JP2011225807A - Method of producing polyurethane porous body - Google Patents

Method of producing polyurethane porous body Download PDF

Info

Publication number
JP2011225807A
JP2011225807A JP2010229602A JP2010229602A JP2011225807A JP 2011225807 A JP2011225807 A JP 2011225807A JP 2010229602 A JP2010229602 A JP 2010229602A JP 2010229602 A JP2010229602 A JP 2010229602A JP 2011225807 A JP2011225807 A JP 2011225807A
Authority
JP
Japan
Prior art keywords
porous body
calcium chloride
roller
water
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010229602A
Other languages
Japanese (ja)
Other versions
JP5687875B2 (en
Inventor
Kazuo Takemoto
和生 竹本
Toshiyuki Nishimoto
敏幸 西本
Noriyasu Kaneda
徳康 金田
Hiroaki Saito
裕昭 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyopolymer Co Ltd
Original Assignee
Toyopolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyopolymer Co Ltd filed Critical Toyopolymer Co Ltd
Priority to JP2010229602A priority Critical patent/JP5687875B2/en
Publication of JP2011225807A publication Critical patent/JP2011225807A/en
Application granted granted Critical
Publication of JP5687875B2 publication Critical patent/JP5687875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing polyurethane porous body showing smaller shrinkage ratio during a drying step, wherein a planned product can be stably manufactured.SOLUTION: The method includes: a step of mixing a mixture containing a polyurethane resin, a solvent and calcium chloride anhydrous with a liquid mixture to obtain a mixed composition, wherein in the liquid mixture, the weight ratio of water to the solvent equals the ratio of 10 to 90, to that of 75 to 25; a step of molding the mixed composition; a step of solidifying the resultant compact; and a step of performing aqueous extraction of the calcium chloride anhydrous from the solidified compact to remove the calcium chloride anhydrous and drying the resultant compact.

Description

本発明は湿式凝固法によるポリウレタン多孔質体の製造方法に関し、特に凝固工程を経た成形体から無水塩化カルシウムを除去して得られるポリウレタン多孔質体の製造方法に関するものである。   The present invention relates to a method for producing a polyurethane porous body by a wet coagulation method, and more particularly to a method for producing a polyurethane porous body obtained by removing anhydrous calcium chloride from a molded body that has undergone a coagulation step.

ポリウレタン樹脂を用いたポリウレタン多孔質体は、クッション材、化粧用スポンジ等として用いられている。このようなポリウレタン多孔質体の製造方法のひとつとして湿式凝固法が周知であり、例えば、ポリウレタン樹脂、溶媒および無機塩を混練した混練組成物を調製し、この混練組成物を脱泡、成形する工程、得られた成形体を水中で凝固させる工程、さらに凝固した成形体から無機塩を水抽出して除去し、その後乾燥させる方法が開示されている(特許文献1,2)。   Polyurethane porous bodies using polyurethane resins are used as cushion materials, cosmetic sponges, and the like. A wet coagulation method is well known as one method for producing such a polyurethane porous body. For example, a kneaded composition in which a polyurethane resin, a solvent and an inorganic salt are kneaded is prepared, and the kneaded composition is defoamed and molded. Disclosed are a step, a step of solidifying the obtained molded body in water, and a method of extracting and removing inorganic salts from the solidified molded body, followed by drying (Patent Documents 1 and 2).

しかし、本発明者らの検討によれば、例えば、上記無機塩のうち、塩化カルシウムを用いた湿式凝固法では、例えば、平均粒径20μm程の比較的粒子径の小さな塩化カルシウムを用いた場合、乾燥工程の前後で成形体の収縮率が大きくなり、設計通りの成形体を製造することができない場合があることが判明した。   However, according to the study by the present inventors, for example, among the inorganic salts, in the wet coagulation method using calcium chloride, for example, when calcium chloride having an average particle size of about 20 μm and a relatively small particle size is used. It has been found that the shrinkage ratio of the molded body increases before and after the drying step, and the molded body as designed may not be manufactured.

特開2001−233987号公報JP 2001-233987 A 特開2006−152202号公報JP 2006-152202 A

本発明は上記事情に鑑みてなされたものであり、その主たる目的は、乾燥工程での収縮率が小さく、設計通りの製品を安定して製造することのできるポリウレタン多孔質体の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its main object is to provide a method for producing a polyurethane porous body that has a small shrinkage rate in the drying step and can stably produce a product as designed. There is to do.

本発明者らは、上記課題を解決するため鋭意検討した結果、所定の重量比からなる水と溶剤との混合液をポリウレタン樹脂、溶剤及び無水塩化カルシウムを含有する混合物に添加、混練することにより、上記課題を解決し得ることを見出し、本発明を完成した。   As a result of intensive investigations to solve the above problems, the present inventors have added and kneaded a mixture of water and a solvent having a predetermined weight ratio to a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride. The inventors have found that the above problems can be solved, and have completed the present invention.

すなわち、本発明の要旨は以下のとおりである。
〔1〕 ポリウレタン樹脂、溶剤及び無水塩化カルシウムを含有する混合物と、水と溶剤の重量比が水/溶剤=10/90〜75/25からなる混合液とを混練し混練組成物を得る工程、前記混練組成物を成形する工程、得られた成形体を凝固させる工程、および凝固された成形体から無水塩化カルシウムを水抽出して除去し、その後乾燥する工程を有する、ポリウレタン多孔質体の製造方法。
〔2〕 無水塩化カルシウムの平均粒径が100μm以下である、前記〔1〕記載のポリウレタン多孔質体の製造方法。
〔3〕 混練組成物中のポリウレタン樹脂の含有量が20重量%以下である、前記〔2〕記載のポリウレタン多孔質体の製造方法。
〔4〕 化粧用スポンジ、クッション材、OA機器用ローラー、吸水ローラー、液切りローラー、導電ローラー、インクローラー、吸水シート、スワブ、医療用スポンジ、薬液塗布用ヘッドラバー、浸透印、筆ペンまたはフィルターに用いる、前記〔3〕記載のポリウレタン多孔質体の製造方法。
〔5〕 前記〔3〕記載の方法により製造されるポリウレタン多孔質体。
〔6〕 化粧用スポンジ、クッション材、OA機器用ローラー、吸水ローラー、液切りローラー、導電ローラー、インクローラー、吸水シート、スワブ、医療用スポンジ、薬液塗布用ヘッドラバー、浸透印、筆ペンまたはフィルターに用いる、前記〔5〕記載のポリウレタン多孔質体。
That is, the gist of the present invention is as follows.
[1] A step of kneading a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride, and a mixed solution in which the weight ratio of water to the solvent is water / solvent = 10/90 to 75/25 to obtain a kneaded composition, Manufacture of a polyurethane porous body having a step of molding the kneaded composition, a step of coagulating the obtained molded body, and a step of water-extracting and removing anhydrous calcium chloride from the solidified molded body, followed by drying Method.
[2] The method for producing a polyurethane porous body according to the above [1], wherein the anhydrous calcium chloride has an average particle size of 100 μm or less.
[3] The method for producing a polyurethane porous body according to the above [2], wherein the content of the polyurethane resin in the kneaded composition is 20% by weight or less.
[4] Cosmetic sponge, cushion material, OA equipment roller, water absorption roller, liquid draining roller, conductive roller, ink roller, water absorption sheet, swab, medical sponge, chemical liquid application head rubber, penetrating mark, brush pen or filter The method for producing a polyurethane porous body according to the above [3], which is used in a method.
[5] A polyurethane porous body produced by the method according to [3].
[6] Cosmetic sponge, cushion material, OA equipment roller, water absorption roller, liquid draining roller, conductive roller, ink roller, water absorption sheet, swab, medical sponge, head rubber for chemical application, penetrating mark, brush pen or filter The polyurethane porous body according to the above [5], which is used in the above.

本発明によれば、ポリウレタン樹脂、溶剤及び無水塩化カルシウムを含有する混合物と、水と溶剤の重量比が水/溶剤=10/90〜75/25からなる混合液とを混練し混練組成物を得る工程を有するので、乾燥工程での収縮率が小さく、設計通りの製品が安定して製造されるポリウレタン多孔質体の製造方法が提供される。   According to the present invention, a kneaded composition is prepared by kneading a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride, and a liquid mixture in which the weight ratio of water to the solvent is water / solvent = 10/90 to 75/25. Thus, there is provided a method for producing a polyurethane porous body in which the shrinkage rate in the drying step is small and a product as designed is stably produced.

本発明に係るポリウレタン多孔質体の製造方法は、上述したとおり、ポリウレタン樹脂、溶剤及び無水塩化カルシウムを含有する混合物と、水と溶剤の重量比が水/溶剤=10/90〜75/25からなる混合液とを混練し混練組成物を得る工程、前記混練組成物を成形する工程、得られた成形体を凝固させる工程、および凝固された成形体から無水塩化カルシウムを水抽出して除去し、その後乾燥する工程を有することを特徴とする。   As described above, the method for producing a porous polyurethane body according to the present invention comprises a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride, and the weight ratio of water to the solvent is from water / solvent = 10/90 to 75/25. And kneading the mixed liquid to obtain a kneaded composition, the step of molding the kneaded composition, the step of solidifying the obtained molded body, and removing the anhydrous calcium chloride from the solidified molded body by water extraction. , And then drying.

まず本発明では、ポリウレタン樹脂、溶剤及び無水塩化カルシウムを含有する混合物が調製される。   First, in the present invention, a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride is prepared.

原料として用いられるポリウレタン樹脂は、ポリオール、鎖長剤及びポリイソシアネートを反応させて得られるものである。   The polyurethane resin used as a raw material is obtained by reacting a polyol, a chain extender and a polyisocyanate.

ポリオールとしては、通常のポリウレタン樹脂の製造に使用され、分子中に水酸基を2個以上有するものであれば特に限定されず、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリラクトンポリオール、ポリオレフィンポリオール、アクリル系ポリオール、ヒマシ油系ポリオール、シリコーン系ポリオール等が挙げられ、これらを単独で又は2種以上を混合して用いることができる。これらの中でも、得られるポリウレタン多孔質体の劣化を抑制する観点から、ポリカーボネートポリオールが好ましく用いられる。なお、前記でいう劣化には、光による劣化、熱による劣化、水による劣化等が含まれる。   The polyol is not particularly limited as long as it is used in the production of ordinary polyurethane resins and has two or more hydroxyl groups in the molecule. For example, polyether polyol, polyester polyol, polycarbonate polyol, polylactone polyol, polyolefin polyol , Acrylic polyols, castor oil-based polyols, silicone-based polyols, and the like. These can be used alone or in admixture of two or more. Among these, polycarbonate polyol is preferably used from the viewpoint of suppressing deterioration of the resulting polyurethane porous body. The deterioration mentioned above includes deterioration due to light, deterioration due to heat, deterioration due to water, and the like.

ポリエーテルポリオールとしては、アルキレンオキシド(エチレンオキシド、プロピレンオキシド、ブチレンオキシド等)及び/又は複素環式エーテル(テトラヒドロフラン等)を重合又は共重合して得られるもの、具体的にはポリエチレングリコール、ポリプロピレングリコール、ポリエチレン−ポリプロピレン(ブロック又はランダム)グリコール、ポリエチレン−テトラメチレン(ブロック又はランダム)グリコール、ポリテトラメチレングリコール、ポリ−2−メチルテトラメチレングリコール、ポリヘキサメチレングリコール等が挙げられる。または、アミン化合物(モノ又はジアミン、ヒドラジン、置換ヒドラジン等)にアルキレンオキシド(エチレンオキシド、プロピレンオキシド、ブチレンオキシド等)を付加したアミン系エーテルポリオール等が挙げられる。   As the polyether polyol, those obtained by polymerizing or copolymerizing alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, etc.) and / or heterocyclic ether (tetrahydrofuran, etc.), specifically, polyethylene glycol, polypropylene glycol, Examples include polyethylene-polypropylene (block or random) glycol, polyethylene-tetramethylene (block or random) glycol, polytetramethylene glycol, poly-2-methyltetramethylene glycol, polyhexamethylene glycol, and the like. Alternatively, an amine ether polyol obtained by adding an alkylene oxide (ethylene oxide, propylene oxide, butylene oxide, etc.) to an amine compound (mono or diamine, hydrazine, substituted hydrazine, etc.) can be used.

ポリエステルポリオールとしては、脂肪族ジカルボン酸(コハク酸、アジピン酸、セバチン酸、グルタル酸、アゼライン酸等)及び/又は芳香族ジカルボン酸(オルトフタル酸、イソフタル酸、テレフタル酸、1,5−ナフタレンジカルボン酸等)と低分子グリコール(エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ペンタエリスリトール、1,4−ジヒドロキシメチルシクロヘキサン等)とを縮重合させたもの、具体的にはポリエチレングリコールアジペート、ポリブタンジオールアジペート、ポリヘキサンジオールアジペート、ポリ−3−メチルペンタンジオールアジペート、ポリネオペンチルグリコールアジペート、ポリエチレン/ブチレンアジペートジオール、ポリネオペンチル/ヘキシルアジペートジオール、ポリブチレンイソフタレートジオール等が挙げられる。   Polyester polyols include aliphatic dicarboxylic acids (succinic acid, adipic acid, sebacic acid, glutaric acid, azelaic acid, etc.) and / or aromatic dicarboxylic acids (orthophthalic acid, isophthalic acid, terephthalic acid, 1,5-naphthalenedicarboxylic acid) Etc.) and low molecular glycols (ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol) , Pentaerythritol, 1,4-dihydroxymethylcyclohexane, etc.), specifically polyethylene glycol adipate, polybutanediol adipate, polyhexanediol adipate, poly-3-methylpentanedio Ruajipeto, poly neopentyl glycol adipate, polyethylene / butylene adipate diol, polyneopentyl / hexyl adipate diol, polybutylene isophthalate diol.

ポリカーボネートポリオールとしては、ポリブタンジオールカーボネート、ポリ−3−メチルペンタンジオールカーボネート、ポリヘキサンジオールカーボネート、ポリノナンジオールカーボネート、ポリブタンジオールヘキサンジオールカーボネート、ポリペンタンジオールヘキサンジオールカーボネート、ポリ−2−メチルオクタンジオールノナンジオールカーボネート、ポリ−3−メチルペンタンジオールヘキサンジオールカーボネート等が挙げられる。   Polycarbonate polyols include polybutanediol carbonate, poly-3-methylpentanediol carbonate, polyhexanediol carbonate, polynonanediol carbonate, polybutanediol hexanediol carbonate, polypentanediol hexanediol carbonate, and poly-2-methyloctanediol. Nonanediol carbonate, poly-3-methylpentanediol hexanediol carbonate, and the like.

ポリラクトンポリオールとしては、ポリカプロラクトンジオール、ポリカプロラクトントリオール、ポリ−3−メチルバレロラクトンジオール等が挙げられる。   Examples of the polylactone polyol include polycaprolactone diol, polycaprolactone triol, and poly-3-methylvalerolactone diol.

ポリオレフィンポリオールとしては、ポリブタジエングリコール、ポリイソプレングリコールまたはその水素化物等が挙げられる。   Examples of the polyolefin polyol include polybutadiene glycol, polyisoprene glycol or a hydride thereof.

シリコーン系ポリオールとは、ポリシロキサン主鎖に水酸基を導入したものである。また、導入した水酸基は、ポリシロキサン主鎖の両末端、または片末端にあればよい。   Silicone polyols are those in which hydroxyl groups are introduced into the polysiloxane main chain. Further, the introduced hydroxyl groups may be at both ends or one end of the polysiloxane main chain.

鎖長剤としては、通常のポリウレタン樹脂の製造に使用され、分子中に水酸基を2個以上有する短鎖ジオール化合物であれば特に限定されず、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、3−メチルペンタンジオール、ノナンジオール、オクタンジオール、ジメチロールヘプタン、1,4−シクロヘキサンジオール等が挙げられ、これらを単独で又は2種以上を混合して用いることができる。   The chain extender is not particularly limited as long as it is a short-chain diol compound that is used in the production of ordinary polyurethane resins and has two or more hydroxyl groups in the molecule. For example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, 3-methylpentanediol, nonanediol, octanediol, dimethylolheptane, 1 , 4-cyclohexanediol and the like, and these can be used alone or in admixture of two or more.

本発明では上述した短鎖ジオール化合物の他、鎖長剤として例えばポリアミンを用いることができる。ポリアミンとしては、通常のポリウレタン樹脂の製造に使用され、分子中にアミノ基を2個以上有する化合物であれば特に限定されず、例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、トリエチレンテトラミン等の脂肪族アミン;1,3−ビス(アミノメチル)シクロヘキサン、1,4−シクロヘキサンジアミン、3−アミノメチル−3,5−トリメチルシクロヘキシルアミン、イソホロンジアミン、ピペラジン、2−メチルピペラジン、2,5−ジメチルピペラジン、シス−2,6−ジメチルピペラジン、N,N’−ビス(3−アミノプロピル)ピペラジン、4,4’−シクロヘキシルメタンジアミン、トリエチレンテトラミン、1−(2−アミノエチル)ピペラジン等の脂環族アミン;4,4’−ジアミノジフェニルメタン、3,3’−ジメチル4,4’−ジアミノジフェニルメタン、キシレンジアミン、フェニレンジアミン、1,5−ナフテンジアミン、トルエン−2,4−ジアミン、トルエン−2,6−ジアミン、3,3’−ジメチルベンジジン等の芳香族アミン等が挙げられ、これらを単独で又は2種以上を混合して用いることができる。   In the present invention, in addition to the short-chain diol compound described above, for example, a polyamine can be used as a chain extender. The polyamine is not particularly limited as long as it is a compound used in the production of a normal polyurethane resin and has two or more amino groups in the molecule. For example, ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, triethylenetetramine Aliphatic amines such as 1,3-bis (aminomethyl) cyclohexane, 1,4-cyclohexanediamine, 3-aminomethyl-3,5-trimethylcyclohexylamine, isophoronediamine, piperazine, 2-methylpiperazine, 2,5 -Dimethylpiperazine, cis-2,6-dimethylpiperazine, N, N'-bis (3-aminopropyl) piperazine, 4,4'-cyclohexylmethanediamine, triethylenetetramine, 1- (2-aminoethyl) piperazine, etc. Of alicyclic amines; 4,4'- Aminodiphenylmethane, 3,3′-dimethyl 4,4′-diaminodiphenylmethane, xylenediamine, phenylenediamine, 1,5-naphthenediamine, toluene-2,4-diamine, toluene-2,6-diamine, 3,3 ′ -Aromatic amines, such as dimethylbenzidine, etc. are mentioned, These can be used individually or in mixture of 2 or more types.

ポリイソシアネートとしては、通常のポリウレタン樹脂の製造に使用され、末端にイソシアネート基を2つ以上有するものであれば特に限定されず、例えば、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、3,3’−ジクロロ−4,4’−ジフェニルメタンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、粗製ジフェニルメタンイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加キシリレンジイソシアネート等の芳香族ポリイソシアネート及びその水素添加物;1,4−シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート等の脂環族ポリイソシアネート;テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネト、リジンジイソシアネート等の脂肪族ポリイソシアネート等が挙げられ、これらを単独で又は2種以上を混合して用いることができる。   The polyisocyanate is not particularly limited as long as it is used for the production of a normal polyurethane resin and has two or more isocyanate groups at the terminal. For example, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4 , 4'-diphenylmethane diisocyanate, 3,3'-dichloro-4,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, crude diphenylmethane isocyanate, xylylene diisocyanate, phenylene diisocyanate, 1 , 5-Naphthalene diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate and other aromatic polyisocyanates and hydrogenated products thereof; 1,4- Alicyclic polyisocyanates such as chlorohexane diisocyanate, isophorone diisocyanate, norbornane diisocyanate; and aliphatic polyisocyanates such as tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dimer acid diisocyanate, lysine diisocyanate, etc. Or 2 or more types can be mixed and used.

原料として用いられる溶剤としては、通常、アセトン、ジメチルホルムアミド(DMF)、ジメチルスルホキシド、N−メチルピロリドン、メチルエチルケトン、ジオキサン、テトラヒドロフラン等の有機溶剤やこれらの混合物が挙げられ、後工程において容易に水で抽出できる点で、DMFが好ましく用いられる。   Examples of the solvent used as a raw material include organic solvents such as acetone, dimethylformamide (DMF), dimethyl sulfoxide, N-methylpyrrolidone, methyl ethyl ketone, dioxane, tetrahydrofuran, and mixtures thereof. DMF is preferably used because it can be extracted.

本発明では、後述する乾燥工程での収縮率を小さくするため、原料無機塩として無水塩化カルシウムが用いられる。本明細書において「乾燥工程での収縮率が小さい」とは、乾燥工程前後においてポリウレタン多孔質体の鉛直方向および水平方向の収縮率が10%未満となることをいう。無水塩化カルシウムの平均粒径としては、混練時間を短縮できる点で通常100μm以下のものが用いられる。本明細書において「平均粒径」とは、レーザー回折式粒度分布測定装置を用いて、体積基準で測定された粒度分布から計算される体積平均径をいう。また、多孔質体のセルを微細なものにする点で、平均粒径として5〜50μmが好ましく、5〜30μmがより好ましく、5〜20μmがさらに好ましい。   In the present invention, anhydrous calcium chloride is used as the raw material inorganic salt in order to reduce the shrinkage rate in the drying step described later. In this specification, “the shrinkage rate in the drying step is small” means that the shrinkage rate in the vertical and horizontal directions of the polyurethane porous body is less than 10% before and after the drying step. The average particle size of anhydrous calcium chloride is usually 100 μm or less because the kneading time can be shortened. In the present specification, the “average particle diameter” refers to a volume average diameter calculated from a particle size distribution measured on a volume basis using a laser diffraction particle size distribution measuring apparatus. Moreover, 5-50 micrometers is preferable as an average particle diameter at the point which makes the cell of a porous body fine, 5-30 micrometers is more preferable, and 5-20 micrometers is further more preferable.

本発明者らの検討によれば、ポリウレタン樹脂、溶媒および無水塩化カルシウムを含有する混合物を用いて湿式凝固法によりポリウレタン多孔質体を製造する場合、乾燥工程での収縮率と無水塩化カルシウムの平均粒径とは大きく相関し、平均粒径の小さいものを用いるほど乾燥工程での収縮率が大きくなることが判明した。具体的には、平均粒径が100μmを超える無水塩化カルシウムを使用した場合、後述する混合液を用いなくても、乾燥工程での収縮率は比較的小さい状態(最大でも収縮率15%以下)を保持し得る。一方、平均粒径が100μm以下の無水塩化カルシウムを使用した場合、後述する混合液を用いなければ、乾燥工程での収縮率を小さくすることが難しくなる。したがって、本発明のように、平均粒径として上述したとおり100μm以下の無水塩化カルシウムを用いる場合、乾燥工程での収縮率を小さくする観点から、後述する混合液を用いることが必須となる。   According to the study by the present inventors, when a polyurethane porous body is produced by a wet coagulation method using a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride, the shrinkage ratio in the drying step and the average of anhydrous calcium chloride are determined. It was found that there is a large correlation with the particle size, and that the shrinkage rate in the drying process increases as the smaller average particle size is used. Specifically, when anhydrous calcium chloride having an average particle size of more than 100 μm is used, the shrinkage rate in the drying process is relatively small (the shrinkage rate is 15% or less at the maximum) without using a mixed liquid described later. Can hold. On the other hand, when anhydrous calcium chloride having an average particle size of 100 μm or less is used, it is difficult to reduce the shrinkage rate in the drying process unless a mixed solution described later is used. Therefore, as described above, when anhydrous calcium chloride having an average particle diameter of 100 μm or less is used as described above, it is essential to use a mixed liquid described later from the viewpoint of reducing the shrinkage rate in the drying step.

ポリウレタン樹脂、溶剤及び無水塩化カルシウムを含有する混合物を調製する際には、上記3種類の原料を同時に攪拌、混練してもよいが、例えば固形分25〜40重量%で製造されたポリウレタン樹脂溶液に溶剤と無水塩化カルシウムを添加、混練することもできる。この場合に用いる溶剤としては、ポリウレタン樹脂溶液に用いられている溶剤と同じものが溶解性の点で好ましい。例えば、固形分30重量%のポリウレタン樹脂を用いる場合、該ポリウレタン樹脂100重量部に対して、溶剤を0〜100重量部(好ましくは20〜70重量部)、無水塩化カルシウムを20〜70重量部(好ましくは25〜65重量部)の範囲で配合することができる。また、上記混合物には上記原料以外にも、必要に応じて例えば、界面活性剤、着色剤、耐候剤、抗菌剤等の周知の添加剤をさらに含んでもよい。   When preparing a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride, the above three kinds of raw materials may be stirred and kneaded at the same time. For example, a polyurethane resin solution produced with a solid content of 25 to 40% by weight It is also possible to add and knead a solvent and anhydrous calcium chloride. As the solvent used in this case, the same solvent as that used in the polyurethane resin solution is preferable in terms of solubility. For example, when using a polyurethane resin having a solid content of 30% by weight, the solvent is 0 to 100 parts by weight (preferably 20 to 70 parts by weight) and the anhydrous calcium chloride is 20 to 70 parts by weight with respect to 100 parts by weight of the polyurethane resin. It can mix | blend in the range (preferably 25-65 weight part). In addition to the raw materials, the mixture may further contain known additives such as surfactants, colorants, weathering agents, and antibacterial agents as necessary.

混合物の調製には、例えば、ニーダー、プラネタリーミキサー、プロペラミキサー、リボンミキサー、単軸又は二軸のスクリュー押出機、バンバリーミキサーなど、高粘度のものであっても容易に攪拌、混練可能な混合機が好ましい。上記各原料は、通常10〜50℃の温度範囲で、5〜60分間混練される。   For preparation of the mixture, for example, kneader, planetary mixer, propeller mixer, ribbon mixer, single or twin screw extruder, Banbury mixer, etc. Machine is preferred. Each said raw material is knead | mixed normally for 5 to 60 minutes in the temperature range of 10-50 degreeC.

続いて、上記で得られた混合物と、水と溶剤からなる混合液とが混練され、混練組成物が調製される。混合液に用いられる溶剤は上記混合物の調製時に用いた溶剤と同じものが溶解性の点で好ましい。混合液中の水と溶剤の重量比としては、後述する乾燥工程での収縮率を小さくするため、水/溶剤=10/90〜75/25の範囲が好ましく、15/85〜70/30の範囲がより好ましい。また、混練組成物の調製には、ニーダー、プラネタリーミキサー、プロペラミキサー、リボンミキサー、単軸又は二軸のスクリュー押出機、バンバリーミキサーなど、高粘度のものであっても容易に攪拌、混練可能な混合機が挙げられる。通常は、調製された混合物を収容する混合機を運転した状態で混合液が添加、混練される。混合物と混合液は、通常10〜50℃の温度範囲で、5〜30分間混練される。   Subsequently, the mixture obtained above and a mixed liquid composed of water and a solvent are kneaded to prepare a kneaded composition. The solvent used in the mixed solution is preferably the same as the solvent used in the preparation of the mixture from the viewpoint of solubility. The weight ratio of water and solvent in the mixed solution is preferably in the range of water / solvent = 10/90 to 75/25 in order to reduce the shrinkage rate in the drying step described later, and is 15/85 to 70/30. A range is more preferred. In addition, kneading compositions can be easily stirred and kneaded even with high viscosity, such as kneaders, planetary mixers, propeller mixers, ribbon mixers, single- or twin-screw extruders, Banbury mixers, etc. Can be mentioned. Usually, the mixed solution is added and kneaded in a state in which a mixer containing the prepared mixture is operated. The mixture and the mixed solution are kneaded usually at a temperature range of 10 to 50 ° C. for 5 to 30 minutes.

本発明で製造されるポリウレタン多孔質体は、用途との関係で比較的低密度のもの(見かけ密度として0.15〜0.30g/cm)が要求される場合がある。この場合、ポリウレタン樹脂の配合割合は、混練組成物中、固形分換算で通常10〜20重量%の範囲とされる。このように、ポリウレタン多孔質体が低密度になるほど、乾燥時の収縮率が大きくなるが、本発明では上述した混合液を用いるため、乾燥工程での収縮率を小さくすることができる。 The polyurethane porous body produced according to the present invention may be required to have a relatively low density (apparent density of 0.15 to 0.30 g / cm 3 ) in relation to applications. In this case, the blending ratio of the polyurethane resin is usually in the range of 10 to 20% by weight in terms of solid content in the kneaded composition. As described above, the lower the density of the polyurethane porous body, the larger the shrinkage rate during drying. In the present invention, however, the shrinkage rate in the drying process can be reduced because the above-described mixed liquid is used.

上記のように混練組成物を調製し、混練終了後、混練組成物を成形する。なお、必要に応じて混練組成物の混練中または混練後に混練組成物を脱泡してもよい。脱泡の具体的方法としては、混練組成物中の気泡を取り除くことができる方法であれば特に限定されず、例えば、ベント式押出機を使用して減圧脱泡を行う方法、真空フード等を採用したプラネタリーミキサーを使用して真空減圧状態で攪拌、混練を行なう方法、減圧条件下に放置する方法、遠心分離機などを使用して気泡を強制的に取り除く方法等が挙げられる。   A kneaded composition is prepared as described above, and after completion of kneading, the kneaded composition is molded. If necessary, the kneaded composition may be defoamed during or after kneading the kneaded composition. A specific method of defoaming is not particularly limited as long as it is a method capable of removing air bubbles in the kneaded composition. For example, a method of performing degassing using a vented extruder, a vacuum hood, etc. Examples thereof include a method of stirring and kneading in a vacuum reduced state using the adopted planetary mixer, a method of leaving under a reduced pressure condition, a method of forcibly removing bubbles using a centrifuge and the like.

成形の具体的方法としては、公知の方法であれば特に限定されず、例えば、押出機を使用し、その成形ダイスより混練組成物を押し出し賦型する方法、所定形状の型に混練組成物を注入、充填して賦型する方法等が挙げられる。   A specific method of molding is not particularly limited as long as it is a known method. For example, an extruder is used to extrude the kneaded composition from the molding die, and the kneaded composition is put into a mold having a predetermined shape. Examples include injection, filling and shaping.

続いて、成形された成形体から溶剤を抽出し、凝固された成形体を製造する。具体的方法としては、公知の方法であれば特に限定されず、例えば、10〜50℃程度の水等を入れた水槽に成形された成形体を浸漬する方法等が挙げられる。凝固時間は成形体の厚みにより適宜変更可能であり、例えば20mm厚みの成形体の場合通常3〜48時間である。   Subsequently, the solvent is extracted from the molded body to produce a solidified molded body. As a specific method, if it is a well-known method, it will not specifically limit, For example, the method etc. which immerse the molded object shape | molded in the water tank containing about 10-50 degreeC water etc. are mentioned. The solidification time can be appropriately changed depending on the thickness of the molded body.

その後、凝固された成形体から無水塩化カルシウムを水抽出して除去する。水抽出する具体的方法としては、公知の方法であれば特に限定されず、例えば、水中に放置する方法、手もみ洗い、バブリング、超音波洗浄等が挙げられる。また、洗濯機等に凝固した成形体を投入し、10〜50℃の水で10分〜数時間程度、攪拌、洗浄する方法が挙げられる。   Thereafter, anhydrous calcium chloride is extracted from the solidified shaped body by water extraction. The specific method for water extraction is not particularly limited as long as it is a known method, and examples thereof include a method of leaving in water, hand scrub washing, bubbling, and ultrasonic cleaning. In addition, a method in which the solidified molded body is put into a washing machine or the like, and stirred and washed with water at 10 to 50 ° C. for about 10 minutes to several hours.

水抽出後、無水塩化カルシウムが除去された成形体を、例えば、送風定温式、減圧式、除湿式、タンブラー式等の公知の乾燥機を用いて、130℃以下で乾燥する。このようにしてポリウレタン多孔質体が製造される。   After the water extraction, the molded body from which anhydrous calcium chloride has been removed is dried at 130 ° C. or lower using a known dryer such as a constant air temperature type, a reduced pressure type, a dehumidifying type, or a tumbler type. In this way, a polyurethane porous body is produced.

得られたポリウレタン多孔質体は、乾燥前後での鉛直方向および水平方向の収縮率が10%未満となり、水と溶剤からなる混合液を使用しない従来法と比べて、格段に収縮率が小さくなり、改善される。   The resulting polyurethane porous body has a shrinkage ratio in the vertical and horizontal directions before and after drying of less than 10%, and the shrinkage ratio is significantly smaller than in the conventional method that does not use a mixture of water and solvent. Improved.

また、硬度、引張り強度及び伸長率の測定結果から、本発明に係るポリウレタン多孔質体は、例えば、化粧用パフやアイシャドーチップ等の化粧用スポンジ、クッション材、OA機器用ローラー、吸水ローラー、液切りローラー、導電ローラー、インクローラー等の各種ローラー、吸水シート等の吸液部材、スワブ、医療用スポンジ、薬液塗布用ヘッドラバー等の塗布用スポンジ、浸透印、筆ペン、フィルター等として好適に用いることができる。   Further, from the measurement results of hardness, tensile strength and elongation rate, the polyurethane porous body according to the present invention is, for example, a cosmetic sponge such as a cosmetic puff or eye shadow chip, a cushion material, a roller for OA equipment, a water absorption roller, Suitable as various draining rollers, conductive rollers, ink rollers, liquid absorbing members such as water absorbing sheets, swabs, medical sponges, application sponges such as liquid rubber head rubber, penetrating marks, brush pens, filters, etc. Can be used.

以下、本発明の実施例および比較例についてさらに具体的に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。   EXAMPLES Hereinafter, examples and comparative examples of the present invention will be described more specifically, but the present invention is not limited to these examples.

(実施例1〜4)
1.ポリウレタン多孔質体の製造
ジャケット付きのプラネタリーミキサー((株)井上製作所、容量:5L、型式:PLM−5)で40℃の温水を循環させて、表1に示す配合割合(重量比)で、ポリウレタン樹脂溶液(トーヨーポリマー(株)、HILACK MP−1051 SPN、DMFを溶剤とする固形分30%のポリカーボネート系ポリウレタン樹脂)、DMFおよび無水塩化カルシウム(平均粒径:20μm)を回転数60rpmで20分間混練し混合物を得、続いて表1に示す配合割合(重量比)からなる水とDMFからなる混合液を投入し、15分間混練して混練組成物を調製した。次にプラネタリーミキサーの回転数を40rpmに下げ、10分間真空脱泡を行なった。
脱泡後の混練組成物の性状を目視観察した後、該混練組成物を直径130mm、高さ20mmの円盤型の型内に注入、充填し、水温17〜20℃の水槽に投入して混練組成物を凝固させた。混練組成物の凝固が進行すると、鉛直方向に切断して断面を目視にて観察することにより凝固部と未凝固部の境目が外観ではっきり分かるので、混練組成物の上端面から鉛直方向下向きの厚みを凝固厚みとして、24時間後、48時間後および72時間後の凝固厚みを測定した。そして、凝固完了後、円盤状の成形物を型から取り出し、40〜50℃の水で約10分間手もみ洗いして無水塩化カルシウムを抽出除去し、湿潤状態のポリウレタン多孔質体を得た。表2に混練組成物の配合割合、性状および凝固厚みを示す。
なお、無水塩化カルシウムの平均粒径は、(株)島津製作所製のレーザー回折式粒度分布測定装置(SALD−2200)を用い、体積基準で測定された粒度分布から計算された体積平均径である。後述する実施例14〜17で使用する無水塩化カルシウム、比較例4,10〜13で使用する塩化カルシウム二水和物と塩化ナトリウムの平均粒径も上記と同様の方法で測定された値である。
(Examples 1-4)
1. Manufacture of a polyurethane porous body Circulating hot water at 40 ° C. with a jacketed planetary mixer (Inoue Seisakusho Co., Ltd., capacity: 5 L, model: PLM-5), with the blending ratio (weight ratio) shown in Table 1 , Polyurethane resin solution (Toyo Polymer Co., Ltd., HILACK MP-1051 SPN, polycarbonate-based polyurethane resin having a solid content of 30% using DMF as a solvent), DMF and anhydrous calcium chloride (average particle size: 20 μm) at a rotational speed of 60 rpm A kneaded composition was prepared by kneading for 20 minutes to obtain a mixture, and subsequently adding a mixture of water and DMF having the blending ratio (weight ratio) shown in Table 1 and kneading for 15 minutes. Next, the rotational speed of the planetary mixer was lowered to 40 rpm, and vacuum defoaming was performed for 10 minutes.
After visually observing the properties of the kneaded composition after defoaming, the kneaded composition was poured and filled into a disk-shaped mold having a diameter of 130 mm and a height of 20 mm, and then poured into a water tank having a water temperature of 17 to 20 ° C. The composition was allowed to solidify. When solidification of the kneaded composition proceeds, the boundary between the solidified part and the unsolidified part can be clearly seen by visually observing the cross section by cutting in the vertical direction. With the thickness as the solidified thickness, the solidified thickness after 24 hours, 48 hours and 72 hours was measured. Then, after the solidification was completed, the disk-shaped molded product was taken out of the mold and hand-washed with water at 40 to 50 ° C. for about 10 minutes to extract and remove anhydrous calcium chloride to obtain a wet polyurethane porous body. Table 2 shows the blending ratio, properties and coagulation thickness of the kneaded composition.
The average particle diameter of anhydrous calcium chloride is a volume average diameter calculated from the particle size distribution measured on a volume basis using a laser diffraction particle size distribution measuring device (SALD-2200) manufactured by Shimadzu Corporation. . The average particle diameters of anhydrous calcium chloride used in Examples 14 to 17 described later and calcium chloride dihydrate and sodium chloride used in Comparative Examples 4 and 10 to 13 are also values measured in the same manner as described above. .

2.乾燥前後の収縮率の測定
湿潤状態のポリウレタン多孔質体の表層全体をカッターで除去し、油性マジックで縦(厚み)方向に長さ10mm以上の標線を2本マーキングし、横(直径)方向に長さ90mm以上の標線を1本マーキングし、ノギスで各標線の長さを測定した後、送風定温式乾燥機を用いて80℃で15時間乾燥させた。乾燥終了後に上記縦および横の標線の長さをノギスで測定し、〔乾燥前の標線の長さ−乾燥後の標線の長さ)/乾燥前の標線の長さ〕×100(%)により収縮率を求めた。表2に結果を示す。
2. Measurement of shrinkage before and after drying The entire surface of the wet polyurethane porous body is removed with a cutter, and two marked lines with a length of 10 mm or more are marked in the longitudinal (thickness) direction with an oil-based magic, and the transverse (diameter) direction. One marked line having a length of 90 mm or more was marked, and after measuring the length of each marked line with a caliper, it was dried at 80 ° C. for 15 hours using a blast constant temperature dryer. After drying, the lengths of the vertical and horizontal marked lines are measured with a caliper, and [the length of the marked line before drying-the length of the marked line after drying] / the length of the marked line before drying] × 100 The shrinkage percentage was obtained from (%). Table 2 shows the results.

3.ポリウレタン多孔質体の物性測定
乾燥工程を経て得られたポリウレタン多孔質体について、硬度(アスカーC型)、見かけ密度、引張り強度および伸長率を測定し、表2に結果を示した。硬度の測定はアスカーC型硬度計(高分子計器(株))を使用して行ない、見かけ密度の測定はJIS K 7222、引張り強度と伸長率の測定はともにJIS K 6440−5に従った。
3. Measurement of Physical Properties of Polyurethane Porous Material The polyurethane porous material obtained through the drying step was measured for hardness (Asker C type), apparent density, tensile strength, and elongation rate. Table 2 shows the results. The hardness was measured using an Asker C type hardness meter (Polymer Keiki Co., Ltd.), the apparent density was measured according to JIS K 7222, and the tensile strength and elongation were both measured according to JIS K 6440-5.

(比較例1)
水とDMFからなる混合液に代えてDMFのみを使用したこと以外は、上記「(実施例1〜4)」と同様に行なった。表1に各成分の配合割合を、表2に結果を示す。
(比較例2)
表1に示す混合物と混合液を使用したこと以外は、上記「(実施例1〜4)」と同様に行なった。表1に各成分の配合割合を、表2に結果を示す。
(比較例3)
混合液を使用せずに混練組成物を調製したこと以外は、上記「(実施例1〜4)」と同様に行なった。表1に各成分の配合割合を、表2に結果を示す。
(比較例4)
無水塩化カルシウムと水に代えて塩化カルシウム二水和物(平均粒径:20μm)を使用したこと、および水とDMFからなる混合液に代えてDMFのみを使用したこと以外は、上記「(実施例1〜4)」と同様に行なった。表1に各成分の配合割合を、表2に結果を示す。
(Comparative Example 1)
It carried out similarly to said "(Examples 1-4)" except having replaced with the liquid mixture which consists of water and DMF, and having used only DMF. Table 1 shows the mixing ratio of each component, and Table 2 shows the results.
(Comparative Example 2)
Except having used the mixture and liquid mixture which are shown in Table 1, it carried out similarly to said "(Examples 1-4)". Table 1 shows the mixing ratio of each component, and Table 2 shows the results.
(Comparative Example 3)
Except that the kneaded composition was prepared without using the mixed solution, the same procedure as in the “(Examples 1 to 4)” was performed. Table 1 shows the mixing ratio of each component, and Table 2 shows the results.
(Comparative Example 4)
Except that calcium chloride dihydrate (average particle size: 20 μm) was used in place of anhydrous calcium chloride and water, and that only DMF was used in place of the mixed solution of water and DMF, the above “(implementation) Example 1-4) ”. Table 1 shows the mixing ratio of each component, and Table 2 shows the results.

Figure 2011225807
Figure 2011225807

Figure 2011225807
Figure 2011225807

実施例1〜4の収縮率は縦方向および横方向ともに一桁であり良好な結果を示した。一方、比較例3では、縦および横方向の収縮率がともに10%以上を示し、良好な収縮率を示さなかった。この結果から、乾燥工程でポリウレタン多孔質体の収縮率を10%未満とするには、ポリウレタン樹脂溶液、DMFおよび無水塩化カルシウムからなる混合物と、水とDMFからなる混合液とを混練し混練組成物を得る工程が必要であることが分かった。さらに、比較例3では得られたポリウレタン多孔質体が固体状に硬くなり、物性測定ができなかった。
次に、比較例1では比較例3と同様、縦および横方向の収縮率がともに10%以上を示し、良好な収縮率を示さなかった。さらに、比較例1では比較例3と同様、ポリウレタン多孔質体自体は製造できたが、固体状に硬くなり、物性面で商品価値が低くなった。
そして、比較例2では水とDMFからなる混合液を使用したものの、混練組成物がそぼろ状になり、ポリウレタン多孔質体の成形品を製造することができなかった。
以上の結果から、乾燥工程でポリウレタン多孔質体の収縮率を10%未満とするには、水とDMFからなる混合液の重量比として、水/DMF=5/25〜20/10が好適な範囲といえる。
また、比較例4は、無水塩化カルシウムと水の代わりに塩化カルシウム二水和物を用いた系であるが、縦および横方向の収縮率がいずれも15%以上となり、良好な収縮率を示さなかった。
The shrinkage rates of Examples 1 to 4 were single digits in both the vertical direction and the horizontal direction, and good results were shown. On the other hand, in Comparative Example 3, the shrinkage ratios in the vertical and horizontal directions were both 10% or more and did not show good shrinkage ratios. From this result, in order to make the shrinkage ratio of the polyurethane porous body less than 10% in the drying step, a mixture of a polyurethane resin solution, DMF and anhydrous calcium chloride, and a mixture of water and DMF are kneaded and kneaded. It turned out that the process of obtaining a thing was required. Furthermore, in the comparative example 3, the obtained polyurethane porous body became hard in a solid state, and physical properties could not be measured.
Next, in Comparative Example 1, as in Comparative Example 3, both the vertical and horizontal shrinkage ratios were 10% or more, and good shrinkage ratios were not exhibited. Further, in Comparative Example 1, as in Comparative Example 3, the polyurethane porous body itself could be produced, but it became solid and hard and the commercial value was low.
And although the mixed liquid which consists of water and DMF was used in the comparative example 2, the kneading | mixing composition became loose-shaped and the molded article of the polyurethane porous body was not able to be manufactured.
From the above results, water / DMF = 5/25 to 20/10 is preferable as the weight ratio of the mixed solution of water and DMF in order to make the shrinkage ratio of the polyurethane porous body less than 10% in the drying step. It's a range.
Comparative Example 4 is a system using calcium chloride dihydrate in place of anhydrous calcium chloride and water, but both the shrinkage ratios in the vertical and horizontal directions were 15% or more, indicating a good shrinkage ratio. There wasn't.

(実施例5〜13)
表1に示す配合割合からなる混合物と混合液を使用したこと以外は、上記「(実施例1〜4)」と同様に行なった。表3に結果を示す。
(比較例5〜7)
水とDMFからなる混合液に代えてDMFのみを使用したこと以外は、上記「(実施例5〜13)」と同様に行なった。表1に各成分の配合割合を、表3に結果を示す。
(Examples 5 to 13)
Except having used the mixture and liquid mixture which consist of a mixture ratio shown in Table 1, it carried out like said "(Examples 1-4)". Table 3 shows the results.
(Comparative Examples 5-7)
It carried out similarly to said "(Examples 5-13)" except having replaced with the liquid mixture which consists of water and DMF, and having used only DMF. Table 1 shows the mixing ratio of each component, and Table 3 shows the results.

Figure 2011225807
Figure 2011225807

実施例5〜13では、縦方向および横方向の収縮率がともに10%未満となり、良好な収縮率を示した。一方、水とDMFからなる混合液に代えてとしてDMFのみを用いた比較例5〜7では、縦および横方向の収縮率がともに10%以上を示し、良好な収縮率を示さなかった。これらの結果から、各成分について混練組成物の配合割合を変化させた場合でも、上記「(実施例1〜4)」と同様の結果が得られることが分かった。   In Examples 5 to 13, the shrinkage ratios in the vertical direction and the horizontal direction were both less than 10%, indicating good shrinkage ratios. On the other hand, in Comparative Examples 5 to 7 in which only DMF was used in place of the mixed solution composed of water and DMF, both the vertical and horizontal shrinkage ratios were 10% or more, and good shrinkage ratios were not exhibited. From these results, it was found that even when the blending ratio of the kneaded composition was changed for each component, the same results as the “(Examples 1 to 4)” were obtained.

(実施例14〜17)
表4の欄外に示す平均粒径を有する無水塩化カルシウムを使用したこと、および表4に示す配合割合からなる混合物と混合液を使用したこと以外は、上記「(実施例1〜4)」と同様に行なった。表5に結果を示す。
(比較例8〜9)
水とDMFからなる混合液に代えてDMFのみを使用したこと以外は、上記「(実施例14〜17)」と同様に行なった。表4に各成分の配合割合を、表5に結果を示す。
(Examples 14 to 17)
Except having used anhydrous calcium chloride which has the average particle diameter shown in the margin of Table 4, and having used the mixture and liquid mixture which consist of a mixture ratio shown in Table 4, said "(Examples 1-4)" and The same was done. Table 5 shows the results.
(Comparative Examples 8-9)
It carried out similarly to said "(Examples 14-17)" except having replaced with the liquid mixture consisting of water and DMF, and having used only DMF. Table 4 shows the mixing ratio of each component, and Table 5 shows the results.

Figure 2011225807
Figure 2011225807

Figure 2011225807
Figure 2011225807

実施例14〜17では、縦方向および横方向の収縮率がともに10%未満となり、良好な収縮率を示した。実施例14,16と実施例1の収縮率を比べると、実施例14,16の方が実施例1よりも小さくなった。この結果から、無水塩化カルシウムの平均粒径が大きくなるほど収縮率が小さくなる傾向にあることが分かった。実施例15,17と実施例4の収縮率を比べても同様の結果となった。   In Examples 14 to 17, both the shrinkage ratios in the vertical direction and the horizontal direction were less than 10%, indicating good shrinkage ratios. Comparing the shrinkage rates of Examples 14 and 16 and Example 1, Examples 14 and 16 were smaller than Example 1. From this result, it was found that the shrinkage rate tends to decrease as the average particle size of anhydrous calcium chloride increases. Similar results were obtained when the shrinkage rates of Examples 15 and 17 and Example 4 were compared.

(比較例10〜13)
無水塩化カルシウムに代えて塩化ナトリウム(平均粒径:10μmまたは30μm)を使用したこと、および表4に示す各成分の配合割合で混練組成物を調製したこと以外は、上記「(実施例1〜4)」と同様に行なった。表5に結果を示す。
(Comparative Examples 10-13)
Except that sodium chloride (average particle size: 10 μm or 30 μm) was used in place of anhydrous calcium chloride and that the kneaded composition was prepared with the blending ratio of each component shown in Table 4, the above “(Example 1 to 4) ". Table 5 shows the results.

比較例10〜13の結果から、無水塩化カルシウムに代えて塩化ナトリウムを用いた系では、比較例11の場合には水とDMFの混合液を添加、混練すると比較例10と比べて収縮率は小さくなるが、縦方向の収縮率が15%前後になるため、収縮率の値としては良好とはいえないことが分かった。さらに、比較例12と13との比較から、水とDMFの混合液を添加、混練しても収縮率が変化しない場合もあることが分かった。   From the results of Comparative Examples 10 to 13, in the system using sodium chloride in place of anhydrous calcium chloride, in the case of Comparative Example 11, when a mixed liquid of water and DMF was added and kneaded, the shrinkage ratio compared to Comparative Example 10 was Although it is small, the shrinkage rate in the vertical direction is around 15%, and it was found that the shrinkage rate is not good. Furthermore, it was found from comparison between Comparative Examples 12 and 13 that the shrinkage rate may not change even when a mixed solution of water and DMF is added and kneaded.

本発明は、乾燥工程での収縮率が小さく、設計通りの製品を安定して製造することのできるポリウレタン多孔質体の製造方法として広く適用可能である。   INDUSTRIAL APPLICABILITY The present invention is widely applicable as a method for producing a polyurethane porous body that has a small shrinkage rate in a drying process and can stably produce a product as designed.

Claims (6)

ポリウレタン樹脂、溶剤及び無水塩化カルシウムを含有する混合物と、水と溶剤の重量比が水/溶剤=10/90〜75/25からなる混合液とを混練し混練組成物を得る工程、前記混練組成物を成形する工程、得られた成形体を凝固させる工程、および凝固された成形体から無水塩化カルシウムを水抽出して除去し、その後乾燥する工程を有する、ポリウレタン多孔質体の製造方法。   A step of kneading a mixture containing a polyurethane resin, a solvent and anhydrous calcium chloride, and a mixture of water / solvent having a weight ratio of water / solvent = 10/90 to 75/25 to obtain a kneaded composition, the kneaded composition A method for producing a polyurethane porous body, comprising a step of molding a product, a step of solidifying the obtained molded body, and a step of removing water from the solidified molded body by extracting anhydrous calcium chloride, followed by drying. 無水塩化カルシウムの平均粒径が100μm以下である、請求項1記載のポリウレタン多孔質体の製造方法。   The manufacturing method of the polyurethane porous body of Claim 1 whose average particle diameter of an anhydrous calcium chloride is 100 micrometers or less. 混練組成物中のポリウレタン樹脂の含有量が20重量%以下である、請求項2記載のポリウレタン多孔質体の製造方法。   The manufacturing method of the polyurethane porous body of Claim 2 whose content of the polyurethane resin in a kneading composition is 20 weight% or less. 化粧用スポンジ、クッション材、OA機器用ローラー、吸水ローラー、液切りローラー、導電ローラー、インクローラー、吸水シート、スワブ、医療用スポンジ、薬液塗布用ヘッドラバー、浸透印、筆ペンまたはフィルターに用いる、請求項3記載のポリウレタン多孔質体の製造方法。   Use for cosmetic sponge, cushion material, OA equipment roller, water absorption roller, liquid draining roller, conductive roller, ink roller, water absorption sheet, swab, medical sponge, head rubber for chemical application, penetrating mark, brush pen or filter, The manufacturing method of the polyurethane porous body of Claim 3. 請求項3記載の方法により製造されるポリウレタン多孔質体。   A polyurethane porous body produced by the method according to claim 3. 化粧用スポンジ、クッション材、OA機器用ローラー、吸水ローラー、液切りローラー、導電ローラー、インクローラー、吸水シート、スワブ、医療用スポンジ、薬液塗布用ヘッドラバー、浸透印、筆ペンまたはフィルターに用いる、請求項5記載のポリウレタン多孔質体。   Use for cosmetic sponge, cushion material, OA equipment roller, water absorption roller, liquid draining roller, conductive roller, ink roller, water absorption sheet, swab, medical sponge, head rubber for chemical application, penetrating mark, brush pen or filter, The polyurethane porous body according to claim 5.
JP2010229602A 2010-03-31 2010-10-12 Method for producing polyurethane porous body Active JP5687875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229602A JP5687875B2 (en) 2010-03-31 2010-10-12 Method for producing polyurethane porous body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010080850 2010-03-31
JP2010080850 2010-03-31
JP2010229602A JP5687875B2 (en) 2010-03-31 2010-10-12 Method for producing polyurethane porous body

Publications (2)

Publication Number Publication Date
JP2011225807A true JP2011225807A (en) 2011-11-10
JP5687875B2 JP5687875B2 (en) 2015-03-25

Family

ID=45041568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229602A Active JP5687875B2 (en) 2010-03-31 2010-10-12 Method for producing polyurethane porous body

Country Status (1)

Country Link
JP (1) JP5687875B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152202A (en) * 2004-12-01 2006-06-15 Fushimi Pharm Co Ltd Elastic body with continuous pores, process for producing the same, and water-absorbent roller and swab

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152202A (en) * 2004-12-01 2006-06-15 Fushimi Pharm Co Ltd Elastic body with continuous pores, process for producing the same, and water-absorbent roller and swab

Also Published As

Publication number Publication date
JP5687875B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
JP4497246B2 (en) Method for producing alcohol-soluble urethane resin composition, porous polyurethane and moisture-permeable film
CN1217981C (en) Thermoplastic polyurethane foam, process for production thereof and polishing pads made of the foam
JP2017520673A (en) Use of thermoplastic polyurethane powder
BR112015010970B1 (en) METHOD FOR PREPARATION OF AN ARTICLE MODELED FROM POLYURETHANE FOAM AND MODELED ARTICLES FROM POLYURETHANE FOAM
JP5588570B2 (en) Polyurethane aqueous dispersion, and film molded product and glove obtained therefrom
TWI313693B (en) Two-component curable polyol composition for foamed grindstone, two-component curable composition for foamed grindstone, foamed grindstone, and method for producing foamed grindstone
JP2007238958A (en) Foam of urethane-based thermoplastic elastomer composition and process for producing the foam
JP5133178B2 (en) Method for producing polyurethane resin aqueous dispersion
KR101105184B1 (en) Porous polyurethane object
JP5687875B2 (en) Method for producing polyurethane porous body
JP6917535B1 (en) Manufacturing method of flexible polyurethane foam
JP2018506504A (en) Method for producing foam for supporting liquid cosmetic, and foam
CN1245430C (en) Polyurethane foamed plastic and manufacturing method
EP3037465B1 (en) Compositions made from plasticized thermoplastic polyurethanes
JP2009249470A (en) Polyurethane porous structure and method for producing the same
JP4868773B2 (en) Polyurethane porous body
JP6229918B1 (en) Method for producing porous body
JP2023094827A (en) Method for producing porous body, porous body, cosmetic article, and nursing article
CN110650998A (en) Polyurethane porous body and method for producing polyurethane porous body
JP2006265308A (en) Absorbent for microplate
JP2002275304A (en) Manufacturing method of polyurethane latex sponge and application tool for make-up
JP4987463B2 (en) Method for producing foamed thermoplastic resin
KR100795205B1 (en) Method of manufacturing solvent-free artificial leather
JP6323620B1 (en) Method for producing coagulum
JP2003342341A (en) Polyurethane foam and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150123

R150 Certificate of patent or registration of utility model

Ref document number: 5687875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250