JP2011227066A - Labeled additive for food product, medicine or feed, manufacturing method for same labeled additive, and identification method of food product, medicine or feed - Google Patents

Labeled additive for food product, medicine or feed, manufacturing method for same labeled additive, and identification method of food product, medicine or feed Download PDF

Info

Publication number
JP2011227066A
JP2011227066A JP2011071945A JP2011071945A JP2011227066A JP 2011227066 A JP2011227066 A JP 2011227066A JP 2011071945 A JP2011071945 A JP 2011071945A JP 2011071945 A JP2011071945 A JP 2011071945A JP 2011227066 A JP2011227066 A JP 2011227066A
Authority
JP
Japan
Prior art keywords
additive
feed
labeled
emission
medicine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011071945A
Other languages
Japanese (ja)
Other versions
JP5881964B2 (en
Inventor
Isao Shimono
功 下野
Shiro Takahashi
志郎 高橋
Sentaro Mori
千太郎 森
Katsuyuki Sato
克行 佐藤
Atsuya Kobayashi
淳哉 小林
Yasuaki Takagi
靖彰 都木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakodate Regional Ind Promotion Organization
Asai Germanium Research Institute Co Ltd
Hokkaido University NUC
Institute of National Colleges of Technologies Japan
Hakodate Regional Industry Promotion Organization
Original Assignee
Hakodate Regional Ind Promotion Organization
Asai Germanium Research Institute Co Ltd
Hokkaido University NUC
Institute of National Colleges of Technologies Japan
Hakodate Regional Industry Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakodate Regional Ind Promotion Organization, Asai Germanium Research Institute Co Ltd, Hokkaido University NUC, Institute of National Colleges of Technologies Japan, Hakodate Regional Industry Promotion Organization filed Critical Hakodate Regional Ind Promotion Organization
Priority to JP2011071945A priority Critical patent/JP5881964B2/en
Publication of JP2011227066A publication Critical patent/JP2011227066A/en
Application granted granted Critical
Publication of JP5881964B2 publication Critical patent/JP5881964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a labeled additive for a food product, medicine, or feed, capable of identifying a food product, medicine, or feed, a manufacturing method for the same labeled additive, and an identification method of a food product, medicine, or feed.SOLUTION: After washing unburnt shell, an organic substrate is carbonized and ashed in a primary heat-treatment in air within 400°C-600°C. Then, the shell cooled to about room temperature is pulverized, and a secondary heat-treatment is carried out in CO2 atmosphere in 800°C-900°C, whereby shell powder is obtained. The intensity ratio of three light emission bands of a light emission spectrum of the shell powder, is used to assign an identification number, and calcium carbonate obtained from the shell is used as a main component, by the labeled additive for a food product, medicine, or feed. By adding the labeled additive to a food product, calcium fortification and quality improvement is provided, and by measuring the light emission spectrum of a sample remaining after ashing this food product, the food product, medicine, or feed is capable of easily being identified.

Description

本発明は、食品添加物の分類において既存添加物に属し、かつ食品若しくは医薬品又は飼料に添加した場合に、これらを容易に識別(又は判別)することができるという機能をもつ、食品若しくは医薬品又は飼料用の標識化された添加物、同標識化された添加物の製造方法及び食品若しくは医薬品又は飼料の識別方法に関する。   The present invention belongs to existing additives in the classification of food additives, and when added to foods, medicines or feeds, has the function of easily distinguishing (or distinguishing) these foods or medicines or The present invention relates to a labeled additive for feed, a method for producing the labeled additive, and a method for identifying food, medicine, or feed.

近年、食の安全・安心に対する消費者の意識が高まっている。これは、牛肉のBSE問題に端を発し、食材の産地偽装や食品の賞味期限改ざんなど、食の安全・安心を脅かすニュースが各種メディアを通じて消費者へと伝えられ、消費者が食の安全・安心に対してこれまで以上に高い関心を持つようになったためと考えられる。
このような問題に対する対策として、牛肉のトレーサビリティーにおけるDNA鑑定のように、食材そのものを識別する方法が有効である。一方、食品の賞味期限の改ざんについては、DNA鑑定では識別することができず、他の簡便な識別方法が望まれている。
In recent years, consumers' awareness of food safety and security has increased. This originates from the BSE problem of beef, and news that threatens food safety and security, such as fraudulent production of ingredients and falsification of the shelf life of food, is communicated to consumers through various media, and consumers This is thought to be due to the greater interest in security.
As a countermeasure against such a problem, a method of identifying the food material itself, such as DNA analysis in beef traceability, is effective. On the other hand, falsification of the shelf life of food cannot be identified by DNA analysis, and another simple identification method is desired.

添加物を用いた材料の識別方法として、3種類の蛍光体を用い、各蛍光体の添加量を変えることで、材料を識別するという方法が提案されている(特許文献1参照)。しかし、この発明における添加物(蛍光体)は人が食することのできるものではなく、したがって識別しようとする材料には、例えばプラスチックや金属等の工業材料を対象として挙げており、この方法をもって食品に関わる上記問題を解決することはできない。   As a method for identifying a material using an additive, there has been proposed a method of identifying a material by using three types of phosphors and changing the addition amount of each phosphor (see Patent Document 1). However, the additive (phosphor) in the present invention is not edible by humans, and therefore, the materials to be identified include industrial materials such as plastics and metals. The above-mentioned problems related to food cannot be solved.

一方、安定同位体によって標識化された添加物を使用し、食品、飼料、医薬品を識別する方法の提案もある(特許文献2参照)が、この場合、高価で稀少な安定同位体が必要であり、安価で豊富にあることが求められる食品添加剤への適用が課題となる。   On the other hand, there is a proposal of a method for identifying foods, feeds, and pharmaceuticals using an additive labeled with a stable isotope (see Patent Document 2), but in this case, an expensive and rare stable isotope is required. There is a problem of application to food additives that are required to be inexpensive and abundant.

ところで、我が国のホタテガイ水揚げ量は年間約50万トンであり、ホタテガイを食した後の貝殻の量は毎年約25万トンにも上る。ホタテガイの多くは水揚げされた地域の水産加工会社で剥き身の状態とされるため、不要となった貝殻はその地域に大量に発生し続ける。
この様に特定の地域に大量に発生し続ける貝殻の一部は、これまで土壌改良材や暗渠資材等として再生利用されてきた。
By the way, the amount of scallops in Japan is about 500,000 tons per year, and the amount of shells after eating scallops is about 250,000 tons every year. Since most scallops are stripped by fisheries processing companies in the area where they are landed, a large amount of shells that are no longer needed continue to be generated in the area.
In this way, a part of the shells that continue to be generated in a large amount in a specific area have been recycled as soil conditioners, culvert materials, and so on.

しかしながら、ホタテガイ貝殻の利用率はまだまだ低く、残りは産業廃棄物として保管或いは処分されている。特に北海道のホタテガイ水揚げ量は全国第一位を誇るが、不要となったホタテガイの貝殻は北海道の水産系副産物・廃棄物の第一位であり、その有効活用が求められている。   However, the utilization rate of scallop shells is still low, and the rest is stored or disposed of as industrial waste. In particular, Hokkaido scallops are the number one in the country, but scallop shells that are no longer needed are the number one fishery by-products and waste in Hokkaido, and their effective use is required.

このような背景に基づき、本発明者らは、ホタテガイ貝殻を、100℃を超えた温度で焼成して蛍光体を製造するという提案をした(特許文献3参照)。この発明は、当時としては新規性のある発明であったが、これは単に貝殻を焼成して蛍光体を製造するというレベルで終了しており、食品若しくは医薬品又は飼料に添加して標識化するという考えには至らなかった。   Based on such a background, the present inventors have proposed that a phosphor is manufactured by firing scallop shells at a temperature exceeding 100 ° C. (see Patent Document 3). This invention was a novel invention at that time, but it was completed at the level of simply burning a shell to produce a phosphor, and it was added to a food, medicine or feed for labeling. I did not come up with the idea.

上記、特許文献3に端を発して、本発明者らは、ホタテガイ貝殻の焼成温度により、貝殻が炭酸カルシウム、酸化カルシウム、水酸化カルシウムと相変化し、それに伴って蛍光の強さも異なるという報告を行っている(非特許文献1参照)。   Starting from Patent Document 3 above, the present inventors report that the shell changes phase with calcium carbonate, calcium oxide, and calcium hydroxide, and the intensity of fluorescence varies with the firing temperature of the scallop shell. (See Non-Patent Document 1).

また、本発明者らは、炭酸カルシウムを二酸化炭素(CO)雰囲気で焼成することにより、貝殻の蛍光体の耐水性能を向上(風化と消光の抑制)できるという報告を行っている(非特許文献2参照)。
さらに、本発明者らは、ホタテガイ貝殻を用いた蛍光体の発光中心を明らかにし、貝殻に含まれている有機基質の存在が重要という報告を行っている(非特許文献3参照)。
In addition, the present inventors have reported that the water resistance of a shell phosphor can be improved (suppression of weathering and quenching) by firing calcium carbonate in a carbon dioxide (CO 2 ) atmosphere (non-patented). Reference 2).
Furthermore, the present inventors have clarified the emission center of a phosphor using a scallop shell and reported that the presence of an organic substrate contained in the shell is important (see Non-Patent Document 3).

しかし、これらの文献で報告した内容は、貝殻から蛍光体を製造する方法と、製造したものの物性(光学特性など)に関する基礎研究レベルの内容であり、これを食品若しくは医薬品又は飼料に添加して標識化するという考えには至らなかった。   However, the contents reported in these documents are the contents of the basic research level related to the method of manufacturing phosphors from shells and the physical properties (such as optical properties) of the manufactured ones. The idea of labeling was not reached.

一方、焼成および未焼成貝殻粉末は、カルシウム強化等を目的とした食品添加物として従来から使われており、例えば食用ホタテガイ貝殻粉末の製造方法に関する開示がある(特許文献4参照)。しかし、この方法で製造した貝殻粉末は蛍光を示さないことから、食品に添加し、標識化することはできない。   On the other hand, baked and unfired shell powder has been conventionally used as a food additive for the purpose of calcium fortification, for example, and there is a disclosure relating to a method for producing edible scallop shell powder (see Patent Document 4). However, since the shell powder produced by this method does not exhibit fluorescence, it cannot be added to food and labeled.

特開2003−248790号公報JP 2003-248790 A 特表2009−501120号公報Special table 2009-501120 特開2004−359923号公報JP 2004-359923 A 特開2002−272421号公報JP 2002-272421 A

「ホタテカイ貝殻焼成物の蛍光特性」Journal of Ceramic Society of Japan、2004年112[3]、頁184〜188"Fluorescence characteristics of scallop shells fired" Journal of Ceramic Society of Japan, 2004 112 [3], pages 184-188 「二酸化炭素雰囲気中で焼成したホタテカイ貝殻の蛍光特性」Journal of Ceramic Society of Japan、2006年114[4]、頁341〜346"Fluorescence characteristics of scallop shells fired in a carbon dioxide atmosphere" Journal of Ceramic Society of Japan, 2006 114 [4], pages 341-346 「ホタテガイ貝殻を用いた蛍光体の発光中心に関する研究」Journal of Ceramic Society of Japan、Supplement、2009年117[4]、S5−S10“Study on luminescent center of phosphor using scallop shell” Journal of Ceramic Society of Japan, Supplement, 2009 117 [4], S5-S10

本発明は、食品添加物として使用されている焼成貝殻粉に関するもので、食品若しくは医薬品又は飼料に添加することでカルシウム強化や品質改良がなされ、且つその食品若しくは医薬品又は飼料を灰化した後に残った試料の発光スペクトルを測定することで、食品若しくは医薬品又は飼料を容易に識別することができるという機能をもつ食品若しくは医薬品又は飼料用の標識化された添加物、同標識化された添加物の製造方法及び食品若しくは医薬品又は飼料の識別方法を得ることを課題とする。   The present invention relates to a calcined shellfish powder used as a food additive, and is added to food, medicine or feed to enhance calcium and improve quality, and remains after ashing the food, medicine or feed. By measuring the emission spectrum of the sample, it is possible to easily identify the food, drug, or feed. It is an object of the present invention to obtain a manufacturing method and a method for identifying food, medicine, or feed.

上記の課題に鑑み、本願は以下の発明を提供する。
1)貝殻から得た炭酸カルシウムを主成分とする粉末状の食品若しくは医薬品又は飼料用の添加物であり、これに励起エネルギーを加えることで発光することを特徴とする食品若しくは医薬品又は飼料用の標識化された添加物
なお、上記「発光」は、蛍光と燐光の総称であるルミネッセンスの同義語として用いている。
2)発光スペクトルが一つ又は二つ以上の発光帯からなることを特徴とする上記1)記載の標識化された添加物。
3)発光帯のピーク波長が、420±5nm、490±5nm、580±5nmの何れか一つ又は二つ以上であることを特徴とする上記1)又は2)のいずれか一項記載の標識化された添加物。
4)各発光帯の最適励起波長を250±5nmとする上記3)記載の標識化された添加物。
5)貝殻から得た炭酸カルシウムを主成分とする粉末に、塩化アンモニウム(NHCl)、塩化カルシウム(CaCl)、塩化ナトリウム(NaCl)から選択した一種又は二種以上を添加して、発光スペクトルの発光帯の強度比を変化させた上記1)〜4)のいずれか一項に記載の標識化された添加物。
6)貝殻から得た炭酸カルシウムを主成分とする粉末に、塩化銅(CuCl)、塩化マンガン(MnCl)から選択した一種又は二種を添加して、発光スペクトルの発光帯の強度比を変化させた上記5)記載の標識化された添加物。
7)ホタテガイの貝殻を用いることを特徴とする上記1)〜6)のいずれか一項に記載の標識化された添加物。
8)異なる発光帯の強度比を持った複数の粉末の混合物であることを特徴とする上記1)〜7)のいずれか一項に記載の標識化された添加物。
9)上記1)〜8)のいずれか一項に記載の標識化された添加物を二種以上混合し、発光スペクトルの発光帯の強度比を変化させた標識化された添加物。
In view of the above problems, the present application provides the following inventions.
1) Powdered food, medicine or feed additive mainly composed of calcium carbonate obtained from shells, which emits light when excited energy is added thereto, for food, medicine or feed Labeled additive The above "luminescence" is used as a synonym for luminescence, which is a general term for fluorescence and phosphorescence.
2) The labeled additive according to 1) above, wherein the emission spectrum comprises one or more emission bands.
3) The label according to any one of 1) or 2) above, wherein the peak wavelength of the emission band is any one or more of 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm. Additive.
4) The labeled additive as described in 3) above, wherein the optimum excitation wavelength of each emission band is 250 ± 5 nm.
5) Light emission by adding one or more selected from ammonium chloride (NH 4 Cl), calcium chloride (CaCl 2 ), and sodium chloride (NaCl) to a powder mainly composed of calcium carbonate obtained from shells. The labeled additive according to any one of 1) to 4) above, wherein the intensity ratio of the emission band of the spectrum is changed.
6) One or two kinds selected from copper chloride (CuCl 2 ) and manganese chloride (MnCl 2 ) are added to the powder mainly composed of calcium carbonate obtained from the shell, and the intensity ratio of the emission band of the emission spectrum is increased. The labeled additive as described in 5) above, which is changed.
7) The labeled additive according to any one of 1) to 6) above, wherein a scallop shell is used.
8) The labeled additive according to any one of 1) to 7) above, which is a mixture of a plurality of powders having different emission band intensity ratios.
9) A labeled additive in which two or more kinds of the labeled additive according to any one of 1) to 8) above are mixed to change the intensity ratio of the emission band of the emission spectrum.

また、本発明は、以下の発明を提供する。
10)未焼成貝殻を洗浄した後、大気中400℃〜600℃の範囲で一次熱処理により有機基質の炭化及び灰化を行い、その後室温付近まで冷却した貝殻を粉砕し、次にCO雰囲気中800℃〜900℃で二次熱処理を行い、これによって得た貝殻粉の発光スペクトルの発光帯の強度比から識別番号を付与することを特徴とする貝殻から得た炭酸カルシウムを主成分とする食品若しくは医薬品又は飼料用の標識化された添加物の製造方法。
11)塩化アンモニウム(NHCl)、塩化カルシウム(CaCl)、塩化ナトリウム(NaCl)から選択した一種又は二種以上の添加物を、一次熱処理した前記貝殻粉に添加し、発光スペクトルの発光帯の強度比を変化させることを特徴とする上記10)記載の標識化された添加物の製造方法。
12)NHCl、CaCl、又はNaClを添加するに際し、予め所定の濃度のNHCl、CaCl及びNaCl水溶液を作製すると共に、前記一次熱処理を施した貝殻粉の重量に対してNHCl、CaCl、NaClから選択した一種又は二種以上の濃度が0.3%〜3%となるように添加することを特徴とする上記11)記載の標識化された添加物の製造方法。
13)塩化銅(CuCl)、塩化マンガン(MnCl)から選択した一種又は二種の添加物を、一次熱処理した前記貝殻粉に添加し、発光スペクトルの発光帯の強度比を変化させることを特徴とする上記11)又は12)記載の標識化された添加物の製造方法。
14)CuCl又はMnClを添加するに際して、予め所定濃度のCuCl及び又はMnCl水溶液を作製すると共に、前記一次熱処理を施した貝殻粉の重量に対してCuCl及び又はMnClの濃度が1ppm〜100ppmとなるように添加することを特徴とする上記13)記載の標識化された添加物の製造方法。
The present invention also provides the following inventions.
10) After washing the unfired shell, the organic substrate is carbonized and incinerated by primary heat treatment in the range of 400 ° C to 600 ° C in the atmosphere, and then the shell cooled to near room temperature is pulverized, and then in a CO 2 atmosphere. A food mainly composed of calcium carbonate obtained from shells characterized in that secondary heat treatment is performed at 800 ° C. to 900 ° C., and an identification number is given from the intensity ratio of the emission band of the emission spectrum of shell powder obtained thereby. Or the manufacturing method of the labeled additive for pharmaceutical products or feed.
11) One or more additives selected from ammonium chloride (NH 4 Cl), calcium chloride (CaCl 2 ), and sodium chloride (NaCl) are added to the shell powder subjected to the primary heat treatment, and the emission band of the emission spectrum 10. The method for producing a labeled additive as described in 10) above, wherein the intensity ratio is changed.
12) NH 4 Cl, upon CaCl 2, or the addition of NaCl, NH 4 NH 4 Cl in advance a predetermined concentration, thereby preparing a CaCl 2 and NaCl aqueous solution, relative to the weight of the shell powder subjected to the primary heat treatment 11. The method for producing a labeled additive as described in 11) above, wherein the additive is added so that the concentration of one or more selected from Cl, CaCl 2 and NaCl is 0.3% to 3%.
13) One or two additives selected from copper chloride (CuCl 2 ) and manganese chloride (MnCl 2 ) are added to the shell powder subjected to the primary heat treatment to change the intensity ratio of the emission band of the emission spectrum. 11. The method for producing a labeled additive as described in 11) or 12) above.
14) Upon the addition of CuCl 2 or MnCl 2, with making CuCl 2 and or MnCl 2 aqueous solution in advance a predetermined concentration, the concentration of CuCl 2 and or MnCl 2 relative to the weight of the shell powder subjected to the primary heat treatment 13. The method for producing a labeled additive as described in 13) above, wherein the additive is added so as to be 1 ppm to 100 ppm.

また、本発明は、以下の発明を提供する。
15)上記1)〜9)のいずれか一項に記載の標識化された添加物を食品若しくは医薬品又は飼料に添加し、これらの双方を500℃〜600℃で灰化した後、灰化後の試料の発光スペクトルの発光帯の強度比により、識別することを特徴とする食品若しくは医薬品又は飼料の識別方法。
16)上記10)〜14)のいずれか一項に記載の製造方法によって得られた標識化された添加物を食品若しくは医薬品又は飼料に添加し、これらの双方を500℃〜600℃で灰化した後、灰化後の試料の発光スペクトルの発光帯の強度比により、識別することを特徴とする食品若しくは医薬品又は飼料の識別方法。
The present invention also provides the following inventions.
15) The labeled additive according to any one of 1) to 9) above is added to food, medicine, or feed, both of which are incinerated at 500 ° C to 600 ° C, and then after incineration A method for identifying food, medicine or feed, characterized in that the identification is performed based on the intensity ratio of the emission bands of the emission spectrum of the sample.
16) The labeled additive obtained by the production method according to any one of 10) to 14) above is added to food, medicine, or feed, and both of these are incinerated at 500 ° C to 600 ° C. And then identifying the food or pharmaceutical product or feed according to the intensity ratio of the emission band of the emission spectrum of the sample after ashing.

本発明によれば、食品添加物の分類において既存添加物に属し、食品に添加することでカルシウム強化や品質改良がなされ、食品に添加する前と、食品に添加した後の灰化した試料の発光スペクトルの発光帯の強度比により、食品を識別することが容易にできるという機能をもつ優れた効果を有する。これによって、例えば、粉砕した食材に本発明の添加物を加えることで、例え形状(姿形)が分からなくなってしまった食材においても、自社製品やその賞味期限を証明するための目印として利用することができるという著しい効果がある。
また、本発明は、これまでに食経験のある貝殻を素材に用いていることから、上記食品添加物だけでなく、医薬品又は飼料の識別にも適用できるという優れた効果を有する。
According to the present invention, it belongs to the existing additives in the classification of food additives, and calcium addition and quality improvement are made by adding to foods, and the ashed sample before adding to foods and after adding to foods According to the intensity ratio of the emission bands of the emission spectrum, it has an excellent effect of having a function of easily identifying food. In this way, for example, by adding the additive of the present invention to the crushed food material, even in the food material in which the shape (form) is not known, it is used as a mark for certifying its own product and its expiration date. There is a remarkable effect that can be.
Further, the present invention has an excellent effect that it can be applied not only to the above-mentioned food additives but also to the identification of medicines and feeds, since shells with experience of eating are used as raw materials.

実施例1に示す食品に添加する前の添加物Aの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the additive A before adding to the foodstuff shown in Example 1. FIG. 実施例1に示す灰化処理後の添加物Aの発光スペクトルを示す図である。2 is a graph showing an emission spectrum of an additive A after ashing treatment shown in Example 1. FIG. 実施例2に示す食品に添加する前の添加物Bの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the additive B before adding to the foodstuff shown in Example 2. FIG. 実施例2に示す灰化処理後の添加物Bの発光スペクトルを示す図である。6 is a graph showing an emission spectrum of an additive B after ashing treatment shown in Example 2. FIG. 実施例3に示す食品に添加する前の添加物Cの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the additive C before adding to the foodstuff shown in Example 3. FIG. 実施例3に示す灰化処理後の添加物Cの発光スペクトルを示す図である。6 is a diagram showing an emission spectrum of an additive C after ashing treatment shown in Example 3. FIG. 実施例4に示す食品に添加する前の添加物Dの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the additive D before adding to the foodstuff shown in Example 4. FIG. 実施例4に示す灰化処理後の添加物Dの発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the additive D after the ashing process shown in Example 4. FIG. 本実施例1〜4の内容を説明するためのフローを示す図である。It is a figure which shows the flow for demonstrating the content of the present Examples 1-4.

本発明の食品若しくは医薬品又は飼料用の標識化された添加物の製造に際しては、まず未焼成貝殻を原料とする。貝殻としては、食用として大量に養殖されているタテガイの貝殻が代表的なものである。   In the production of the labeled additive for food or medicine or feed of the present invention, first, unfired shells are used as a raw material. A typical example of the shell is a scallop shell that is cultivated in large quantities for food.

まず、原料となる未焼成貝殻を洗浄した後、有機基質の炭化・灰化を目的とした一次熱処理を行う。ここで、一次熱処理条件は、大気中400℃〜600℃が適当である。大気中400℃未満で一次熱処理したものは、有機基質の炭化・灰化が不十分である。また、大気中600℃を超える温度で一次熱処理したものは、炭酸カルシウムから酸化カルシウムへの相変化が生じ、蛍光体としての耐水性能が著しく低下する。尚、一次熱処理は、マッフル炉等の熱処理炉を用いて行う。   First, after the raw shell as a raw material is washed, a primary heat treatment is performed for the purpose of carbonizing and ashing the organic substrate. Here, the primary heat treatment condition is suitably 400 ° C. to 600 ° C. in the atmosphere. Those subjected to the primary heat treatment at less than 400 ° C. in the atmosphere have insufficient carbonization and ashing of the organic substrate. In addition, when subjected to primary heat treatment at a temperature exceeding 600 ° C. in the atmosphere, a phase change from calcium carbonate to calcium oxide occurs, and the water resistance performance as a phosphor is significantly lowered. The primary heat treatment is performed using a heat treatment furnace such as a muffle furnace.

その後、室温付近まで冷却し、粉砕刃回転式の電動ミル等を用いて粉砕する。次に、原料となる貝殻に発光特性を付与することを目的とした二次熱処理を行う。ここで、二次熱処理条件は、CO雰囲気中800℃〜900℃が適当である。CO雰囲気中800℃未満で二次熱処理したものは、発光強度が著しく弱い。また、CO雰囲気中900℃を越える温度で二次熱処理したものは、炭酸カルシウムから酸化カルシウムへの相変化が生じ、蛍光体としての耐水性能が著しく低下する。 Then, it cools to room temperature vicinity and grind | pulverizes using the electric mill etc. of a grind blade rotation type. Next, a secondary heat treatment is performed for the purpose of imparting light emission characteristics to the shells as raw materials. Here, the secondary heat treatment condition is suitably 800 ° C. to 900 ° C. in a CO 2 atmosphere. Those subjected to secondary heat treatment at less than 800 ° C. in a CO 2 atmosphere have remarkably weak emission intensity. In addition, in the case where the secondary heat treatment is performed at a temperature exceeding 900 ° C. in a CO 2 atmosphere, a phase change from calcium carbonate to calcium oxide occurs, and the water resistance performance as a phosphor is significantly lowered.

尚、二次熱処理は、ガス置換型管状炉等の熱処理炉を用いて行う。ここで、試料を管状炉内に入れた後、一旦炉内圧力を5Pa以下まで下げ、次に純度99.5%以上のCOガスを0.1MPaに達するまで導入する。
二次熱処理後は、メノウ乳鉢を用いて試料を粉砕し、ふるい(開孔径約100μm)で分級し、標識化された食品添加物を完成させることができる。こうして得た貝殻粉の発光スペクトルを測定し、添加物を含まない貝殻から作られた、基準となる発光スペクトルとした。
The secondary heat treatment is performed using a heat treatment furnace such as a gas replacement tubular furnace. Here, after putting the sample in the tubular furnace, the furnace pressure is once lowered to 5 Pa or less, and then CO 2 gas having a purity of 99.5% or more is introduced until the pressure reaches 0.1 MPa.
After the secondary heat treatment, the sample can be pulverized using an agate mortar and classified with a sieve (opening diameter of about 100 μm) to complete a labeled food additive. The emission spectrum of the shell powder thus obtained was measured and used as a reference emission spectrum made from a shell containing no additive.

貝殻粉の発光スペクトルの測定に際し、励起・発光スペクトルは、分光蛍光光度計(又は蛍光分光光度計)を用いて行う。ここで、励起スペクトルを測定する際には受光側の光学系を発光スペクトルのピーク波長に固定し、発光スペクトルを測定する際には照射光側の光学系を励起スペクトルのピーク波長に固定した条件で測定する。   When measuring the emission spectrum of shellfish powder, the excitation / emission spectrum is measured using a spectrofluorometer (or fluorescence spectrophotometer). Here, when the excitation spectrum is measured, the optical system on the light receiving side is fixed at the peak wavelength of the emission spectrum, and when the emission spectrum is measured, the optical system on the irradiation light side is fixed at the peak wavelength of the excitation spectrum. Measure with

貝殻を原料に用いて作製した蛍光体の代表的な発光スペクトルを図1に示す。発光スペクトルは、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯からなる。各発光帯の最適励起波長は250±5nmである。ここで、各発光帯のピーク波長および各発光帯の最適励起波長に±5nmの範囲とする理由は、天然の貝殻の個体差によるバラツキ、分光蛍光光度計の測定再現精度等によって、励起波長が変動する可能性があり、その範囲を含めなければ、適切な波長を把握できない場合があることによるものである。   FIG. 1 shows a typical emission spectrum of a phosphor produced using a shell as a raw material. The emission spectrum consists of three emission bands having peaks at 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm. The optimum excitation wavelength for each emission band is 250 ± 5 nm. Here, the reason for setting the peak wavelength of each emission band and the optimum excitation wavelength of each emission band to be in the range of ± 5 nm is that the excitation wavelength depends on the variation due to individual differences in natural shells, the measurement reproduction accuracy of the spectrofluorometer, etc. This is because there is a possibility that an appropriate wavelength cannot be grasped unless the range is included.

上記の通り、貝殻単独でも標識化された食品若しくは医薬品又は飼料用の添加物となり得る。しかし、これに第一添加物として食品用指定添加物である塩化アンモニウム(NHCl)、同じく食品用指定添加物である塩化カルシウム(CaCl)、調味料である塩化ナトリウム(NaCl)、又はこれらを複数加えて作製しても良い。すなわち、第一添加物として、NHCl、CaCl、NaClから選択した一種又は二種以上の添加物を一次熱処理した前記貝殻粉に添加し、その後二次熱処理を施すことで発光スペクトルの発光帯の強度比を変化させることができる。 As described above, the shell alone can be an additive for labeled food or medicine or feed. However, as this, ammonium chloride (NH 4 Cl), which is a designated additive for food, calcium chloride (CaCl 2 ), which is also a designated additive for food, sodium chloride (NaCl), which is a seasoning, A plurality of these may be added. That is, as the first additive, one or two or more additives selected from NH 4 Cl, CaCl 2 , and NaCl are added to the shell powder that has been subjected to the primary heat treatment, and then subjected to the secondary heat treatment to emit light of the emission spectrum. The intensity ratio of the band can be changed.

上記のNHCl、CaCl、又はNaClを添加する場合、予め所定の濃度のNHCl、CaCl及びNaCl水溶液を作製し、磁性るつぼ内に前記一次熱処理を施した貝殻粉を秤量して入れ、これに所定の濃度のNHCl、CaCl、NaClから選択した一種又は二種以上を添加することによって、貝殻単独の場合とは異なる発光スペクトルの発光帯の強度比を持った、食品若しくは医薬品又は飼料用の標識化した添加物を製造することができる。
ここで、第一添加物の濃度は、0.3%〜3%が適当である。第一添加物を0.3%未満添加したものは、発光スペクトルの発光帯の強度比変化が不十分であった。また、第一添加物を3%超えて添加したものは、発光スペクトルの強度が低下した。
When adding the above NH 4 Cl, CaCl 2 , or NaCl, an aqueous NH 4 Cl, CaCl 2 and NaCl solution having a predetermined concentration is prepared in advance, and the shell powder subjected to the primary heat treatment in a magnetic crucible is weighed. In addition, by adding one or more selected from NH 4 Cl, CaCl 2 , NaCl at a predetermined concentration to this, food having an emission band intensity ratio different from that of shells alone, Alternatively, labeled additives for pharmaceuticals or feed can be produced.
Here, the concentration of the first additive is suitably 0.3% to 3%. When the first additive was added in an amount of less than 0.3%, the intensity ratio change in the emission band of the emission spectrum was insufficient. Moreover, the intensity | strength of the emission spectrum fell that what added the 1st additive exceeding 3%.

添加物を磁性るつぼ内で、前記一次熱処理を施した貝殻粉に混合する際には、純水を加え、撹拌した後、乾燥機に入れ100〜120℃で乾燥する。これを必要に応じて、メノウ乳鉢等を用いて粉砕する。
次に、前記と同様に、CO雰囲気中800℃〜900℃で二次熱処理を行う。こうして得た貝殻粉の発光スペクトルを測定する。これによって、貝殻単独の場合とは異なる発光スペクトルの発光帯の強度比を変化させることができる。
When the additive is mixed with the shell powder subjected to the primary heat treatment in the magnetic crucible, pure water is added and stirred, and then put into a dryer and dried at 100 to 120 ° C. If necessary, this is crushed using an agate mortar or the like.
Next, as described above, secondary heat treatment is performed at 800 ° C. to 900 ° C. in a CO 2 atmosphere. The emission spectrum of the shell powder thus obtained is measured. Thereby, the intensity ratio of the emission band of the emission spectrum different from the case of the shell alone can be changed.

また、第二添加物として、塩化銅(CuCl)、塩化マンガン(MnCl)から選択した一種又は二種の添加物を、前記一次熱処理した前記貝殻粉に第一添加物と共に添加し、発光スペクトルの発光帯の強度比を変化させることができる。この場合、CuCl又はMnClを添加するに際しては、前記と同様に、予め所定濃度のCuCl及び又はMnCl水溶液を作製すると共に、磁性るつぼ内に前記一次熱処理を施した貝殻粉を秤量して入れ、上記第一添加物と共に所定の濃度の第二添加物CuCl及び又はMnClを添加することによって、貝殻単独及び第一添加物の場合とは異なる発光スペクトルの発光帯の強度比を持った、標識化した食品若しくは医薬品又は飼料用の添加物を製造することができる。 Further, as the second additive, one or two additives selected from copper chloride (CuCl 2 ) and manganese chloride (MnCl 2 ) are added to the shell powder subjected to the primary heat treatment together with the first additive, and light emission The intensity ratio of the emission band of the spectrum can be changed. In this case, when adding CuCl 2 or MnCl 2 , a CuCl 2 and / or MnCl 2 aqueous solution having a predetermined concentration is prepared in advance, and the shell powder subjected to the primary heat treatment in a magnetic crucible is weighed in the same manner as described above. And adding the second additive CuCl 2 and / or MnCl 2 at a predetermined concentration together with the first additive, the intensity ratio of the emission band of the emission spectrum different from that of the shell alone and the first additive is obtained. It is possible to produce a labeled food or medicine or feed additive.

ここで、第二添加物の濃度は、1ppm〜100ppmが適当である。第二添加物を0.5ppm添加したものは、発光スペクトルの発光帯の強度比変化が不十分であった。また、第二添加物を100ppm添加したものは、濃度消光により発光スペクトルの強度が著しく低下した。   Here, the concentration of the second additive is suitably 1 ppm to 100 ppm. In the case where 0.5 ppm of the second additive was added, the intensity ratio change in the emission band of the emission spectrum was insufficient. In addition, in the case where 100 ppm of the second additive was added, the intensity of the emission spectrum was significantly reduced by concentration quenching.

以上に示すように、貝殻単独の場合、上記第一添加物を添加した場合、又は上記第一添加物と上記第二添加物を併用した場合、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯からなる標識化された食品添加物を製造することができる。前記、焼成貝殻の化学式は、蛍光体において母体と発光中心をコロンでつないだ化学式で表すことに倣い、CaCO:Cu,Mn,Clと表すことができる。 As described above, in the case of a shell alone, when the first additive is added, or when the first additive and the second additive are used in combination, the thickness is 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm. A labeled food additive consisting of three emission bands with peaks can be produced. The chemical formula of the fired shell can be expressed as CaCO 3 : Cu, Mn, Cl, following the chemical formula in which the matrix and the emission center are connected by a colon in the phosphor.

以下、本発明の特徴を具体的に説明する。以下の説明は本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、他の実施態様、他の例等は、いずれも本願発明に含まれるものである。   The features of the present invention will be specifically described below. The following description is intended to facilitate understanding of the present invention, and is not limited thereto. That is, all modifications, other embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

(実施例1)
原料として貝殻のみを用い、上述した製造方法に従い、420±5nmと490±5nmと580±5nmにピークを持つ発光スペクトルの3つの発光帯の強度比が、表1の添加物Aの識別番号046に示す強度比となるような食品若しくは医薬品又は飼料用の添加物を作製した。
Example 1
Using only shells as raw materials, the intensity ratio of the three emission bands of the emission spectra having peaks at 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm according to the production method described above is the identification number 046 of additive A in Table 1. The additive for foodstuffs, a pharmaceutical, or a feed so that it might become intensity | strength ratio shown in FIG.

ここで、識別番号の求め方について説明する。上述した測定方法に従い、励起光を照射しながら本発明品の発光スペクトルを測定し、得られた発光スペクトルから3つの発光帯の強度値N、N、Nを求めた。
次に、3つの発光帯の強度の和をN=N+N+Nとし、各発光帯の強度を3つの発光帯の強度の和で除したn=10×N/N、n=10×N/N、n=10×N/Nを求め、小数点第一位の位を四捨五入することで整数とし、3つの和が10(=n+n+n)となる3桁のnで表示した数字を識別番号とした。尚、3つの発光帯の強度値N、N、Nから識別番号を求める方法は、数学上の計算方法によるものであり、ここに記載した求め方に制限されるものではない。
Here, how to obtain the identification number will be described. In accordance with the measurement method described above, the emission spectrum of the product of the present invention was measured while irradiating with excitation light, and the intensity values N 1 , N 2 , and N 3 of the three emission bands were determined from the obtained emission spectra.
Next, the sum of the intensity of the three emission bands is N = N 1 + N 2 + N 3, and the intensity of each emission band is divided by the sum of the intensity of the three emission bands, n 1 = 10 × N 1 / N, n 2 = 10 × N 2 / N, n 3 = 10 × N 3 / N is determined, and the first decimal place is rounded off to an integer, and the sum of the three is 10 (= n 1 + n 2 + n 3 ). The number indicated by the three digits n 1 n 2 n 3 was used as the identification number. The method for obtaining the identification number from the intensity values N 1 , N 2 , and N 3 of the three light emission bands is based on a mathematical calculation method, and is not limited to the method described here.

次に、作製した識別番号046と記録された添加物Aを用い、これを食品に加えた時の結果を示す。本実施例1では、食品として米粉(A社製)を用いた。
ここで、食品として米粉を選んだ理由は、色や形状が本発明品の標識化された食品添加物と似ており、添加の前後で、目視による区別がつき難いために選んだ。この米粉に添加物Aを混合し、水を加えてよく練ることで適当な軟らかさとし、団子の生地を作製した。この生地を沸騰した湯の中で数分間ゆで、その後冷水中に移し入れて冷まし、笊を用いてよく水切りを行った。
Next, using the produced identification number 046 and the recorded additive A, the result when this was added to food is shown. In the present Example 1, rice flour (made by A company) was used as a foodstuff.
Here, the reason why rice flour was selected as the food was selected because it is similar in color and shape to the labeled food additive of the product of the present invention, and is difficult to distinguish visually before and after the addition. Additive A was mixed with this rice flour, and water was added and kneaded well to obtain an appropriate softness to prepare a dumpling dough. The dough was boiled in boiling water for several minutes, then transferred to cold water to cool, and well drained with a straw.

ここで、添加物Aを加えた米粉に励起光を照射すると、食品素材からも蛍光を放つために、この蛍光が識別番号を読み取る際のノイズとなる。このような問題を解決するために、添加物Aを加えた食品の灰化処理を行った。
添加物Aを加えた食品を磁製るつぼに入れ、105°Cの乾燥機で可能な限り乾燥させた。その後、ホットプレートを用いて注意深く食品を炭化させた。このように処理した試料を、500〜600°Cで灰白色の灰が得られるまで、5〜6時間加熱を続けた。灰化終了後、加熱を止め、放冷し、灰化試料を得た。
Here, when the rice powder to which the additive A is added is irradiated with excitation light, the food material also emits fluorescence, and this fluorescence becomes noise when reading the identification number. In order to solve such a problem, the ashing treatment of the food to which the additive A was added was performed.
The food to which additive A was added was placed in a porcelain crucible and dried as much as possible with a 105 ° C dryer. Thereafter, the food was carefully carbonized using a hot plate. The sample thus treated was heated for 5-6 hours until an off-white ash was obtained at 500-600 ° C. After completion of ashing, heating was stopped and the mixture was allowed to cool to obtain an ashed sample.

こうして作製した灰化後の試料の発光スペクトルを、上述した測定方法に従い、測定した。以上の工程のフローの概要を図9に示す。なお、以下の実施例においても、同様のフローで発光スペクトルを調べた。
食品に添加する前の添加物Aの発光スペクトルを図1に、灰化処理後の添加物Aの発光スペクトルを図2に示す。発光スペクトルは、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯からなり、各発光帯の最適励起波長は250±5nmであった。
The emission spectrum of the sample after ashing produced in this way was measured according to the measurement method described above. An outline of the flow of the above steps is shown in FIG. In the following examples, the emission spectrum was examined with the same flow.
The emission spectrum of the additive A before being added to the food is shown in FIG. 1, and the emission spectrum of the additive A after the ashing treatment is shown in FIG. The emission spectrum was composed of three emission bands having peaks at 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm, and the optimum excitation wavelength of each emission band was 250 ± 5 nm.

灰化処理前の添加物Aの3つの発光帯の強度比を表1に、灰化処理後の添加物Aの3つの発光帯の強度比を表2に示す。3つの発光帯の強度比は共に3桁の046で表示され、灰化処理前の添加物Aの識別番号と灰化処理後の添加物Aの識別番号は一致する。このことから、本発明は識別番号を記録した食品添加物として使用可能なことが示された。   Table 1 shows the intensity ratio of the three emission bands of the additive A before the ashing treatment, and Table 2 shows the intensity ratio of the three emission bands of the additive A after the ashing treatment. The intensity ratios of the three emission bands are both represented by three digits of 046, and the identification number of the additive A before the ashing treatment and the identification number of the additive A after the ashing treatment are the same. From this, it was shown that the present invention can be used as a food additive in which an identification number is recorded.

(実施例2)
第一添加物として塩化アンモニウムを1%加えた貝殻粉を用い、上述した製造方法に従い、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯の強度比が表1の添加物Bの識別番号316に示す強度比となるような食品添加物を作製し、上述した物性測定に従い、励起光を照射しながら蛍光強度比を測定した。各発光帯の最適励起波長は約250nmであった。
(Example 2)
Addition of the intensity ratio of three emission bands having peaks at 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm according to the above-mentioned production method using shellfish powder added with 1% ammonium chloride as the first additive A food additive having an intensity ratio indicated by the identification number 316 of the object B was prepared, and the fluorescence intensity ratio was measured while irradiating excitation light according to the above-described physical property measurement. The optimum excitation wavelength for each emission band was about 250 nm.

次に、このように作製した識別番号316と記録された添加物Bを用い、食品(この例では、米粉(B社製)を用いた)に加えた時の結果を示す。
ここで、実施例1で述べた理由により、同様の灰化処理を行った。灰化後の試料の発光スペクトルを、本発明の物性測定に従い、励起光を照射しながら蛍光強度比を測定した。
Next, the results when the identification number 316 thus prepared and the recorded additive B are added to food (in this example, rice flour (manufactured by B company) is used) are shown.
Here, the same ashing treatment was performed for the reason described in Example 1. The fluorescence intensity ratio of the emission spectrum of the sample after ashing was measured while irradiating excitation light according to the physical property measurement of the present invention.

食品に添加する前の添加物Bの発光スペクトルを図3に、灰化処理後の発明品の発光スペクトルを図4に示す。発光スペクトルは、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯からなり、各発光帯の最適励起波長は250±5nmであった。   The emission spectrum of the additive B before being added to food is shown in FIG. 3, and the emission spectrum of the invention product after ashing is shown in FIG. The emission spectrum was composed of three emission bands having peaks at 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm, and the optimum excitation wavelength of each emission band was 250 ± 5 nm.

灰化処理前の添加物Bの3つの発光帯の強度比を表1に、灰化処理後の添加物Bの3つの発光帯の強度比を表2に示す。3つの発光帯の強度比は共に3桁の316で表示され、灰化処理前の添加物Bの識別番号と灰化処理後の添加物Bの識別番号と一致することから、本発明は識別番号を記録した食品添加物として使用可能なことが示された。   Table 1 shows the intensity ratio of the three emission bands of the additive B before the ashing treatment, and Table 2 shows the intensity ratio of the three emission bands of the additive B after the ashing treatment. Since the intensity ratios of the three emission bands are both represented by three digits 316, and the identification number of the additive B before the ashing treatment matches the identification number of the additive B after the ashing treatment, the present invention is distinguished. It was shown that it could be used as a food additive with a recorded number.

(実施例3)
第一添加物として塩化カルシウムを2%、第二添加物として塩化銅を10ppmと塩化マンガンを10ppm加えた貝殻粉を用い、上述した製造方法に従い、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯の強度比が表1の添加物Cの識別番号523に示す強度比となるような食品添加物を作製し、上述した物性測定に従い、励起光を照射しながら蛍光強度比を測定した。各発光帯の最適励起波長は約250nmであった。
(Example 3)
Using shellfish powder containing 2% calcium chloride as the first additive, 10 ppm copper chloride and 10 ppm manganese chloride as the second additive, and adjusting to 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm in accordance with the manufacturing method described above. A food additive was prepared so that the intensity ratio of the three emission bands having peaks was the intensity ratio indicated by the identification number 523 of additive C in Table 1, and the fluorescence intensity was applied while irradiating the excitation light according to the physical property measurement described above. The ratio was measured. The optimum excitation wavelength for each emission band was about 250 nm.

次に、このように作製した識別番号523と記録された添加物Cを用い、実施例1と同様に食品(この例では、米粉(C社製)を用いた)に加えた時の結果を示す。ここで、実施例1で述べた理由により、同様の灰化処理を行った。灰化後の試料の発光スペクトルを、本発明の物性測定に従い、励起光を照射しながら蛍光強度比を測定した。   Next, using the identification number 523 produced in this way and the recorded additive C, the result when added to food (in this example, rice flour (made by Company C)) was used in the same manner as in Example 1. Show. Here, the same ashing treatment was performed for the reason described in Example 1. The fluorescence intensity ratio of the emission spectrum of the sample after ashing was measured while irradiating excitation light according to the physical property measurement of the present invention.

食品に添加する前の添加物Cの発光スペクトルを図5に、灰化処理後の発明品の発光スペクトルを図6に示す。発光スペクトルは、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯からなり、各発光帯の最適励起波長は250±5nmであった。   The emission spectrum of the additive C before being added to food is shown in FIG. 5, and the emission spectrum of the invention product after the ashing treatment is shown in FIG. The emission spectrum was composed of three emission bands having peaks at 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm, and the optimum excitation wavelength of each emission band was 250 ± 5 nm.

灰化処理前の添加物Cの3つの発光帯の強度比を表1に、灰化処理後の添加物Cの3つの発光帯の強度比を表2に示す。3つの発光帯の強度比は共に3桁の523で表示され、灰化処理前の添加物Cの識別番号と灰化処理後の添加物Cの識別番号と一致することから、本発明は識別番号を記録した食品添加物として使用可能なことが示された。   Table 1 shows the intensity ratio of the three emission bands of the additive C before the ashing treatment, and Table 2 shows the intensity ratio of the three emission bands of the additive C after the ashing treatment. Since the intensity ratios of the three emission bands are both displayed as three digits 523, and the identification number of the additive C before the ashing treatment matches the identification number of the additive C after the ashing treatment, the present invention is distinguished. It was shown that it could be used as a food additive with a recorded number.

(実施例4)
第一添加物として塩化ナトリウムを3%、第二添加物として塩化銅を10ppmと塩化マンガンを10ppm加えた貝殻粉を用い、上述した製造方法に従い、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯の強度比が表1の添加物Dの識別番号163に示す強度比となるような食品添加物を作製し、上述した物性測定に従い、励起光を照射しながら蛍光強度比を測定した。各発光帯の最適励起波長は約250nmであった。
Example 4
Using shellfish powder containing 3% sodium chloride as the first additive, 10 ppm copper chloride and 10 ppm manganese chloride as the second additive, and adjusting to 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm according to the manufacturing method described above. A food additive is prepared such that the intensity ratio of the three emission bands having peaks is the intensity ratio indicated by the identification number 163 of additive D in Table 1, and the fluorescence intensity is applied while irradiating the excitation light according to the physical property measurement described above. The ratio was measured. The optimum excitation wavelength for each emission band was about 250 nm.

次に、このように作製した識別番号163と記録された添加物Dを用い、実施例1と同様に食品(この例では、米粉(D社製)を用いた)に加えた時の結果を示す。
ここで、実施例1で述べた理由により、同様の灰化処理を行った。灰化後の試料の発光スペクトルを、本発明の物性測定に従い、励起光を照射しながら蛍光強度比を測定した。
Next, using the identification number 163 thus prepared and the recorded additive D, the result when added to food (in this example, rice flour (made by D company)) was added as in Example 1. Show.
Here, the same ashing treatment was performed for the reason described in Example 1. The fluorescence intensity ratio of the emission spectrum of the sample after ashing was measured while irradiating excitation light according to the physical property measurement of the present invention.

食品に添加する前の添加物Dの発光スペクトルを図7に、灰化処理後の発明品の発光スペクトルを図8に示す。発光スペクトルは、420±5nmと490±5nmと580±5nmにピークを持つ3つの発光帯からなり、各発光帯の最適励起波長は250±5nmであった。   The emission spectrum of the additive D before being added to the food is shown in FIG. 7, and the emission spectrum of the invention product after the ashing treatment is shown in FIG. The emission spectrum was composed of three emission bands having peaks at 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm, and the optimum excitation wavelength of each emission band was 250 ± 5 nm.

灰化処理前の添加物Dの3つの発光帯の強度比を表1に、灰化処理後の添加物Dの3つの発光帯の強度比を表2に示す。3つの発光帯の強度比は共に3桁の163で表示され、灰化処理前の添加物Dの識別番号と灰化処理後の添加物Dの識別番号と一致することから、本発明は識別番号を記録した食品添加物として使用可能なことが示された。   Table 1 shows the intensity ratio of the three emission bands of the additive D before the ashing treatment, and Table 2 shows the intensity ratio of the three emission bands of the additive D after the ashing treatment. The intensity ratios of the three emission bands are both displayed as three digits 163, and the identification number of the additive D before the ashing treatment matches the identification number of the additive D after the ashing treatment. It was shown that it could be used as a food additive with a recorded number.

本実施例1〜4では一般の米粉を用いたが、これに制限されるものではなく、勿論、他の食品の識別に使用できることは言うまでもない。すなわち、食品素材が粉砕等の加工を受け、又は加熱されることにより、元の姿形が分からなくなってしまったものに、識別番号の異なる本発明品を加えることで、その識別が可能となる。   Although the general rice flour was used in Examples 1-4, it is not limited to this, and it goes without saying that it can be used for identification of other foods. In other words, when the food material is subjected to processing such as pulverization or is heated, the original figure is lost, and the product according to the present invention with a different identification number is added to the food material. .

また、医薬品や飼料にも適用できることは容易に理解できるであろう。実際、医薬品や飼料に適用した場合においても、上記実施例の工程を踏むことにより容易に識別が可能であった。
上記の実施例では、NHCl、CaCl、NaClの濃度が1%〜3%となるように添加したが、これらの添加量は0.3%以上から実施しており、それぞれ、効果が確認できた。したがって、本願発明は、これらを包含するものである。
It can be easily understood that it can be applied to pharmaceuticals and feeds. In fact, even when applied to pharmaceuticals and feeds, it was possible to easily identify them by following the steps of the above-described embodiment.
In the above embodiment, NH 4 Cl, CaCl 2 , and NaCl are added so that the concentration is 1% to 3%. It could be confirmed. Therefore, this invention includes these.

本発明は、食品添加物の分類において既存添加物に属し、食品に添加することでカルシウム強化や品質改良がなされ、かつ食品に添加することで食品を容易に識別することができるという機能をもつ。すなわち、従来は単に食品のカルシウム強化や品質改良が主な目的であった焼成貝殻粉末に着目し、さらに食品の識別機能というこれまでにない機能を持った食品添加物を提案するものである。これにより、例えば、粉砕して形状(姿形)が分からなくなってしまった食品に本発明の添加物を加えることで、その識別が可能となる。   The present invention belongs to existing additives in the classification of food additives, and has the function of being able to easily identify foods when added to foods, with calcium fortification and quality improvement being made. . That is, the focus is on calcined shell powder, which has heretofore been mainly aimed at enhancing calcium and improving the quality of food, and further proposes a food additive having an unprecedented function of identifying food. Thereby, for example, the identification becomes possible by adding the additive of the present invention to a food that has been crushed and whose shape (form) is not known.

また、上記食品だけでなく、医薬品や飼料にも適用でき、単に食品のカルシウム強化や品質改良が主な目的であった焼成貝殻粉末に着目し、さらに医薬品や飼料の識別機能というこれまでにない機能を持った医薬品や飼料用添加物を提案するものである。これにより、例えば、粉砕して形状(姿形)が分からなくなってしまった医薬品や飼料に本発明の添加物を加えることで、その識別が可能となる。   Moreover, it can be applied not only to the above-mentioned foods but also to pharmaceuticals and feeds, and it focuses on calcined shell powders that were mainly aimed at enhancing calcium and improving the quality of foods. It proposes functional medicines and feed additives. Thereby, for example, the identification can be performed by adding the additive of the present invention to a pharmaceutical or feed that has been crushed and whose shape (shape) is not known.

本発明品の産業上の利用例として、例えば、本発明品を食品若しくは医薬品又は飼料に添加することで、自社製品を証明するための目印として利用することができ、自社製品を他社製模倣品の被害から守ることが可能となる。また、本発明品を食品若しくは医薬品又は飼料に添加することで、製造年月日の異なる製品に対して付けられる製造ロット番号を証明するための目印として利用することができる。   As an example of industrial use of the product of the present invention, for example, by adding the product of the present invention to food, medicine or feed, it can be used as a mark for certifying the company's product. It becomes possible to protect from damage. In addition, by adding the product of the present invention to food, medicine, or feed, it can be used as a mark for proving the production lot number assigned to products with different production dates.

さらに、本発明品を食品若しくは医薬品又は飼料に添加することで、その製品に使われた素材の原産地や検査方法及びその検査結果等を記した品質保証書に、添加した本発明品の識別番号を併せて記すことにより、その製品とその品質保証書の同一性を証明する目印として利用することができる。   Furthermore, by adding the product of the present invention to food, medicine or feed, the identification number of the added product of the present invention is added to the quality assurance certificate describing the origin of the material used in the product, the inspection method and the inspection result, etc. By writing together, it can be used as a mark to prove the identity of the product and the quality assurance certificate.

近年の食の安全・安心に対する消費者の意識が高まるなか、本発明品が上述の目的で産業上利用される可能性は高い。さらに、本発明は、ホタテガイを食した後に残る、利用価値の低い貝殻を高付加価値製品の素材として有効活用する、これまでに無い新たな発明であり、近年の地球環境問題に対する消費者意識の高揚が本発明の産業上の利用可能性を後押しするものと考えられる。   With the recent increase in consumer awareness of food safety and security, the products of the present invention are highly likely to be used industrially for the above-mentioned purposes. Furthermore, the present invention is an unprecedented new invention that effectively utilizes low-utility shells that remain after eating scallops as a material for high-value-added products. The uplift is believed to boost the industrial applicability of the present invention.

Claims (16)

貝殻から得た炭酸カルシウムを主成分とする粉末状の食品若しくは医薬品又は飼料用の添加物であり、これに励起エネルギーを加えることで発光することを特徴とする食品若しくは医薬品又は飼料用の標識化された添加物   Labeling for food, medicine or feed, which is an additive for powdered food, medicine or feed mainly composed of calcium carbonate obtained from shells, and which emits light when excitation energy is added to it. Additive 発光スペクトルが一つ又は二つ以上の発光帯からなることを特徴とする請求項1記載の標識化された添加物。   2. A labeled additive according to claim 1, wherein the emission spectrum consists of one or more emission bands. 発光帯のピーク波長が、420±5nm、490±5nm、580±5nmの何れか一つ又は二つ以上であることを特徴とする請求項1又は2のいずれか一項記載の標識化された添加物。   The labeled wavelength according to any one of claims 1 and 2, wherein the peak wavelength of the emission band is any one or more of 420 ± 5 nm, 490 ± 5 nm, and 580 ± 5 nm. Additive. 各発光帯の最適励起波長を250±5nmとする請求項3記載の標識化された添加物。   4. The labeled additive according to claim 3, wherein the optimum excitation wavelength for each emission band is 250 ± 5 nm. 貝殻から得た炭酸カルシウムを主成分とする粉末に、塩化アンモニウム(NHCl)、塩化カルシウム(CaCl)、塩化ナトリウム(NaCl)から選択した一種又は二種以上を添加して、発光スペクトルの発光帯の強度比を変化させた請求項1〜4のいずれか一項に記載の標識化された添加物。 One or more kinds selected from ammonium chloride (NH 4 Cl), calcium chloride (CaCl 2 ), and sodium chloride (NaCl) are added to a powder containing calcium carbonate as a main component obtained from a shell, and an emission spectrum of The labeled additive according to any one of claims 1 to 4, wherein the intensity ratio of the luminescent band is changed. 貝殻から得た炭酸カルシウムを主成分とする粉末に、塩化銅(CuCl)、塩化マンガン(MnCl)から選択した一種又は二種を添加して、発光スペクトルの発光帯の強度比を変化させた請求項5記載の標識化された添加物。 One or two kinds selected from copper chloride (CuCl 2 ) and manganese chloride (MnCl 2 ) are added to the powder mainly composed of calcium carbonate obtained from the shell, and the intensity ratio of the emission band of the emission spectrum is changed. The labeled additive according to claim 5. ホタテガイの貝殻を用いることを特徴とする請求項1〜6のいずれか一項に記載の標識化された添加物。   The labeled additive according to claim 1, wherein a scallop shell is used. 異なる発光帯の強度比を持った複数の粉末の混合物であることを特徴とする請求項1〜7のいずれか一項に記載の標識化された添加物。   Labeled additive according to any one of the preceding claims, characterized in that it is a mixture of a plurality of powders with different emission band intensity ratios. 請求項1〜8のいずれか一項に記載の標識化された添加物を二種以上混合し、発光スペクトルの発光帯の強度比を変化させた標識化された添加物。   The labeled additive which mixed 2 or more types of the labeled additive as described in any one of Claims 1-8, and changed the intensity ratio of the emission band of the emission spectrum. 未焼成貝殻を洗浄した後、大気中400℃〜600℃の範囲で一次熱処理により有機基質の炭化及び灰化を行い、その後室温付近まで冷却した貝殻を粉砕し、次にCO雰囲気中800℃〜900℃で二次熱処理を行い、これによって得た貝殻粉の発光スペクトルの発光帯の強度比から識別番号を付与することを特徴とする貝殻から得た炭酸カルシウムを主成分とする食品若しくは医薬品又は飼料用の標識化された添加物の製造方法。 After washing the unfired shells, the organic substrate is carbonized and incinerated by primary heat treatment in the range of 400 ° C to 600 ° C in the atmosphere, and then the shells cooled to near room temperature are pulverized, and then 800 ° C in a CO 2 atmosphere. A food or medicine mainly composed of calcium carbonate obtained from shells characterized in that it is subjected to secondary heat treatment at ˜900 ° C. and given an identification number from the intensity ratio of emission bands of the emission spectrum of shell powder obtained thereby. Or the manufacturing method of the labeled additive for feed. 塩化アンモニウム(NHCl)、塩化カルシウム(CaCl)、塩化ナトリウム(NaCl)から選択した一種又は二種以上の添加物を、一次熱処理した前記貝殻粉に添加し、発光スペクトルの発光帯の強度比を変化させることを特徴とする請求項10記載の標識化された添加物の製造方法。 One or more additives selected from ammonium chloride (NH 4 Cl), calcium chloride (CaCl 2 ), and sodium chloride (NaCl) are added to the shell powder subjected to the primary heat treatment, and the intensity of the emission band of the emission spectrum. The method for producing a labeled additive according to claim 10, wherein the ratio is changed. NHCl、CaCl、又はNaClを添加するに際し、予め所定の濃度のNHCl、CaCl及びNaCl水溶液を作製すると共に、前記一次熱処理を施した貝殻粉の重量に対してNHCl、CaCl、NaClから選択した一種又は二種以上の濃度が0.3%〜3%となるように添加することを特徴とする請求項11記載の標識化された添加物の製造方法。 NH 4 Cl, upon the addition of CaCl 2, or NaCl, previously given concentration NH 4 of Cl, along with making a CaCl 2 and NaCl solution, NH 4 Cl by weight of the shell powder subjected to the primary heat treatment, the method according to claim 11 labeled additive according to one or more kinds of concentrations were selected from CaCl 2, NaCl is characterized by adding to a 0.3% to 3%. 塩化銅(CuCl)、塩化マンガン(MnCl)から選択した一種又は二種の添加物を、一次熱処理した前記貝殻粉に添加し、発光スペクトルの発光帯の強度比を変化させることを特徴とする請求項11又は12記載の標識化された添加物の製造方法。 One or two additives selected from copper chloride (CuCl 2 ) and manganese chloride (MnCl 2 ) are added to the shell powder subjected to the primary heat treatment, and the intensity ratio of the emission band of the emission spectrum is changed. 13. A method for producing a labeled additive according to claim 11 or 12. CuCl又はMnClを添加するに際して、予め所定濃度のCuCl及び又はMnCl水溶液を作製すると共に、前記一次熱処理を施した貝殻粉の重量に対してCuCl及び又はMnClの濃度が1ppm〜100ppmとなるように添加することを特徴とする請求項13記載の標識化された添加物の製造方法。 Upon addition of CuCl 2 or MnCl 2, advance a predetermined concentration with making CuCl 2 and or MnCl 2 aqueous solution, the concentration of CuCl 2 and or MnCl 2 relative to the weight of the shell powder subjected to the primary heat treatment 1ppm~ 14. The method for producing a labeled additive according to claim 13, wherein the additive is added so as to be 100 ppm. 請求項1〜9のいずれか一項に記載の標識化された添加物を食品若しくは医薬品又は飼料に添加し、これらの双方を500℃〜600℃で灰化した後、灰化後の試料の発光スペクトルの発光帯の強度比により、識別することを特徴とする食品若しくは医薬品又は飼料の識別方法。   The labeled additive according to any one of claims 1 to 9 is added to food, medicine or feed, both of which are incinerated at 500 ° C to 600 ° C, and then the sample after incineration is performed. A method for identifying food, medicine, or feed, characterized in that it is identified by an intensity ratio of emission bands of an emission spectrum. 請求項10〜14のいずれか一項に記載の製造方法によって得られた標識化された添加物を食品若しくは医薬品又は飼料に添加し、これらの双方を500℃〜600℃で灰化した後、灰化後の試料の発光スペクトルの発光帯の強度比により、識別することを特徴とする食品若しくは医薬品又は飼料の識別方法。   After the labeled additive obtained by the production method according to any one of claims 10 to 14 is added to food, medicine or feed, and both of these are incinerated at 500C to 600C, A method for identifying food, medicine, or feed, characterized by identifying the intensity ratio of the emission band of the emission spectrum of the sample after ashing.
JP2011071945A 2010-03-30 2011-03-29 Method for producing additive for labeling food or medicine and method for identifying food or medicine Expired - Fee Related JP5881964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071945A JP5881964B2 (en) 2010-03-30 2011-03-29 Method for producing additive for labeling food or medicine and method for identifying food or medicine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010077712 2010-03-30
JP2010077712 2010-03-30
JP2011071945A JP5881964B2 (en) 2010-03-30 2011-03-29 Method for producing additive for labeling food or medicine and method for identifying food or medicine

Publications (2)

Publication Number Publication Date
JP2011227066A true JP2011227066A (en) 2011-11-10
JP5881964B2 JP5881964B2 (en) 2016-03-09

Family

ID=45042537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071945A Expired - Fee Related JP5881964B2 (en) 2010-03-30 2011-03-29 Method for producing additive for labeling food or medicine and method for identifying food or medicine

Country Status (1)

Country Link
JP (1) JP5881964B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907851A (en) * 2022-06-20 2022-08-16 苏州北美国际高级中学 Red fluorescent powder and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505426A (en) * 1998-02-24 2002-02-19 アイソタッグ、テクノロジー、インコーポレーテッド How to mark items for identification
JP2003248790A (en) * 2002-02-25 2003-09-05 Hiroko Ishikawa Identification method
JP2004359923A (en) * 2003-06-04 2004-12-24 Hakodate Chiiki Sangyo Shinko Zaidan Method for preparing phosphor using shell of scallop
JP2007534953A (en) * 2004-04-28 2007-11-29 ランベール,クラウド Reliable authentication of objects or substances by chemical marking or tracing
JP2008541064A (en) * 2005-05-10 2008-11-20 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション High-resolution tracking of industrial process materials using luminescent marker traces
JP2009501120A (en) * 2005-07-13 2009-01-15 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Labeled inorganic additives
JP2009284863A (en) * 2008-05-30 2009-12-10 Otsuka Pharmaceut Factory Inc Method for assessing food storage method
JP2011514975A (en) * 2008-03-12 2011-05-12 ジンプロ コーポレイション Method for tracking fluorescent dyes for animal feed supplements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002505426A (en) * 1998-02-24 2002-02-19 アイソタッグ、テクノロジー、インコーポレーテッド How to mark items for identification
JP2003248790A (en) * 2002-02-25 2003-09-05 Hiroko Ishikawa Identification method
JP2004359923A (en) * 2003-06-04 2004-12-24 Hakodate Chiiki Sangyo Shinko Zaidan Method for preparing phosphor using shell of scallop
JP2007534953A (en) * 2004-04-28 2007-11-29 ランベール,クラウド Reliable authentication of objects or substances by chemical marking or tracing
JP2008541064A (en) * 2005-05-10 2008-11-20 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション High-resolution tracking of industrial process materials using luminescent marker traces
JP2009501120A (en) * 2005-07-13 2009-01-15 ザッハトレーベン ヒェミー ゲゼルシヤフト ミット ベシュレンクテル ハフツング Labeled inorganic additives
JP2011514975A (en) * 2008-03-12 2011-05-12 ジンプロ コーポレイション Method for tracking fluorescent dyes for animal feed supplements
JP2009284863A (en) * 2008-05-30 2009-12-10 Otsuka Pharmaceut Factory Inc Method for assessing food storage method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN7015000200; 下野功 他: 'ホタテガイ貝殻を用いた蛍光体材料の開発(第2報)' 北海道道立工業技術センター研究報告 No.10, 2008, pp.26-32 *
JPN7015000201; 下野功 他: 'ホタテガイ貝殻蛍光体を利用した標識方法の提案' 北海道道立工業技術センター研究報告 No.10, 201012, pp.57-59 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114907851A (en) * 2022-06-20 2022-08-16 苏州北美国际高级中学 Red fluorescent powder and preparation method thereof

Also Published As

Publication number Publication date
JP5881964B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
Tang et al. Eu2+-doped ultra-broadband VIS-NIR emitting phosphor
Chandrasekhar et al. Particle size, morphology and color tunable ZnO: Eu3+ nanophosphors via plant latex mediated green combustion synthesis
Ju et al. A red-emitting heavy doped phosphor Li6Y (BO3) 3: Eu3+ for white light-emitting diodes
Devi et al. Spectroscopic investigations on high efficiency deep red-emitting Ca2SiO4: Eu3+ phosphors synthesized from agricultural waste
Li et al. Novel non-rare-earth red-emitting phosphor Li4AlSbO6: Mn4+ for plant growth: crystal structure, luminescence properties and its LED device
Chawla et al. Broad yellow orange emission from SrAl2O4: Pr3+ phosphor with blue excitation for application to white LEDs
Cao et al. Luminescence investigation of red phosphors Ca0. 54Sr0. 34− 1.5 xEu0. 08Smx (MoO4) y (WO4) 1− y for UV-white LED device
Yan et al. Facile synthesis of Ce3+, Eu3+ co-doped YAG nanophosphor for white light-emitting diodes
Gong et al. Growth and characterization of air annealing Tb-doped YAG: Ce single crystal for white-light-emitting diode
Singh et al. Synthesis and Optical Properties of New Red Emitting Phosphor Li3BaSrGd3‐xEux (MO4) 8 for White LEDs
Biswas et al. Synthesis, structural and luminescence studies of LiSrVO 4: Sm 3+ nanophosphor to fill amber gap in LEDs under n-UV excitation
Meng et al. Photoluminescence and afterglow tuning in ultra-broadband near-infrared Mg3Y2Ge3O12: Cr3+ phosphor via cation substitution
Naik et al. Preparation, characterization and photoluminescent studies of Cr and Nd co-doped Ce: YAG compounds
Wang et al. NaLaMgWO6: Mn4+/Pr3+/Bi3+ bifunctional phosphors for optical thermometer and plant growth illumination matching phytochrome PR and PFR
JP5881964B2 (en) Method for producing additive for labeling food or medicine and method for identifying food or medicine
Tamrakar et al. Comparison of emitted color by pure Gd2O3 prepared by two different methods by CIE coordinates
Dou et al. Highly Quantum Efficient and Thermally Stable Near‐Infrared‐Emitting K‐β‐Al2O3: Cr3+ Phosphor
Singh et al. Green emitting Tb doped LiBaB9O15 phosphors
Silva et al. Effect of dopant concentrations on the luminescent properties of LiAl5O8: Fe phosphors
CN112457847B (en) Mn/Cr co-doped Li 2 MgAO 4 Near infrared fluorescent powder and preparation method thereof
CN110304901A (en) A kind of preparation method of electrolytic manganese residues water-permeable brick and air brick
JP2010520334A (en) Method for producing red luminescent borate phosphor
Rudnicka et al. Preliminary spectroscopic properties of K4SrSi3O9 doped with Eu3+
Kojima et al. Effect of strontium and lithium ions on afterglow time of red-emitting CaS: Eu2+, Pr3+ phosphor upon visible-light irradiation
JP2013201951A (en) Labeled additive for food, medicine, or feed, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160203

R150 Certificate of patent or registration of utility model

Ref document number: 5881964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees