JP2011226470A - Oil seal member and method for producing same - Google Patents

Oil seal member and method for producing same Download PDF

Info

Publication number
JP2011226470A
JP2011226470A JP2011067984A JP2011067984A JP2011226470A JP 2011226470 A JP2011226470 A JP 2011226470A JP 2011067984 A JP2011067984 A JP 2011067984A JP 2011067984 A JP2011067984 A JP 2011067984A JP 2011226470 A JP2011226470 A JP 2011226470A
Authority
JP
Japan
Prior art keywords
oil seal
seal member
side direction
curved
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011067984A
Other languages
Japanese (ja)
Other versions
JP5794728B2 (en
Inventor
Toshihiko Mori
敏彦 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011067984A priority Critical patent/JP5794728B2/en
Priority to PCT/JP2011/057633 priority patent/WO2011122558A1/en
Publication of JP2011226470A publication Critical patent/JP2011226470A/en
Application granted granted Critical
Publication of JP5794728B2 publication Critical patent/JP5794728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/54Other sealings for rotating shafts
    • F16J15/545Other sealings for rotating shafts submitted to unbalanced pressure in circumference; seals for oscillating actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices

Abstract

PROBLEM TO BE SOLVED: To enhance responsiveness of a variable valve timing mechanism; to enhance wear resistance of an oil seal member; to prevent damage of a powder compact; and to enhance dimension accuracy of the oil seal member.SOLUTION: An oil seal member 20 is formed by molding a bottom surface 31 of the powder compact 30 into a flat surface in a powder compacting process, and molding a flat bottom surface 41 of a sintered compact 40 into a curved surface in a sizing process, the sintered compact 40 being obtained by sintering the powder compact. Namely, a bottom surface 21 of the oil seal member 20 is molded into a curved surface by sizing.

Description

本発明は、可変バルブタイミング機構のロータとハウジングとで形成された複数の油圧室の間に設けられ、各油圧室を液密的に区画するオイルシール部材に関し、特に、焼結金属で形成されたオイルシール部材に関する。   The present invention relates to an oil seal member provided between a plurality of hydraulic chambers formed by a rotor and a housing of a variable valve timing mechanism and partitioning each hydraulic chamber in a liquid-tight manner, and in particular, formed of sintered metal. The present invention relates to an oil seal member.

可変バルブタイミング機構とは、エンジンのカムシャフトに取り付けられて、吸排気バルブの開閉タイミングを可変とするものである(例えば、特許文献1参照)。例えば図11に示す可変バルブタイミング機構100は、カムシャフトSと一体に回転するロータ103と、エンジンのクランクシャフト(図示省略)と同期して回転し、ロータ103を相対回転自在に収容するハウジング104とを備える。   The variable valve timing mechanism is attached to a camshaft of an engine and makes the intake / exhaust valve open / close timing variable (see, for example, Patent Document 1). For example, a variable valve timing mechanism 100 shown in FIG. 11 rotates in synchronization with a camshaft S and a rotor 104 that accommodates the rotor 103 in a relatively rotatable manner. With.

ロータ103は、図11(a)に示すように、外周側に突出する複数(図示例では4つ)のベーン105を有する。ハウジング104は、複数のベーン105の周方向間に突出する複数(図示例では4つ)のティース106を有する。ベーン105とティース106との間には油圧室107,108が形成される。ベーン105の周方向一方側の油圧室107は、ロータ103を進角側に駆動する際に油圧が供給される進角室を成す。ベーン105の周方向他方側の油圧室108は、ロータ103を遅角側に駆動する際に油圧が供給される遅角室を成す。   As shown in FIG. 11A, the rotor 103 includes a plurality (four in the illustrated example) of vanes 105 protruding to the outer peripheral side. The housing 104 has a plurality (four in the illustrated example) of teeth 106 protruding between the circumferential directions of the plurality of vanes 105. Hydraulic chambers 107 and 108 are formed between the vane 105 and the teeth 106. The hydraulic chamber 107 on one side in the circumferential direction of the vane 105 forms an advance chamber to which hydraulic pressure is supplied when the rotor 103 is driven to the advance side. The hydraulic chamber 108 on the other circumferential side of the vane 105 forms a retard chamber to which hydraulic pressure is supplied when the rotor 103 is driven to the retard side.

油圧室107及び108は、オイルシール部材120,130により液密的に区画される。ベーン105に設けられるオイルシール部材120は、図11(a)に示すように、ベーン105の先端面に形成された溝部105aに嵌合し、ハウジング104の内周面と摺動する。図11(b)に示すように、オイルシール部材120と溝部105aの溝底面との間には板バネ109が設けられ、この板バネ109によりオイルシール部材120の底面121がハウジング104の内周面に押し付けられる。オイルシール部材120の底面121は、ハウジング104の内周面に沿った形状をなし、具体的には、図12(c)に示すように短辺方向中央部を頂点とした凸曲面状(円筒面状)に形成される。オイルシール部材120の天面122は、図12(b)に示すように長辺方向両端部に一対の凸部122a,122aを有し、この凸部122a,122aの間に板バネ109が湾曲した状態で配される(図11(b)参照)。尚、図12(c)では、理解の容易化のため、底面121の曲率を誇張して示している(実際の曲率半径より小さく示している)。   The hydraulic chambers 107 and 108 are liquid-tightly partitioned by oil seal members 120 and 130. As shown in FIG. 11A, the oil seal member 120 provided on the vane 105 is fitted into a groove portion 105 a formed on the front end surface of the vane 105 and slides with the inner peripheral surface of the housing 104. As shown in FIG. 11B, a plate spring 109 is provided between the oil seal member 120 and the groove bottom surface of the groove portion 105 a, and the plate spring 109 causes the bottom surface 121 of the oil seal member 120 to move to the inner periphery of the housing 104. Pressed against the surface. The bottom surface 121 of the oil seal member 120 has a shape along the inner peripheral surface of the housing 104. Specifically, as shown in FIG. Formed in a planar shape. As shown in FIG. 12B, the top surface 122 of the oil seal member 120 has a pair of convex portions 122a and 122a at both ends in the long side direction, and the leaf spring 109 is curved between the convex portions 122a and 122a. (See FIG. 11B). In FIG. 12C, for easy understanding, the curvature of the bottom surface 121 is exaggerated (shown smaller than the actual radius of curvature).

ティース106に設けられるオイルシール部材130は、図11(a)に示すように、ティース106の先端面に形成された溝部106aに嵌合し、ロータ103の外周面に摺動する。図11(c)に示すように、オイルシール部材130と溝部106aの溝底面との間には板バネ110が配され、この板バネ110によりオイルシール部材130の底面131がロータ103の外周面に押し付けられる。尚、オイルシール部材130の形状は、図12に示すオイルシール部材120と同様であるため、重複説明を省略する。   As shown in FIG. 11A, the oil seal member 130 provided on the tooth 106 is fitted in a groove portion 106 a formed on the front end surface of the tooth 106 and slides on the outer peripheral surface of the rotor 103. As shown in FIG. 11C, a leaf spring 110 is disposed between the oil seal member 130 and the groove bottom surface of the groove portion 106 a, and the bottom surface 131 of the oil seal member 130 is arranged on the outer peripheral surface of the rotor 103 by the plate spring 110. Pressed against. The shape of the oil seal member 130 is the same as that of the oil seal member 120 shown in FIG.

上記のようなオイルシール部材120,130を成形性に優れた焼結金属で形成すれば、例えば樹脂で形成する場合と比べて寸法精度(特に底面の寸法精度)を高めることができる。これにより、ハウジング104あるいはロータ103との接触状態が良好となり、油圧室107,108の密閉性が高められるため、油圧室107あるいは108に油圧を供給してからロータ103が回転するまでの時間が短くなり、可変バルブタイミング機構の応答性を高めることができる。   If the oil seal members 120 and 130 as described above are formed of a sintered metal having excellent moldability, the dimensional accuracy (particularly the dimensional accuracy of the bottom surface) can be increased as compared with the case where the oil seal members 120 and 130 are formed of resin. As a result, the contact state with the housing 104 or the rotor 103 is improved, and the sealing performance of the hydraulic chambers 107 and 108 is improved. Therefore, the time until the rotor 103 rotates after the hydraulic pressure is supplied to the hydraulic chamber 107 or 108 is increased. This shortens the responsiveness of the variable valve timing mechanism.

特開2009−297812号公報JP 2009-297812 A 特開2007−262451号公報JP 2007-262451 A 特開2007−246939号公報JP 2007-246939 A

しかし、オイルシール部材を焼結金属で形成すると、オイルシール部材に無数の表面開孔が形成される。この表面開孔を介して油圧室のオイルがオイルシール部材の内部に抜けると、油圧室の油圧が高まりにくくなり、可変バルブタイミング機構の応答性が低下する恐れがある。また、互いに摺動するハウジングの内周面(あるいはロータの外周面)とオイルシール部材の底面との間のオイルがオイルシール部材の内部に抜けると、摺動部に油膜が形成されにくくなるため、摺動部の潤滑性が低下し、各部材の耐摩耗性が低下する恐れがある。   However, when the oil seal member is made of sintered metal, numerous surface openings are formed in the oil seal member. If the oil in the hydraulic chamber falls out of the oil seal member through the surface opening, the hydraulic pressure in the hydraulic chamber is difficult to increase, and the responsiveness of the variable valve timing mechanism may be reduced. Further, if oil between the inner peripheral surface of the housing that slides relative to each other (or the outer peripheral surface of the rotor) and the bottom surface of the oil seal member escapes into the oil seal member, an oil film is hardly formed on the sliding portion. There is a risk that the lubricity of the sliding portion is lowered and the wear resistance of each member is lowered.

また、オイルシール部材を焼結金属で形成すると、さらに以下のような不具合が生じる恐れがある。尚、以下の説明では、凸曲面状の底面を有するオイルシール部材(図12参照)について説明するが、凹曲面状の底面を有するオイルシール部材(図9参照)も同様であるため、重複説明は省略する。   Further, when the oil seal member is formed of sintered metal, the following problems may occur. In the following description, an oil seal member (see FIG. 12) having a convex curved bottom surface will be described. However, since an oil seal member (see FIG. 9) having a concave curved bottom surface is the same, duplicated description will be given. Is omitted.

焼結金属製のオイルシール部材は、金属粉末を圧縮成形して圧粉体を形成した後、この圧粉体を所定の温度で焼結することにより形成される。圧縮成形工程では、図13(a)に示すように、ダイ141と下パンチ142とで形成されたキャビティに金属粉末M’を充填した後、図13(b)に示すように上パンチ143を降下させて金属粉末M’圧縮することにより、圧粉体Mが成形される。この金型では、図14に示すように、下パンチ142で圧粉体Mに凸曲面状の底面M1を成形している。その後、図13(c)に示すように、下パンチ142を上昇させて圧粉体Mをダイ141の成形孔から排出し、この圧粉体Mを水平方向に払い出すことにより、圧粉体Mが金型から取り出される。   The oil seal member made of sintered metal is formed by compression molding metal powder to form a green compact, and then sintering the green compact at a predetermined temperature. In the compression molding step, as shown in FIG. 13 (a), the metal powder M ′ is filled in the cavity formed by the die 141 and the lower punch 142, and then the upper punch 143 is moved as shown in FIG. 13 (b). The green compact M is formed by lowering and compressing the metal powder M ′. In this mold, as shown in FIG. 14, a bottom surface M 1 having a convex curved surface is formed on the green compact M by the lower punch 142. Thereafter, as shown in FIG. 13 (c), the lower punch 142 is raised to discharge the green compact M from the forming hole of the die 141, and the green compact M is discharged in the horizontal direction. M is removed from the mold.

ところで、圧縮成形工程において、例えば図15に示すように圧粉体Mの凸曲面状の底面M1をダイ141で成形すると、ダイ141の成形面に凹部141aを設ける必要が生じる。このため、圧粉体Mをダイ141の成形孔から排出する際に、ダイ141の凹部141aと圧粉体Mの凸曲面状の底面M1とが型抜き方向(図中上下方向)で係合するため、圧粉体Mをダイ141から排出することができない。   In the compression molding process, for example, as shown in FIG. 15, when a convex curved bottom surface M <b> 1 of the green compact M is molded with the die 141, it is necessary to provide a concave portion 141 a on the molding surface of the die 141. For this reason, when the green compact M is discharged from the forming hole of the die 141, the concave portion 141a of the die 141 and the convex curved bottom surface M1 of the green compact M are engaged in the die cutting direction (vertical direction in the figure). Therefore, the green compact M cannot be discharged from the die 141.

また、図16に示すように、圧粉体Mの曲面状の底面M1を上パンチ143で成形すると、図17(a)に示すように、長辺方向両端部に凸部M21を有する天面M2を下パンチ142で成形することとなる。この場合、圧粉体Mを金型から取り出す際、図17(b)に示すように下パンチ142と圧粉体Mの天面M2の凸部M21とが水平方向で係合するため、圧粉体Mを上方に持ち上げて下パンチ142と分離する必要がある。このように、圧粉体Mの離型に手間がかかることにより、オイルシール部材の生産性が低下する。   Also, as shown in FIG. 16, when the curved bottom M1 of the green compact M is formed with the upper punch 143, the top surface having convex portions M21 at both ends in the long side direction as shown in FIG. M2 is formed by the lower punch 142. In this case, when the green compact M is taken out from the mold, the lower punch 142 and the projection M21 of the top surface M2 of the green compact M are engaged in the horizontal direction as shown in FIG. It is necessary to lift the powder M upward and separate it from the lower punch 142. As described above, since it takes time to release the green compact M, the productivity of the oil seal member is lowered.

以上の理由から、従来の圧縮成形工程では、図13及び図14に示すように、圧粉体Mの曲面状の底面M1を下パンチ142で成形していた。しかし、この場合、図13(b)に示すように、圧粉体Mの天面M2の凸部M21が図中上方に突出するため、圧粉体Mの長辺方向両端部(凸部M21形成部分)と中央部(平坦部M22形成部分)とで圧縮方向(図中上下方向)の肉厚が異なる。肉厚が相対的に大きい厚肉部x’(図13(b)参照)では、圧縮率が小さくなるため焼結金属の密度が低くなり、肉厚が相対的に小さい薄肉部y’では、圧縮率が大きくなるため焼結金属の密度が高くなる。この場合、長辺方向両端部の厚肉部(低密度部)は強度が相対的に弱くなるため、例えば圧粉体Mを焼結工程に移送する際に低密度部に欠けや割れが生じる恐れがある。また、圧粉体の密度によって焼結時の変形量は異なるため、圧粉体の密度が場所によって異なると、焼結時の変形量にバラツキが生じ、オイルシール部材の寸法精度が低下する恐れがある。   For the above reasons, in the conventional compression molding process, the curved bottom M1 of the green compact M is molded with the lower punch 142 as shown in FIGS. However, in this case, as shown in FIG. 13B, since the convex portion M21 of the top surface M2 of the green compact M protrudes upward in the drawing, both ends in the long side direction of the green compact M (convex portion M21). The thickness in the compression direction (vertical direction in the figure) differs between the formation portion and the central portion (the flat portion M22 formation portion). In the thick portion x ′ having a relatively large thickness (see FIG. 13B), the density of the sintered metal is reduced because the compression rate is small, and in the thin portion y ′ having a relatively small thickness, Since the compression rate increases, the density of the sintered metal increases. In this case, since the strength of the thick wall portions (low density portions) at both ends in the long side direction is relatively weak, for example, when the green compact M is transferred to the sintering process, chipping or cracking occurs in the low density portions. There is a fear. In addition, since the amount of deformation during sintering differs depending on the density of the green compact, if the density of the green compact varies from place to place, the amount of deformation during sintering may vary and the dimensional accuracy of the oil seal member may be reduced. There is.

従来は、オイルシール部材120の厚肉部X’の肉厚H1’と薄肉部Y’の肉厚H2’との差をできるだけ小さくすることで、厚肉部X’と薄肉部Y’の密度差を小さくしていた(図12(b)参照)。しかし、この場合、オイルシール部材120の天面122の凸部122aと平坦部122bとの段差H3’が小さくなるため、板バネ109(図11(b)参照)の両端を係止しにくくなる。 Conventionally, by reducing the difference between the thickness H 1 ′ of the thick portion X ′ of the oil seal member 120 and the thickness H 2 ′ of the thin portion Y ′ as much as possible, the thick portion X ′ and the thin portion Y ′. The density difference was reduced (see FIG. 12B). However, in this case, since the step H 3 ′ between the convex portion 122a and the flat portion 122b of the top surface 122 of the oil seal member 120 is reduced, it is difficult to lock both ends of the leaf spring 109 (see FIG. 11B). Become.

例えば、特許文献2に示されているように圧粉体を一方向に整列させた状態で焼結する方法や、特許文献3に示されているように焼結工程を2段階に分けて行なう方法を採用すれば、圧粉体の損傷や焼結時の寸法精度の低下を抑えることができる。しかし、これらの方法を採用すると工数が増えるため、生産性が低下する。   For example, as shown in Patent Document 2, the green compact is sintered in a state of being aligned in one direction, or as shown in Patent Document 3, the sintering process is divided into two stages. If the method is adopted, damage to the green compact and reduction in dimensional accuracy during sintering can be suppressed. However, if these methods are adopted, the number of man-hours increases, resulting in a decrease in productivity.

本発明が解決すべき課題は、焼結金属製のオイルシール部材の表面開孔からのオイルの侵入を抑えて、可変バルブタイミング機構の応答性を高めると共に、オイルシール部材及びこれと摺動する部材の耐摩耗性を高めることにある。   The problem to be solved by the present invention is to suppress the intrusion of oil from the surface opening of the oil seal member made of sintered metal, improve the responsiveness of the variable valve timing mechanism, and slide with the oil seal member. The purpose is to increase the wear resistance of the member.

また、本発明が解決すべき課題は、圧粉体の密度を均一にすることにより、圧粉体の損傷を防止すると共に、焼結時の変形量のバラツキを抑えてオイルシール部材の寸法精度を高めることにある。   In addition, the problem to be solved by the present invention is to make the density of the green compact uniform, thereby preventing damage to the green compact and suppressing variation in the amount of deformation during sintering. Is to increase.

前記課題を解決するために、本発明は、可変バルブタイミング機構のロータとハウジングとの間に設けられた複数の油圧室を液密的に区画し、焼結金属で細長形状に形成されたオイルシール部材であって、長辺方向両端部に凸部を有する天面と、天面の反対側に設けられ、短辺方向で湾曲した曲面状を成した底面とを備え、底面が、焼結後のサイジングにより曲面状に成形された面であることを特徴とする。   In order to solve the above-mentioned problems, the present invention provides an oil formed into a slender shape by sintering a plurality of hydraulic chambers provided between a rotor and a housing of a variable valve timing mechanism in a liquid-tight manner. A sealing member, comprising a top surface having convex portions at both ends in the long side direction and a bottom surface having a curved surface provided on the opposite side of the top surface and curved in the short side direction. The surface is formed into a curved surface by subsequent sizing.

また、前記課題を解決するために、本発明は、可変バルブタイミング機構のロータとハウジングとの間に設けられた複数の油圧室を液密的に区画し、焼結金属で細長形状に形成されたオイルシール部材を製造するための方法であって、金属粉末を圧縮成形することにより、長辺方向両端部に凸部を有する天面、及び、該天面の反対側に設けられた平坦な底面を備えた圧粉体を成形する圧縮成形工程と、圧粉体を焼結して焼結体を得る焼結工程と、焼結体の平坦な底面を、短辺方向で湾曲した曲面状に成形するサイジング工程とを経て行なわれるものである。   In order to solve the above-mentioned problems, the present invention provides a plurality of hydraulic chambers provided between a rotor and a housing of a variable valve timing mechanism in a liquid-tight manner, and is formed into an elongated shape with sintered metal. A method for manufacturing an oil seal member, comprising compressing and molding metal powder, a top surface having convex portions at both ends in the long side direction, and a flat surface provided on the opposite side of the top surface A compression molding process for forming a green compact with a bottom surface, a sintering process for obtaining a sintered body by sintering the green compact, and a curved bottom surface in which the flat bottom surface of the sintered body is curved in the short side direction. It is performed through a sizing process for forming the film.

圧縮成形工程では、金属粉末同士が結合されていない状態で金型のキャビティに充填されているため、金属粉末の流動性が比較的高い。このため、圧縮成形工程では、圧縮により金属粉末が流動し、圧粉体の密度が全体的に高まる。これに対し、サイジング工程では、焼結工程を経て金属粉末同士が結合されているため、金属粉末の流動性は非常に低い。このため、サイジング工程で焼結体を成形すると、金型の圧迫力が焼結体の内部まで伝わりにくく、焼結体の表層部分のみが押し潰された状態となる。   In the compression molding process, the metal powder is relatively high in fluidity because the metal cavities are filled in a state where the metal powders are not bonded to each other. For this reason, in a compression molding process, metal powder flows by compression and the density of a green compact increases as a whole. On the other hand, in the sizing process, the metal powders are bonded to each other through the sintering process, so the fluidity of the metal powder is very low. For this reason, if a sintered compact is shape | molded by a sizing process, the pressing force of a metal mold | die will be hard to be transmitted to the inside of a sintered compact, and it will be in the state by which only the surface layer part of the sintered compact was crushed.

従って、上記のように、オイルシール部材の底面を、圧縮成形工程ではなく、焼結後のサイジングにより曲面状に成形することで、底面の表層部分が押し潰されて目潰しされた状態となり、底面の表面開孔率を小さくすることができる。これにより、底面からのオイルの侵入を抑えることができるため、油圧室の油圧が高まりやすくなってロータの回転の応答性が高められる。また、オイルシール部材とハウジングあるいはロータとの間に油膜が形成されやすくなるため、摺動部の潤滑性が高められ、各部材の耐摩耗性が高められる。   Therefore, as described above, the bottom surface of the oil seal member is not a compression molding process, but is formed into a curved surface by sizing after sintering, so that the surface layer portion of the bottom surface is crushed and crushed. It is possible to reduce the surface area ratio of the surface. As a result, the intrusion of oil from the bottom surface can be suppressed, so that the hydraulic pressure in the hydraulic chamber is easily increased and the responsiveness of the rotation of the rotor is enhanced. In addition, since an oil film is easily formed between the oil seal member and the housing or the rotor, the lubricity of the sliding portion is enhanced, and the wear resistance of each member is enhanced.

上記のオイルシール部材の底面が短辺方向中央部を頂点とした凸曲面状を成している場合、サイジング時の圧縮率の差により、短辺方向両端部における表面開孔率が短辺方向中央部における表面開孔率よりも小さくなる。一方、オイルシール部材の底面が短辺方向中央部を頂点とした凹曲面状を成している場合、サイジング時の圧縮率の差により、短辺方向中央部における表面開孔率が短辺方向両端部における表面開孔率よりも小さくなる。   When the bottom surface of the oil seal member has a convex curved shape with the central part in the short side direction as the apex, the surface open area ratio at both ends in the short side direction is reduced in the short side direction due to the difference in compression rate during sizing. It becomes smaller than the surface opening rate in the central part. On the other hand, when the bottom surface of the oil seal member has a concave curved surface shape with the central portion in the short side direction as the apex, the surface open area ratio in the central portion in the short side direction is reduced in the short side direction due to the difference in compression rate during sizing. It becomes smaller than the surface area ratio at both ends.

また、圧縮成形工程での圧粉体の圧縮方向と、サイジング工程での焼結体の圧縮方向を異ならせることで、圧粉体の密度を均一化することができる。具体的には、圧縮成形工程において、圧粉体の底面の短辺方向両側に設けられた一対の平坦な側面を上下パンチで圧縮することにより、圧粉体の圧縮方向の肉厚が一定となるため、圧粉体の圧縮率を均一にして密度を均一化することができる。この場合、圧粉体の底面を平坦に成形することにより、図15で示すような圧縮成形工程におけるダイと圧粉体との干渉の問題を回避できる。そして、その後のサイジング工程において、焼結体の天面及び底面を上下パンチで圧縮することにより、焼結体の平坦な底面を曲面状に成形することができる。   Further, the density of the green compact can be made uniform by making the compression direction of the green compact in the compression molding process different from the compression direction of the sintered body in the sizing process. Specifically, in the compression molding process, by compressing a pair of flat side surfaces provided on both sides of the bottom surface of the green compact with upper and lower punches, the thickness of the green compact in the compression direction is constant. Therefore, the density of the green compact can be made uniform by making the compression ratio uniform. In this case, the problem of interference between the die and the green compact in the compression molding process as shown in FIG. 15 can be avoided by forming the bottom surface of the green compact flat. In the subsequent sizing step, the flat bottom surface of the sintered body can be formed into a curved surface by compressing the top and bottom surfaces of the sintered body with the upper and lower punches.

ところで、従来のオイルシール部材の製造方法(図13及び図14参照)によると、オイルシール部材の厚肉部の肉厚H1と薄肉部の肉厚H2の肉厚差が大きいと(すなわち、厚肉部と薄肉部の肉厚比H2/H1が小さいと)、圧粉体の厚肉部と薄肉部とで圧縮率の差が大きくなる。このため、表1に示すように、厚肉部と薄肉部の肉厚比H2/H1が0.7未満であると、圧粉体の厚肉部(凸部)を十分な圧縮率で成形することができず、厚肉部が低密度となって強度不足を招くため、成形が困難であった。肉厚比H2/H1を0.7以上0.75未満とすれば、従来の方法でも成形することはできるものの、圧粉体の厚肉部の強度が十分でなく、割れや欠けが生じる恐れがあった。 By the way, according to the conventional method for manufacturing an oil seal member (see FIGS. 13 and 14), if the thickness difference between the thickness H 1 of the thick portion and the thickness H 2 of the thin portion of the oil seal member is large (that is, When the thickness ratio H 2 / H 1 between the thick part and the thin part is small), the difference in compression ratio between the thick part and the thin part of the green compact becomes large. For this reason, as shown in Table 1, when the thickness ratio H 2 / H 1 between the thick part and the thin part is less than 0.7, the thick part (convex part) of the green compact is sufficiently compressed. In this case, it was difficult to mold, and the thick part was low in density, resulting in insufficient strength. If the thickness ratio H 2 / H 1 is 0.7 or more and less than 0.75, the conventional method can be used for molding, but the thickness of the thick part of the green compact is not sufficient, and there are no cracks or chips. There was a fear.

Figure 2011226470
Figure 2011226470

そこで、本発明に係る方法によれば、オイルシール部材の密度を均一化できるため、表1に示すように、肉厚比H2/H1を0.7未満、さらには0.6未満とした場合でも十分な強度を得ることができる。ただし、肉厚比H2/H1が0.4未満では、薄肉部の肉厚が薄すぎて、圧縮成形工程において圧粉体の薄肉部を成形する金型の製作が極めて困難になるため、実際には成形することができない。また、肉厚比H2/H1を0.5未満とした場合には、使用することはできるが、圧粉体の凸部の突出量(厚肉部と薄肉部の肉厚差)が大きくなるため、凸部に割れや欠けが生じやすくなる。従って、H2/H1は0.4以上、好ましくは0.5以上とするとよい。 Therefore, according to the method of the present invention, since the density of the oil seal member can be made uniform, as shown in Table 1, the thickness ratio H 2 / H 1 is less than 0.7, and further less than 0.6. Even in such a case, sufficient strength can be obtained. However, if the thickness ratio H 2 / H 1 is less than 0.4, the thickness of the thin portion is too thin, and it becomes extremely difficult to manufacture a mold for forming the thin portion of the green compact in the compression molding process. In fact, it cannot be molded. In addition, when the thickness ratio H 2 / H 1 is less than 0.5, it can be used, but the protruding amount of the convex part of the green compact (thickness difference between the thick part and the thin part) is Since it becomes large, it becomes easy to produce a crack and a chip | tip in a convex part. Therefore, H 2 / H 1 is 0.4 or more, preferably 0.5 or more.

以上より、オイルシール部材の厚肉部と薄肉部の肉厚比H2/H1、すなわち、天面の凸部と底面との間の距離H1と、天面の凸部の長辺方向間領域と底面との間の距離H2との比H2/H1は、0.4以上0.7未満とすることが好ましい。このように、厚肉部と薄肉部の肉厚比H2/H1を小さくすることにより、天面の凸部の突出量を大きくすることができ、板バネを係止しやすくなる。また、厚肉部と薄肉部の肉厚比H2/H1を小さくするためには、厚肉部の肉厚H1を大きくするか、あるいは、薄肉部の肉厚H2を小さくすることが考えられる。しかし、厚肉部の肉厚H1は、ベーン103やハウジング104に設けられる溝部105a,106a(図11参照)の溝深さにより制限されるため、大きくすることは困難である。従って、薄肉部の肉厚H2を小さくすればよく、これにより、オイルシール部材の小型化及び軽量化が図られる。 From the above, the thickness ratio H 2 / H 1 between the thick part and the thin part of the oil seal member, that is, the distance H 1 between the convex part on the top surface and the bottom surface, and the long side direction of the convex part on the top surface The ratio H 2 / H 1 of the distance H 2 between the intermediate region and the bottom surface is preferably 0.4 or more and less than 0.7. As described above, by reducing the thickness ratio H 2 / H 1 between the thick part and the thin part, the protrusion amount of the convex part on the top surface can be increased, and the leaf spring can be easily locked. In order to reduce the wall thickness ratio H 2 / H 1 of the thick portion and the thin portion, increase the thickness H 1 of the thick portion, or reducing the thickness of H 2 thin portion Can be considered. However, since the thickness H 1 of the thick portion is limited by the groove depth of the grooves 105a and 106a (see FIG. 11) provided in the vane 103 and the housing 104, it is difficult to increase the thickness H 1 . Therefore, it is only necessary to reduce the thickness H 2 of the thin wall portion, thereby reducing the size and weight of the oil seal member.

ところで、オイルシール部材は細長形状を成しているため、サイジング工程の後、サイジング金型からオイルシール部材を取り出すと、スプリングバックによりオイルシール部材20’に図18に示すような反りが生じることがある。この場合、サイジング金型どおりの形状にオイルシール部材20’を仕上げることができないため、オイルシール部材20’の寸法精度が低下する恐れがある。特に、オイルシール部材20’の底面21’に反りが生じると、ハウジングとの接触状態が悪化し、シール性能の低下を招く恐れがある。従って、焼結体の底面を、短辺方向に湾曲し、且つ、長辺方向に直線状である曲面状に成形するサイジング金型の成形面を、長辺方向で湾曲させることにより、サイジングによりオイルシール部材に生じる反りを相殺することが好ましい。   By the way, since the oil seal member has an elongated shape, if the oil seal member is taken out of the sizing mold after the sizing process, the oil seal member 20 ′ warps as shown in FIG. 18 due to the spring back. There is. In this case, since the oil seal member 20 'cannot be finished in a shape that matches the sizing mold, the dimensional accuracy of the oil seal member 20' may be reduced. In particular, if the bottom surface 21 ′ of the oil seal member 20 ′ is warped, the contact state with the housing is deteriorated, and the sealing performance may be reduced. Therefore, by sizing the sizing mold by bending the bottom surface of the sintered body in the short side direction and forming the curved surface that is linear in the long side direction in the long side direction. It is preferable to cancel the warpage generated in the oil seal member.

以上のように、本発明によれば、焼結金属製のオイルシール部材の底面の表面開孔率を小さくすることで、底面からのオイルの侵入が抑えられるため、ロータの回転の応答性が高められると共に、オイルシール部材及びこれと摺動する部材の耐摩耗性が高められる。   As described above, according to the present invention, since the intrusion of oil from the bottom surface can be suppressed by reducing the surface porosity of the bottom surface of the oil seal member made of sintered metal, the responsiveness of the rotation of the rotor is reduced. In addition to being enhanced, the wear resistance of the oil seal member and the sliding member is enhanced.

また、本発明によれば、圧粉体の密度を均一にすることができるため、圧粉体に局部的な脆弱部が形成されないため圧粉体の損傷を防止できると共に、焼結時の変形量のバラツキを抑えてオイルシール部材の寸法精度が高められる。   In addition, according to the present invention, since the density of the green compact can be made uniform, local weak parts are not formed in the green compact, so that the green compact can be prevented from being damaged and deformed during sintering. The dimensional accuracy of the oil seal member is increased by suppressing variation in the amount.

本発明の一実施形態に係るオイルシール部材の(a)平面図、(b)側面図、及び(c)正面図である。It is (a) top view, (b) side view, and (c) front view of an oil seal member concerning one embodiment of the present invention. オイルシール部材とハウジングとの摺動部を示す断面図である。It is sectional drawing which shows the sliding part of an oil seal member and a housing. オイルシール部材の製造工程を示す図である。It is a figure which shows the manufacturing process of an oil seal member. 圧粉体の(a)平面図、(b)側面図、(c)正面図である。It is (a) top view, (b) side view, (c) front view of a green compact. (a)は圧縮成形金型の長辺方向断面図、(b)は(a)図のB−B線における断面図、(c)は(b)図のC−C線における断面図、(d)は(b)図のD−D線における断面図である。(A) is a cross-sectional view in the long side direction of the compression molding die, (b) is a cross-sectional view taken along line BB in FIG. (A), (c) is a cross-sectional view taken along line CC in FIG. d) is a sectional view taken along line DD in FIG. 圧縮成形金型から圧粉体を離型する様子を示す長辺方向断面図である。It is a long side direction sectional view showing signs that a green compact is released from a compression mold. サイジング金型の短辺方向断面図である。It is a short side direction sectional view of a sizing die. サイジング金型の長辺方向断面図である。It is a long side direction sectional view of a sizing metal mold. 他の実施形態に係るオイルシール部材の(a)平面図、(b)側面図、及び(c)正面図である。It is (a) top view, (b) side view, and (c) front view of an oil seal member concerning other embodiments. 他の実施形態に係るサイジング金型の短辺方向断面図である。It is a short side direction sectional view of a sizing die concerning other embodiments. (a)は可変バルブタイミング機構のカムシャフト軸方向と直交する方向の断面図であり、(b)は(a)図のX−X線における断面図、(c)は(a)図のY−Y線における断面図である。(A) is sectional drawing of the direction orthogonal to the cam shaft axial direction of a variable valve timing mechanism, (b) is sectional drawing in the XX line of (a) figure, (c) is Y of (a) figure. It is sectional drawing in the -Y line. 図11(a)のオイルシール部材の(a)平面図、(b)側面図、及び(c)正面図である。It is the (a) top view, (b) side view, and (c) front view of the oil seal member of FIG. (a)〜(c)は従来のオイルシール部材の製造方法における圧縮成形金型の長辺方向断面図である。(A)-(c) is a longitudinal cross-sectional view of the compression mold in the manufacturing method of the conventional oil seal member. 図13(b)の圧縮成形金型の短辺方向断面図である。It is a short side direction sectional view of the compression molding die of Drawing 13 (b). 他の圧縮成形金型の短辺方向断面図である。It is sectional drawing of the short side direction of another compression molding metal mold | die. 他の圧縮成形金型の短辺方向断面図である。It is sectional drawing of the short side direction of another compression molding metal mold | die. (a)及び(b)は図16の圧縮成形金型の短辺方向断面図である。(A) And (b) is a short side direction sectional view of the compression molding die of FIG. 反りが生じたオイルシール部材の側面図である。It is a side view of the oil seal member which warped.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の一実施形態にかかるオイルシール部材20は、図11に示すオイルシール部材120と同様の箇所、すなわち、可変バルブタイミング機構100のハウジング104とベーン105との間に設けられる。オイルシール部材20は、焼結金属で形成され、例えば銅や鉄、あるいは銅−鉄合金を主成分とした焼結金属で形成される。オイルシール部材20は、図12に示すオイルシール部材120と同様の形状を成し、具体的には図1に示すように、底面21と、底面21の反対側に設けられた天面22と、底面21の短辺方向両側に設けられた一対の平坦な側面23,23と、底面21の長辺方向両側に設けられた一対の平坦な端面24,24とを備える。底面21はハウジング104の内周面と摺動し、端面24はハウジング104の内部側端面と摺動する(図11(b)のオイルシール部材120を参照)。   The oil seal member 20 according to the embodiment of the present invention is provided at the same location as the oil seal member 120 shown in FIG. 11, that is, between the housing 104 and the vane 105 of the variable valve timing mechanism 100. The oil seal member 20 is formed of a sintered metal, for example, a sintered metal mainly composed of copper, iron, or a copper-iron alloy. The oil seal member 20 has the same shape as the oil seal member 120 shown in FIG. 12, and specifically, as shown in FIG. 1, a bottom surface 21 and a top surface 22 provided on the opposite side of the bottom surface 21 And a pair of flat side surfaces 23, 23 provided on both sides of the bottom surface 21 in the short side direction and a pair of flat end surfaces 24, 24 provided on both sides of the bottom surface 21 in the long side direction. The bottom surface 21 slides with the inner peripheral surface of the housing 104, and the end surface 24 slides with the inner side end surface of the housing 104 (see the oil seal member 120 in FIG. 11B).

天面22は、長辺方向両端部に設けられた一対の凸部22aと、その長辺方向間領域に設けられた平坦部22bとを有する。これにより、凸部22aの形成領域に、天面22と底面21とが対向する方向(図1(b)の上下方向)の肉厚が相対的に厚い厚肉部Xが設けられ、平坦部22bの形成領域に、同方向の肉厚が相対的に薄い薄肉部Yが設けられる。厚肉部Xの肉厚H1と薄肉部Yの肉厚H2との比H2/H1は、0.4以上0.7未満の範囲内、好ましくは0.5以上0.6未満の範囲内に設定される。オイルシール部材20の軸方向全長寸法Lは15〜30mm程度であり、この軸方向全長寸法Lと厚肉部Xの肉厚H1との比L/H1は、5〜10の範囲内、好ましくは6〜8の範囲内とされる。一対の凸部22aの長辺方向間には板バネ109(図11(b)参照)が装着され、板バネ109の両端が一対の凸部22aで係止される。凸部22aの長辺方向外側には、面取り部25が設けられる。尚、面取り部25は、省略したり図示よりも小さくしたりすることもできる。 The top surface 22 has a pair of convex portions 22a provided at both ends in the long side direction and a flat portion 22b provided in the region between the long side directions. Thereby, the thick portion X having a relatively thick thickness in the direction in which the top surface 22 and the bottom surface 21 face each other (the vertical direction in FIG. 1B) is provided in the formation region of the convex portion 22a. A thin portion Y having a relatively thin thickness in the same direction is provided in the formation region 22b. The ratio H 2 / H 1 and the wall thickness of H 2 thickness H 1 and the thin portion Y of the thick portion X is in the range of 0.4 or more and less than 0.7, preferably less than 0.5 to 0.6 Is set within the range. The total axial length L of the oil seal member 20 is about 15 to 30 mm, and the ratio L / H 1 between the total axial length L and the thickness H 1 of the thick portion X is in the range of 5 to 10, Preferably it is set within the range of 6-8. A leaf spring 109 (see FIG. 11B) is mounted between the long sides of the pair of convex portions 22a, and both ends of the leaf spring 109 are locked by the pair of convex portions 22a. A chamfered portion 25 is provided outside the convex portion 22a in the long side direction. The chamfered portion 25 can be omitted or made smaller than the illustration.

底面21は、図1(c)に示すように、短辺方向で円弧状に湾曲した凸曲面状に形成され、本実施形態では、短辺方向中央部を頂点とした凸円筒面状に形成される。オイルシール部材20の底面21は、図2に示すように、ハウジング104の内周面104aと接触する。このため、オイルシール部材20による密閉性を高めるためには、オイルシール部材20の底面21の曲率とハウジング104の内周面104aの曲率とを完全に一致させ、これらの面を面接触させることが理想的である。しかし、これらの面の曲率を完全に一致させることは現実的には不可能であるため、オイルシール部材20の底面21の曲率を、ハウジング104の内周面104aの曲率よりも僅かに大きくし(曲率半径を僅かに小さくし)、これらの面を面接触に近い線接触状態としている。これにより、底面21の短辺方向中央部21aがハウジング104の内周面104aと線接触し(接触部をPで示す)、底面21の短辺方向両端部21bがハウジング104の内周面と隙間を介して対向している。これにより、底面21とハウジング104の内周面104aとの間には、接触部Pへ向けて先細り形状を成した隙間Qが形成され、この隙間Q及び接触部Pに油膜が形成される。   As shown in FIG. 1C, the bottom surface 21 is formed in a convex curved surface curved in an arc shape in the short side direction. In this embodiment, the bottom surface 21 is formed in a convex cylindrical surface with the central part in the short side direction as a vertex. Is done. The bottom surface 21 of the oil seal member 20 is in contact with the inner peripheral surface 104a of the housing 104 as shown in FIG. For this reason, in order to improve the sealing performance by the oil seal member 20, the curvature of the bottom surface 21 of the oil seal member 20 and the curvature of the inner peripheral surface 104a of the housing 104 are completely matched, and these surfaces are brought into surface contact. Is ideal. However, since it is practically impossible to completely match the curvatures of these surfaces, the curvature of the bottom surface 21 of the oil seal member 20 is made slightly larger than the curvature of the inner peripheral surface 104a of the housing 104. (The curvature radius is slightly reduced), and these surfaces are in a line contact state close to surface contact. Thereby, the short side direction central portion 21 a of the bottom surface 21 is in line contact with the inner peripheral surface 104 a of the housing 104 (the contact portion is indicated by P), and both short side direction end portions 21 b of the bottom surface 21 are in contact with the inner peripheral surface of the housing 104. It is opposed through a gap. Thereby, a gap Q having a tapered shape toward the contact portion P is formed between the bottom surface 21 and the inner peripheral surface 104 a of the housing 104, and an oil film is formed in the gap Q and the contact portion P.

オイルシール部材20の底面21は、サイジングにより凸曲面状に成形された面である。このため、底面21の表面は目潰しされた状態となっており、表面開孔率が、例えば天面22の表面開孔率よりも小さくなっている。中でも底面21の短辺方向両端部21bは、サイジングによる圧縮率が高いため表面開孔率が特に小さく、底面21の短辺方向中央部21aよりも表面開孔率が小さい。   The bottom surface 21 of the oil seal member 20 is a surface formed into a convex curved surface by sizing. For this reason, the surface of the bottom surface 21 is in a crushed state, and the surface porosity is smaller than the surface porosity of the top surface 22, for example. In particular, the short-side end portions 21b of the bottom surface 21 have a particularly small surface opening ratio because of a high compression ratio by sizing, and the surface opening ratio is smaller than the short-side direction center portion 21a of the bottom surface 21.

このように、底面21の表面開孔率が小さいことにより、各油圧室のオイルが底面21からオイルシール部材20の内部に侵入しにくくなるため、各油圧室に油圧を供給したときのロータ103(図10参照)の回転の応答性が高められる。また、底面21の表面開孔率が小さいことにより、オイルシール部材20とハウジング104との摺動部(接触部P及び隙間Q)のオイルがオイルシール部材20の内部に抜けにくい。このため、摺動部に油膜が形成された状態を維持して潤滑性を高めることができるため、オイルシール部材20及びハウジング104の耐摩耗性が高められる。   Thus, since the surface opening rate of the bottom surface 21 is small, the oil in each hydraulic chamber is less likely to enter the oil seal member 20 from the bottom surface 21, and therefore the rotor 103 when the hydraulic pressure is supplied to each hydraulic chamber. The responsiveness of rotation (see FIG. 10) is improved. Further, since the surface area ratio of the bottom surface 21 is small, the oil in the sliding portion (contact portion P and gap Q) between the oil seal member 20 and the housing 104 is difficult to escape into the oil seal member 20. For this reason, since the lubricity can be enhanced while maintaining the state in which the oil film is formed on the sliding portion, the wear resistance of the oil seal member 20 and the housing 104 is enhanced.

以下、上記構成のオイルシール部材20の製造方法を説明する。オイルシール部材20は、図3に示すように、金属粉末を圧縮成形して圧粉体30を成形する圧縮成形工程、圧粉体30を焼結して焼結体40を得る焼結工程、及び、焼結体40を所定寸法にサイジングするサイジング工程を経て製造される。   Hereinafter, a method for manufacturing the oil seal member 20 having the above configuration will be described. As shown in FIG. 3, the oil seal member 20 includes a compression molding process in which a metal powder is compression molded to form a green compact 30, a sintering process in which the green compact 30 is sintered to obtain a sintered body 40, And it manufactures through the sizing process which sizes the sintered compact 40 to a predetermined dimension.

圧縮成形工程で成形される圧粉体30は、図4に示すように、底面31が平坦面となっている。この他、圧粉体30は、凸部32a及び平坦部32bを有する天面32と、側面33と、端面34と、面取り部35とを有するが、これらの面の形状は、焼結工程やサイジング工程による若干の寸法変化を除き、図1に示すオイルシール部材20と同様であるため、詳細な説明は省略する。   As shown in FIG. 4, the green compact 30 formed in the compression molding process has a flat bottom surface 31. In addition, the green compact 30 includes a top surface 32 having a convex portion 32a and a flat portion 32b, a side surface 33, an end surface 34, and a chamfered portion 35. Except for a slight change in dimensions due to the sizing process, the oil seal member 20 is the same as that shown in FIG.

圧縮成形工程では、図5(a)に示すように、ダイ51の成形孔51a及び下パンチ52の成形面52aで形成されたキャビティに金属粉末を充填し、上パンチ53を降下させて金属粉末を圧縮することにより、圧粉体30が成形される。この金型では、上パンチ53及び下パンチ52で圧粉体30の一対の平坦な側面33,33が圧縮成形され、これと同時に、ダイ51の成形孔51aで圧粉体30の底面31、天面32、端面34、及び面取り部35が成形される(図5(b)参照)。ダイ51の成形孔51aの内面(成形面)は全て圧縮方向と平行な平坦面であり、このため圧粉体30の底面31、天面32、端面34、及び面取り部35は平坦に成形される(図4参照)。   In the compression molding process, as shown in FIG. 5A, the metal powder is filled in the cavity formed by the molding hole 51a of the die 51 and the molding surface 52a of the lower punch 52, and the upper punch 53 is lowered to lower the metal powder. The green compact 30 is formed by compressing. In this mold, the pair of flat side surfaces 33 and 33 of the green compact 30 are compression-molded by the upper punch 53 and the lower punch 52, and at the same time, the bottom surface 31 of the green compact 30 is formed by the molding hole 51 a of the die 51. The top surface 32, the end surface 34, and the chamfered portion 35 are formed (see FIG. 5B). The inner surface (molding surface) of the molding hole 51a of the die 51 is all a flat surface parallel to the compression direction. Therefore, the bottom surface 31, the top surface 32, the end surface 34, and the chamfered portion 35 of the green compact 30 are molded flat. (See FIG. 4).

このように、圧粉体30の一対の平坦な側面33,33を上パンチ53及び下パンチ52で圧縮して成形することで、圧粉体30の圧縮方向の肉厚を一定にすることができる。具体的には、図5(a),(c),及び(d)の何れの圧縮方向断面においても、圧粉体30の肉厚が一定となっている。このため、圧粉体30の圧縮率が全域で一定となり、密度を均一にすることができる。これにより、圧粉体30の密度が均一となり、圧粉体30に局部的な低密度部(すなわち脆弱部)が形成されることがないため、焼結工程への移送時等に圧粉体30が損傷する事態を防止できる。   Thus, by compressing and molding the pair of flat side surfaces 33, 33 of the green compact 30 with the upper punch 53 and the lower punch 52, the thickness of the green compact 30 in the compression direction can be made constant. it can. Specifically, the thickness of the green compact 30 is constant in any of the cross sections in the compression direction of FIGS. 5 (a), (c), and (d). For this reason, the compression ratio of the green compact 30 is constant throughout the entire area, and the density can be made uniform. As a result, the density of the green compact 30 becomes uniform, and a local low density portion (that is, a fragile portion) is not formed on the green compact 30. The situation where 30 is damaged can be prevented.

また、圧粉体30の密度が一定となることで、圧粉体30の厚肉部xの肉厚h1に対して薄肉部yの肉厚h2を小さくすることで、凸部32aと平坦部32bとの間の段差h3を大きくすることができる(図4(b)参照)。従って、オイルシール部材20の厚肉部Xの肉厚H1に対して薄肉部Yの肉厚H2を小さくして、凸部22aと平坦部22bとの間の段差H3を大きくすることができ(図1(b)参照)、これにより板バネ109(図11(b)参照)を係止しやすくなる。また、薄肉部Yの肉厚H2を小さくすることで、オイルシール部材20の小型化及び軽量化が図られる。 Further, by making the density of the green compact 30 constant, the thickness h 2 of the thin portion y is made smaller than the thickness h 1 of the thick portion x of the green compact 30 so that the convex portion 32 a The level difference h 3 between the flat portion 32b can be increased (see FIG. 4B). Accordingly, the thickness H 2 of the thin portion Y is reduced with respect to the thickness H 1 of the thick portion X of the oil seal member 20, and the step H 3 between the convex portion 22a and the flat portion 22b is increased. (See FIG. 1B), which makes it easier to lock the leaf spring 109 (see FIG. 11B). Further, by reducing the thickness H 2 of the thin wall portion Y, the oil seal member 20 can be reduced in size and weight.

その後、図6に示すように、上パンチ53及び下パンチ52を圧粉体30と共に上昇させ、ダイ51の成形孔51aから圧粉体30を排出する。このとき、ダイ51の成形孔51a、及び成形孔51aで成形された圧粉体30の底面31等が、何れも圧縮方向(すなわち型抜き方向)と平行な平坦面であるため、ダイ51と圧粉体30とが型抜き方向で係合することはない。その後、下パンチ52の上に載置された圧粉体30を水平方向に払い出すことにより、圧粉体30を簡単に離型することができる。このとき、下パンチ52の平坦な成形面52aで圧粉体30の平坦な側面33が成形されているため、これらの面が水平方向で係合することはない。   Thereafter, as shown in FIG. 6, the upper punch 53 and the lower punch 52 are raised together with the green compact 30, and the green compact 30 is discharged from the forming hole 51 a of the die 51. At this time, since the forming hole 51a of the die 51 and the bottom surface 31 of the green compact 30 formed by the forming hole 51a are all flat surfaces parallel to the compression direction (that is, the die cutting direction), The green compact 30 does not engage in the mold release direction. Thereafter, the green compact 30 placed on the lower punch 52 is discharged in the horizontal direction, whereby the green compact 30 can be easily released. At this time, since the flat side surface 33 of the green compact 30 is formed by the flat forming surface 52a of the lower punch 52, these surfaces do not engage in the horizontal direction.

焼結工程では、圧粉成形工程から移送された圧粉体30を所定の温度で焼結することにより、圧粉体30の金属粉末同士を結合し、焼結体40が得られる。焼結体40は、圧粉体30とほぼ同一形状であるため、詳細な説明は省略する。この焼結工程における加熱により圧粉体30に寸法変化が生じるが、上記のように圧粉体30の密度が均一であるため、焼結時の変形量が均一となり、圧粉体30を焼結して焼結体40を形成する際の寸法精度の低下(特に形状変化)を抑えることができる。   In the sintering step, the green compact 30 transferred from the green compacting step is sintered at a predetermined temperature, whereby the metal powders of the green compact 30 are bonded to each other, and the sintered body 40 is obtained. Since the sintered body 40 has substantially the same shape as the green compact 30, detailed description thereof is omitted. Although the dimensional change occurs in the green compact 30 due to heating in this sintering process, since the density of the green compact 30 is uniform as described above, the amount of deformation during sintering becomes uniform, and the green compact 30 is sintered. As a result, a decrease in dimensional accuracy (particularly a change in shape) when forming the sintered body 40 can be suppressed.

サイジング工程では、圧縮成形工程における圧粉体30の圧縮方向とは異なる方向で、焼結体40を圧縮する。具体的には、図7に示すように、ダイ61の成形孔61aの内周に配した焼結体40(点線で示す)の底面41及び天面42を、上パンチ62及び下パンチ63で上下から圧縮する。下パンチ63の成形面63aの形状は、短辺方向中央部をへこませた凹曲面状を成しており、この成形面63aを焼結体40に押し付けることで、オイルシール部材20の凸曲面状の底面21が成形される。尚、サイジング工程は、焼結体40を図7に示す方向と上下反転させた状態、すなわち、焼結体40の天面42を下向きにした状態で行うこともできる。この場合、サイジング工程の後、焼結体40の天面42の凸部と下パンチとが水平方向で係合するが、サイジングが施された後の焼結体40は強度及び硬度が非常に高いため、例えばエアを吹き付けて飛ばすことにより簡単に離型することができる。   In the sizing process, the sintered body 40 is compressed in a direction different from the compression direction of the green compact 30 in the compression molding process. Specifically, as shown in FIG. 7, the bottom punch 41 and the top surface 42 of the sintered body 40 (shown by dotted lines) disposed on the inner periphery of the forming hole 61 a of the die 61 are replaced by the upper punch 62 and the lower punch 63. Compress from above and below. The shape of the molding surface 63a of the lower punch 63 is a concave curved surface with a concave central portion in the short side direction. By pressing the molding surface 63a against the sintered body 40, the convexity of the oil seal member 20 is formed. A curved bottom surface 21 is formed. The sizing process can also be performed in a state where the sintered body 40 is turned upside down with respect to the direction shown in FIG. 7, that is, in a state where the top surface 42 of the sintered body 40 faces downward. In this case, after the sizing step, the convex portion of the top surface 42 of the sintered body 40 and the lower punch are engaged in the horizontal direction. However, the sintered body 40 after sizing has very high strength and hardness. Since it is high, for example, it can be easily released by blowing and blowing air.

このサイジング工程により、焼結体40の表層部分が押し潰され、オイルシール部材20の表面開孔率が小さくなる。特に、平坦面(焼結体40の底面41)から曲面状に成形されるオイルシール部材20の底面21は、サイジング工程による変形量(圧縮率)が大きいため、表面開孔率が小さくなる。中でも、底面21の短辺方向両端部は、変形量が特に大きいため、短辺方向中央部と比べて表面開孔率が小さくなる。一般に、焼結金属の表面において、表面開孔率が小さい部分は、表面開孔率が大きい部分と比べて光沢がある。従って、本実施形態のオイルシール部材20の底面21は、短辺方向両端部が中央部よりも光沢がある。換言すれば、底面21の短辺方向両端部と中央部とで光沢差が生じている場合は、この面がサイジングにより曲面状に成形されたものと推定することができる。   By this sizing process, the surface layer portion of the sintered body 40 is crushed, and the surface opening ratio of the oil seal member 20 is reduced. In particular, the bottom surface 21 of the oil seal member 20 formed into a curved surface from the flat surface (the bottom surface 41 of the sintered body 40) has a large surface deformation rate due to a large amount of deformation (compression rate) due to the sizing process. Especially, since the deformation | transformation amount is especially large in the short side direction both ends of the bottom face 21, surface opening rate becomes small compared with the short side direction center part. In general, on the surface of a sintered metal, a portion having a small surface porosity is more glossy than a portion having a large surface porosity. Therefore, the bottom surface 21 of the oil seal member 20 according to the present embodiment has gloss at both ends in the short side direction than at the center. In other words, if there is a difference in gloss between the short side direction both ends of the bottom surface 21 and the central portion, it can be estimated that this surface is formed into a curved surface by sizing.

尚、オイルシール部材20の側面23及び端面24は、サイジング工程においてダイ61の成形孔61aに押し付けられた状態で摺動するため、表面開孔率がオイルシール部材20の表面のうちで最も小さくなっている。従って、オイルシール部材20の表面開孔率は、(1)側面23及び端面24、(2)底面21の幅方向両端部、(3)底面21の幅方向中央部、天面22、及び、面取り部25の順で大きくなっている。   Since the side surface 23 and the end surface 24 of the oil seal member 20 slide in a state of being pressed against the forming hole 61a of the die 61 in the sizing process, the surface opening ratio is the smallest among the surfaces of the oil seal member 20. It has become. Therefore, the surface open area ratio of the oil seal member 20 is (1) the side surface 23 and the end surface 24, (2) the width direction both ends of the bottom surface 21, (3) the width direction center portion of the bottom surface 21, the top surface 22, and The chamfered portion 25 increases in order.

サイジング金型の下パンチ63の成形面63aは、図8に誇張して示すように、長辺方向中央部を上方に膨らませた湾曲形状となっている。これは、サイジング金型から取り出したときのスプリングバックによりオイルシール部材20に生じる反り(図18参照)を相殺するために設けられるものである。これにより、金型から取り出されたオイルシール部材20の底面21は、長辺方向で直線状とすることができる。尚、オイルシール部材20の天面22に反りが生じることもあるが、天面22はハウジングと摺動する底面21と比べると要求される面精度が低いため、僅かな反りは許容される。従って、図8に示すように、オイルシール部材20の反りを相殺するための湾曲形状は、少なくとも下パンチ63の成形面63aに設けておけばよい。もちろん、上パンチ62の成形面62aも、天面22の反りを相殺するような湾曲形状としてもよい。   The molding surface 63a of the lower punch 63 of the sizing mold has a curved shape in which the central portion in the long side direction is expanded upward as shown in an exaggerated manner in FIG. This is provided in order to cancel out the warp (see FIG. 18) generated in the oil seal member 20 due to the spring back when taken out from the sizing mold. Thereby, the bottom face 21 of the oil seal member 20 taken out from the mold can be linear in the long side direction. Although the top surface 22 of the oil seal member 20 may be warped, the top surface 22 has a lower surface accuracy than the bottom surface 21 that slides with the housing. Therefore, as shown in FIG. 8, a curved shape for offsetting the warp of the oil seal member 20 may be provided at least on the molding surface 63 a of the lower punch 63. Of course, the molding surface 62a of the upper punch 62 may have a curved shape that cancels the warpage of the top surface 22.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能の箇所には、同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location of the function similar to said embodiment, and duplication description is abbreviate | omitted.

上記の実施形態では、ロータ103のベーン105の溝部105aに嵌合し、ハウジング104の内周面と摺動するオイルシール部材20(図11(a)のオイルシール部材120に相当)を示したが、これに限らず、ハウジング104のティース106の溝部106aに設けられ、ロータ103の外周面と摺動するオイルシール部材(図11(a)のオイルシール部材130に相当)に本発明を適用することもできる。この場合、オイルシール部材20の底面21は、上記の実施形態と同様に凸曲面状に成形してもよいし、あるいは図9に示すように、短辺方向中央部をへこませた凹曲面状に成形してもよい。   In the above embodiment, the oil seal member 20 (corresponding to the oil seal member 120 in FIG. 11A) that fits into the groove 105a of the vane 105 of the rotor 103 and slides with the inner peripheral surface of the housing 104 is shown. However, the present invention is not limited to this, and the present invention is applied to an oil seal member (corresponding to the oil seal member 130 in FIG. 11A) provided in the groove 106 a of the tooth 106 of the housing 104 and sliding with the outer peripheral surface of the rotor 103. You can also In this case, the bottom surface 21 of the oil seal member 20 may be formed into a convex curved surface shape as in the above embodiment, or as shown in FIG. 9, a concave curved surface with a concave portion in the short side direction. You may shape | mold.

図9に示すオイルシール部材20の凹曲面状の底面21を成形するサイジング金型は、図10に示すように、下パンチ63の成形面63aが短辺方向中央部を上方に膨らませた凸曲面状とされる。この場合、焼結体40(点線で示す)の平坦な底面41が下パンチ63の成形面63aで圧迫され、凹曲面状の底面21が成形される。このとき、底面21の短辺方向中央部は圧縮量が大きいため、短辺方向両端部と比べて相対的に表面開孔率が小さくなる。従って、底面21の短辺方向中央部とロータ103(図11参照)との間にオイルを留めておくことができ、潤滑性が高められる。また、底面21の短辺方向中央部は圧縮量が大きいため、短辺方向両端部と比べて相対的に密度が高くなっており、これにより強度が高められる。以上のように、オイルシール部材130では、ロータ103の外周面と主に接触摺動する底面21の短辺方向中央部において、潤滑性及び強度が高められるため、耐摩耗性を特に高めることができる。   As shown in FIG. 10, the sizing mold for molding the concave curved bottom surface 21 of the oil seal member 20 shown in FIG. 9 is a convex curved surface in which the molding surface 63a of the lower punch 63 bulges the center in the short side direction upward. It is made into a shape. In this case, the flat bottom surface 41 of the sintered body 40 (indicated by the dotted line) is pressed by the molding surface 63a of the lower punch 63, and the concave curved bottom surface 21 is molded. At this time, since the amount of compression is large in the center portion in the short side direction of the bottom surface 21, the surface area ratio is relatively smaller than both end portions in the short side direction. Therefore, oil can be kept between the central portion in the short side direction of the bottom surface 21 and the rotor 103 (see FIG. 11), and lubricity is improved. Moreover, since the amount of compression is large in the center part of the short side direction of the bottom face 21, the density is relatively higher than both ends of the short side direction, thereby increasing the strength. As described above, in the oil seal member 130, the lubricity and strength are enhanced at the central portion in the short side direction of the bottom surface 21 that mainly contacts and slides with the outer peripheral surface of the rotor 103, so that the wear resistance is particularly enhanced. it can.

また、上記の実施形態では、オイルシール部材20が、ロータ103の各ベーン105の先端面の円周方向中央部(図11(a)のオイルシール部材120の位置)、あるいは、ハウジング104の各ティース106の先端面の円周方向中央部(図11(a)のオイルシール部材130の位置)に設けられているが、これに限らず、ベーン105あるいはティース106の先端面のうち、円周方向中央部からオフセットした位置にオイルシール部材20を設けても良い。   Further, in the above-described embodiment, the oil seal member 20 is arranged at the circumferential center (the position of the oil seal member 120 in FIG. 11A) of the tip surface of each vane 105 of the rotor 103 or each of the housings 104. Although provided at the circumferential center of the tip surface of the tooth 106 (position of the oil seal member 130 in FIG. 11A), the present invention is not limited to this, and the circumference of the tip surface of the vane 105 or the tooth 106 is not limited. You may provide the oil seal member 20 in the position offset from the direction center part.

また、上記の実施形態では、図11(a)に示すように、ロータ103のベーン105の溝部105aに嵌合させたオイルシール部材20(図11(a)ではオイルシール部材120)を、ハウジング104の内周面に接触摺動させているが、これとは逆に、ハウジング104の内周面に溝部を設け、この溝部に嵌合させたオイルシール部材20の底面21をベーン105の外径面に接触摺動させてもよい。この場合、オイルシール部材20の底面21は凸曲面状あるいは凹曲面状に形成される。同様に、上記の実施形態では、ハウジング104のティース106の溝部106aに嵌合させたオイルシール部材20(図11(a)ではオイルシール部材130)をロータ103の外周面に接触摺動させているが、これとは逆に、ロータ103の外周面に溝部を設け、この溝部に嵌合させたオイルシール部材20をティース106の内径面に接触摺動させてもよい。   Further, in the above embodiment, as shown in FIG. 11A, the oil seal member 20 (the oil seal member 120 in FIG. 11A) fitted in the groove portion 105a of the vane 105 of the rotor 103 is disposed in the housing. On the contrary, a groove portion is provided on the inner peripheral surface of the housing 104, and the bottom surface 21 of the oil seal member 20 fitted in the groove portion is disposed outside the vane 105. It may be slid in contact with the radial surface. In this case, the bottom surface 21 of the oil seal member 20 is formed in a convex curved surface shape or a concave curved surface shape. Similarly, in the above embodiment, the oil seal member 20 (the oil seal member 130 in FIG. 11A) fitted in the groove 106 a of the tooth 106 of the housing 104 is slid in contact with the outer peripheral surface of the rotor 103. However, conversely, a groove portion may be provided on the outer peripheral surface of the rotor 103, and the oil seal member 20 fitted in the groove portion may be slid in contact with the inner diameter surface of the tooth 106.

20 オイルシール部材
21 底面
22 天面
23 側面
24 端面
30 圧粉体
31 底面
32 天面
33 側面
34 端面
40 焼結体
41 底面
42 天面
51 ダイ
52 下パンチ
53 上パンチ
61 ダイ
62 上パンチ
63 下パンチ
100 可変バルブタイミング機構
103 ロータ
104 ハウジング
105 ベーン
106 ティース
107,108 油圧室
109,110 板バネ
S カムシャフト
X 厚肉部
Y 薄肉部
1 厚肉部の肉厚
2 薄肉部の肉厚
L オイルシール部材の軸方向全長寸法
20 Oil seal member 21 Bottom surface 22 Top surface 23 Side surface 24 End surface 30 Compact 31 Bottom surface 32 Top surface 33 Side surface 34 End surface 40 Sintered body 41 Bottom surface 42 Top surface 51 Die 52 Lower punch 53 Upper punch 61 Die 62 Upper punch 63 Lower Punch 100 Variable valve timing mechanism 103 Rotor 104 Housing 105 Vane 106 Teeth 107, 108 Hydraulic chamber 109, 110 Leaf spring S Camshaft X Thick part Y Thin part H 1 Thick part thickness H 2 Thin part thickness L Overall axial dimension of oil seal member

Claims (16)

可変バルブタイミング機構のロータとハウジングとの間に設けられた複数の油圧室を液密的に区画し、焼結金属で細長形状に形成されたオイルシール部材であって、
長辺方向両端部に凸部を有する天面と、天面の反対側に設けられ、短辺方向で湾曲した曲面状を成した底面とを備え、
前記底面が、焼結後のサイジングにより曲面状に成形された面であることを特徴とするオイルシール部材。
A plurality of hydraulic chambers provided between the rotor and the housing of the variable valve timing mechanism are liquid-tightly divided, and an oil seal member formed into an elongated shape with sintered metal,
A top surface having convex portions at both ends in the long side direction, and a bottom surface provided on the opposite side of the top surface and having a curved shape curved in the short side direction,
An oil seal member, wherein the bottom surface is a surface formed into a curved surface by sizing after sintering.
前記底面が、短辺方向中央部を頂点とした凸曲面状を成した請求項1記載のオイルシール部材。   The oil seal member according to claim 1, wherein the bottom surface has a convex curved surface shape with the short side direction central portion as a vertex. 前記底面の短辺方向両端部おける表面開孔率が、前記底面の短辺方向中央部における表面開孔率よりも小さい請求項2記載のオイルシール部材。   3. The oil seal member according to claim 2, wherein a surface opening rate at both ends in the short side direction of the bottom surface is smaller than a surface opening rate in a center portion in the short side direction of the bottom surface. 前記底面が、短辺方向中央部を頂点とした凹曲面状を成した請求項1記載のオイルシール部材。   The oil seal member according to claim 1, wherein the bottom surface has a concave curved surface shape with a short side direction central portion as a vertex. 前記底面の短辺方向中央部における表面開孔率が、前記底面の短辺方向両端部における表面開孔率よりも小さい請求項4記載のオイルシール部材。   5. The oil seal member according to claim 4, wherein a surface porosity at a center portion in the short side direction of the bottom surface is smaller than a surface porosity at both end portions in the short side direction of the bottom surface. 前記天面の凸部と前記底面との距離H1と、前記天面の凸部の長辺方向間領域と前記底面の距離H2との比H2/H1が0.4以上0.7未満である請求項1〜5の何れかに記載のオイルシール部材。 The ratio H 2 / H 1 between the distance H 1 between the convex portion of the top surface and the bottom surface and the distance H 2 between the long side direction region of the convex portion of the top surface and the bottom surface is 0.4 or more. The oil seal member according to any one of claims 1 to 5, wherein the oil seal member is less than 7. 前記凸部と前記底面との距離H1と長辺方向全長寸法Lとの比L/H1が5〜10の範囲内である請求項1〜6の何れかに記載のオイルシール部材。 Oil seal member according to claim 1 distance H 1 and the ratio L / H 1 between a long side direction overall length L is in the range of 5 to 10 and said bottom surface and said convex portion. 前記底面が円筒面である請求項1〜7の何れかに記載のオイルシール部材。   The oil seal member according to any one of claims 1 to 7, wherein the bottom surface is a cylindrical surface. 前記底面が前記ハウジングの内周面と摺動する請求項1〜8の何れかに記載のオイルシール部材。   The oil seal member according to claim 1, wherein the bottom surface slides with an inner peripheral surface of the housing. 前記底面が前記ロータの外周面と摺動する請求項1〜8の何れかに記載のオイルシール部材。   The oil seal member according to any one of claims 1 to 8, wherein the bottom surface slides with an outer peripheral surface of the rotor. 請求項1〜10の何れかに記載のオイルシール部材と、カムシャフトに取り付けられるロータと、ロータを回転可能に収容したハウジングとを備えた可変バルブタイミング機構。   A variable valve timing mechanism comprising: the oil seal member according to claim 1; a rotor attached to a camshaft; and a housing that rotatably accommodates the rotor. 可変バルブタイミング機構のロータとハウジングとの間に設けられた複数の油圧室を液密的に区画し、焼結金属で細長形状に形成されたオイルシール部材を製造するための方法であって、
金属粉末を圧縮成形することにより、長辺方向両端部に凸部を有する天面、及び、該天面の反対側に設けられた平坦な底面を備えた圧粉体を成形する圧縮成形工程と、前記圧粉体を焼結して焼結体を得る焼結工程と、前記焼結体の平坦な底面を、短辺方向で湾曲した曲面状に成形するサイジング工程とを経て行なわれるオイルシール部材の製造方法。
A method for liquid-tightly partitioning a plurality of hydraulic chambers provided between a rotor and a housing of a variable valve timing mechanism, and manufacturing an oil seal member formed into an elongated shape with sintered metal,
A compression molding step of molding a green compact having a top surface having protrusions at both ends in the long side direction and a flat bottom surface provided on the opposite side of the top surface by compression molding metal powder; An oil seal that is subjected to a sintering process for obtaining a sintered body by sintering the green compact, and a sizing process for forming a flat bottom surface of the sintered body into a curved surface curved in a short side direction. Manufacturing method of member.
圧縮成形工程における圧粉体の圧縮方向と、サイジング工程における焼結体の圧縮方向が異なる請求項12記載のオイルシール部材の製造方法。   The method for producing an oil seal member according to claim 12, wherein the compression direction of the green compact in the compression molding step is different from the compression direction of the sintered body in the sizing step. 圧縮成形工程において、圧粉体の底面の短辺方向両側に設けられた一対の平坦な側面を上下パンチで圧縮し、サイジング工程において、焼結体の天面及び底面を上下パンチで圧縮する請求項13記載のオイルシール部材の製造方法。   In the compression molding step, a pair of flat side surfaces provided on both sides in the short side direction of the bottom surface of the green compact are compressed with the upper and lower punches, and in the sizing step, the top surface and the bottom surface of the sintered body are compressed with the upper and lower punches. Item 14. A method for producing an oil seal member according to Item 13. サイジング工程において、前記焼結体の平坦な底面を下パンチまたは上パンチで圧縮することにより曲面状に成形する請求項14記載のオイルシール部材の製造方法。   The method for producing an oil seal member according to claim 14, wherein in the sizing step, the flat bottom surface of the sintered body is compressed into a curved shape by compressing with a lower punch or an upper punch. 前記焼結体の底面を、短辺方向で湾曲し、且つ、長辺方向で直線状である曲面状に成形するサイジング金型の成形面を、長辺方向で湾曲させた請求項12〜15の何れかに記載のオイルシール部材の製造方法。   The bottom surface of the sintered body is curved in the short side direction, and the molding surface of a sizing mold for forming a curved surface that is linear in the long side direction is curved in the long side direction. The manufacturing method of the oil seal member in any one of.
JP2011067984A 2010-03-30 2011-03-25 Method for manufacturing oil seal member Expired - Fee Related JP5794728B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011067984A JP5794728B2 (en) 2010-03-30 2011-03-25 Method for manufacturing oil seal member
PCT/JP2011/057633 WO2011122558A1 (en) 2010-03-30 2011-03-28 Oil seal member and method for producing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010078982 2010-03-30
JP2010078982 2010-03-30
JP2011067984A JP5794728B2 (en) 2010-03-30 2011-03-25 Method for manufacturing oil seal member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015106563A Division JP6215256B2 (en) 2010-03-30 2015-05-26 Oil seal member and variable valve timing mechanism provided with the same

Publications (2)

Publication Number Publication Date
JP2011226470A true JP2011226470A (en) 2011-11-10
JP5794728B2 JP5794728B2 (en) 2015-10-14

Family

ID=44712254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067984A Expired - Fee Related JP5794728B2 (en) 2010-03-30 2011-03-25 Method for manufacturing oil seal member

Country Status (2)

Country Link
JP (1) JP5794728B2 (en)
WO (1) WO2011122558A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241729A (en) * 2011-05-16 2012-12-10 Ntn Corp Oil seal member and method of manufacturing the same
EP2896711A4 (en) * 2012-09-12 2016-06-01 Ntn Toyo Bearing Co Ltd Machine component made of ferrous sintered metal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115229183B (en) * 2022-07-08 2023-06-16 西安科技大学 Multicavity sintering mould of preparation biomedical titanium alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106113A (en) * 2001-09-28 2003-04-09 Hitachi Unisia Automotive Ltd Valve timing control device of internal combustion engine
JP2007092100A (en) * 2005-09-27 2007-04-12 Ntn Corp Sintered metal member and method for producing the same
JP2007217740A (en) * 2006-02-15 2007-08-30 Sumitomo Denko Shoketsu Gokin Kk Method for designing sizing die for sintered part
JP2010024495A (en) * 2008-07-18 2010-02-04 Ntn Corp Component made of sintered metal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106113A (en) * 2001-09-28 2003-04-09 Hitachi Unisia Automotive Ltd Valve timing control device of internal combustion engine
JP2007092100A (en) * 2005-09-27 2007-04-12 Ntn Corp Sintered metal member and method for producing the same
JP2007217740A (en) * 2006-02-15 2007-08-30 Sumitomo Denko Shoketsu Gokin Kk Method for designing sizing die for sintered part
JP2010024495A (en) * 2008-07-18 2010-02-04 Ntn Corp Component made of sintered metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241729A (en) * 2011-05-16 2012-12-10 Ntn Corp Oil seal member and method of manufacturing the same
EP2896711A4 (en) * 2012-09-12 2016-06-01 Ntn Toyo Bearing Co Ltd Machine component made of ferrous sintered metal
US9970086B2 (en) 2012-09-12 2018-05-15 Ntn Corporation Machine component made of ferrous sintered metal
US11035027B2 (en) 2012-09-12 2021-06-15 Ntn Corporation Machine component made of ferrous sintered metal

Also Published As

Publication number Publication date
JP5794728B2 (en) 2015-10-14
WO2011122558A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5794728B2 (en) Method for manufacturing oil seal member
CN106660125B (en) Method of manufacturing a turbomachine component, turbomachine component and turbomachine
WO2013136983A1 (en) Mechanical structural component, sintered gear, and methods for producing same
CN104049523A (en) Bearing including first and second functional elements on two distinct faces
JP6215256B2 (en) Oil seal member and variable valve timing mechanism provided with the same
CN105465160A (en) Bearing for rotating compressor cylinder and production method thereof
JP2016191133A (en) Sizing die for densifying the surface of sintered compact, method for producing the same, and produced part
JP2007092100A (en) Sintered metal member and method for producing the same
JP5749073B2 (en) Oil seal member and manufacturing method thereof
US6517601B1 (en) Three-dimensional cam and production method thereof
CN108779803A (en) Hydrodynamic bearing and its manufacturing method
JP2012149626A (en) Vane for compressor and method for manufacturing the same
WO2019181417A1 (en) Sintered machine component, sintered gear, pulley, coupling, sintered machine component manufacturing method, and powder molding mold
JP5577557B2 (en) Die for molding
JP3939671B2 (en) Three-dimensional cam manufacturing method and powder molding apparatus
JP4282084B2 (en) Method for manufacturing sintered parts
JP2004115898A (en) Sintered alloy having dynamic pressure generation groove, and method for manufacturing the same
CN105936101A (en) Deep-hole vinyl product and production process thereof
JP2018053278A (en) Manufacturing method of con-rod and forming mold used therefor
JP2003253307A (en) Sintered part
JP4825551B2 (en) Powder mold for sprocket production
JP2002048136A (en) Sintered bearing and manufacturing method thereof
JP2004351453A (en) Two-layer powder molding method, valve seat, and its manufacturing method
JPS6324001A (en) Production of tapered face piston ring made of sintered alloy
JPH09166003A (en) Tappet for internal combustion engine and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5794728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees