JP2011226930A - Optical complex-amplitude waveform measurement device and measurement method therefor - Google Patents

Optical complex-amplitude waveform measurement device and measurement method therefor Download PDF

Info

Publication number
JP2011226930A
JP2011226930A JP2010097260A JP2010097260A JP2011226930A JP 2011226930 A JP2011226930 A JP 2011226930A JP 2010097260 A JP2010097260 A JP 2010097260A JP 2010097260 A JP2010097260 A JP 2010097260A JP 2011226930 A JP2011226930 A JP 2011226930A
Authority
JP
Japan
Prior art keywords
optical
light
signal
signal light
complex amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097260A
Other languages
Japanese (ja)
Inventor
Fumihiko Ito
文彦 伊藤
Keiji Okamoto
圭司 岡本
Koji Igarashi
浩司 五十嵐
Kazuro Kikuchi
和朗 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Original Assignee
Nippon Telegraph and Telephone Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, University of Tokyo NUC filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010097260A priority Critical patent/JP2011226930A/en
Publication of JP2011226930A publication Critical patent/JP2011226930A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately measure optical complex amplitude of a signal light even if a phase fluctuation of a local oscillation light occurs.SOLUTION: An input signal light and a local oscillation light having a spectrum within a frequency band of the input signal light are divided by an optical divider 11, 16, respectively, into a first line and a second line. The signal light and the local oscillation light of the first line are mixed by a first 90° optical hybrid 12, and the signal light and the local oscillation light of the second line are mixed by a second 90° optical hybrid 14. Then, outputs of the first and the second 90° optical hybrids 12, 14 are photoelectrically converted to generate first and second complex amplitude signals, respectively. In this configuration, the signal light of the second line is delayed by an optical delay unit 13 for a predetermined period of time. In addition, optical path lengths of the first and the second local oscillation lights are adjusted to agree with each other. From this state, the first and the second complex amplitude signals are input into a waveform analysis unit 23 to measure a phase shift due to delay time difference therebetween.

Description

本発明は、光通信等の技術分野において、光の振幅並びに位相変調を受けた光信号の光複素振幅波形を測定する光複素振幅波形測定器とその測定方法に関する。   The present invention relates to an optical complex amplitude waveform measuring instrument for measuring an optical complex amplitude waveform of an optical signal subjected to optical amplitude and phase modulation and a measuring method thereof in a technical field such as optical communication.

近年、大容量光ファイバ通信システムでは、光波の位相変調を使った変調方式が主流となっている。このような光ファイバ通信システムの評価を行う際には、信号光の振幅と位相を含む変調波形、すなわち光複素振幅の波形を測定することが必須の要件となる。   In recent years, in large-capacity optical fiber communication systems, modulation schemes using phase modulation of light waves have become mainstream. When evaluating such an optical fiber communication system, it is an essential requirement to measure a modulation waveform including the amplitude and phase of signal light, that is, a waveform of an optical complex amplitude.

ここで、光複素振幅とは、中心周波数ωなるレーザ光を変調して得られる光信号の電界の時間波形をa(t)・ejω0 t =|a(t)|exp[jφ(t)]・ejω0 t とするとき、a(t) =|a(t)|exp[jφ(t)]を意味するものとする。ここに、|a(t)|は光波の振幅変調を、φ(t)は位相変調を表す。 Here, the optical complex amplitude is the time waveform of the electric field of the optical signal obtained by modulating the laser beam having the center frequency ω 0 as a (t) · e jω0 t = | a (t) | exp [jφ (t )] · E jω0 t means a (t) = | a (t) | exp [jφ (t)]. Here, | a (t) | represents optical wave amplitude modulation, and φ (t) represents phase modulation.

従来の光複素振幅波形測定器としては、いわゆるコヒーレント受信器において使用される構成をそのまま利用することにより、光複素振幅波形の測定が行えることが知られており、その構成要件は例えば非特許文献1に記載されている。
この文献記載の測定器では、振幅変調または位相変調された被測定信号光を光90度ハイブリッドに入力して連続な(変調を受けていない)局発光と混合し、その光90度ハイブリッドからの光出力を光電変換して、被測定信号光の光複素振幅の実部と虚部に比例する電流を得ることにより、被測定信号光の光複素振幅波形を測定する。
As a conventional optical complex amplitude waveform measuring device, it is known that an optical complex amplitude waveform can be measured by using a configuration used in a so-called coherent receiver as it is. 1.
In the measuring instrument described in this document, the signal light under measurement modulated in amplitude or phase is input to the optical 90-degree hybrid and mixed with continuous (unmodulated) local light, and the light from the optical 90-degree hybrid is mixed. The optical output is photoelectrically converted to obtain a current proportional to the real part and the imaginary part of the optical complex amplitude of the signal light under measurement, thereby measuring the optical complex amplitude waveform of the signal light under measurement.

しかしながら、上記の測定の仕方では、測定される波形の位相成分に局発光の位相揺らぎが含まれてしまうため、正確な信号光の光複素振幅を測定することができなかった。
すなわち、よく知られているように、ここで測定される物理量は正確には信号光の光複素振幅ではなく、被測定信号光の光複素振幅をaS(t)=|aS(t)|exp[jφS(t)]、局発光の光複素振幅をaL(t)=|aL|exp[jφL(t)]とするとき、
|aL||aS(t)|exp[j{φS(t)−φL(t)}] (1)
であることが知られている。ただし、|aS(t)|、|aL|は、それぞれ信号光と局発光の振幅であり、φS(t)、φL(t)はそれぞれ信号光と局発光の位相である。局発光は変調を受けていないためその振幅は時間に依存しないが、その位相は光源のスペクトル線幅の有限性によって位相雑音を持ち、時間tの関数として変化している。
However, in the measurement method described above, the phase component of the local light is included in the phase component of the waveform to be measured, so that the accurate optical complex amplitude of the signal light cannot be measured.
That is, as is well known, the physical quantity measured here is not exactly the optical complex amplitude of the signal light, but the optical complex amplitude of the signal light to be measured as a S (t) = | a S (t) When | exp [jφ S (t)] and the light complex amplitude of local light is a L (t) = | a L | exp [jφ L (t)],
| a L || a S (t) | exp [j {φ S (t) −φ L (t)}] (1)
It is known that However, | a S (t) | and | a L | are the amplitudes of the signal light and the local light, respectively, and φ S (t) and φ L (t) are the phases of the signal light and the local light, respectively. Since local light is not modulated, its amplitude does not depend on time, but its phase has phase noise due to the finite spectral line width of the light source and changes as a function of time t.

式(1)から明らかなように、従来の技術により測定される波形の位相成分には、局発光の位相φL(t)が含まれる。即ち、従来の技術で測定されるものは、正確には信号光の光複素振幅aS(t)=|aS(t)|exp[jφS(t)]ではなく、その位相波形は局発光の位相φL(t)を基準とした相対的な位相を測定しているに過ぎない。 As is apparent from the equation (1), the phase component of the waveform measured by the conventional technique includes the local light emission phase φ L (t). That is, what is measured by the conventional technique is not exactly the optical complex amplitude a S (t) = | a S (t) | exp [jφ S (t)] of the signal light. It only measures the relative phase based on the emission phase φ L (t).

このような状況で信号光の光複素振幅を正確に測定するためには、スペクトル線幅が極めて小さいレーザを局発光光源として用いることにより、局発光の位相揺らぎφL(t)を極めて小さくするしかないが、通常のレーザではこれを実現することは極めて困難であり、従来の技術によって信号光の光複素振幅を正確に測定することは極めて困難であった。 In order to accurately measure the optical complex amplitude of signal light in such a situation, the phase fluctuation φ L (t) of the local light is made extremely small by using a laser having a very small spectral line width as the local light source. However, it is extremely difficult to realize this with a normal laser, and it has been extremely difficult to accurately measure the optical complex amplitude of signal light using conventional techniques.

Dany-Sebastien Ly-Gagnon, Satoshi Tsukamoto, Kazuhiro Katoh, and Kazuro Kikuchi, “Coherent Detection of Optical Quadrature Phase-Shift Keying Signals With Carrier Phase Estimation,” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 1, JANUARY 2006.Dany-Sebastien Ly-Gagnon, Satoshi Tsukamoto, Kazuhiro Katoh, and Kazuro Kikuchi, “Coherent Detection of Optical Quadrature Phase-Shift Keying Signals With Carrier Phase Estimation,” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 1, JANUARY 2006.

以上のように、従来の光複素振幅波形測定器では、測定される波形の位相成分に局発光の位相揺らぎが含まれてしまうため、正確な信号光の光複素振幅を測定することができなかった。
本発明は、上記の事情を鑑みてなされたもので、局発光の位相揺らぎが存在する場合であっても、信号光の光複素振幅を正確に測定可能な光複素振幅波形測定器とその測定方法を提供することを目的とする。
As described above, in the conventional optical complex amplitude waveform measuring instrument, the phase component of the local light is included in the phase component of the waveform to be measured, and therefore the optical complex amplitude of the signal light cannot be measured accurately. It was.
The present invention has been made in view of the above circumstances, and an optical complex amplitude waveform measuring instrument capable of accurately measuring the optical complex amplitude of signal light even when there is a phase fluctuation of local light emission and its measurement. It aims to provide a method.

上記目的を達成するために本発明に係る光複素振幅波形測定器は以下のような態様の構成とする。
(1)信号光を分岐する第1の分岐手段と、前記信号光の周波数帯域内にスペクトルを有する局発光を発生する局発光発生器と、前記局発光を分岐する第2の分岐手段と、前記第1の分岐手段で分岐される一方の信号光と前記第2の分岐手段で分岐される一方の局発光とを入力して混合出力する第1の光90度ハイブリッドと、前記第1の分岐手段で分岐される他方の信号光と前記第2の分岐手段で分岐される他方の局発光とを入力して混合出力する第2の光90度ハイブリッドと、前記第1の光90度ハイブリッドの出力を光電変換して第1の複素振幅信号を生成する第1の信号生成手段と、前記第2の光90度ハイブリッドの出力を光電変換して第2の複素振幅信号を生成する第2の信号生成手段と、前記第1の分岐手段で分岐された一方または他方の信号光を一定時間遅延する遅延手段と、前記第2の分岐手段で分岐された一方または他方の局発光の光路長を調整して両者の光路長を互いに一致させる光路長調整手段と、前記第1及び第2の信号生成手段で生成される第1及び第2の複素振幅信号を入力して前記遅延手段による時間差による位相変化を測定して波形解析する波形解析手段とを具備する態様とする。
In order to achieve the above object, the optical complex amplitude waveform measuring instrument according to the present invention has the following configuration.
(1) first branching means for branching signal light; local light generator for generating local light having a spectrum within the frequency band of the signal light; and second branching means for branching the local light; A first optical 90-degree hybrid that inputs and mixes one signal light branched by the first branching means and one local light branched by the second branching means; and the first light A second optical 90-degree hybrid that inputs and mixes the other signal light branched by the branching means and the other local light branched by the second branching means; and the first optical 90-degree hybrid A first signal generating means for photoelectrically converting the output of the second optical signal to generate a first complex amplitude signal; and a second signal for generating a second complex amplitude signal by photoelectrically converting the output of the second optical 90-degree hybrid. Signal generating means and one or the other branched by the first branching means Delaying means for delaying the signal light for a certain time, optical path length adjusting means for adjusting the optical path length of one or the other local light branched by the second branching means to make the optical path lengths coincide with each other, and An aspect comprising waveform analysis means for inputting the first and second complex amplitude signals generated by the first and second signal generation means and measuring a phase change due to a time difference by the delay means to analyze the waveform; To do.

(2)(1)の構成において、前記波形解析手段は、前記第1及び第2の光90度ハイブリッドの出力を受光して得られる複素信号をそれぞれI1、Q1、I2、Q2とするとき、信号光の振幅|aS(t)|の2乗を
|aS(t)|2 =I1 2(t)+Q1 2(t)
により求め、信号光の遅延時間τSにおける位相変化φS(t)-φS(t-τS)を
φS(t)−φS(t−τS)=tan-1{Q1(t)/I1(t)}−tan-1{Q2(t)/I2(t)}
により求める態様とする。
(2) In the configuration of (1), the waveform analyzing means converts complex signals obtained by receiving the outputs of the first and second optical 90-degree hybrids to I 1 , Q 1 , I 2 , Q 2, respectively. If the square of the amplitude of signal light | a S (t) |
| a S (t) | 2 = I 1 2 (t) + Q 1 2 (t)
The phase change φ S (t) -φ S (t-τ S ) in the signal light delay time τ S
φ S (t) −φ S (t−τ S ) = tan −1 {Q 1 (t) / I 1 (t)} − tan −1 {Q 2 (t) / I 2 (t)}
The mode obtained by

(3)(1)の構成において、前記波形解析手段は、前記信号光の遅延時間τSにおける位相変化φS(t)-φS(t-τS) を積分することにより、光信号の位相φS(t) を求める態様とする。
また、本発明に係る光複素振幅波形測定方法は以下のような態様の構成とする。
(3) In the configuration of (1), the waveform analyzing means integrates the phase change φ S (t) −φ S (t−τ S ) in the delay time τ S of the signal light, thereby The phase φ S (t) is obtained.
Moreover, the optical complex amplitude waveform measuring method according to the present invention has the following configuration.

(4)第1の分岐手段により信号光を分岐し、
局発光発生器にて発生され、前記信号光の周波数帯域内にスペクトルを有する局発光を第2の分岐手段により分岐し、
前記第1の分岐手段で分岐される一方の信号光と前記第2の分岐手段で分岐される一方の局発光とを第1の光90度ハイブリッドに入力して混合し、
前記第1の分岐手段で分岐される他方の信号光と前記第2の分岐手段で分岐される他方の局発光とを第2の光90度ハイブリッドに入力して混合し、
前記第1の光90度ハイブリッドの出力を光電変換して第1の複素振幅信号を生成し、
前記第2の光90度ハイブリッドの出力を光電変換して第2の複素振幅信号を生成し、
前記第1の分岐手段で分岐された一方または他方の信号光を一定時間遅延させ、
前記第2の分岐手段で分岐された一方または他方の局発光の光路長を調整して両者の光路長を互いに一致させ、
前記第1及び第2の複素振幅信号を入力して前記遅延時間差による位相変化を測定して波形解析する態様とする。
(4) The signal light is branched by the first branching means,
The local light generated by the local light generator and having a spectrum within the frequency band of the signal light is branched by the second branching means,
One signal light branched by the first branching means and one local light branched by the second branching means are inputted to the first light 90-degree hybrid and mixed,
The other signal light branched by the first branching means and the other local light branched by the second branching means are input to a second light 90-degree hybrid and mixed,
Photoelectrically converting the output of the first light 90-degree hybrid to generate a first complex amplitude signal;
Photoelectrically converting the output of the second light 90-degree hybrid to generate a second complex amplitude signal;
Delaying one or the other of the signal light branched by the first branching means for a fixed time;
Adjusting the optical path length of one or the other local light branched by the second branching means to make the optical path lengths coincide with each other;
The first and second complex amplitude signals are input, the phase change due to the delay time difference is measured, and the waveform is analyzed.

(5)(4)の構成において、前記波形解析は、前記第1及び第2の光90度ハイブリッドの出力を受光して得られる複素信号をそれぞれI1、Q1、I2、Q2とするとき、信号光の振幅|aS(t)|の2乗を
|aS(t)|2 =I1 2(t)+Q1 2(t)
により求め、信号光の遅延時間τSにおける位相変化φS(t)-φS(t-τS)を
φS(t)−φS(t−τS)=tan-1{Q1(t)/I1(t)}−tan-1{Q2(t)/I2(t)}
により求める態様とする。
(5) In the configuration of (4), the waveform analysis is performed by converting complex signals obtained by receiving the outputs of the first and second optical 90-degree hybrids to I 1 , Q 1 , I 2 , Q 2 , respectively. The square of the signal light amplitude | a S (t) |
| a S (t) | 2 = I 1 2 (t) + Q 1 2 (t)
The phase change φ S (t) -φ S (t-τ S ) in the signal light delay time τ S
φ S (t) −φ S (t−τ S ) = tan −1 {Q 1 (t) / I 1 (t)} − tan −1 {Q 2 (t) / I 2 (t)}
The mode obtained by

(6)(4)の構成において、前記波形解析は、前記信号光の遅延時間τSにおける位相変化φS(t)-φS (t-τS) を積分することにより、光信号の位相φS(t) を求める態様とする。 (6) In the configuration of (4), the waveform analysis is performed by integrating the phase change φ S (t) −φ S (t−τ S ) in the delay time τ S of the signal light. This is a mode for obtaining φ S (t).

以上のように、本発明によれば、局発光の位相揺らぎが存在する場合であっても、信号光の光複素振幅を正確に測定可能な光複素振幅波形測定器とその測定方法を提供することができる。   As described above, according to the present invention, there is provided an optical complex amplitude waveform measuring device and a measuring method thereof capable of accurately measuring the optical complex amplitude of signal light even when there is a phase fluctuation of local light. be able to.

本発明に係る光複素振幅波形測定器の一実施形態を示すブロック構成図。The block block diagram which shows one Embodiment of the optical complex amplitude waveform measuring device which concerns on this invention. 図1に示す実施形態の信号光のスペクトルに対する局発光のスペクトル例を示す波形図。The wave form diagram which shows the spectrum example of the local light with respect to the spectrum of the signal light of embodiment shown in FIG.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明に係る光複素振幅波形測定器の一実施形態を示すブロック構成図である。図において、被測定信号光(以後、単に信号光という)はSinは光分岐器11により第1及び第2の系統の信号光S1,S2に分岐され、第1系統の信号光S1は第1の光90度ハイブリッド12に送られ、第2系統の信号光S2は光遅延器13により一定期間(τS)遅延されて第2の光90度ハイブリッド14に送られる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of an optical complex amplitude waveform measuring instrument according to the present invention. In the figure, signal light under measurement (hereinafter simply referred to as signal light) is split into first and second system signal lights S1 and S2 by an optical splitter 11, and the first system signal light S1 is the first system signal light S1. The second signal light S2 is sent to the second optical 90-degree hybrid 14 after being delayed by a certain period (τ S ) by the optical delay device 13.

一方、局発光発生器15は、信号光の周波数帯域内にスペクトルを有する局発光を発生するもので、ここで発生された局発光は光分岐器16により第1及び第2の系統の局発光L1,L2に分岐され、第1系統の局発光L1は第1の光90度ハイブリッド12に送られ、第2の系統の局発光L2は光路長調整器17を介して第2の光90度ハイブリッド14に送られる。   On the other hand, the local light generator 15 generates local light having a spectrum within the frequency band of the signal light. The local light generated here is generated by the optical branching device 16 in the first and second systems. Branched into L 1 and L 2, the first system local light L 1 is sent to the first light 90-degree hybrid 12, and the second system local light L 2 is sent via the optical path length adjuster 17 to the second light 90 degrees. Sent to the hybrid 14.

ここで、上記光路長調整器17は、光分岐器16の出力端Aから第1の光90度ハイブリッド12の局発光入力端Bまでの光路長と光分岐器16の出力端Aから第2の光90度ハイブリッド14の局発光入力端Cまでの光路長が等しくなるように調整される。   Here, the optical path length adjuster 17 includes an optical path length from the output end A of the optical branching device 16 to the local light emitting input end B of the first optical 90-degree hybrid 12 and a second output from the output end A of the optical branching device 16. Are adjusted so that the optical path lengths to the local light input terminal C of the 90-degree hybrid 14 are equal.

上記第1及び第2の光90度ハイブリッド12,14は、互いに同構成であり、例えばハーフミラーと偏波分離素子を用いた空間光学系や集積された光回路によって実現することが知られている。第1の光90度ハイブリッド12は第1系統の信号光S1と局発光L1を混合して複素形式のIQ信号光を生成するもので、その出力は一対のバランス型受光素子181,182によって電流信号に変換される。同様に、第2の光90度ハイブリッド14は第2系統の信号光S2と局発光L2を混合して複素形式のIQ信号光を生成するもので、その出力は一対のバランス型受光素子191,192によって電流信号に変換される。
上記受光素子181,182で得られた一対の電流信号は数値化器201,202に送られ、上記受光素子191,192で得られた一対の電流信号は数値化器211,212に送られる。これらの数値化器201,202,211,212は、クロック発生器22で発生されるサンプリングクロックに基づいて入力電流信号をサンプリングし数値化するもので、その出力は波形解析装置23に送られる。この波形解析装置23は、例えばコンピュータによるデータ処理装置であり、数値化器201,202,211,212で得られた光90度ハイブリッド12,14それぞれの出力波形を求め、両者の遅延差から光複素振幅信号の位相変化を測定するものである。
It is known that the first and second light 90-degree hybrids 12 and 14 have the same configuration, and are realized by, for example, a spatial optical system using a half mirror and a polarization separation element or an integrated optical circuit. Yes. The first optical 90-degree hybrid 12 mixes the first signal light S1 and the local light L1 to generate a complex IQ signal light, and its output is supplied by a pair of balanced light receiving elements 181 and 182 as a current. Converted to a signal. Similarly, the second optical 90-degree hybrid 14 generates a complex type IQ signal light by mixing the second system signal light S2 and the local light L2, and its output is a pair of balanced light receiving elements 191, 191. It is converted into a current signal by 192.
A pair of current signals obtained by the light receiving elements 181 and 182 are sent to the digitizers 201 and 202, and a pair of current signals obtained by the light receiving elements 191 and 192 are sent to the digitizers 211 and 212. These digitizers 201, 202, 211, and 212 sample and digitize the input current signal based on the sampling clock generated by the clock generator 22, and the output is sent to the waveform analyzer 23. The waveform analysis device 23 is a data processing device using, for example, a computer. The waveform analysis device 23 obtains output waveforms of the optical 90-degree hybrids 12 and 14 obtained by the digitizers 201, 202, 211, and 212. The phase change of the complex amplitude signal is measured.

ここで、以後の説明のため、一般性を失うことなく、信号光のスペクトルを図2に示すように仮定する。すなわち、信号光のスペクトルは、光周波数ω0を中心として、両側に帯域Bに相当する広がりを持つものとする。また、局発光は連続光であり、その周波数は信号光の帯域内の周波数ωLに位置するものとする。本構成は、コヒーレント検波技術においてホモダイン検波またはイントラダイン検波と呼ばれるものである。 Here, for the following explanation, the spectrum of the signal light is assumed as shown in FIG. 2 without losing generality. That is, the spectrum of the signal light has a spread corresponding to the band B on both sides with the optical frequency ω 0 as the center. The local light is continuous light, and its frequency is located at the frequency ω L within the band of the signal light. This configuration is called homodyne detection or intradyne detection in the coherent detection technique.

上記構成において、以下に光複素信号の測定方法について説明する。
まず、信号光の及び局発光の光複素振幅は以下のように表現される。
信号光:aS(t)=|aS(t)|exp[jφS(t)]・ejω0 t (1)
局発光:aL(t)=|aL|exp[jφL(t)]・ejωL t (2)
式(1)で表される信号光は、その振幅|aS(t)|と位相φS(t)のいずれもが時間に依存して変化する。本発明の目的は、これらの振幅|aS(t)|と位相φS(t)を含む信号光の光複素振幅|aS(t)|exp[jφS(t)]を測定することにある。一方、式(2)の局発光は連続光であり、その振幅|aL|は時間に依存しない。しかし位相φL(t)は、レーザ光が不可避的に有するスペクトル線幅により、時間的な揺らぎを持つため、時間に依存する関数となっている。
In the above configuration, a method for measuring an optical complex signal will be described below.
First, the optical complex amplitudes of signal light and local light are expressed as follows.
Signal light: a S (t) = | a S (t) | exp [jφ S (t)] ・ e jω0 t (1)
Local light: a L (t) = | a L | exp [jφ L (t)] ・ e jωL t (2)
In the signal light represented by the expression (1), both the amplitude | a S (t) | and the phase φ S (t) change depending on time. An object of the present invention is to measure the optical complex amplitude | a S (t) | exp [jφ S (t)] of signal light including the amplitude | a S (t) | and the phase φ S (t). It is in. On the other hand, the local light in equation (2) is continuous light, and its amplitude | a L | does not depend on time. However, the phase φ L (t) is a function that depends on time because it has temporal fluctuations due to the spectral line width that the laser beam inevitably has.

図1を参照しながら、本発明の動作を説明する。信号光Sinは光分岐器11により第1及び第2の系統に分岐され、第1の系統の信号光S1は直接光90度ハイブリッド12に送られ、第2の系統の信号光S2は光遅延器13によって他方に対して相対的な時間遅延が付与されて第2の光90度ハイブリッド14に送られる。以降の説明の中では、このとき付与された信号光の時間遅延をτSで表す。 The operation of the present invention will be described with reference to FIG. The signal light Sin is branched into the first and second systems by the optical splitter 11, the first system signal light S1 is sent directly to the optical 90-degree hybrid 12, and the second system signal light S2 is optically delayed. A relative time delay is imparted to the other by the device 13 and sent to the second optical 90-degree hybrid 14. In the following description, the time delay of the signal light applied at this time is represented by τ S.

挿入される時間遅延量τSは以下のように決定される。後から説明するように、信号光の光複素振幅を測定するに当たり、まず信号光の時間τSの間に生じる位相変化φS(t)−φS(t−τS)を算出する。この位相変化を一意に算出するためには時間τSの間の位相変化量が最大でも2πを超えてはならないことは明らかである。このためには、図2に示す信号光の角周波数で表す帯域をBとするとき、2π×2BτS<1である必要がある。従って、τSは以下の条件を満足するように設定する必要がある。
τS <1/2(2πB) (2-1)
このように、τS は1/2(2πB)よりも小さく設定する必要があるが、τS をあまりに小さく設定すると、その時間内の位相変化も極めて小さなものとなり、測定誤差が大きくなる懸念がある。従って、τSの設定値を定める際には、式(2-1)の要請の範囲において、できる限り大きなτSを採用することが望ましい。
The time delay amount τ S to be inserted is determined as follows. As will be described later, in measuring the optical complex amplitude of the signal light, first, the phase change φ S (t) −φ S (t−τ S ) generated during the time τ S of the signal light is calculated. In order to uniquely calculate this phase change, it is clear that the phase change amount during the time τ S should not exceed 2π at the maximum. For this purpose, it is necessary that 2π × 2Bτ S <1 where B is a band represented by the angular frequency of the signal light shown in FIG. Therefore, τ S needs to be set so as to satisfy the following condition.
τ S <1/2 (2πB) (2-1)
In this way, τ S needs to be set smaller than 1/2 (2πB), but if τ S is set too small, there is a concern that the phase change within that time will be extremely small and the measurement error will increase. is there. Therefore, tau in determining the set value of S is in the range of requests of the formula (2-1), be employed large tau S as possible desirable.

次に、局発光発生器15より供給される局発光は、光分岐器16により第1及び第2の系統に分岐され、光路長調整器17を介してそれぞれ光90度ハイブリッド12,14に送られる。光路長調整器17は、2つの分岐局発光L1,L2の光路長が互いに一致するように調整するために挿入されている。即ち、局発光の経路上に挿入される光分岐器16の出力端Aと第1の光90度ハイブリッド11の入力端Bまでの経路(図中のA−B)と、第2の光90度ハイブリッド14の入力端Cまでの経路(図中のA−C)が一致することとなる。この局発光の光路長調整操作は本発明の主眼をなすところであるが、その意味については以降の説明の中で明らかにされる。   Next, the local light supplied from the local light generator 15 is branched into the first and second systems by the optical branching device 16 and sent to the optical 90-degree hybrids 12 and 14 via the optical path length adjuster 17, respectively. It is done. The optical path length adjuster 17 is inserted in order to adjust the optical path lengths of the two branch station lights L1 and L2 so as to coincide with each other. That is, a path (AB in the figure) from the output end A of the optical branching device 16 inserted on the local light emission path to the input end B of the first optical 90-degree hybrid 11, and the second light 90. The route (AC in the figure) to the input terminal C of the hybrid 14 coincides. This local light emission path length adjustment operation is the main point of the present invention, and its meaning will be clarified in the following description.

以上の構成により、光90度ハイブリッド12,14に入力される信号光と局発光の光複素振幅は以下のように表される。
信号光:aS (1)(t)=|aS (1)(t)|exp[jφS(t)]・ejω0 t (3)
局発光:aL (1)(t)=|aL|exp[jφL(t)]・ejω0 t (4)
第2の光90度ハイブリッド14に入力される信号光S2は、光遅延器13によって付与された遅延τSだけ到着が遅れるのに対し、第2の光90度ハイブリッド14に入力される局発光L2は、光路長調整器17よる光路長調整操作によって、第1の光90度ハイブリッド12に入力される局発光と全く同一となる。したがって、第2の光90度ハイブリッド14に入力される信号光と局発光の光複素振幅は以下のように表される。
信号光:aS (2)(t)=|aS(t−τS)|exp[jφS(t−τS)]・ejω0 t (5)
局発光:aL (2)(t)=|aL|exp[jφL(t)]・ejω0 t (6)
上記光90度ハイブリッド12,14から出力される光波は、バランス型受光素子181,182,191,192により電流に変換される。光90度ハイブリッド12より観測される電流値をI1、Q1、光90度ハイブリッド14より観測される電流値をI2、Q2とすれば、これらの電流値は、それぞれの光90度ハイブリッド12,14に入力される光複素振幅の式(3),(4)及び(5),(6)を用いて、以下のように表すことができる。
With the above-described configuration, the complex light amplitude of the signal light and the local light input to the optical 90-degree hybrids 12 and 14 is expressed as follows.
Signal light: a S (1) (t) = | a S (1) (t) | exp [jφ S (t)] ・ e jω0 t (3)
Local light: a L (1) (t) = | a L | exp [jφ L (t)] ・ e jω0 t (4)
The signal light S 2 input to the second optical 90-degree hybrid 14 is delayed in arrival by the delay τ S given by the optical delay device 13, whereas the local light input to the second optical 90-degree hybrid 14 is transmitted. L2 becomes exactly the same as the local light input to the first light 90-degree hybrid 12 by the optical path length adjustment operation by the optical path length adjuster 17. Therefore, the optical complex amplitude of the signal light and the local light input to the second optical 90-degree hybrid 14 is expressed as follows.
Signal light: a S (2) (t) = | a S (t−τ S ) | exp [jφ S (t−τ S )] ・ e jω0 t (5)
Local light: a L (2) (t) = | a L | exp [jφ L (t)] ・ e jω0 t (6)
Light waves output from the light 90-degree hybrids 12 and 14 are converted into currents by balanced light receiving elements 181, 182, 191 and 192. If the current values observed from the light 90 degree hybrid 12 are I 1 and Q 1 , and the current values observed from the light 90 degree hybrid 14 are I 2 and Q 2 , these current values are respectively 90 degrees light. Using the expressions (3), (4), (5), and (6) of the optical complex amplitudes input to the hybrids 12 and 14, they can be expressed as follows.

I1(t) =Re[aS (1)(t)aL (1)*(t)]
=Re{|aL||aS(t)|・exp[j{φS(t)−φL(t)}]}
=|aL||aS(t)|・cos{φS(t)−φL(t)}
(7)
Q1(t) =Im[aS (1)(t)aL (1)*(t)]
=Im{|aL||aS(t)|・exp[j{φS(t)−φL(t)}]}
=|aL||aS(t)|・sin{φS(t)−φL(t)}
(8)
I2(t) =Re[aS (1)(t)aL (1)*(t)]
=Re{|aL||aS(t−τS)|・exp[j{φS(t−τS)−φL(t)}]}
=|aL||aS(t−τS)|・cos{φS(t−τS)−φL(t)}
(9)
Q2(t) =Im[aS (1)(t)aL (1)*(t)]
=Im{|aL||aS(t−τS)|・exp[j{φS(t−τS)−φL(t)}]}
=|aL||aS(t−τS)|・sin{φS(t−τS)−φL(t)}
(10)
以上の電流値は、それぞれ数値化器201,202,211,212によって数値化され、波形解析装置23に入力される。上記数値化器201,202,211,212は、例えば電流値をデジタル信号に変換するA/Dコンバータによって実現することができる。また、図1に示すように、数値化器201,202,211,212には、クロック発生器22より一定の周期でクロック信号が供給され、これをトリガとして一定の周期で数値化操作を行うものとする。この周期Tは、標本化定理の要請から以下の関係を満足する必要がある。
T <1/2πB (11)
上記数値化器201,202,211,212は時間T毎に電流値I1、Q1、I2、Q2を数値化し波形解析装置23へ送出する。波形解析装置23は送られてきた電流値I1、Q1、I2、Q2を用いて、当該時刻における信号光の光複素振幅を算出する。これを時間T毎に繰り返すことによって全ての時刻の光複素振幅を計算し、光複素振幅波形を構築することができる。
I 1 (t) = Re [a S (1) (t) a L (1) * (t)]
= Re {| a L || a S (t) | ・ exp [j {φ S (t) −φ L (t)}]}
= | a L || a S (t) | ・ cos {φ S (t) −φ L (t)}
(7)
Q 1 (t) = Im [a S (1) (t) a L (1) * (t)]
= Im {| a L || a S (t) | ・ exp [j {φ S (t) −φ L (t)}]}
= | a L || a S (t) | ・ sin {φ S (t) −φ L (t)}
(8)
I 2 (t) = Re [a S (1) (t) a L (1) * (t)]
= Re {| a L || a S (t−τ S ) | ・ exp [j {φ S (t−τ S ) −φ L (t)}]}
= | a L || a S (t−τ S ) | ・ cos {φ S (t−τ S ) −φ L (t)}
(9)
Q 2 (t) = Im [a S (1) (t) a L (1) * (t)]
= Im {| a L || a S (t−τ S ) | ・ exp [j {φ S (t−τ S ) −φ L (t)}]}
= | a L || a S (t−τ S ) | ・ sin {φ S (t−τ S ) −φ L (t)}
(Ten)
The above current values are digitized by the digitizers 201, 202, 211, and 212, respectively, and are input to the waveform analyzer 23. The digitizers 201, 202, 211, and 212 can be realized by, for example, an A / D converter that converts a current value into a digital signal. As shown in FIG. 1, a clock signal is supplied from the clock generator 22 to the digitizers 201, 202, 211, and 212 at a constant cycle, and a digitization operation is performed at a constant cycle using this as a trigger. Shall. This period T needs to satisfy the following relationship from the request of the sampling theorem.
T <1 / 2πB (11)
The digitizers 201, 202, 211, and 212 digitize the current values I 1 , Q 1 , I 2 , and Q 2 every time T and send them to the waveform analyzer 23. The waveform analyzer 23 uses the received current values I 1 , Q 1 , I 2 , and Q 2 to calculate the optical complex amplitude of the signal light at the time. By repeating this every time T, the optical complex amplitude at all times can be calculated, and an optical complex amplitude waveform can be constructed.

上記で得られた数値化された電流値I1、Q1、I2、Q2を用いて、波形解析装置23は以下のようにして信号光の光複素振幅を算出する。
まず、信号光の振幅|aS(t)|を求めるため、式(7),(8)の2乗を計算すると、
I1 2(t)+Q1 2(t)
=[|aL||aS(t)|・cos{φS(t)−φL(t)}]2+[|aL||aS(t)|・sin{φS(t)−φL(t)}]2
=|aL|2|aS(t)|2
|aL|2は定数であるのでこれを無視することにすると、これより信号光の振幅|aS(t)|を以下のように求めることができる。
|aS(t)|2=I1 2(t)+Q1 2(t) (12)
また、式(8)の両辺を式(7)で除算し、式(10)の両辺を式(9)で除算することにより、
Using the digitized current values I 1 , Q 1 , I 2 , and Q 2 obtained above, the waveform analyzer 23 calculates the optical complex amplitude of the signal light as follows.
First, to find the amplitude of signal light | a S (t) |
I 1 2 (t) + Q 1 2 (t)
= [| a L || a S (t) | ・ cos {φ S (t) −φ L (t)}] 2 + [| a L || a S (t) | ・ sin {φ S (t ) −φ L (t)}] 2
= | A L | 2 | a S (t) | 2
Since | a L | 2 is a constant, if it is ignored, the amplitude | a S (t) | of the signal light can be obtained as follows.
| a S (t) | 2 = I 1 2 (t) + Q 1 2 (t) (12)
Also, by dividing both sides of equation (8) by equation (7) and dividing both sides of equation (10) by equation (9),

Figure 2011226930
を得る。これより、
Figure 2011226930
Get. Than this,

Figure 2011226930
を得る。
式(15),(16)の差を取ることにより、
Figure 2011226930
Get.
By taking the difference between equations (15) and (16),

Figure 2011226930
を得る。式(17)によって、時間差τSでの信号光の位相変化を求められることがわかる。
ここで注目すべきは、式(15),(16)から式(17)を導くときに、局発光の位相揺らぎφL(t)を完全に消去できることである。これは、図1の構成において光路長調整器17を用いて、分岐後の2つの局発光の光路長を同一とし、光90度ハイブリッド12,14に入力される局発光の位相を全く同一としたことによる効果に他ならない。このように、局発光の位相が如何に揺らごうとも、その影響を全く受けることなく信号光の時間τSにおける位相変化を抽出できることは、本発明で初めて開示される最大の利点であり、従来のいかなる測定法を用いても実現不可能であった効用である。
Figure 2011226930
Get. It can be seen from Equation (17) that the phase change of the signal light at the time difference τ S can be obtained.
It should be noted here that the phase fluctuation φ L (t) of the local light can be completely eliminated when the equation (17) is derived from the equations (15) and (16). This is because, using the optical path length adjuster 17 in the configuration of FIG. 1, the optical path lengths of the two local lights after branching are made the same, and the phases of the local lights inputted to the optical 90-degree hybrids 12 and 14 are exactly the same. It is nothing but the effect of doing. As described above, it is the greatest advantage disclosed in the present invention for the first time that the phase change at the time τ S of the signal light can be extracted without being affected at all by the influence of the local light phase. This is a utility that could not be realized using any measurement method.

式(17)の両辺をτSで除算すると、 Dividing both sides of equation (17) by τ S

Figure 2011226930
を得るが、式(18)の左辺はφS(t)微分に等しいので、式(18)を積分することによって以下のようにφS(t)を求めることができる。
Figure 2011226930
However, since the left side of the equation (18) is equal to the φ S (t) derivative, the equation (18) can be integrated to obtain φ S (t) as follows.

Figure 2011226930
このようにして、式(12)及び式(19)から、信号光の振幅と位相、即ち光複素振幅を求めることができる。
説明を終えるにあたり、光路長調整器17によって同一に調整される局発光の光路長に許容される誤差について考察しておく。上記に説明したように、本来、図1の経路A−BとA−Cは完全に同一になるように調整されるべきであり、この点が本発明を構成する重要な要素である。仮に、A−CがA−Bに対して時間τLだけ長く設定されたと仮定する。この場合には、信号光の振幅が式(12)により与えられる点はいささかも変わらないが、信号光の位相を求めるために用いる式(13),(14)は、局発光の光路長時間差τLの影響により次のように変形される。
Figure 2011226930
In this way, the amplitude and phase of the signal light, that is, the optical complex amplitude can be obtained from the equations (12) and (19).
When the description is finished, an error allowed for the optical path length of the local light that is adjusted in the same way by the optical path length adjuster 17 will be considered. As described above, the paths A-B and A-C in FIG. 1 should be adjusted to be completely the same, and this is an important element constituting the present invention. Suppose that AC is set longer than AB by time τ L. In this case, the point where the amplitude of the signal light is given by Equation (12) does not change a little, but Equations (13) and (14) used to obtain the phase of the signal light are different from the long-time difference in the optical path of the local light. It is deformed as follows due to the influence of τ L.

Figure 2011226930
これに式(17)を得たときと同様の演算を付すと以下の式を得る。
Figure 2011226930
If the same calculation as that for obtaining the equation (17) is added to this, the following equation is obtained.

Figure 2011226930
式(22)から分かるように、局発光の光路長時間差τLが存在する場合にはもはやφS(t)−φS(t−τS)は電流値I1、Q1、I2、Q2だけの関数とはならず、局発光の時間τLの間の位相揺らぎφL(t−τL)−φL(t)が誤差として含まれることになる。
Figure 2011226930
As can be seen from equation (22), when there is a local light path long-time difference τL, φ S (t) −φ S (t−τ S ) is no longer the current values I 1 , Q 1 , I 2 , Q It does not become a function of only two, stations phase fluctuation between the emission time τ L φ L (t-τ L) -φ L (t) will be included as an error.

コヒーレンス理論によれば、局発光のコヒーレンス時間をτcとするとき、時間τLの間の位相揺らぎφL(t−τL)−φL(t)の統計的分散 According to the coherence theory, when the coherence time of local light is τc, the statistical dispersion of phase fluctuation φ L (t−τ L ) −φ L (t) during time τ L

Figure 2011226930
は、以下のようになることが知られている。
Figure 2011226930
Is known to be as follows.

Figure 2011226930
または、局発光のスペクトル線幅(角周波数の広がり)をΔω(Hz)として、
Figure 2011226930
Or, the spectral line width of the local light (the spread of the angular frequency) is Δω (Hz),

Figure 2011226930
であることが知られている。従って、測定誤差の指標としてその標準偏差を考えることにすれば、局発光の位相揺らぎによってもたらされる信号光の位相の測定誤差は、
Figure 2011226930
It is known that Therefore, if the standard deviation is considered as an index of the measurement error, the measurement error of the phase of the signal light caused by the phase fluctuation of the local light is

Figure 2011226930
となる。
局発光発生器15として半導体レーザを用いると仮定すると、その典型的なスペクトル線幅(角周波数の広がり)は2π×1MHz程度である。また、許容される位相の測定誤差を0.01radと仮定すれば、式(25)より、許容される時間差τLは、約3.2×10-11s、即ち約32psとなり、光速度を3×108m/sを乗算することによりこれを自由区間の距離に換算すると、約1cmとなる。したがって、一例として上記の条件での測定を実現するために光路長調整器17が備えるべき精度は約1cmであり、通常入手可能な機械的な遅延調整器によって十分に実現可能な精度であることが分かる。更に精度のよい考慮長の調整を行えば、局発光の位相揺らぎによる測定誤差はいくらでも小さくすることが可能であり、極めて小さな測定誤差で信号光の光複素振幅を求めることができる。
Figure 2011226930
It becomes.
Assuming that a semiconductor laser is used as the local light generator 15, the typical spectral line width (angular frequency spread) is about 2π × 1 MHz. Assuming that the measurement error of the allowable phase is 0.01 rad, the allowable time difference τ L is about 3.2 × 10 −11 s, that is, about 32 ps, from Equation (25), and the speed of light is 3 × 10 When this is converted into the distance of the free section by multiplying by 8 m / s, it is about 1 cm. Therefore, as an example, the accuracy that the optical path length adjuster 17 should have in order to realize the measurement under the above-mentioned conditions is about 1 cm, and the accuracy can be sufficiently realized by a normally available mechanical delay adjuster. I understand. Further, if the consideration length is adjusted with high accuracy, the measurement error due to the phase fluctuation of the local light can be reduced as much as possible, and the optical complex amplitude of the signal light can be obtained with an extremely small measurement error.

以上説明したように本発明によれば、信号光の光複素振幅を高精度に測定する手段が提供され、局発光の位相揺らぎによって生じる測定誤差を回避しつつ、信号光の光複素振幅を極めて高精度に測定することが可能となる。
尚、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。また、実施形態に示される全構成要素からいくつかの構成要素を削除しても良い。更に、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。
As described above, according to the present invention, a means for measuring the optical complex amplitude of the signal light with high accuracy is provided, and the optical complex amplitude of the signal light is extremely reduced while avoiding the measurement error caused by the phase fluctuation of the local light. It becomes possible to measure with high accuracy.
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. In addition, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine the component covering different embodiment suitably.

11…光分岐器、12…第1の光90度ハイブリッド、13…光遅延器、14…第2の光90度ハイブリッド、15…局発光発生器、16…光分岐器、17…光路長調整器、181,182,191,192…バランス型受光素子、201,202,211,212…数値化器、22…クロック発生器、23…波形解析装置。   DESCRIPTION OF SYMBOLS 11 ... Optical branching device, 12 ... 1st optical 90 degree hybrid, 13 ... Optical delay device, 14 ... 2nd optical 90 degree hybrid, 15 ... Local light generator, 16 ... Optical branching device, 17 ... Optical path length adjustment , 181, 182, 191, 192... Balanced light receiving element, 201, 202, 211, 212, digitizer, 22, clock generator, 23, waveform analyzer.

Claims (6)

信号光を分岐する第1の分岐手段と、
前記信号光の周波数帯域内にスペクトルを有する局発光を発生する局発光発生器と、
前記局発光を分岐する第2の分岐手段と、
前記第1の分岐手段で分岐される一方の信号光と前記第2の分岐手段で分岐される一方の局発光とを入力して混合出力する第1の光90度ハイブリッドと、
前記第1の分岐手段で分岐される他方の信号光と前記第2の分岐手段で分岐される他方の局発光とを入力して混合出力する第2の光90度ハイブリッドと、
前記第1の光90度ハイブリッドの出力を光電変換して第1の複素振幅信号を生成する第1の信号生成手段と、
前記第2の光90度ハイブリッドの出力を光電変換して第2の複素振幅信号を生成する第2の信号生成手段と、
前記第1の分岐手段で分岐された一方または他方の信号光を一定時間遅延する遅延手段と、
前記第2の分岐手段で分岐された一方または他方の局発光の光路長を調整して両者の光路長を互いに一致させる光路長調整手段と、
前記第1及び第2の信号生成手段で生成される第1及び第2の複素振幅信号を入力して前記遅延手段による時間差による位相変化を測定して波形解析する波形解析手段と、
を具備することを特徴とする光複素振幅波形測定器。
First branching means for branching the signal light;
A local light generator for generating local light having a spectrum in the frequency band of the signal light;
Second branching means for branching the local light;
A first optical 90-degree hybrid that inputs and mix-outputs one signal light branched by the first branching means and one local light branched by the second branching means;
A second optical 90-degree hybrid that inputs and mixes the other signal light branched by the first branching means and the other local light branched by the second branching means;
First signal generation means for photoelectrically converting the output of the first light 90-degree hybrid to generate a first complex amplitude signal;
Second signal generating means for photoelectrically converting the output of the second light 90-degree hybrid to generate a second complex amplitude signal;
Delay means for delaying one or the other of the signal light branched by the first branch means for a fixed time;
An optical path length adjusting means for adjusting the optical path length of one or the other local light branched by the second branching means so as to make the optical path lengths of the two coincide with each other;
Waveform analysis means for inputting the first and second complex amplitude signals generated by the first and second signal generation means, measuring a phase change due to a time difference by the delay means, and analyzing the waveform;
An optical complex amplitude waveform measuring instrument comprising:
前記波形解析手段は、前記第1及び第2の光90度ハイブリッドの出力を受光して得られる複素信号をそれぞれI1、Q1、I2、Q2とするとき、信号光の振幅|as(t)|の2乗を
|aS(t)|2 =I1 2(t)+Q1 2(t)
により求め、信号光の遅延時間τSにおける位相変化φS(t)-φS(t-τS) を
φS(t)−φS(t−τS)=tan-1{Q1(t)/I1(t)}−tan-1{Q2(t)/I2(t)}
により求めることを特徴とする請求項1記載の光複素振幅波形測定器。
When the complex signals obtained by receiving the outputs of the first and second optical 90-degree hybrids are denoted by I 1 , Q 1 , I 2 , and Q 2 , respectively, the waveform analysis means has an amplitude of signal light | a s (t) | squared
| a S (t) | 2 = I 1 2 (t) + Q 1 2 (t)
The phase change φ S (t) -φ S (t-τ S ) in the delay time τ S of the signal light is obtained as φ S (t) −φ S (t−τ S ) = tan −1 {Q 1 ( t) / I 1 (t)} − tan −1 {Q 2 (t) / I 2 (t)}
2. The optical complex amplitude waveform measuring device according to claim 1, wherein
前記波形解析手段は、前記信号光の遅延時間τsにおける位相変化φs(t)-φs(t-τs) を積分することにより、光信号の位相φs(t) を求めることを特徴とする請求項1記載の光複素振幅波形測定器。 Said waveform analyzing means, by integrating the phase change phi s in the delay time tau s of the signal light (t) -φ s (t- τ s), an optical signal phase phi s to seek (t) The optical complex amplitude waveform measuring instrument according to claim 1, wherein: 第1の分岐手段により信号光を分岐し、
局発光発生器にて発生され、前記信号光の周波数帯域内にスペクトルを有する局発光を第2の分岐手段により分岐し、
前記第1の分岐手段で分岐される一方の信号光と前記第2の分岐手段で分岐される一方の局発光とを第1の光90度ハイブリッドに入力して混合し、
前記第1の分岐手段で分岐される他方の信号光と前記第2の分岐手段で分岐される他方の局発光とを第2の光90度ハイブリッドに入力して混合し、
前記第1の光90度ハイブリッドの出力を光電変換して第1の複素振幅信号を生成し、
前記第2の光90度ハイブリッドの出力を光電変換して第2の複素振幅信号を生成し、
前記第1の分岐手段で分岐された一方または他方の信号光を一定時間遅延させ、
前記第2の分岐手段で分岐された一方または他方の局発光の光路長を調整して両者の光路長を互いに一致させ、
前記第1及び第2の複素振幅信号を入力して前記遅延時間差による位相変化を測定して波形解析することを特徴とする光複素振幅波形測定方法。
Branching the signal light by the first branching means;
The local light generated by the local light generator and having a spectrum within the frequency band of the signal light is branched by the second branching means,
One signal light branched by the first branching means and one local light branched by the second branching means are inputted to the first light 90-degree hybrid and mixed,
The other signal light branched by the first branching means and the other local light branched by the second branching means are input to a second light 90-degree hybrid and mixed,
Photoelectrically converting the output of the first light 90-degree hybrid to generate a first complex amplitude signal;
Photoelectrically converting the output of the second light 90-degree hybrid to generate a second complex amplitude signal;
Delaying one or the other of the signal light branched by the first branching means for a fixed time;
Adjusting the optical path length of one or the other local light branched by the second branching means to make the optical path lengths coincide with each other;
An optical complex amplitude waveform measuring method, comprising: inputting the first and second complex amplitude signals, measuring a phase change due to the delay time difference, and analyzing the waveform.
前記波形解析は、前記第1及び第2の光90度ハイブリッドの出力を受光して得られる複素信号をそれぞれI1、Q1、I2、Q2とするとき、信号光の振幅|aS(t)|の2乗を
|aS(t)|2 =I1 2(t)+Q1 2(t)
により求め、信号光の遅延時間τSにおける位相変化φS(t)-φS(t-τS)を
φS(t)−φS (t−τS)=tan-1{Q1(t)/I1(t)}−tan-1{Q2(t)/I2(t)}
により求めることを特徴とする請求項4記載の光複素振幅波形測定方法。
In the waveform analysis, when the complex signals obtained by receiving the outputs of the first and second optical 90-degree hybrids are I 1 , Q 1 , I 2 , and Q 2 , respectively, the amplitude of the signal light | a S the square of (t) |
| a S (t) | 2 = I 1 2 (t) + Q 1 2 (t)
The phase change φ S (t) -φ S (t-τ S ) in the delay time τ S of the signal light is obtained as φ S (t) −φ S (t−τ S ) = tan −1 {Q 1 ( t) / I 1 (t)} − tan −1 {Q 2 (t) / I 2 (t)}
5. The optical complex amplitude waveform measuring method according to claim 4, wherein:
前記波形解析は、前記波形解析は、前記信号光の遅延時間τSにおける位相変化φS(t)-φS(t-τS) を積分することにより、光信号の位相φS(t) を求めることを特徴とする請求項4記載の光複素振幅波形測定方法。 The waveform analysis is performed by integrating the phase change φ S (t) −φ S (t−τ S ) in the delay time τ S of the signal light to integrate the phase φ S (t) of the optical signal. The optical complex amplitude waveform measuring method according to claim 4, wherein:
JP2010097260A 2010-04-20 2010-04-20 Optical complex-amplitude waveform measurement device and measurement method therefor Pending JP2011226930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097260A JP2011226930A (en) 2010-04-20 2010-04-20 Optical complex-amplitude waveform measurement device and measurement method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097260A JP2011226930A (en) 2010-04-20 2010-04-20 Optical complex-amplitude waveform measurement device and measurement method therefor

Publications (1)

Publication Number Publication Date
JP2011226930A true JP2011226930A (en) 2011-11-10

Family

ID=45042435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097260A Pending JP2011226930A (en) 2010-04-20 2010-04-20 Optical complex-amplitude waveform measurement device and measurement method therefor

Country Status (1)

Country Link
JP (1) JP2011226930A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045096A (en) * 2012-08-27 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> Laser phase noise measuring apparatus and measuring method
JP2015207601A (en) * 2014-04-17 2015-11-19 日本電信電話株式会社 laser phase noise reduction device
JP2016145786A (en) * 2015-02-09 2016-08-12 日本電信電話株式会社 Measuring apparatus and measuring method for impulse response of optical device
WO2018117149A1 (en) * 2016-12-22 2018-06-28 国立大学法人名古屋大学 Light detection device, optical property analysis device, and light detection method
JP7315928B2 (en) 2020-07-02 2023-07-27 日本電信電話株式会社 Optical signal sampling device and optical signal sampling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132719A (en) * 2002-10-08 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> Optical sampling method, system, and program
JP2008191100A (en) * 2007-02-07 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Optical sampling device and method
JP2009192746A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for correcting optical 90 degree hybrid function
JP2010088075A (en) * 2008-10-03 2010-04-15 Fujitsu Optical Components Ltd Demodulator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132719A (en) * 2002-10-08 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> Optical sampling method, system, and program
JP2008191100A (en) * 2007-02-07 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Optical sampling device and method
JP2009192746A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Method, device and program for correcting optical 90 degree hybrid function
JP2010088075A (en) * 2008-10-03 2010-04-15 Fujitsu Optical Components Ltd Demodulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014045096A (en) * 2012-08-27 2014-03-13 Nippon Telegr & Teleph Corp <Ntt> Laser phase noise measuring apparatus and measuring method
JP2015207601A (en) * 2014-04-17 2015-11-19 日本電信電話株式会社 laser phase noise reduction device
JP2016145786A (en) * 2015-02-09 2016-08-12 日本電信電話株式会社 Measuring apparatus and measuring method for impulse response of optical device
WO2018117149A1 (en) * 2016-12-22 2018-06-28 国立大学法人名古屋大学 Light detection device, optical property analysis device, and light detection method
JP7315928B2 (en) 2020-07-02 2023-07-27 日本電信電話株式会社 Optical signal sampling device and optical signal sampling method

Similar Documents

Publication Publication Date Title
Zou et al. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair
JP6277147B2 (en) Optical fiber vibration measurement method and system
CN110632388B (en) Frequency mixing-based photoelectric detector frequency response measuring method and device
JPWO2003005002A1 (en) Propagation measurement device and propagation measurement method
JP2017156094A (en) Brillouin scattering measuring method and brillouin scattering measuring apparatus
JP2019020143A (en) Optical fiber vibration detection sensor and method therefor
JP2011226930A (en) Optical complex-amplitude waveform measurement device and measurement method therefor
TW201605184A (en) Ultra-compact wavelength meter
JP2012227640A (en) Optical transmission system and optical transmission method
CN111678584A (en) Optical fiber vibration measuring device with light source frequency shift calibration auxiliary channel and method
JP2014045096A (en) Laser phase noise measuring apparatus and measuring method
CN109728862B (en) Method and device for measuring parameters of coherent optical receiver based on dual-frequency modulation
JP5042701B2 (en) Optical sampling apparatus and optical sampling method
JP4599560B2 (en) Reference signal light transmission system and reference signal light transmission method
JP6230029B2 (en) Apparatus and method for measuring impulse response of optical device
JP2014052272A (en) Electromagnetic wave detection system and electromagnetic wave detection method
CN108540219B (en) coherent optical receiver parameter measurement method and device based on frequency shift modulation
JP5641178B2 (en) Optical reflectometry measuring method and optical reflectometry measuring apparatus
JP6947294B2 (en) Distance measuring device and control method
JP2013152118A (en) Measurement method and device of laser beam characteristics
JP7276404B2 (en) Ranging device and ranging method
JP2012103200A (en) Modulation light analysis device and electric field or magnetic field measurement probe device using modulation light analysis device
US20140111804A1 (en) Heterodyne Optical Spectrum Analyzer
JP7256777B2 (en) Laser line width measurement device
JP2015087233A (en) Signal analysis device and signal analysis method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701