.

本発明の3次元形状賦型層において、凸部の平均高さは凹部の平均谷幅の1〜10倍であるが、好ましくは2〜8倍、さらに好ましくは3〜6倍である。凸部の平均高さが凹部平均谷幅の1倍未満では、放熱構造体の内皮層の表面積が十分な大きさとならず、空気層または機器構成部品との伝熱が不十分となることがある。また、発熱体との接触面積も十分な大きさとならず、放熱効率が悪くなる。逆に10倍を超える場合は、凹部で十分な空気の対流が起こりにくいために、放熱効率が悪くなる。なお、後述するが、凸部の形状パターンは特に限定はなく、多種の形状が可能である。その際、例えば突起断面形状が三角形や半円形といった凸部の山幅が連続的に変化する場合は、その凸部の山幅の平均値を平均山幅とする。   In the three-dimensional shape shaping layer of the present invention, the average height of the convex portions is 1 to 10 times the average valley width of the concave portions, preferably 2 to 8 times, and more preferably 3 to 6 times. If the average height of the protrusions is less than one times the average valley width of the recesses, the surface area of the endothelial layer of the heat dissipation structure may not be sufficiently large, and heat transfer with the air layer or device components may be insufficient. is there. Further, the contact area with the heating element is not sufficiently large, and the heat dissipation efficiency is deteriorated. On the other hand, if it exceeds 10 times, sufficient air convection is unlikely to occur in the recess, resulting in poor heat dissipation efficiency. As will be described later, the shape pattern of the convex portion is not particularly limited, and various shapes are possible. At that time, for example, when the peak width of the convex portion such as the protrusion cross-sectional shape is triangular or semicircular continuously changes, the average peak width of the convex portion is defined as the average peak width.

3次元形状賦型層を形成する凹凸部の形状や配列パターンは特に限定はなく、多種の形状、配列が可能である。凹凸部は連続的に連なった形でも、単独突起状でも良いが、発熱体との接触面積を増大させる形状及び配列パターンが好ましい。前者の場合、その配列方向は放熱構造体表面のいずれの方向でもよく、直線状に配列しても、曲線状に配列しても構わない。後者の場合、円柱形状、半球形状、多角形状等の一定の規則性を持って配列しても良いし、また規則性を持たずランダムに配列されても良い。さらに、凹凸部の高さ、山幅、谷幅の寸法は連続的に変化させても良い。   There are no particular limitations on the shape and arrangement pattern of the concavo-convex portions forming the three-dimensional shape shaping layer, and various shapes and arrangements are possible. The concave and convex portions may be continuously continuous or may be a single protrusion, but shapes and arrangement patterns that increase the contact area with the heating element are preferable. In the former case, the arrangement direction may be any direction on the surface of the heat dissipation structure, and may be arranged in a straight line or a curved line. In the latter case, they may be arranged with a certain regularity such as a cylindrical shape, a hemispherical shape, a polygonal shape, etc., or may be arranged randomly without any regularity. Furthermore, the height, peak width, and valley width dimensions of the concavo-convex portion may be continuously changed.

より具体的に幾つかの例を挙げると、図6、7、8、9、10、11は、3次元形状賦型を形成する凹凸部の形状が、連続的に連なる凹凸部であって、各凹凸部が円柱状もしくは円錐状の放熱構造体の軸方向と平行な向きに伸びた形で配列している例である。なお、これらの中で図6、7、10は凹凸部の高さを一定にした例であり、図8、9は凹凸部が内皮層の一部に配列された例であり、図11は凹凸部の高さを連続的に変化させた例である。
また、図12、13、14は単独突起状の凹凸部が円柱形状、半球形状、多角形状に配列された例である。
To give more specific examples, FIGS. 6, 7, 8, 9, 10, and 11 are uneven portions in which the shape of the uneven portion forming the three-dimensional shape shaping is continuous, In this example, the concavo-convex portions are arranged in a shape extending in a direction parallel to the axial direction of the cylindrical or conical heat dissipation structure. Of these, FIGS. 6, 7, and 10 are examples in which the height of the concavo-convex portion is constant, FIGS. 8 and 9 are examples in which the concavo-convex portion is arranged in a part of the endothelial layer, and FIG. This is an example in which the height of the uneven portion is continuously changed.
In addition, FIGS. 12, 13, and 14 are examples in which the single protrusion-shaped uneven portions are arranged in a cylindrical shape, a hemispherical shape, and a polygonal shape.

3次元形状賦型層は、内皮層の最内面側の10%以上の領域に形成される。10%未満では放熱構造体の表面積増加の効果が不十分となりやすい。最内面の30%以上、さらに好ましくは50%以上の領域に形成されることが好ましい。
3次元形状賦型層は詳しく後述する内皮層の一部であるので、好ましい材質等については内皮層の欄に述べる。
The three-dimensional shape shaping layer is formed in a region of 10% or more on the innermost surface side of the endothelial layer. If it is less than 10%, the effect of increasing the surface area of the heat dissipation structure tends to be insufficient. It is preferably formed in a region of 30% or more of the innermost surface, more preferably 50% or more.
Since the three-dimensional shape-imparting layer is a part of the endothelial layer which will be described in detail later, preferred materials and the like will be described in the column of the endothelial layer.

3次元形状賦型層を設ける好ましい方法としては、生産効率を鑑みて、射出成形、ダイキャスト成形等の金型内面に形状刻印を施すことによる、成形段階での実施が好ましいが、成形後の後処理による実施も可能であり、例えば、成形品に表面賦型用の形状刻印を施した金型面を押し付けて、熱プレスにより表面賦型を行う方法や、予め表面賦型の為された樹脂を成形品表面に接着する方法、あるいは、予め大きめに作製した成形品を切削する方法等が挙げられる。   As a preferable method for providing the three-dimensional shape shaping layer, in view of production efficiency, it is preferable to carry out shape marking on the inner surface of the mold, such as injection molding, die casting, etc., but after the molding, Implementation by post-processing is also possible, for example, a method of pressing the mold surface with the shape marking for surface molding applied to the molded product and performing surface molding by hot pressing, or surface molding was performed in advance. Examples thereof include a method of adhering a resin to the surface of a molded product, a method of cutting a molded product that has been prepared in advance, and the like.

[内皮層]
本発明の放熱構造体における内皮層は、3次元形状賦型層を含み、3次元形状を構成する突起部分を除いた部分、および3次元形状を有さない部位はベース層とする。内皮層は、放熱構造体の内部空気層、機器構成部品及び発熱体から受け取った熱を外部空気等へ効率的に逃がすために、熱伝導率の高い層であることがより好ましく、好ましくは層内の少なくとも一方向における熱伝導率は2W/m・K以上であることが好ましい。より好ましくは5W/m・K以上、更に好ましくは15W/m・K以上である。図15の例のように、内皮層が、熱伝導層と同一材料とすることも好ましい。その場合は内皮層と熱伝導層とが一体成形されることが好ましい。
[Endothelial layer]
The endothelium layer in the heat dissipation structure of the present invention includes a three-dimensional shape shaping layer, a portion excluding the protruding portion constituting the three-dimensional shape, and a portion not having the three-dimensional shape is a base layer. The endothelium layer is more preferably a layer having high thermal conductivity, preferably a layer having high thermal conductivity in order to efficiently release heat received from the internal air layer of the heat dissipation structure, device components, and the heating element to external air or the like. The thermal conductivity in at least one direction is preferably 2 W / m · K or more. More preferably, it is 5 W / m * K or more, More preferably, it is 15 W / m * K or more. As in the example of FIG. 15, it is also preferable that the endothelial layer is made of the same material as the heat conductive layer. In that case, it is preferable that the endothelial layer and the heat conductive layer are integrally formed.

ベース層厚みは放熱構造体において一定であることが成形の簡便さ等より好ましい。内皮層のベース層厚みが小さい場合、具体的にはベース層厚みが2mm以下である場合には、伝熱ロス(温度差発生)が比較的少なくて済むため、熱伝導率が2W/m・K未満の層でも内皮層として利用できる場合がある。なお、ベース層厚みはより好ましくは1.5mm以下、さらに好ましくは1.0mm以下である。   The thickness of the base layer is preferably constant in the heat dissipation structure from the viewpoint of ease of molding and the like. When the base layer thickness of the endothelium layer is small, specifically, when the base layer thickness is 2 mm or less, heat transfer loss (temperature difference generation) can be relatively small, so that the thermal conductivity is 2 W / m · Even a layer of less than K may be used as an endothelial layer. The base layer thickness is more preferably 1.5 mm or less, and still more preferably 1.0 mm or less.

特に内皮層を電気絶縁性の高い材料(特に体積抵抗が10cm・Ω以上の層、より好ましくは体積抵抗が1012cm・Ω以上の層)で形成することによって、放熱構造体の電気的安全性が高まる(絶縁耐圧や静電耐圧の増大、漏れ電流低減等)ので用途に応じて好ましく用いられる。 In particular, by forming the endothelial layer from a material having high electrical insulation (particularly, a layer having a volume resistance of 10 9 cm · Ω or more, more preferably a layer having a volume resistance of 10 12 cm · Ω or more), It is preferably used according to the application because the physical safety is increased (increased withstand voltage and electrostatic withstand voltage, reduced leakage current, etc.).

内皮層は、熱伝導性フィラーを含有し、層内の少なくとも一方向における熱伝導率が2W/m・K以上の熱伝導性樹脂組成物からなることが好ましい。熱伝導性フィラーおよび熱伝導性樹脂組成物の好ましい態様については後述する。   The endothelium layer preferably contains a thermally conductive filler and is made of a thermally conductive resin composition having a thermal conductivity of at least 2 W / m · K in at least one direction in the layer. The preferable aspect of a heat conductive filler and a heat conductive resin composition is mentioned later.

[放熱構造体ならびに3次元形状賦型層]
本発明の放熱構造体は少なくともその一部が発熱体近傍に配置され、その接触面から発熱体の熱が伝達された後、放熱構造体を通じて熱を輸送し、最終的に放熱構造体の最外層から外部空気等に熱を放散する機能を有する構造体である。
[Heat dissipation structure and 3D shape shaping layer]
At least a part of the heat dissipating structure of the present invention is disposed in the vicinity of the heat generating element, and after the heat of the heat generating element is transferred from the contact surface, the heat is transported through the heat dissipating structure, and finally the outermost part of the heat dissipating structure is obtained. It is a structure having a function of dissipating heat from the outer layer to outside air or the like.

図1、15、16、17に放熱構造体の一例を例示した。図中、記号2で3次元形状賦型層を含む内皮層を示す。これらの例ではいずれも円柱構造をベースとした形状となっているが、本発明の放熱構造体はこれら例示の形状に限定されるものではなく、また多角柱、円錐、多角錐、もしくはさらに複雑な3次立体形状をベースとしたものでも構わない。   Examples of the heat dissipation structure are illustrated in FIGS. In the figure, symbol 2 indicates an endothelial layer including a three-dimensional shape shaping layer. In each of these examples, the shape is based on a cylindrical structure, but the heat dissipation structure of the present invention is not limited to these illustrated shapes, and is a polygonal column, cone, polygonal pyramid, or more complicated. It may be based on a tertiary cubic shape.

放熱構造体の熱輸送能力は、その平均厚み(熱の流れる方向に対して垂直方向の平均肉厚、単位m)と熱伝導率(単位W/m・K)との積によって概ね表現でき、その値が0.01W/K以上であることが好ましく、それ未満では多くの用途において、発熱体の熱輸送が不十分になりやすい。熱伝導率と平均厚みの積は、より好ましくは0.03W/K以上、更に好ましくは0.05W/K以上である。なお、放熱構造体の熱伝導層と内皮層内のベース層の材質が異なる場合には、熱伝導率は厚みを考慮した並列合成値、平均厚みは両層の平均厚みの合計値として、積を計算する。   The heat transport capability of the heat dissipation structure can be generally expressed by the product of its average thickness (average thickness in the direction perpendicular to the direction of heat flow, unit m) and thermal conductivity (unit W / m · K). The value is preferably 0.01 W / K or more, and if it is less than that, heat transfer of the heating element tends to be insufficient in many applications. The product of thermal conductivity and average thickness is more preferably 0.03 W / K or more, and still more preferably 0.05 W / K or more. When the material of the heat conduction layer of the heat dissipation structure and the base layer in the endothelium layer are different, the thermal conductivity is a parallel composite value considering the thickness, and the average thickness is the sum of the average thicknesses of both layers. Calculate

放熱構造体の一部を放熱すべき発熱体と接触するように配し、発熱体から伝達された熱を最外層に輸送する機能を求める場合、放熱構造体は層の少なくとも一方向に対する熱伝導率が2W/m・K以上であって、平均厚みが0.2〜5mmの層であることが好ましい。熱伝導率は2W/m・K未満であると、放熱構造体の厚みを増加させる必要が生じ、無用な全体寸法の増加を招くので好ましくない。熱伝導率は、より好ましくは5W/m・K以上、さらに好ましくは15W/m・K以上である。放熱構造体の平均厚みは各用途において必要とされる熱輸送量を勘案した上でできる限り小さくすることが全体寸法低減の観点で好ましい。ただし0.2mm未満では機械的強度が低下する場合も多く、より好ましくは0.5〜4mm、さらに好ましくは1〜3mmである。   When a part of the heat dissipation structure is placed in contact with the heat generating element to be dissipated and the function of transporting the heat transferred from the heat generating element to the outermost layer is required, the heat dissipation structure can conduct heat in at least one direction of the layer. The rate is preferably 2 W / m · K or more, and the average thickness is preferably 0.2 to 5 mm. If the thermal conductivity is less than 2 W / m · K, it is necessary to increase the thickness of the heat dissipating structure, which unnecessarily increases the overall dimensions. The thermal conductivity is more preferably 5 W / m · K or more, and still more preferably 15 W / m · K or more. The average thickness of the heat dissipation structure is preferably as small as possible in consideration of the amount of heat transport required for each application from the viewpoint of reducing the overall dimensions. However, if it is less than 0.2 mm, the mechanical strength often decreases, more preferably 0.5 to 4 mm, and still more preferably 1 to 3 mm.

本発明の放熱構造体は単一材料により一体成形することが好ましく、特に3次元形状を内面に刻印した金型を用いた金型成形(特に射出成形、ダイキャスト成形)により、生産性良く作製することが好ましいが、必要に応じて、3次元形状賦型層を含む内皮層のみ異なる材料で成形した上で一体化させることも可能である。一体化させる方法としては、インサート成形、熱伝導接着剤による接着等による方法が好ましい。   The heat dissipating structure of the present invention is preferably integrally molded from a single material, and particularly produced with good productivity by die molding (particularly injection molding, die casting) using a die having a three-dimensional shape engraved on the inner surface. However, if necessary, only the endothelial layer including the three-dimensional shape shaping layer may be molded from different materials and integrated. As a method for integration, a method by insert molding, adhesion by a heat conductive adhesive, or the like is preferable.

また、放熱構造体の最外層には、図16に例示するように必要に応じて、電気絶縁層を設けたり、図17に例示するように凹凸部を設けたりすることもできる。最外層を電気絶縁性の高い材料(特に体積抵抗が1011cm・Ω以上の層、より好ましくは体積抵抗が1013cm・Ω以上の層)で形成することによって、放熱構造体の電気的安全性が高まる(絶縁耐圧や静電耐圧の増大、漏れ電流低減等)ので用途に応じて好ましく用いられる。また、電気絶縁層は、より好ましくは熱伝導率の高い層であることが好ましく、少なくとも層内の一方向に対する熱伝導率が0.5W/m・K以上であることが好ましく、より好ましくは1W/m・K以上である。 In addition, the outermost layer of the heat dissipation structure can be provided with an electrical insulating layer as necessary as illustrated in FIG. 16 or an uneven portion as illustrated in FIG. By forming the outermost layer from a material having high electrical insulation (particularly, a layer having a volume resistance of 10 11 cm · Ω or more, more preferably a layer having a volume resistance of 10 13 cm · Ω or more), Since safety is increased (insulation breakdown voltage, increase in electrostatic breakdown voltage, reduction of leakage current, etc.), it is preferably used according to the application. Further, the electrical insulating layer is more preferably a layer having high thermal conductivity, and preferably has a thermal conductivity of at least 0.5 W / m · K in one direction in the layer, more preferably 1 W / m · K or more.

放熱構造体の最外層に本発明の内皮層と同様の凹凸部を形成することによって、さらに放熱構造体の放熱性能を高めることもできる。なおこの際、内皮層とは異なり、放熱構造体の外寸法(外観)が変化するので、外観形状制約の許容範囲内で実施することが好ましい。   By forming an uneven portion similar to the inner skin layer of the present invention in the outermost layer of the heat dissipation structure, the heat dissipation performance of the heat dissipation structure can be further enhanced. In this case, unlike the endothelial layer, the outer dimension (appearance) of the heat dissipation structure changes, so that it is preferable to carry out within the allowable range of the appearance shape constraint.

[熱伝導層]
熱伝導層は、放熱構造体の一部を放熱すべき発熱体(発熱源)と接触するように配して発熱体から伝達された熱を最外層に輸送する機能を司る為、前述のように高い熱輸送能力が必要とされ、熱伝導層は、層内の少なくとも一方向に対する熱伝導率が2W/m・K以上、平均厚みが0.2〜5mmであって、熱伝導率と平均厚みの積が0.01W/K以上である。
[Thermal conduction layer]
The heat conduction layer is arranged so that a part of the heat radiating structure is in contact with a heat generating body (heat generation source) that should radiate heat and controls the function of transporting the heat transferred from the heat generating element to the outermost layer. The heat conduction layer has a heat conductivity of 2 W / m · K or more in at least one direction in the layer and an average thickness of 0.2 to 5 mm. The product of thickness is 0.01 W / K or more.

熱伝導層の熱伝導率は、より好ましくは5W/m・K以上、さらに好ましくは15W/m・K以上であり、平均厚みは、より好ましくは0.5〜4mm、さらに好ましくは1〜3mmである。   The thermal conductivity of the heat conductive layer is more preferably 5 W / m · K or more, still more preferably 15 W / m · K or more, and the average thickness is more preferably 0.5 to 4 mm, still more preferably 1 to 3 mm. It is.

熱伝導層として好適な材料としては、具体的には例えば、銅、銀、アルミニウム、鉄、ステンレス、亜鉛、チタン、珪素、クロム等の金属、もしくはこれら金属の合金類が挙げられる。これら金属もしくは合金類による熱伝導層は、鋳造法、鍛造法、ブロック状の金属塊の切削加工などにより成形が可能である。なお、鋳造法としては金型内で圧縮力を与えながら成形するダイキャスト法、単に型内に流し込み、自然冷却で成形する方法などが挙げられる。また鍛造法としては加熱した金属層にズリ応力を与えて延性加工を行う冷間鍛造法などが好ましく挙げられる。   Specific examples of suitable materials for the heat conductive layer include metals such as copper, silver, aluminum, iron, stainless steel, zinc, titanium, silicon, and chromium, and alloys of these metals. The heat conductive layer made of these metals or alloys can be formed by a casting method, a forging method, a cutting process of a block-shaped metal lump or the like. Examples of the casting method include a die casting method in which molding is performed while applying a compressive force in a mold, and a method in which casting is performed by simply pouring into a die and natural cooling. As the forging method, a cold forging method in which ductile processing is performed by applying shear stress to the heated metal layer is preferably exemplified.

特に、銅、銀、アルミニウム、珪素とそれらをベースとする金属合金類には50W/m・K以上の熱伝導率を有するものが多く、熱伝導層として求められる高い熱輸送能力を満足する場合が多く、好ましく用いることができる。尚、金属合金類による熱伝導層の熱伝導率はより好ましくは75W/m・K以上、さらに好ましくは100W/m・K以上である。   In particular, copper, silver, aluminum, silicon and metal alloys based on them often have a thermal conductivity of 50 W / m · K or more, and satisfy the high heat transport capability required as a heat conductive layer Can be used preferably. The thermal conductivity of the heat conductive layer made of metal alloys is more preferably 75 W / m · K or more, and still more preferably 100 W / m · K or more.

ただし熱伝導層に、これら金属、金属合金類を用いた場合には放熱構造体の全体重量が大きくなり、用途においては好ましくない場合もある。また高導電率である金属を熱伝導層に用いた場合には、機器、器具に実装される各種デバイスや電源配線ラインからの漏洩電流、誘起電流が増加する場合もあり、また熱伝導層と電源配線ラインの不慮の短絡が発生した場合等に多量の電流が熱伝導層に流れ込むため、機器、器具としての安全性に懸念が生じる場合がある。   However, when these metals and metal alloys are used for the heat conductive layer, the overall weight of the heat dissipation structure is increased, which may not be preferable for use. In addition, when a metal with high conductivity is used for the heat conduction layer, leakage currents and induced currents from various devices and power supply wiring lines mounted on equipment and appliances may increase. Since a large amount of current flows into the heat conduction layer when an unexpected short circuit of the power supply wiring line occurs, there may be a concern about safety as a device or instrument.

これら軽量性や電気的安全性の確保を重視する用途においては、熱伝導層は電気抵抗(体積抵抗)のなるべく大きい層を用いることが好ましく、層の体積抵抗として、1×10−2Ω・cm以上であることがより好ましく、より好ましくは1×10Ω・cm以上、さらに好ましくは1×10Ω・cm以上である。 In applications in which importance is placed on ensuring lightweight and electrical safety, it is preferable to use a layer having as large an electrical resistance (volume resistance) as the heat conduction layer, and the volume resistance of the layer is 1 × 10 −2 Ω · It is more preferable that it is cm or more, more preferably 1 × 10 0 Ω · cm or more, and further preferably 1 × 10 4 Ω · cm or more.

これら要件を満足する熱伝導層としては、各種熱伝導性フィラーを複合してなり、層内の少なくとも一方向における熱伝導率が2W/m・K以上の熱伝導性樹脂組成物を成形してなる層が特に好ましく用いられる。熱伝導率はより好ましくは5W/m・K以上、さらに好ましくは15W/m・K以上である。   As a heat conductive layer satisfying these requirements, various heat conductive fillers are combined, and a heat conductive resin composition having a heat conductivity of at least 2 W / m · K in at least one direction in the layer is molded. Are particularly preferably used. The thermal conductivity is more preferably 5 W / m · K or more, and still more preferably 15 W / m · K or more.

なお、このように熱伝導率が高く、かつ3次元形状の成形性(精密転写性)に優れる層としては後述のピッチ系黒鉛化炭素短繊維を含む熱伝導性樹脂組成物を成形してなる層が好ましく挙げられる。   The layer having such a high thermal conductivity and excellent three-dimensional shape moldability (precise transferability) is formed by molding a heat conductive resin composition containing pitch-based graphitized carbon short fibers described later. Preferred is a layer.

これら熱伝導性樹脂組成物を用いて成形した熱伝導層は、前記の金属、金属合金類を用いた場合に比べ、低比重で軽量になること、細かく高精度な成形が可能であること、金属、金属合金類よりも電気抵抗が大きく、前記の好適な体積抵抗を実現できること等から、機器、器具の軽量性、落下安全性、意匠性、他の構成部品との勘合性、電気的安全性等の特徴を有する。   The heat conductive layer formed using these heat conductive resin compositions has a low specific gravity and light weight compared to the case of using the above metals and metal alloys, and can be formed with high accuracy. The electrical resistance is higher than that of metals and metal alloys, and the above-mentioned suitable volume resistance can be realized. Therefore, the lightness of devices and instruments, drop safety, design, compatibility with other components, electrical safety It has characteristics such as sex.

[熱伝導性樹脂組成物]
本発明の放熱構造体の熱伝導層もしくは内皮層の成形に好適な熱伝導性樹脂組成物としては、マトリクス樹脂100体積部に対し、熱伝導性フィラーの含有量が10〜200体積部である樹脂組成物が好ましい。熱伝導性フィラーの含有量が10体積部未満だと高い熱伝導性が得られ難い。逆に熱伝導性フィラーの含有量が200体積部を超えると、熱伝導性フィラーを樹脂に分散させ、均一な熱伝導性樹脂組成物を得るのが困難になりやすく、また樹脂の流動性が不十分となりやすい。熱伝導フィラーの含有量は好ましくは20〜100体積部である。
[Thermal conductive resin composition]
As a heat conductive resin composition suitable for molding the heat conductive layer or the endothelial layer of the heat dissipation structure of the present invention, the content of the heat conductive filler is 10 to 200 parts by volume with respect to 100 parts by volume of the matrix resin. A resin composition is preferred. When the content of the heat conductive filler is less than 10 parts by volume, it is difficult to obtain high heat conductivity. On the other hand, if the content of the heat conductive filler exceeds 200 parts by volume, it is difficult to disperse the heat conductive filler in the resin and obtain a uniform heat conductive resin composition, and the fluidity of the resin is low. It tends to be insufficient. The content of the heat conductive filler is preferably 20 to 100 parts by volume.

熱伝導性フィラーとマトリクス樹脂との混合は、単軸型の溶融混練装置、二軸型の溶融混練装置等の公知の溶融混練装置を用いて実施できる。
熱伝導性フィラーとしては、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化亜鉛などの金属酸化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、窒化ホウ素、窒化アルミニウムなどの金属窒化物、酸化窒化アルミニウムなどの金属酸窒化物、炭化珪素などの金属炭化物、金、銀、銅、アルミニウムなどの金属もしくは金属合金、炭素繊維、天然黒鉛、人造黒鉛、膨張黒鉛、ダイヤモンドなどの炭素材料などが挙げられ、2種類以上併用することも可能である。
The heat conductive filler and the matrix resin can be mixed using a known melt kneader such as a uniaxial melt kneader or a biaxial melt kneader.
Thermally conductive fillers include metal oxides such as aluminum oxide, magnesium oxide, silicon oxide and zinc oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, metal nitrides such as boron nitride and aluminum nitride, oxidation Metal oxynitrides such as aluminum nitride, metal carbides such as silicon carbide, metals or metal alloys such as gold, silver, copper, and aluminum, carbon materials such as carbon fiber, natural graphite, artificial graphite, expanded graphite, and diamond Two or more types can be used in combination.

熱伝導樹脂組成物の熱伝導率を高めるにはピッチ系黒鉛化短繊維を用いるのが好ましく、その中でもメソフェーズピッチを出発材料とした黒鉛結晶構造の非常に発達したピッチ系黒鉛化短繊維を用いることが特に好ましい。すなわち黒鉛化短繊維の熱伝導性は黒鉛結晶の格子構造を伝播するフォノン振動に主に由来するため、熱伝導性を高めるには黒鉛結晶の結晶性を高めること、すなわち黒鉛結晶の格子構造ができるだけ欠陥少なく、かつ大きく広がるようにすることが好ましい。   Pitch-based graphitized short fibers are preferably used to increase the thermal conductivity of the heat conductive resin composition. Among them, pitch-based graphitized short fibers having a very developed graphite crystal structure starting from mesophase pitch are used. It is particularly preferred. In other words, the thermal conductivity of graphitized short fibers is mainly derived from the phonon vibration that propagates through the lattice structure of the graphite crystal. Therefore, to increase the thermal conductivity, the crystallinity of the graphite crystal is increased. It is preferable that the number of defects is as small as possible and widened.

本発明に用いられるピッチ系黒鉛化短繊維はいわゆるミルドファイバーに該当し、その平均繊維長(L1)は、より好ましくは20〜500μmであることが好ましい。ここで、平均繊維長は個数平均繊維長とし、顕微鏡下で所定本数を測定し、その平均値から求めることができる。L1が20μmより小さい場合、当該短繊維同士が接触しにくくなり、高い熱伝導率を有する熱伝導性組成物を得にくくなることがある。逆にL1が500μmより大きくなる場合、マトリクス樹脂とピッチ系黒鉛化短繊維を混練する際の粘度が高くなり、ハンドリングが困難になることがある。より好ましくは、30〜300μmの範囲である。この様なピッチ系黒鉛化短繊維を得る手法として特に制限はないが、切断式、衝突式、衝撃式、気流式等の粉砕機が好適に用いられ、回転数、滞留時間、気流噴出圧、供給量等の条件を調節することにより平均繊維長を制御することができる。また、粉砕処理後のピッチ系炭素短繊維から、振動、スクリーン等による篩分け、遠心分離等の分級操作を行って、短い繊維長、または長い繊維長のピッチ系炭素短繊維を除去することにより、平均繊維長をさらに精密制御することができる。   The pitch-based graphitized short fibers used in the present invention correspond to so-called milled fibers, and the average fiber length (L1) is more preferably 20 to 500 μm. Here, the average fiber length is a number average fiber length, a predetermined number is measured under a microscope, and can be obtained from the average value. When L1 is smaller than 20 μm, the short fibers are less likely to contact each other, and it may be difficult to obtain a thermally conductive composition having high thermal conductivity. On the other hand, when L1 is larger than 500 μm, the viscosity at the time of kneading the matrix resin and pitch-based graphitized short fibers becomes high, and handling may be difficult. More preferably, it is the range of 30-300 micrometers. There is no particular limitation on the method for obtaining such pitch-based graphitized short fibers, but a crushing machine such as a cutting type, a collision type, an impact type, and an airflow type is preferably used, and the rotational speed, residence time, airflow ejection pressure, The average fiber length can be controlled by adjusting conditions such as the supply amount. In addition, the pitch-based carbon short fibers after pulverization are subjected to classification operations such as vibration, sieving with a screen, centrifugal separation, etc. to remove short fiber lengths or pitch-based carbon short fibers having a long fiber length. Further, the average fiber length can be controlled more precisely.

本発明に用いられるピッチ系黒鉛化短繊維は、黒鉛結晶からなり、六角網面の成長方向に由来する結晶子サイズが少なくとも20nm以上であることが好ましく、より好ましくは30nm以上、さらに好ましくは40nm以上である。結晶子サイズは六角網面の成長方向のいずれも、黒鉛化度(黒鉛結晶の結晶性)の高低に対応するものであり、熱物性を発現するためには、一定サイズ以上が必要である。六角網面の成長方向の結晶子サイズは、X線回折法で求めることができる。測定手法は集中法とし、解析手法としては学振法が好適に用いられる。六角網面の成長方向の結晶子サイズは、(110)面からの回折線を用いて求めることができる。   The pitch-based graphitized short fibers used in the present invention are composed of graphite crystals, and the crystallite size derived from the hexagonal network surface growth direction is preferably at least 20 nm or more, more preferably 30 nm or more, and even more preferably 40 nm. That's it. The crystallite size corresponds to the degree of graphitization (crystallinity of the graphite crystal) in any of the growth directions of the hexagonal network surface, and a certain size or more is necessary to exhibit thermophysical properties. The crystallite size in the growth direction of the hexagonal network surface can be obtained by an X-ray diffraction method. The measurement method is a concentration method, and the Gakushin method is preferably used as an analysis method. The crystallite size in the growth direction of the hexagonal mesh plane can be obtained using diffraction lines from the (110) plane.

また黒鉛化度を示す他のパラメータとして、黒鉛結晶の層間隔があり、層間隔が小さいほど結晶性が高い。黒鉛結晶の層間隔は、例えばd002のX線回折線に基づく計算値として、少なくとも0.3420nm以下であることが好ましく、より好ましくは0.3395nm以下、さらに好ましくは0.3370nm以下であることが好ましい。   Further, as another parameter indicating the degree of graphitization, there is a graphite crystal layer spacing, and the smaller the layer spacing, the higher the crystallinity. The interlayer spacing of the graphite crystals is preferably at least 0.3420 nm or less, more preferably 0.3395 nm or less, and further preferably 0.3370 nm or less, for example, as a calculated value based on the X-ray diffraction line of d002. preferable.

またグラフェンシート端面構造は、黒鉛化の前に粉砕を実施するか、黒鉛化の後に粉砕を実施するかにより、大きく異なる。すなわち、黒鉛化後に粉砕処理を行った場合、黒鉛化で成長したグラフェンシートが切断破断され、グラフェンシート端面が開いた状態になり易い。一方、黒鉛化前に粉砕処理を行った場合、黒鉛の成長過程でグラフェンシート端面がU字上に湾曲し、湾曲部分がピッチ系黒鉛化短繊維端部に露出した構造になり易い。このため、グラフェンシート端面閉鎖率が80%を超えるようなピッチ系黒鉛化短繊維を得るためには、粉砕を行った後に黒鉛化処理することが好ましい。   The graphene sheet end face structure varies greatly depending on whether pulverization is performed before graphitization or pulverization is performed after graphitization. That is, when a pulverization process is performed after graphitization, the graphene sheet grown by graphitization is cut and broken, and the graphene sheet end face tends to be open. On the other hand, when the pulverization treatment is performed before graphitization, the graphene sheet end face is curved in a U-shape during the graphite growth process, and the curved portion is likely to be exposed at the pitch-based graphitized short fiber end. For this reason, in order to obtain a pitch-based graphitized short fiber having a graphene sheet end face closing rate exceeding 80%, it is preferable to perform graphitization after pulverization.

本発明に用いられるピッチ系黒鉛化短繊維は走査型電子顕微鏡での側面の観察表面が実質的に平坦であることが好ましい。ここで、実質的に平坦であるとは、フィブリル構造のような激しい凹凸をピッチ系黒鉛化短繊維に有しないことを意味する。ピッチ系黒鉛化短繊維の表面に激しい凹凸のような欠陥が存在する場合には、マトリクスとの混練に際して表面積の増大に伴う粘度の増大を引き起こし、成形性を悪化させる。よって、表面凹凸のような欠陥はできるだけ小さい状態が望ましい。より具体的には、走査型電子顕微鏡において1000倍で観察した像での観察視野に、凹凸のような欠陥が10箇所以下であることとする。この様なピッチ系黒鉛化短繊維を得る手法としては、粉砕処理を行った後に黒鉛化処理を実施することによって、好ましく得ることができる。   The pitch-based graphitized short fibers used in the present invention preferably have a substantially flat side observation surface with a scanning electron microscope. Here, “substantially flat” means that the pitch-based graphitized short fibers do not have severe unevenness like a fibril structure. When defects such as severe irregularities are present on the surface of the pitch-based graphitized short fibers, the viscosity increases with the increase of the surface area when kneading with the matrix, and the moldability is deteriorated. Therefore, it is desirable that defects such as surface irregularities be as small as possible. More specifically, it is assumed that there are 10 or less defects such as irregularities in the observation visual field in an image observed at 1000 times with a scanning electron microscope. As a method for obtaining such pitch-based graphitized short fibers, a graphitization treatment can be preferably performed after a pulverization treatment.

熱伝導性樹脂組成物には、熱伝導性フィラー以外に、さらに、成形性、機械物性、難燃性、その他の特性をより高めるために、ガラス繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼化アルミニウムウィスカ、窒化ホウ素ウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、アスベスト繊維、石膏繊維、金属繊維などの繊維状フィラー、ならびに、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスビーズ、ガラスフレーク及びセラミックビーズ、水酸化アルミニウム、水酸化マグネシウムなどの非繊維状フィラーも必要に応じて適宜添加することが可能である。これらは中空のものであってもよく、さらにはこれらを2種類以上併用することも可能である。ただ、上記化合物は、密度がピッチ系黒鉛化短繊維より大きなものが多く、軽量化を目的とするときには、添加量や添加比率に気を配る必要がある。   In addition to the thermally conductive filler, the thermally conductive resin composition further includes glass fiber, potassium titanate whisker, zinc oxide whisker, boron in order to further improve moldability, mechanical properties, flame retardancy, and other properties. Fibrous filler such as aluminum fluoride whisker, boron nitride whisker, aramid fiber, alumina fiber, silicon carbide fiber, asbestos fiber, gypsum fiber, metal fiber, and wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyll Silicates such as light, bentonite, asbestos, talc, alumina silicate, carbonates such as calcium carbonate, magnesium carbonate, and dolomite, sulfates such as calcium sulfate and barium sulfate, glass beads, glass flakes and ceramic beads, aluminum hydroxide, Magnesium hydroxide, etc. Non-fibrous fillers also may be added as necessary. These may be hollow, and two or more of these may be used in combination. However, many of the above compounds have a density higher than that of pitch-based graphitized short fibers, and when the purpose is to reduce the weight, it is necessary to pay attention to the addition amount and addition ratio.

マトリクスとする樹脂については、例えばポリエステル類及びその共重合体(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン−2,6−ナフタレート)、ポリスチレン類(ポリスチレン、シンジオタクチックポリスチレンなど)及びその共重合体(スチレン−アクリロニトリル共重合体、ABS樹脂、AES樹脂など)、ポリメチルメタクリレート類及びその共重合体(特にシクロ環およびその誘導体からなる構造を含むもの)、ポリ乳酸樹脂およびその共重合体、ポリアクリロニトリル類及びその共重合体、環状ポリオレフィン類およびその共重合体(特にシクロ環を含む樹脂、例えばJSR製 商標名「アートン」、三井化学製 商標名「アペル」、日本ゼオン製 登録商標「ゼオネックス」等)、ポリメチルペンテン類およびその共重合体(例えば三井化学製 登録商標「TPX」等)、ポリフェニレンエーテル(PPE)類及びその共重合体(変性PPE樹脂なども含む)、脂肪族ポリアミド類及びその共重合体、ポリイミド類及びその共重合体、ポリアミドイミド類及びその共重合体、ポリカーボネート類及びその共重合体、ポリフェニレンスルフィド類及びその共重合体、ポリサルホン類及びその共重合体、ポリエーテルサルホン類及びその共重合体、ポリエーテルニトリル類及びその共重合体、ポリエーテルケトン類及びその共重合体、ポリエーテルエーテルケトン類及びその共重合体、ポリケトン類及びその共重合体、エラストマー、液晶性ポリエステル類などの液晶性ポリマー等が挙げられる。これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。   Examples of the resin used as the matrix include polyesters and copolymers thereof (polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate), polystyrenes (polystyrene, syndiotactic polystyrene, etc.) and copolymers thereof (styrene). -Acrylonitrile copolymers, ABS resins, AES resins, etc.), polymethyl methacrylates and copolymers thereof (especially those containing structures consisting of cyclo rings and derivatives thereof), polylactic acid resins and copolymers thereof, polyacrylonitriles And copolymers thereof, cyclic polyolefins and copolymers thereof (particularly resins containing a cyclo ring, such as JSR brand name “Arton”, Mitsui Chemicals brand name “Apel”, Nippon Zeon registered trademark “Zeonex”, etc.) , Polymethyl Nenes and their copolymers (for example, Mitsui Chemicals registered trademark “TPX”), polyphenylene ethers (PPE) and their copolymers (including modified PPE resins), aliphatic polyamides and their copolymers, Polyimides and copolymers thereof, polyamideimides and copolymers thereof, polycarbonates and copolymers thereof, polyphenylene sulfides and copolymers thereof, polysulfones and copolymers thereof, polyether sulfones and copolymers thereof Polymers, polyether nitriles and copolymers thereof, polyether ketones and copolymers thereof, polyether ether ketones and copolymers thereof, polyketones and copolymers thereof, elastomers, liquid crystalline polyesters, etc. Examples thereof include liquid crystalline polymers. One of these may be used alone, or two or more may be used in appropriate combination.

また熱伝導樹脂組成物には必要に応じ、輻射率(赤外線放射率)を向上する添加剤や、各種着色剤、難燃剤、紫外線吸収剤、赤外線吸収剤、酸化防止剤等の添加物を添加しても良い。   In addition, additives that improve the emissivity (infrared emissivity) and various colorants, flame retardants, ultraviolet absorbers, infrared absorbers, antioxidants, and other additives are added to the heat conductive resin composition as necessary. You may do it.

なお、熱伝導樹脂層を前述の熱伝導性炭素繊維(特にピッチ系黒鉛化短繊維)を含む熱伝導樹脂組成物を用いて射出成形する場合には、樹脂射出金型におけるゲート部を、放熱の対象となる発熱体(発熱デバイス等)近傍に配置することが好ましい。すなわち熱伝導性炭素繊維の配向方向は熱伝導樹脂組成物の流動方向と一致する為、発熱体近傍にゲートを設けることで、発熱体の放熱方向と熱伝導性炭素繊維の配向方向(熱伝導樹脂の熱伝導率が最大となる方向)をほぼ一致させることができ、より効率的な放熱が可能となる場合がある。   When the heat conductive resin layer is injection-molded using the heat conductive resin composition containing the above-mentioned heat conductive carbon fibers (particularly pitch-based graphitized short fibers), the gate portion in the resin injection mold is radiated. It is preferable to dispose in the vicinity of a heating element (such as a heating device) that is the target of the above. That is, since the orientation direction of the heat conductive carbon fiber coincides with the flow direction of the heat conductive resin composition, by providing a gate in the vicinity of the heating element, the heat dissipation direction of the heating element and the orientation direction of the heat conductive carbon fiber (thermal conduction) The direction in which the thermal conductivity of the resin is maximized) can be substantially matched, and more efficient heat dissipation may be possible.

[放熱構造体の応用用途]
本発明の放熱構造体の具体的用途として、図3、4にLED照明具への応用例を例示した。なお、放熱構造体の用途はこれら例示以外のシステム、構造を有するLED照明具にも応用可能であるし、またLED照明具のみに限定されるものではなく、発熱体、発熱デバイス類の放熱を必要とする機器、器具において広く応用できるものである。
[Application of heat dissipation structure]
As specific uses of the heat dissipation structure of the present invention, examples of application to LED lighting tools are illustrated in FIGS. In addition, the use of the heat dissipation structure can be applied to LED lighting fixtures having systems and structures other than those exemplified above, and is not limited to LED lighting fixtures. It can be widely applied to necessary equipment and instruments.

LED素子の実装されたLED実装基板は熱伝導接着層もしくは放熱シート等を介して、放熱構造体の一部に接着固定されており、この接触面でLED素子から放熱構造体への伝熱が行われる他、LED素子から一旦、放熱構造体の内部空気層または電気絶縁層等の機器構成部品を経由して放熱構造体へ伝熱され、その後、放熱構造体の中を熱が移動していき、放熱構造体の最外層から外部空気に放熱される。また、電源部を内部に持つLED照明具においては、LED素子だけではなく、電源部も発熱体となり、放熱構造体を介して、外部空気へ放熱されることとなる。本発明では、LED素子から直接の放熱構造体への熱輸送、及び、LED素子から一旦、放熱構造体の内部空気層または機器構成部品を経由してからの放熱構造体への熱輸送を効率的に実施することが特徴である。   The LED mounting substrate on which the LED element is mounted is bonded and fixed to a part of the heat dissipation structure through a heat conductive adhesive layer or a heat dissipation sheet, and heat transfer from the LED element to the heat dissipation structure is performed on this contact surface. In addition, the heat is transferred from the LED element to the heat dissipation structure through the device components such as the internal air layer or the electrical insulation layer of the heat dissipation structure, and then the heat moves through the heat dissipation structure. The heat is radiated from the outermost layer of the heat dissipation structure to the external air. Further, in the LED lighting device having the power supply unit therein, not only the LED element but also the power supply unit becomes a heating element, and is radiated to the external air via the heat dissipation structure. In the present invention, heat transfer from the LED element directly to the heat dissipation structure and heat transfer from the LED element to the heat dissipation structure after passing through the internal air layer or equipment component of the heat dissipation structure are efficient. It is characteristic to carry out automatically.

一方で、LED照明具の全体寸法、形状は各用途での要求に従い、おのずと制約がある為、放熱構造体にはできるだけサイズが小さくコンパクトなもの、そしてできるだけ軽量なものが求められるが、放熱構造体の最外層の表面積がLED素子の発熱量に対して小さ過ぎると、放熱構造体単独での熱伝達能力(熱輸送能力)が十分高いものであったとしても、最外層と外部空気間の熱伝達のロス(温度差)が多く発生し、この熱伝達効率の悪さが律速となって、LED素子の発熱は放熱構造体内に溜め込まれてしまい、放熱構造体全体の温度が上昇する結果となる。すなわちLED素子の十分な放熱が為されないので注意が必要である。   On the other hand, the overall dimensions and shape of LED lighting fixtures are naturally limited according to the requirements of each application, so heat dissipation structures are required to be as small and compact as possible and as light as possible. If the surface area of the outermost layer of the body is too small for the calorific value of the LED element, even if the heat transfer capability (heat transport capability) of the heat dissipation structure alone is sufficiently high, it is between the outermost layer and the external air. A large amount of heat transfer loss (temperature difference) occurs, the poor heat transfer efficiency becomes the rate-determining factor, the heat generated by the LED element is accumulated in the heat dissipation structure, and the temperature of the entire heat dissipation structure increases. Become. That is, care must be taken because sufficient heat dissipation of the LED element is not performed.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
なお、本実施例における各値は、以下の方法に従って求めた。
(1)ピッチ系黒鉛化短繊維の平均繊維径は、JIS R7607に準じ、光学顕微鏡下でスケールを用いて60本測定し、その平均値から求めた。
(2)ピッチ系黒鉛化短繊維の平均繊維長は、粒度・形状測定器(株式会社セイシン企業製PITA−1)を用いて1500本測定し、その平均値から求めた。
(3)ピッチ系黒鉛化短繊維の成長方向の結晶子サイズは、X線回折に現れる(110)面からの反射を測定し、学振法にて求めた。
(4)ピッチ系黒鉛化短繊維の端面は、透過型電子顕微鏡で100万倍の倍率で観察し、400万倍に写真上で拡大し、グラフェンシートを確認した。
(5)ピッチ系黒鉛化短繊維の表面は走査型電子顕微鏡で1000倍の倍率で観察し、凹凸を確認した。
(6)熱伝導性樹脂組成物の熱伝導率は、4mm厚の熱伝導性組成物の成形体から3mm×10mmの短冊状にサンプルを切り出し、横に並べて一体化させ、ネッチ製LFA−447を用いて面内方向の熱伝導率を求めた。
Examples are shown below, but the present invention is not limited thereto.
In addition, each value in a present Example was calculated | required according to the following method.
(1) The average fiber diameter of pitch-based graphitized short fibers was measured from 60 averages using a scale under an optical microscope in accordance with JIS R7607 and obtained from the average value.
(2) The average fiber length of the pitch-based graphitized short fibers was measured from 1500 using a particle size / shape measuring instrument (PITA-1 manufactured by Seishin Enterprise Co., Ltd.) and obtained from the average value.
(3) The crystallite size in the growth direction of the pitch-based graphitized short fibers was determined by the Gakushin method by measuring reflection from the (110) plane appearing in X-ray diffraction.
(4) The end faces of the pitch-based graphitized short fibers were observed with a transmission electron microscope at a magnification of 1,000,000 times and magnified on a photograph at 4 million times to confirm a graphene sheet.
(5) The surface of the pitch-based graphitized short fibers was observed with a scanning electron microscope at a magnification of 1000 times, and irregularities were confirmed.
(6) The thermal conductivity of the thermally conductive resin composition was obtained by cutting out a sample in a 3 mm × 10 mm strip shape from a molded body of a thermally conductive composition having a thickness of 4 mm, and arranging them side by side to integrate them. Was used to determine the thermal conductivity in the in-plane direction.

[参考例1]メソフェーズ系ピッチ黒鉛化短繊維の製造
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。直径0.2mmの孔を持つ口金を使用し、孔の両横のスリットから加熱空気を毎分5500mの線速度で噴出させて、溶融ピッチを牽引して平均直径11.1μmのピッチ系短繊維を作製した。この時の紡糸温度は328℃であり、溶融粘度は13.5Pa・sであった。紡出された繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付350g/mのピッチ系炭素繊維前駆体からなるピッチ系炭素繊維前駆体ウェブとした。
[Reference Example 1] Production of mesophase-based pitch graphitized short fibers Pitch composed of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a base having a hole with a diameter of 0.2 mm, heated air is ejected from the slits on both sides of the hole at a linear velocity of 5500 m / min to pull the melt pitch, and a pitch short fiber having an average diameter of 11.1 μm. Was made. The spinning temperature at this time was 328 ° C., and the melt viscosity was 13.5 Pa · s. The spun fibers were collected on a belt to form a mat, and then a pitch-based carbon fiber precursor web made of a pitch-based carbon fiber precursor having a basis weight of 350 g / m 2 by cross wrapping.

このピッチ系炭素繊維前駆体ウェブを空気中で170℃から300℃まで平均昇温速度5℃/分で昇温して不融化処理し、さらに800℃で焼成処理を行った。このピッチ系炭素繊維ウェブを一軸回転式粉砕機で粉砕し、3000℃で黒鉛化処理を施した。
得られたピッチ系黒鉛化短繊維の平均繊維径は8.2μmであった。六角網面の積層厚み方向に由来する結晶子サイズは70nm、平均繊維長は140μmであった。また、ピッチ系黒鉛化短繊維の端面は透過型顕微鏡の観察によりグラフェンシートが閉じていることを確認した。さらに、表面は走査型電子顕微鏡の観察により、凹凸は1個であり実質的に平坦であった。
This pitch-based carbon fiber precursor web was heated from 170 ° C. to 300 ° C. in air at an average heating rate of 5 ° C./min to be infusibilized, and further fired at 800 ° C. This pitch-based carbon fiber web was pulverized with a uniaxial rotary pulverizer and graphitized at 3000 ° C.
The average fiber diameter of the obtained pitch-based graphitized short fibers was 8.2 μm. The crystallite size derived from the thickness direction of the hexagonal mesh surface was 70 nm, and the average fiber length was 140 μm. Further, it was confirmed that the graphene sheet was closed on the end face of the pitch-based graphitized short fiber by observation with a transmission microscope. Further, the surface was substantially flat with one unevenness as observed by a scanning electron microscope.

[参考例2]熱伝導性樹脂組成物
参考例1で得たピッチ系黒鉛化短繊維50体積部、ポリカーボネート樹脂(帝人化成株式会社製パンライト(登録商標)L−1250WP)100体積部を二軸混練装置を用いて溶融混練し、熱伝導性樹脂のペレットを得た。このペレットを用いて射出成形機(東芝機械製EC40NII)を用いて厚み4mmの熱伝導性成形品を得た。熱伝導性成形品の熱伝導率は15.3W/(m・K)であった。
[Reference Example 2] Thermally conductive resin composition 50 parts by volume of the pitch-based graphitized short fibers obtained in Reference Example 1, and 100 parts by volume of polycarbonate resin (Panlite (registered trademark) L-1250WP manufactured by Teijin Chemicals Ltd.) The mixture was melt-kneaded using a shaft kneader to obtain thermally conductive resin pellets. Using this pellet, a heat conductive molded article having a thickness of 4 mm was obtained using an injection molding machine (EC40NII manufactured by Toshiba Machine). The thermal conductivity of the thermally conductive molded product was 15.3 W / (m · K).

[実施例1]
参考例2の熱伝導性樹脂組成物(熱伝導率15.3W/m・K)を用いて射出成形を行い、図15に図示する熱伝導層(記号1)と3次元形状賦型層を含む内皮層(記号2)が連続層として一体形成された放熱構造体を作製した。全体形状は円柱形であり、円柱軸と平行に凹凸の筋を有する。なお、図15の放熱構造体における外径(図18における記号26)は50mm、長さ(図18における記号24)は50mm、突き出し部長さ(図18における記号25)は5mm、突き出し部幅(図18における記号23)は2mmである。
内皮層のベース層と熱伝導層とを合わせた層の平均厚みは3mmで、熱伝導率と平均厚みとの積は0.046W/Kである。3次元形状賦型層を含む内皮層は熱伝導層の内面側に直接形成されており、図6に模式的に図示する規則的な凹凸部を有している。凹凸部の仕様(各位置の説明は図2に図示)については、平均谷幅(記号9)3mm、平均山幅(記号8)1mm、平均高さは平均谷幅(記号7)の3.3倍の10mmであり、3次元形状賦型層の形成された領域の表面積は平坦面に比べて約5倍であった。
[Example 1]
Injection molding is performed using the heat conductive resin composition of Reference Example 2 (thermal conductivity 15.3 W / m · K), and the heat conductive layer (symbol 1) and the three-dimensional shape shaping layer shown in FIG. A heat dissipation structure in which the endothelium layer (symbol 2) was integrally formed as a continuous layer was produced. The overall shape is a cylindrical shape, and has uneven stripes parallel to the cylinder axis. The outer diameter (symbol 26 in FIG. 18) of the heat dissipation structure of FIG. 15 is 50 mm, the length (symbol 24 in FIG. 18) is 50 mm, the protrusion length (symbol 25 in FIG. 18) is 5 mm, and the protrusion width ( The symbol 23) in FIG. 18 is 2 mm.
The average thickness of the combined inner layer of the base layer and the heat conductive layer is 3 mm, and the product of the heat conductivity and the average thickness is 0.046 W / K. The endothelial layer including the three-dimensional shape shaping layer is directly formed on the inner surface side of the heat conductive layer, and has regular uneven portions schematically illustrated in FIG. Regarding the specifications of the concavo-convex portion (the description of each position is shown in FIG. 2), the average valley width (symbol 9) is 3 mm, the average peak width (symbol 8) is 1 mm, and the average height is the average valley width (symbol 7). The surface area of the region where the three-dimensional shape shaping layer was formed was about 5 times that of the flat surface.

次にこの放熱構造体をLED素子の放熱用部品として組み込んだLED照明具を作製した。すなわち図4に図示する要領で、LED素子(記号14)としては日亜化学工業製の電球色チップタイプLED NS9L153MT−H3(定格出力約3W)を4素子使用し、投入電力は2.0W/素子(4素子で計8W)とした。またLED実装基板(記号13)としては厚み約1mm、直径45mmのALベース基板を用いた。
LED素子を実装したALベース基板は市販の熱伝導シーリング剤(記号10、信越化学工業製、縮合型RTVシリコーンゴム KE−3466、熱伝導率1.9W/m・K)を介して前記放熱構造体に固定した。接着層の厚みは平均約50μmとした。
光透過性カバー(記号15)はアクリル樹脂のブロー成形により作製し、口金にはJIS規格のE26口金を用いた。なお、このLED照明具の放熱構造体内部は空気層である。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約74℃であった。
Next, an LED illuminator incorporating this heat dissipation structure as a heat dissipation component of the LED element was produced. That is, in the manner illustrated in FIG. 4, four LED element NS9L153MT-H3 (rated output about 3 W) manufactured by Nichia Corporation is used as the LED element (symbol 14), and the input power is 2.0 W / Elements (4 elements in total, 8 W) were used. As the LED mounting substrate (symbol 13), an AL base substrate having a thickness of about 1 mm and a diameter of 45 mm was used.
The AL base substrate on which the LED element is mounted has the heat dissipation structure via a commercially available heat conductive sealant (symbol 10, Shin-Etsu Chemical Co., Ltd., condensation type RTV silicone rubber KE-3466, heat conductivity 1.9 W / m · K). Fixed to the body. The average thickness of the adhesive layer was about 50 μm.
The light transmissive cover (symbol 15) was prepared by blow molding of an acrylic resin, and a JIS standard E26 base was used as the base. In addition, the inside of the heat dissipation structure of the LED lighting device is an air layer.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode part temperature of the LED element 60 minutes after power-on was about 74 ° C.

[実施例2]
内皮層と熱伝導層とを合わせたものをアルミニウム合金(ADC12、熱伝導率約96W/m・K、比重約2.7)のダイキャスト成形で作製した以外は、実施例1と同様の放熱構造体を作製した。熱伝導率と平均厚みとの積は0.29W/Kであった。また、放熱構造体以外は実施例1と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約69℃であった。
[Example 2]
The heat dissipation was the same as in Example 1 except that the combination of the endothelial layer and the heat conductive layer was produced by die casting of an aluminum alloy (ADC12, thermal conductivity of about 96 W / m · K, specific gravity of about 2.7). A structure was produced. The product of thermal conductivity and average thickness was 0.29 W / K. Moreover, the LED lighting fixture was produced by the method similar to Example 1 except the heat dissipation structure.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode temperature of the LED element 60 minutes after power-on was about 69 ° C.

[実施例3]
実施例1で作製したものと同様の放熱構造体を用いて、図5に図示する要領でLED照明具を作製した。また、放熱構造体内部には市販の熱伝導シーリング剤(記号19、信越化学工業製、縮合型RTVシリコーンゴム KE−3466、熱伝導率1.9W/m・K)を充填し、それ以外は実施例1と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約66℃であった。
[Example 3]
Using the same heat dissipation structure as that manufactured in Example 1, an LED lighting tool was manufactured in the manner shown in FIG. The heat dissipation structure is filled with a commercially available heat conduction sealant (symbol 19, Shin-Etsu Chemical Co., Ltd., condensation type RTV silicone rubber KE-3466, heat conductivity 1.9 W / m · K), otherwise An LED lighting tool was produced in the same manner as in Example 1.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode part temperature of the LED element 60 minutes after power-on was about 66 ° C.

[実施例4]
図1に図示する放熱構造体を作製した。放熱層は、参考例2の熱伝導性樹脂組成物(熱伝導率15.3W/m・K)を用いて射出成形を行い、内皮層はアルミニウム合金(ADC12、熱伝導率約96W/m・K、比重約2.7)のダイキャスト成形で作製し、両者を熱伝導シーリング剤(記号10、信越化学工業製、縮合型RTVシリコーンゴム KE−3466、熱伝導率1.9W/m・K)で接着一体化することで放熱構造体を作製した。図1の放熱構造体における外径(図18における記号26)は50mm、長さ(図18における記号24)は50mm、突き出し部長さ(図18における記号25)は5mm、突き出し部幅(図18における記号23)は2mm、熱伝導層の平均厚みは2mmである。3次元形状賦型層を含む内皮層は、図6に模式的に図示する規則的な凹凸部を有しており、ベース層の厚みは1mmである。凹凸部の仕様(各位置の説明は図2に図示)については、平均谷幅(記号9)3mm、平均山幅(記号8)1mm、平均高さ(記号7)は平均谷幅の3.3倍の10mmであり、3次元形状賦型層の形成された領域の表面積は平坦面に比べて約5倍であった。なお、本実施例における放熱構造体の合成熱伝導率と平均厚みとの積は0.13W/Kである。また、その放熱構造体以外は、実施例1と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約71℃であった。
[Example 4]
A heat dissipation structure shown in FIG. 1 was produced. The heat dissipation layer was injection molded using the heat conductive resin composition of Reference Example 2 (thermal conductivity 15.3 W / m · K), and the endothelial layer was an aluminum alloy (ADC12, thermal conductivity about 96 W / m · K). K, specific gravity of about 2.7) and die cast molding, both of which are heat conductive sealant (symbol 10, Shin-Etsu Chemical Co., Ltd., condensation type RTV silicone rubber KE-3466, thermal conductivity 1.9 W / m · K ) Was bonded and integrated to produce a heat dissipation structure. 1 has an outer diameter (symbol 26 in FIG. 18) of 50 mm, a length (symbol 24 in FIG. 18) of 50 mm, a protrusion length (symbol 25 in FIG. 18) of 5 mm, and a protrusion width (FIG. 18). The symbol 23) in FIG. 2 is 2 mm, and the average thickness of the heat conductive layer is 2 mm. The endothelium layer including the three-dimensional shape shaping layer has regular uneven portions schematically illustrated in FIG. 6, and the thickness of the base layer is 1 mm. Regarding the specifications of the concavo-convex portions (the description of each position is shown in FIG. 2), the average valley width (symbol 9) is 3 mm, the average peak width (symbol 8) is 1 mm, and the average height (symbol 7) is 3. The surface area of the region where the three-dimensional shape shaping layer was formed was about 5 times that of the flat surface. In addition, the product of the synthetic thermal conductivity and the average thickness of the heat dissipation structure in this example is 0.13 W / K. Moreover, the LED lighting fixture was produced by the method similar to Example 1 except the heat dissipation structure.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode temperature of the LED element 60 minutes after power-on was about 71 ° C.

[実施例5]
図1に図示する放熱構造体を作製した。放熱層は、参考例2の熱伝導性樹脂組成物(熱伝導率15.3W/m・K)を用いて射出成形を行い、内皮層は絶縁性樹脂(ポリカーボネート樹脂(帝人化成製「パンライト」(登録商標)LN3010RZ、熱伝導率約0.2W/m・K)を用いて射出成形で作製し、両者を熱伝導シーリング剤(記号10、信越化学工業製、縮合型RTVシリコーンゴム KE−3466、熱伝導率1.9W/m・K)で接着一体化することで放熱構造体を作製した。図1の放熱構造体における外径(図18における記号26)は50mm、長さ(図18における記号24)は50mm、突き出し部長さ(図18における記号25)は5mm、突き出し部幅(図18における記号23)は2mm、熱伝導層の平均厚みは2mmである。3次元形状賦型層を含む内皮層は、図6に模式的に図示する規則的な凹凸部を有しており、ベース層の厚みは1mmである。凹凸部の仕様(各位置の説明は図2に図示)については、平均谷幅(記号9)3mm、平均山幅(記号8)1mm、平均高さ(記号7)は平均谷幅の3.3倍の10mmであり、3次元形状賦型層の形成された領域の表面積は平坦面に比べて約5倍であった。なお、本実施例における放熱構造体の合成熱伝導率と平均厚みとの積は0.031W/Kである。また、その放熱構造体以外は、実施例1と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約85℃であった。
[Example 5]
A heat dissipation structure shown in FIG. 1 was produced. The heat dissipation layer was injection molded using the heat conductive resin composition of Reference Example 2 (thermal conductivity 15.3 W / m · K), and the endothelial layer was an insulating resin (polycarbonate resin (“Panlite” manufactured by Teijin Chemicals). (Registered trademark) LN3010RZ, thermal conductivity of about 0.2 W / m · K), both of which are manufactured by injection molding, and both of them are heat conductive sealant (symbol 10, Shin-Etsu Chemical Co., Ltd., condensation type RTV silicone rubber KE- 3466 and a heat conductivity of 1.9 W / m · K) were bonded and integrated to produce a heat dissipating structure, the outer diameter of the heat dissipating structure of FIG. 18 is 50 mm, the protruding part length (symbol 25 in FIG. 18) is 5 mm, the protruding part width (symbol 23 in FIG. 18) is 2 mm, and the average thickness of the heat conductive layer is 2 mm. Including layers The inner skin layer has a regular uneven portion schematically shown in Fig. 6. The thickness of the base layer is 1 mm About the specifications of the uneven portion (the description of each position is shown in Fig. 2) The average valley width (symbol 9) is 3 mm, the average peak width (symbol 8) is 1 mm, and the average height (symbol 7) is 10 mm, which is 3.3 times the average valley width, and a three-dimensional shape shaping layer is formed. The surface area of the region was about 5 times that of the flat surface, and the product of the combined thermal conductivity and the average thickness of the heat dissipation structure in this example is 0.031 W / K. Except for the body, LED lighting fixtures were produced in the same manner as in Example 1.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode part temperature of the LED element 60 minutes after power-on was about 85 ° C.

[実施例6]
凹凸部の仕様(各位置の説明は図2に図示)が、平均谷幅(記号9)1mm、平均山幅(記号8)約1mm、平均高さ(記号7)は平均谷幅の1倍の1mmであり、3次元形状賦型層の形成された領域の表面積は平坦面に比べて約2倍であること以外は、実施例1と同様の放熱構造体を作製した。また、その放熱構造体以外は、実施例1と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約85℃であった。
[Example 6]
The specifications of the concavo-convex portion (the description of each position is shown in FIG. 2) is as follows: average valley width (symbol 9) 1 mm, average peak width (symbol 8) about 1 mm, average height (symbol 7) is one time the average valley width A heat radiating structure similar to that of Example 1 was manufactured except that the surface area of the region where the three-dimensional shape shaping layer was formed was about twice that of the flat surface. Moreover, the LED lighting fixture was produced by the method similar to Example 1 except the heat dissipation structure.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode part temperature of the LED element 60 minutes after power-on was about 85 ° C.

[比較例1]
図15に図示した放熱構造体について、内皮層に3次元形状賦型層を設けないこと以外は実施例1と同様の形状とし、その放熱構造体以外は実施例1と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約94℃であった。
[Comparative Example 1]
The heat dissipating structure shown in FIG. 15 has the same shape as in Example 1 except that the endothelium layer is not provided with a three-dimensional shape shaping layer, and LED lighting is performed in the same manner as in Example 1 except for the heat dissipating structure. A tool was prepared.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode temperature of the LED element 60 minutes after power-on was about 94 ° C.

[比較例2]
図15に図示した放熱構造体について、内皮層に3次元形状賦型層を設けないこと以外は実施例3と同様の形状とし、その放熱構造体以外は実施例3と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約87℃であった。
[Comparative Example 2]
The heat dissipating structure shown in FIG. 15 has the same shape as in Example 3 except that the endothelium layer is not provided with a three-dimensional shape shaping layer, and LED lighting is performed in the same manner as in Example 3 except for the heat dissipating structure. A tool was prepared.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode temperature of the LED element 60 minutes after power-on was about 87 ° C.

[比較例3]
図1に図示した放熱構造体について、内皮層に3次元形状賦型層を設けないこと以外は実施例4と同様の形状とし、その放熱構造体以外は実施例4と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約91℃であった。
[Comparative Example 3]
The heat dissipation structure shown in FIG. 1 has the same shape as that of Example 4 except that the endothelium layer is not provided with a three-dimensional shape shaping layer, and LED illumination is performed in the same manner as in Example 4 except for the heat dissipation structure. A tool was prepared.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode part temperature of the LED element 60 minutes after power-on was about 91 ° C.

[比較例4]
図1に図示した放熱構造体について、内皮層に3次元形状賦型層を設けないこと以外は実施例5と同様の形状とし、その放熱構造体以外は実施例5と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約109℃であった。
[Comparative Example 4]
The heat dissipation structure shown in FIG. 1 has the same shape as that of Example 5 except that the endothelium layer is not provided with a three-dimensional shape shaping layer, and LED illumination is performed in the same manner as in Example 5 except for the heat dissipation structure. A tool was prepared.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode temperature of the LED element 60 minutes after power-on was about 109 ° C.

[比較例5]
凹凸部の仕様(各位置の説明は図2に図示)が、平均谷幅(記号9)0.3mm、平均山幅(記号8)約0.3mm、平均高さ(記号7)は平均谷幅の1倍の0.3mmであり、3次元形状賦型層の形成された領域の表面積は平坦面に比べて約2倍であること以外は、実施例1と同様の放熱構造体を作製した。また、その放熱構造体以外は、実施例1と同様の方法でLED照明具を作製した。
本LED照明具の点灯試験を周囲温度25℃に調整された室内で行い、LED素子のカソード側ハンダ接合部の近傍にK型熱電対を固定し、LED素子の発熱状態を測定した。この結果、電力投入60分後のLED素子のカソード部温度は約94℃であった。
[Comparative Example 5]
The specifications of the concavo-convex part (the description of each position is shown in FIG. 2) is as follows: the average valley width (symbol 9) is 0.3 mm, the average peak width (symbol 8) is about 0.3 mm, and the average height (symbol 7) is the average valley A heat-dissipating structure similar to that in Example 1 is manufactured except that the width is 0.3 mm, which is one time the width, and the surface area of the region where the three-dimensional shape shaping layer is formed is about twice that of the flat surface. did. Moreover, the LED lighting fixture was produced by the method similar to Example 1 except the heat dissipation structure.
The lighting test of this LED illuminator was performed in a room adjusted to an ambient temperature of 25 ° C., a K-type thermocouple was fixed in the vicinity of the cathode side solder joint of the LED element, and the heat generation state of the LED element was measured. As a result, the cathode temperature of the LED element 60 minutes after power-on was about 94 ° C.

本発明の放熱構造体は、発光素子(LED素子、レーザーダイオード、EL素子等)、能動受光素子(CCD等)、中央演算装置(CPU)、画像演算装置(MPU)、インバータ素子(IGBT、FET等)、モーター類、ヒーター素子等、発熱を伴うデバイス類の実装された機器、器具等の放熱対策として好適に用いることができる。   The heat dissipation structure of the present invention includes a light emitting element (LED element, laser diode, EL element, etc.), active light receiving element (CCD, etc.), central processing unit (CPU), image processing unit (MPU), inverter element (IGBT, FET). Etc.), devices such as motors, heater elements, etc. that generate heat, devices, instruments, etc. can be suitably used.

1 熱伝導層
2 3次元形状賦型層を含む内皮層
3 凸部
4 凹部
5 内皮層のベース層
6 内皮層のベース層厚み
7 凸部の高さ
8 凸部の山幅
9 凹部の谷幅
10 熱伝導接着層(熱伝導シーリング剤等)
11 発熱体(LED素子実装基板等)
12 天板
13 LED実装基板
14 LED素子
15 光透過性カバー
16 電源基板
17 電気絶縁ケース
18 口金(電源ソケット接続用)
19 電気絶縁層(熱伝導シーリング剤等)
20 電気絶縁層(樹脂フィルム、樹脂板、塗装膜等)
21 外部凹凸層
22 熱伝導層厚み
23 突き出し部の幅
24 放熱構造体の長さ
25 突き出し部の長さ
26 放熱構造体の外径
DESCRIPTION OF SYMBOLS 1 Thermal conductive layer 2 Endothelial layer 3 including a three-dimensional shape shaping layer Convex part 4 Concave part 5 Base layer 6 of endothelium layer Thickness 7 of endothelium layer Height of convex part 8 Width of convex part 9 Width of concave part 10 Thermal conductive adhesive layer (thermal conductive sealant, etc.)
11 Heating element (LED element mounting board, etc.)
12 Top plate 13 LED mounting substrate 14 LED element 15 Light transmissive cover 16 Power supply substrate 17 Electrical insulation case 18 Base (for connecting to power socket)
19 Electrical insulation layer (thermal conductive sealant, etc.)
20 Electrical insulation layer (resin film, resin plate, paint film, etc.)
21 External Concavity and Concavity Layer 22 Thermal Conductive Layer Thickness 23 Protrusion Width 24 Heat Dissipation Structure Length 25 Protrusion Length 26

Claims (9)

熱伝導層と、この内側に設けられ、最内面側に3次元形状賦型層を有する内皮層とを含む放熱構造体であって、熱伝導層は、層内の少なくとも一方向における熱伝導率が2W/m・K以上、平均厚みが0.2〜5mmであって、熱伝導率と平均厚みの積が0.01W/K以上であり、3次元形状賦型層は、内皮層の10%以上の領域に複数の凹凸部が存在し、凹凸部の平均谷幅1〜20mm、平均山幅が0.5〜5mm、平均高さが平均谷幅の1〜10倍であり、かつ、発熱体の少なくとも一部と接触するように配され、3次元形状賦型層の設けられた領域の表面積が、凹凸部が無い平坦面である場合に比べ1.2倍以上であることを特徴とする放熱構造体。   A heat dissipation structure including a heat conductive layer and an endothelial layer provided on the inner side and having a three-dimensional shape shaping layer on the innermost surface side, wherein the heat conductive layer has a heat conductivity in at least one direction within the layer. Is 2 W / m · K or more, the average thickness is 0.2 to 5 mm, and the product of thermal conductivity and average thickness is 0.01 W / K or more. %, There are a plurality of irregularities, the average valley width of the irregularities is 1-20 mm, the average peak width is 0.5-5 mm, the average height is 1-10 times the average valley width, and The surface area of the region provided with the three-dimensional shape shaping layer disposed so as to be in contact with at least a part of the heating element is 1.2 times or more compared to a flat surface without an uneven portion. Heat dissipation structure. 内皮層の層内の少なくとも一方向における熱伝導率が、2W/m・K以上である請求項1に記載の放熱構造体。   The heat dissipation structure according to claim 1, wherein the thermal conductivity in at least one direction in the inner layer is 2 W / m · K or more. 内皮層が、熱伝導層と同一材料からなる請求項1または2に記載の放熱構造体。   The heat dissipation structure according to claim 1 or 2, wherein the endothelial layer is made of the same material as the heat conductive layer. 内皮層と熱伝導層とが一体成形されてなる請求項3に記載の放熱構造体。   The heat dissipation structure according to claim 3, wherein the endothelial layer and the heat conductive layer are integrally formed. 内皮層は、熱伝導性フィラーを含有し、層内の少なくとも一方向における熱伝導率が2W/m・K以上の熱伝導性樹脂組成物からなる請求項1〜4のいずれかに記載の放熱構造体。   The heat release according to any one of claims 1 to 4, wherein the endothelial layer comprises a thermally conductive resin composition containing a thermally conductive filler and having a thermal conductivity in at least one direction in the layer of 2 W / m · K or more. Structure. 熱伝導層は、熱伝導性フィラーを含有する熱伝導性樹脂組成物からなる請求項1〜5のいずれかに記載の放熱構造体。   The heat dissipation structure according to any one of claims 1 to 5, wherein the heat conductive layer is made of a heat conductive resin composition containing a heat conductive filler. 熱伝導性樹脂組成物は、マトリクス樹脂100体積部に対して10〜200体積部の熱伝導性フィラーを含有する請求項5または6に記載の放熱構造体。   The heat conductive resin composition according to claim 5 or 6, wherein the heat conductive resin composition contains 10 to 200 parts by volume of a heat conductive filler with respect to 100 parts by volume of the matrix resin. 熱伝導性フィラーとして、主として、メソフェーズピッチを原料としたピッチ系黒鉛化短繊維を用いる請求項5〜7のいずれかに記載の放熱構造体。   The heat dissipating structure according to any one of claims 5 to 7, wherein pitch-based graphitized short fibers mainly made of mesophase pitch are used as the heat conductive filler. 請求項1〜8のいずれかに記載の放熱構造体をLED素子の放熱部品に用いたLED照明具。   The LED lighting tool which used the thermal radiation structure in any one of Claims 1-8 for the thermal radiation component of the LED element.
JP2010098943A 2010-04-22 2010-04-22 Heat dissipation structure Pending JP2011228585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098943A JP2011228585A (en) 2010-04-22 2010-04-22 Heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098943A JP2011228585A (en) 2010-04-22 2010-04-22 Heat dissipation structure

Publications (1)

Publication Number Publication Date
JP2011228585A true JP2011228585A (en) 2011-11-10

Family

ID=45043589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098943A Pending JP2011228585A (en) 2010-04-22 2010-04-22 Heat dissipation structure

Country Status (1)

Country Link
JP (1) JP2011228585A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140793A (en) * 2011-12-30 2013-07-18 Posco Led Co Ltd Optical semiconductor lighting device
JP2016058364A (en) * 2014-09-12 2016-04-21 東芝ライテック株式会社 Lamp device and luminaire
KR101709686B1 (en) * 2015-09-23 2017-02-24 이석 Method for producing carbon-based material for heat dissipating structure, method for producing heat dissipating structure using carbon-based material
KR101826822B1 (en) * 2017-07-03 2018-03-22 (주)카리스가드레일 Heat pipe and device using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140793A (en) * 2011-12-30 2013-07-18 Posco Led Co Ltd Optical semiconductor lighting device
JP2016058364A (en) * 2014-09-12 2016-04-21 東芝ライテック株式会社 Lamp device and luminaire
KR101709686B1 (en) * 2015-09-23 2017-02-24 이석 Method for producing carbon-based material for heat dissipating structure, method for producing heat dissipating structure using carbon-based material
KR101826822B1 (en) * 2017-07-03 2018-03-22 (주)카리스가드레일 Heat pipe and device using the same
WO2019009515A1 (en) * 2017-07-03 2019-01-10 (주)카리스가드레일 Heat pipe and device using same

Similar Documents

Publication Publication Date Title
JP5779693B2 (en) Thermally conductive sheet, manufacturing method thereof, and semiconductor device
JP6846879B2 (en) How to make a heat sink
US9322540B2 (en) Heat radiation device and illuminating device having said heat radiation device
JP2010214628A (en) Composite hollow pipe and method for manufacturing the same
JPWO2011010535A1 (en) LED lighting fixture
Peng et al. FDM-3D printing LLDPE/BN@ GNPs composites with double network structures for high-efficiency thermal conductivity and electromagnetic interference shielding
CN105378914A (en) Thermally conductive sheet
KR20080114838A (en) Composite carbon fiber sheet
JP2011228585A (en) Heat dissipation structure
Wu et al. High thermal conductivity 2D materials: From theory and engineering to applications
WO2008149920A1 (en) Graphite composite film
JP2009191392A (en) Pitch-based carbon fiber filer and molded article using the same
JP2009108424A (en) Thermally conductive filler and molded product using the same
JP2008248462A (en) Pitch based carbon fiber filler and molded article using the same
JP2010065123A (en) Heat-conductive molding
Yang et al. Vertically aligned boron nitride nanosheets films for superior electronic cooling
JP2019071360A (en) Filler and heat transfer member
JP2009108425A (en) Carbon fiber and composite material using the same
TW200837108A (en) Radiating material
CN109104867A (en) Radiator, filler and its method for radiator
JP4971958B2 (en) Sheet-like thermally conductive molded body
JP2013131562A (en) Heat conductive sheet manufacturing method
JP2011165699A (en) Heat dissipation structure
WO2010024462A1 (en) Pitch-derived graphitized short fiber and molded object obtained using same
JP2012079794A (en) Heat dissipation structure