JP2011225400A - Single crystal for magnetooptical element, and device using the single crystal - Google Patents

Single crystal for magnetooptical element, and device using the single crystal Download PDF

Info

Publication number
JP2011225400A
JP2011225400A JP2010097316A JP2010097316A JP2011225400A JP 2011225400 A JP2011225400 A JP 2011225400A JP 2010097316 A JP2010097316 A JP 2010097316A JP 2010097316 A JP2010097316 A JP 2010097316A JP 2011225400 A JP2011225400 A JP 2011225400A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
magneto
optical
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097316A
Other languages
Japanese (ja)
Inventor
Takeshi Hayashi
武志 林
Satoshi Makio
諭 牧尾
Yutaka Anzai
裕 安斎
Akio Miyamoto
晃男 宮本
Sadao Matsumura
禎夫 松村
Yasunori Furukawa
保典 古川
Katulich Vladimir
カチューリヒ ウラジミル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oxide Corp
Original Assignee
Oxide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oxide Corp filed Critical Oxide Corp
Priority to JP2010097316A priority Critical patent/JP2011225400A/en
Publication of JP2011225400A publication Critical patent/JP2011225400A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a crystal body for a magnetooptical element having a Verdet constant higher than that of a TGG single crystal, and to provide a method for applying a crystal body other than the isometric system to a magnetooptical element.SOLUTION: The crystal body is a single crystal of a multiple oxide for a magnetooptical element, which has a chemical composition of MVO(wherein, M is at least one kind of element selected from Sc, Y and lanthanoids). The multiple oxide is made into a single crystal by a crystal growth method including growing a crystal from a melt, such as a floating zone method (FZ method). Further, a magnetooptical device for laser, having such a constitution that the c-axis in the crystal orientation of a single crystal is allowed to coincide with the propagation direction of the laser, is obtained by using the single crystal.

Description

本発明は、磁気光学素子用の複合酸化物単結晶に関する。本発明は、また、磁気光学素子として前記単結晶が用いられた磁気光学デバイスに関する。 The present invention relates to a complex oxide single crystal for a magneto-optical element. The present invention also relates to a magneto-optical device using the single crystal as a magneto-optical element.

磁気光学効果を利用した光アイソレータは、レーザシステムに使用される磁気光学素子である。光アイソレータは、偏光子、ファラデー回転子、検光子および磁石からなる。磁場中におかれた材料中を偏光が通過するとその偏光面が回転する現象は、ファラデー効果として知られ、その回転角Θは、磁場の強さHと物質の長さLに対して、(1)式
Θ=VHL (1)
で表される。比例係数のVはベルデ定数といい、材料に依存する特性値である。Vの大きな材料をファラデー回転子に用いると、ファラデー回転子と永久磁石が小さくても同等のアイソレーション性能を得ることができるため、素子の小型化が可能となる。光アイソレータはレーザに反射光が戻ることを防いでレーザを安定に動作させる働きがあるために、半導体の微細加工用レーザ、光ファイバ通信用の半導体レーザ、鋼材やセラミックスの切断及び熱処理用レーザ、医療用レーザメス等に組み込まれ、広い産業分野で利用されている。
An optical isolator using the magneto-optical effect is a magneto-optical element used in a laser system. The optical isolator includes a polarizer, a Faraday rotator, an analyzer, and a magnet. The phenomenon that the plane of polarized light rotates when polarized light passes through a material placed in a magnetic field is known as the Faraday effect. The rotation angle Θ depends on the strength H of the magnetic field and the length L of the substance ( 1) Formula Θ = VHL (1)
It is represented by The proportional coefficient V is called the Verde constant, which is a characteristic value depending on the material. When a material having a large V is used for the Faraday rotator, the same isolation performance can be obtained even if the Faraday rotator and the permanent magnet are small, so that the element can be miniaturized. Since the optical isolator has the function of preventing the reflected light from returning to the laser and operating the laser stably, a laser for semiconductor microfabrication, a semiconductor laser for optical fiber communication, a laser for cutting and heat treatment of steel and ceramics, It is incorporated in medical laser scalpels and is used in a wide range of industrial fields.

光アイソレータに要求される性能には、ベルデ定数の他に、消光比が高いこと、挿入損失が低いこと、が必要とされる。消光比が低いとレーザ光の偏光の制御性が悪く、その結果、戻り光の分離能(アイソレーション性能)が損なわれる。挿入損失が高いとレーザ出力のロスや吸熱による光アイソレータの耐性低下をまねく。 In addition to the Verde constant, the performance required for an optical isolator requires a high extinction ratio and a low insertion loss. When the extinction ratio is low, the controllability of the polarization of the laser light is poor, and as a result, the separation ability (isolation performance) of the return light is impaired. If the insertion loss is high, loss of laser output and endurance of the optical isolator due to heat absorption are reduced.

1.3μmから1.5μmの光通信用レーザの光アイソレータには、鉄を主成分とするガーネット結晶が使われている。しかし、鉄を含むガーネット結晶は、可視から近赤外の波長域には吸収があるために、この波長域のレーザ用には使うことができない。そのために、可視から近赤外の波長域の光アイソレータには、希土類元素を含む結晶やガラスがファラデー回転子として提案されている。ここでいう希土類元素は、原子番号21のSc、原子番号39のY、原子番号57から71までのランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)を指し、以下記号Mで表わす。 A garnet crystal mainly composed of iron is used for an optical isolator of a laser for optical communication of 1.3 μm to 1.5 μm. However, garnet crystals containing iron cannot be used for lasers in this wavelength range because of absorption in the visible to near-infrared wavelength range. For this reason, crystals and glasses containing rare earth elements have been proposed as Faraday rotators for optical isolators in the visible to near-infrared wavelength region. The rare earth element here is Sc of atomic number 21, Y of atomic number 39, lanthanoids of atomic number 57 to 71 (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and is represented by the symbol M below.

希土類元素を含む結晶には、3価のテルビウムイオン(Tb3+)を主成分とするガーネットがファラデー回転子として実用化されている。例えば、TGG(テルビウム・ガリウム・ガーネット、化学式TbGa12)単結晶は1.06μmのファイバーレーザ用光アイソレータに使われている。しかし、TGGのべルデ定数は40rad/(T・m)と小さいために、通常、2cmから3cmの長さの結晶をファラデー回転子に必要とする。さらにファラデー回転子長を短くするためには、大きいベルデ定数を有する単結晶材料が望まれている。 For crystals containing rare earth elements, garnets mainly composed of trivalent terbium ions (Tb 3+ ) have been put into practical use as Faraday rotators. For example, a TGG (terbium gallium garnet, chemical formula Tb 3 Ga 5 O 12 ) single crystal is used for an optical isolator for a fiber laser of 1.06 μm. However, since the Berde constant of TGG is as small as 40 rad / (T · m), a crystal having a length of 2 cm to 3 cm is usually required for the Faraday rotator. Furthermore, in order to shorten the Faraday rotator length, a single crystal material having a large Verde constant is desired.

現在、実用化されている光アイソレータのファラデー回転子は、ガラスやガーネット結晶のような等軸晶系に属する結晶体に限られている。その理由は、正方晶系や六方晶系などの等軸晶系以外の結晶系に属する単結晶は、複屈折があるために消光せず、ベルデ定数が大きくてもアイソレータとしての機能を果たさないと思われていたためである。
特開2002-293693 Journal of Applied Physics, Volume 35, Number 8, p2338
Currently, Faraday rotators of optical isolators that are in practical use are limited to crystals belonging to the equiaxed system such as glass and garnet crystals. The reason for this is that single crystals belonging to crystal systems other than equiaxed crystals, such as tetragonal and hexagonal, do not quench due to birefringence, and do not function as an isolator even if the Verde constant is large. It was because it was thought.
JP2002-293693 Journal of Applied Physics, Volume 35, Number 8, p2338

本発明が解決すべき課題は、従来のTGG単結晶よりもベルデ定数が大きな磁気光学素子用の結晶体を提供することにある。更に、等軸晶系以外の結晶系に属する結晶体を磁気光学素子に適用せしめる方法を提供することも課題とする。 The problem to be solved by the present invention is to provide a crystal for a magneto-optical element having a larger Verde constant than a conventional TGG single crystal. It is another object of the present invention to provide a method of applying a crystal belonging to a crystal system other than the equiaxed crystal system to the magneto-optical element.

本発明は、
(1)磁気光学素子用の複合酸化物であってその化学組成がMVO(MはSc、Y、ランタノイドから選択した1種類以上の元素)であることを特徴とする単結晶
(2)磁気光学素子用のTbVO単結晶
(3)前記の単結晶を用いた磁気光学素子であって、単結晶の結晶方位のc軸と光の伝搬方向を一致させたことを特徴とするレーザ用の磁気光学デバイス
(4)前記の単結晶の結晶方位のc軸と光の伝搬方向の一致精度が±0.5度以内であることを特徴とする磁気光学デバイス
(5)前記の単結晶が、融液からの結晶成長法によって単結晶化されたことを特徴とする磁気光学素子用の単結晶の製造方法
に関する。
The present invention
(1) A single crystal characterized in that it is a complex oxide for a magneto-optical element, and its chemical composition is MVO 4 (M is one or more elements selected from Sc, Y, and lanthanoid) (2) Magnetism TbVO 4 single crystal for optical element (3) A magneto-optical element using the above-mentioned single crystal, characterized in that the c-axis of the crystal orientation of the single crystal coincides with the light propagation direction. Magneto-optical device (4) The magneto-optical device (5) is characterized in that the accuracy of coincidence between the c-axis of the crystal orientation of the single crystal and the light propagation direction is within ± 0.5 degrees. The present invention relates to a method for producing a single crystal for a magneto-optical element, wherein the single crystal is formed by a crystal growth method from a melt.

本発明(1)および(2)によれば、TGGよりも大きなベルデ定数を持つ磁気光学素子用の単結晶を得ることができる。本単結晶は、TGGよりも小さなサイズでも大きなファラデー回転角が得られる。
本発明(3)および(4)によれば、より高性能で小型の磁気光学デバイスが可能になる。小型の磁気光学デバイスは、ファイバーレーザに搭載するに適している。
本発明(5)によれば、磁気光学素子用の単結晶を必要十分な寸法で工業生産することが可能である。
According to the present invention (1) and (2), a single crystal for a magneto-optical element having a Verde constant larger than TGG can be obtained. This single crystal can provide a large Faraday rotation angle even with a size smaller than TGG.
According to the present invention (3) and (4), a smaller and higher performance magneto-optical device is possible. Small magneto-optical devices are suitable for mounting on fiber lasers.
According to the present invention (5), it is possible to industrially produce a single crystal for a magneto-optical element with necessary and sufficient dimensions.

結晶の作製方法を説明する。以下は、希土類元素とバナジウム元素の比が化学量論比の1:1の希土類バナデート(MVO)結晶の作製法を説明する。希土類バナデートは、正方晶系に属しジルコン型結晶構造をとる。希土類バナデートは、化学量論比1:1の近傍に固溶域を持つことが知られているが、そのような化学量論比からのずれのある結晶であっても正方晶系のジルコン型結晶構造をとる結晶体に対しては、同様の作製方法が適用できる。 A method for manufacturing a crystal will be described. The following describes a method for producing a rare earth vanadate (MVO 4 ) crystal having a 1: 1 stoichiometric ratio of rare earth elements to vanadium elements. Rare earth vanadate belongs to the tetragonal system and has a zircon crystal structure. Rare earth vanadate is known to have a solid solution region in the vicinity of a stoichiometric ratio of 1: 1, but even a crystal having a deviation from such a stoichiometric ratio is a tetragonal zircon type. A similar manufacturing method can be applied to a crystal body having a crystal structure.

原料は、希土類元素の酸化物とバナジウム元素の酸化物を混合して用いることができる。原料の純度は99.9%以上が好ましく、より望ましくは99.99%以上である。酸化物以外にも、アンモニウム塩、炭酸塩、水酸化物などの加熱によって溶融するまでに揮発性物質と酸化物に分解する化合物、例えば炭酸塩、アンモニウム塩、水酸化物などを原料に用いてもよい。希土類とバナジウムの元素比は、化学量論比1:1でよい。バナジウムは融液から蒸発するので、蒸発分を考慮してバナジウムを多めに加えてもよい。 The raw material can be used by mixing a rare earth element oxide and a vanadium element oxide. The purity of the raw material is preferably 99.9% or more, and more preferably 99.99% or more. In addition to oxides, compounds that decompose into volatile substances and oxides before being melted by heating, such as ammonium salts, carbonates and hydroxides, such as carbonates, ammonium salts and hydroxides are used as raw materials. Also good. The elemental ratio of rare earth to vanadium may be a stoichiometric ratio of 1: 1. Since vanadium evaporates from the melt, a larger amount of vanadium may be added in consideration of evaporation.

秤量した原料は、ボールミル混合器、V型混合器、シェイカー、メノウ乳鉢等の既存の器具を用いて十分に混合する。混合粉は、冷間等方圧プレス(CIP)によって成形体を作製する。 The weighed raw materials are sufficiently mixed using existing equipment such as a ball mill mixer, a V-type mixer, a shaker, and an agate mortar. The mixed powder is formed into a compact by cold isostatic pressing (CIP).

希土類バナデート単結晶を融液から製造する結晶育成法には、チョクラルスキー法(CZ法)、フローティングゾーン法(FZ法)、ブリッジマン法、EFG法など複数あるので、適宜選択すれば良い。いずれの方法も、種結晶以外の原料を加熱溶融せしめ、次に種結晶の方位を引き継ぐように融体を徐々に固化させて大きな単結晶を成長させる。加熱方法も、抵抗加熱、誘導加熱、集光加熱等から選べばよい。 There are a plurality of crystal growth methods for producing rare earth vanadate single crystals from the melt, such as the Czochralski method (CZ method), the floating zone method (FZ method), the Bridgman method, and the EFG method. In either method, raw materials other than the seed crystal are heated and melted, and then the melt is gradually solidified so as to take over the orientation of the seed crystal to grow a large single crystal. The heating method may be selected from resistance heating, induction heating, condensing heating and the like.

融液から単結晶を成長させるときの雰囲気は、Tbイオンが3価から4価に過酸化される事を防ぐために、大気またはこれよりも低酸素分圧の雰囲気が好ましい。 The atmosphere for growing a single crystal from the melt is preferably air or an atmosphere having a lower partial pressure of oxygen in order to prevent Tb ions from being oxidized from trivalent to tetravalent.

結晶の成長速度は、0.1mm/hから10mm/hの範囲から、結晶育成法に応じて、結晶品質と生産性を考慮して選択すれば良い。所定の大きさまで単結晶が成長したら、育成を止め、ゆっくりと室温まで冷却する。 The crystal growth rate may be selected in the range of 0.1 mm / h to 10 mm / h in consideration of crystal quality and productivity according to the crystal growth method. When the single crystal grows to a predetermined size, the growth is stopped and the solution is slowly cooled to room temperature.

育成した結晶は、必要に応じて熱処理を施すことができる。熱処理の目的は、結晶の熱歪を低減して加工時の割れを防ぎ、歪複屈折に起因する消光比を改善し、結晶欠陥に起因する使用波長域の吸収を低減すること、である。 The grown crystal can be heat-treated as necessary. The purpose of the heat treatment is to reduce the thermal strain of the crystal to prevent cracking during processing, to improve the extinction ratio due to strain birefringence, and to reduce the absorption in the wavelength range used due to crystal defects.

次に、単結晶から磁気光学素子を作製する手順を示す。例示する素子は光アイソレータである。 Next, a procedure for producing a magneto-optical element from a single crystal is shown. The illustrated element is an optical isolator.

育成した単結晶から、断面が数mmの正方形または円形、レーザの光を伝搬させる方向の長さが数mmから数cmの角柱状または円柱状の素子を切断する。断面の大きさは、使用するレーザ光学系に依存する。長さは磁石の磁場強度や光アイソレータの設計に依存する。 From the grown single crystal, a square or circular element having a cross section of several millimeters, and a prismatic or cylindrical element having a length of several millimeters to several centimeters in the direction of propagation of laser light is cut. The size of the cross section depends on the laser optical system used. The length depends on the magnetic field strength of the magnet and the design of the optical isolator.

柱状素子を加工するときは、角柱または円柱の中心軸を希土類バナデート単結晶の結晶方位のc軸と一致するように加工する。結晶方位は、X線を用いて決めることができる。切断には、外周刃切断機、内周刃切断機、マルチワイヤーソー、超音波コアドリル等を用いる。 When processing the columnar element, processing is performed so that the central axis of the prism or cylinder coincides with the c-axis of the crystal orientation of the rare earth vanadate single crystal. The crystal orientation can be determined using X-rays. For cutting, an outer peripheral blade cutting machine, an inner peripheral blade cutting machine, a multi-wire saw, an ultrasonic core drill, or the like is used.

素子の両端面は鏡面研磨する。研磨の平坦度は使用するレーザの波長λに対してλ/8以下にすることが望ましい。研磨面の平行度は1分以内とする。また、研磨面に無反射コーティングを施しても良い。 Both end surfaces of the element are mirror-polished. The flatness of the polishing is desirably λ / 8 or less with respect to the wavelength λ of the laser to be used. The parallelism of the polished surface should be within 1 minute. Further, an antireflective coating may be applied to the polished surface.

光アイソレータの構成は、通常のガーネット結晶やガラスをファラデー回転素子として用いたときに準じれば良い。例えば、偏波依存型の光アイソレータの構成は、ファラデー回転材料の希土類バナデート単結晶の周りを磁石で囲み、結晶の前後に偏光子と検光子を置く。 The configuration of the optical isolator may be the same as when a normal garnet crystal or glass is used as the Faraday rotation element. For example, in the configuration of a polarization-dependent optical isolator, a rare earth vanadate single crystal of a Faraday rotation material is surrounded by a magnet, and a polarizer and an analyzer are placed before and after the crystal.

作製した結晶の磁気光学特性は、光アイソレータと同じ素子配置の光学系で評価することができる。ベルデ定数は、光路長さLの結晶に強さHの磁場を加えたときの偏光面の回転角Θを測れば(1)式から、算出できる。挿入損失は、レーザ装置から射出した光が、照射目的物に向かって、光アイソレータを通過するときに、失うエネルギーから求める。消光比は、目的物側からの戻り光が、光アイソレータによってどれだけ減光されたかを測定する。測定に用いるレーザは、光アイソレータを装着すると同じ波長のものを使う。例えば、1.06μmのファイバーレーザ用の光アイソレータならば、市販の発振波長1.06μmのレーザを光源として特性を測定する。消光比が、20dB以下では戻り光の減光が不十分であり、光アイソレータとして実用にならない。 The magneto-optical characteristics of the produced crystal can be evaluated by an optical system having the same element arrangement as that of the optical isolator. The Verde constant can be calculated from the equation (1) by measuring the rotation angle Θ of the polarization plane when a magnetic field of strength H is applied to a crystal of optical path length L. The insertion loss is obtained from the energy lost when the light emitted from the laser device passes through the optical isolator toward the irradiation target. The extinction ratio measures how much the return light from the object side is attenuated by the optical isolator. The laser used for the measurement has the same wavelength as the optical isolator. For example, in the case of an optical isolator for a 1.06 μm fiber laser, characteristics are measured using a commercially available laser having an oscillation wavelength of 1.06 μm as a light source. When the extinction ratio is 20 dB or less, the return light is not sufficiently attenuated, and it is not practical as an optical isolator.

以下に本発明の実施例を説明する。 Examples of the present invention will be described below.

(実施例1)純度99.99%のTb粉末34gと、純度99.99%のV粉末17gをモル比で1:1となるように秤量した。アルミナ乳鉢へそれぞれの粉末とエチルアルコール50ccを入れ2〜3時間、エチルアルコールが蒸発し混合物が液状ではなくなるまで、乳棒を用いて混合した。混合した粉末を、さらに自然乾燥させた。 (Example 1) 34 g of Tb 4 O 7 powder having a purity of 99.99% and 17 g of V 2 O 5 powder having a purity of 99.99% were weighed so as to have a molar ratio of 1: 1. Each powder and 50 cc of ethyl alcohol were put into an alumina mortar and mixed using a pestle for 2 to 3 hours until the ethyl alcohol evaporated and the mixture was not liquid. The mixed powder was further air-dried.

この粉末をラバーチューブに詰め、直径5mm、長さ100mmの棒状に形を整えた後、100MPaの圧力でCIPを用いて成形した。成形した棒は、1300℃から1600℃で焼結することによってTbVOの緻密な焼結棒を得た。 This powder was packed in a rubber tube, shaped into a rod shape having a diameter of 5 mm and a length of 100 mm, and then molded using CIP at a pressure of 100 MPa. The molded bar was sintered at 1300 ° C. to 1600 ° C. to obtain a dense sintered bar of TbVO 4 .

単結晶の作製は、集光加熱によるイメージ炉を用いたFZ法によった。使用した炉の概念図を図1に示す。回転楕円鏡1の一方の焦点にランプ2を熱源として置き、もう一方の焦点の原料棒3を集光加熱する。原料棒3は上シャフト7に固定し、種結晶4は下シャフト8に固定する。原料棒3の下端を加熱融解してから上下シャフトを近づけて種結晶4と接合させ、適当な長さの融液帯5を形成する。両シャフトは融液帯を撹拌して均一化するために相反する方向に回転させることができる。融液帯をゆっくりと原料棒側に移動すると、種結晶と融液帯の間に単結晶6が成長する。融液帯は透明な石英管9によって大気から隔離され、結晶育成雰囲気が自由に制御できるようになっている。 The single crystal was produced by the FZ method using an image furnace by condensing heating. A conceptual diagram of the furnace used is shown in FIG. The lamp 2 is placed at one focal point of the spheroid mirror 1 as a heat source, and the material rod 3 at the other focal point is condensed and heated. The raw material rod 3 is fixed to the upper shaft 7, and the seed crystal 4 is fixed to the lower shaft 8. The lower end of the raw material rod 3 is heated and melted, and then the upper and lower shafts are brought close to each other to join the seed crystal 4 to form a melt zone 5 having an appropriate length. Both shafts can be rotated in opposite directions to agitate and homogenize the melt zone. When the melt zone is slowly moved to the raw material rod side, the single crystal 6 grows between the seed crystal and the melt zone. The melt zone is isolated from the atmosphere by a transparent quartz tube 9 so that the crystal growth atmosphere can be freely controlled.

成形した原料棒と種結晶を炉に取り付け、ランプの出力を調整して原料棒の下端を溶融させた後、種結晶と接合させた。融液帯を1〜10mm/hrで移動し、TbVO単結晶を成長させた。得られた単結晶は、黄色から茶色を呈していた。 The formed raw material rod and seed crystal were attached to a furnace, the output of the lamp was adjusted to melt the lower end of the raw material rod, and then joined to the seed crystal. The melt zone was moved at 1-10 mm / hr to grow a TbVO 4 single crystal. The obtained single crystal was yellow to brown.

作製した単結晶から、正方柱のファラデー回転子を加工した。正方柱の中心軸とTbVO単結晶の結晶方位のc軸との一致精度は±0.05度以内とした。中心軸の長さは2.8mmとし、両端面の形状は3mm×3mmの正方形にした。両端面は鏡面研磨を施した。 A square pillar Faraday rotator was processed from the produced single crystal. The coincidence accuracy between the central axis of the square pillar and the c-axis of the crystal orientation of the TbVO 4 single crystal was within ± 0.05 degrees. The length of the central axis was 2.8 mm, and the shape of both end faces was a 3 mm × 3 mm square. Both end surfaces were mirror-polished.

研磨したファラデー回転子の透過スペクトルを測定した。日立分光光度計U4100を用いて、1400nmから400nmの波長範囲を測定した。488nm付近に3価のテルビウムによる鋭い吸収帯が観測された。800nm以下では徐々に吸収が大きくなって透過率が低下するが、1400nmから1000nmの波長域にはほとんど吸収が無く、高い透過率を示していた。波長1.06μmのファイバーレーザをはじめとする近赤外波長域のレーザ用の光学材料として適していることが示された。 The transmission spectrum of the polished Faraday rotator was measured. The wavelength range from 1400 nm to 400 nm was measured using a Hitachi spectrophotometer U4100. A sharp absorption band due to trivalent terbium was observed around 488 nm. At 800 nm or less, the absorption gradually increased and the transmittance decreased, but there was almost no absorption in the wavelength region of 1400 nm to 1000 nm, indicating a high transmittance. It was shown to be suitable as an optical material for lasers in the near-infrared wavelength region, including fiber lasers having a wavelength of 1.06 μm.

次に磁気光学特性を測定した。ファラデー回転子は、レーザの伝搬方向がTbVO単結晶のc軸と±0.05度以内の精度で一致するように調整して設置した。素子は0.5Tの磁場中においた。グラントムソンプリズムによる偏光子、検光子に挟んで、1.06μmのレーザにおいて、偏光子を回転させて検光子による消光角度によるベルデ定数の測定を行った結果を図2に示す。ベルデ係数は62rad/(T・m)だった。このときの消光比は、35dBだった。 Next, the magneto-optical characteristics were measured. The Faraday rotator was adjusted and installed so that the laser propagation direction coincided with the c-axis of the TbVO 4 single crystal with an accuracy within ± 0.05 degrees. The element was placed in a 0.5 T magnetic field. FIG. 2 shows the result of measuring the Verde constant according to the extinction angle by the analyzer by rotating the polarizer in a 1.06 μm laser sandwiched between the polarizer and analyzer by the Glan-Thompson prism. The Verde coefficient was 62 rad / (T · m). The extinction ratio at this time was 35 dB.

TbVO単結晶をファラデー回転子とした光アイソレータを作製した。光アイソレータの構成を図3に示す。レーザの伝搬方向10と平行に結晶のc軸を合わせたTbVO単結晶12を中心に配置する。磁石13で結晶の周りを囲む。結晶の前後に偏光子11を配置する。結晶、磁石、偏光子はハウジング14に収納されている。TbVO単結晶は大きなベルデ定数を持つために、これを用いた光アイソレータが小型化できた。 An optical isolator using a TbVO 4 single crystal as a Faraday rotator was produced. The configuration of the optical isolator is shown in FIG. A TbVO 4 single crystal 12 in which the c-axis of the crystal is aligned in parallel with the laser propagation direction 10 is arranged at the center. A magnet 13 surrounds the crystal. Polarizers 11 are arranged before and after the crystal. The crystal, magnet, and polarizer are housed in the housing 14. Since the TbVO 4 single crystal has a large Verde constant, an optical isolator using the TbVO 4 single crystal can be reduced in size.

(実施例2)
実施例1と同様の手順をふみ、FZ法によって単結晶を作製した。正方柱のファラデー回転子に加工する際に、正方柱の中心軸と単結晶のc軸は0.2度、及び0.3度ずらして加工した。中心軸の長さは2.8mmとした。両端面の形状は3mm×3mmの正方形とし、鏡面研磨を施した。正方柱の中心軸にレーザの光を伝搬させた。消光比は、正方柱の中心軸と単結晶のc軸を0.2度ずらしたものが28dB、0.3度ずらしたものが25dBだった。
(Example 2)
A procedure similar to that in Example 1 was followed, and a single crystal was produced by the FZ method. When processing into a square column Faraday rotator, the center axis of the square column and the c-axis of the single crystal were shifted by 0.2 degrees and 0.3 degrees. The length of the central axis was 2.8 mm. The shape of both end surfaces was a 3 mm × 3 mm square, and mirror polishing was performed. The laser beam was propagated to the central axis of the square pillar. The extinction ratio was 28 dB when the central axis of the square pillar and the c-axis of the single crystal were shifted by 0.2 degrees, and 25 dB when shifted by 0.3 degrees.

(実施例3)
純度99.99%のTb粉末228.1gと、純度99.99%のV粉末113.4gを秤量した。2種類の粉をシェイカーで2時間混合後、CIPを用いて加圧成形した。
(Example 3)
228.1 g of Tb 2 O 3 powder having a purity of 99.99% and 113.4 g of V 2 O 5 powder having a purity of 99.99% were weighed. Two types of powders were mixed with a shaker for 2 hours, and then pressure-molded using CIP.

成形原料をイリジウムルツボに充填し、高周波誘導加熱によって原料を融解した。種結晶を融液につけ、一般的なチョクラルスキー法によって単結晶を成長させた。育成は、低酸素雰囲気下でおこなった。所定の長さまで成長させた後、結晶を融液から切り離し、徐冷した。 The raw material for molding was filled in an iridium crucible, and the raw material was melted by high frequency induction heating. A seed crystal was put into the melt and a single crystal was grown by a general Czochralski method. The cultivation was performed in a low oxygen atmosphere. After growing to a predetermined length, the crystal was separated from the melt and slowly cooled.

育成した単結晶から、実施例1と同様の手順で正方柱状のファラデー回転子を作製した。正方柱の中心軸と単結晶のc軸は0.1度の精度で一致させた。磁気光学特性を測定した。ベルデ係数は61rad/(T・m)だった。消光比は34dBだった。 A square columnar Faraday rotator was produced from the grown single crystal in the same procedure as in Example 1. The central axis of the square pillar and the c axis of the single crystal were matched with an accuracy of 0.1 degree. Magneto-optical properties were measured. The Verde coefficient was 61 rad / (T · m). The extinction ratio was 34 dB.

(比較例1)
実施例1と同様の手順をふみ、FZ法によって単結晶を作製した。正方柱のファラデー回転子に加工する際に、正方柱の中心軸と単結晶のc軸は−0.8度から+1.2度ずらした。中心軸の長さは2.8mmとした。両端面の形状は3mm×3mmの正方形とし、鏡面研磨を施した。正方柱の中心軸にレーザの光を伝搬させた。消光比は、ずれ角度が+1.2度のとき14dB、−0.6度のとき17.5dBという低い値しか得られなかった。光の伝搬方向とc軸のずれ角度が消光比に及ぼす影響を図4に示す。ずれ角度が±0.5度を超えると消光比が20dBよりも小さくなり、光アイソレータとして十分な性能が得られないことが分かった。
(Comparative Example 1)
A procedure similar to that in Example 1 was followed, and a single crystal was produced by the FZ method. When processing into a square pillar Faraday rotator, the central axis of the square pillar and the c axis of the single crystal were shifted from -0.8 degrees to +1.2 degrees. The length of the central axis was 2.8 mm. The shape of both end surfaces was a 3 mm × 3 mm square, and mirror polishing was performed. The laser beam was propagated to the central axis of the square pillar. The extinction ratio was only as low as 14 dB when the deviation angle was +1.2 degrees and 17.5 dB when the deviation angle was -0.6 degrees. FIG. 4 shows the influence of the light propagation direction and the c-axis deviation angle on the extinction ratio. It has been found that when the deviation angle exceeds ± 0.5 degrees, the extinction ratio becomes smaller than 20 dB, and sufficient performance as an optical isolator cannot be obtained.

以上の試験結果に示すとおり、大きなベルデ定数と消光比を持ち、透過率の高い磁気光学素子に適した結晶体が得られていることが判る。さらに、この結晶をファラデー回転材料として用いることで、高性能な光アイソレータが実現できる。
As shown in the above test results, it can be seen that a crystal body having a large Verde constant and extinction ratio and suitable for a magneto-optical element having high transmittance is obtained. Furthermore, a high-performance optical isolator can be realized by using this crystal as a Faraday rotation material.

フローティングゾーン法の模式図Schematic diagram of the floating zone method ベルデ定数の測定結果1Verde constant measurement result 1 作製した光アイソレータの模式図Schematic diagram of the fabricated optical isolator 光の伝搬方向とc軸のずれ角度と消光比Light propagation direction, c-axis deviation angle and extinction ratio

1 回転楕円鏡
2 ランプ
3 原料棒
4 種結晶
5 融液帯
6 単結晶
7 上シャフト
8 下シャフト
9 石英管
10 レーザの伝搬方向
11 偏光子
12 希土類バナデート結晶
13 磁石
14 ハウジング
DESCRIPTION OF SYMBOLS 1 Rotating elliptical mirror 2 Lamp 3 Raw material rod 4 Seed crystal 5 Melt zone 6 Single crystal 7 Upper shaft 8 Lower shaft 9 Quartz tube 10 Laser propagation direction 11 Polarizer 12 Rare earth vanadate crystal 13 Magnet 14 Housing

Claims (5)

磁気光学素子用の複合酸化物であってその化学組成がMVO(MはSc、Y、ランタノイドから選択した1種類以上の元素)であることを特徴とする単結晶 Single crystal characterized in that it is a complex oxide for a magneto-optical element, and its chemical composition is MVO 4 (M is one or more elements selected from Sc, Y, and lanthanoid) 磁気光学素子用のTbVO単結晶 TbVO 4 single crystal for magneto-optic element 請求項1または請求項2に記載の単結晶を用いた磁気光学素子であって、単結晶の結晶方位のc軸と光の伝搬方向を一致させたことを特徴とする磁気光学デバイス 3. A magneto-optical device using the single crystal according to claim 1, wherein the c-axis of the crystal orientation of the single crystal coincides with the light propagation direction. 請求項3に記載の磁気光学素子において、単結晶の結晶方位のc軸と光の伝搬方向の一致精度が±0.5度以内であることを特徴とする磁気光学デバイス。 4. The magneto-optical device according to claim 3, wherein the coincidence accuracy between the c-axis of the crystal orientation of the single crystal and the light propagation direction is within ± 0.5 degrees. 請求項1又は2記載の単結晶が、融液からの結晶成長法によって単結晶化されたことを特徴とする磁気光学素子用の単結晶の製造方法 A method for producing a single crystal for a magneto-optical element, wherein the single crystal according to claim 1 or 2 is single-crystallized by a crystal growth method from a melt.
JP2010097316A 2010-04-20 2010-04-20 Single crystal for magnetooptical element, and device using the single crystal Pending JP2011225400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097316A JP2011225400A (en) 2010-04-20 2010-04-20 Single crystal for magnetooptical element, and device using the single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097316A JP2011225400A (en) 2010-04-20 2010-04-20 Single crystal for magnetooptical element, and device using the single crystal

Publications (1)

Publication Number Publication Date
JP2011225400A true JP2011225400A (en) 2011-11-10

Family

ID=45041280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097316A Pending JP2011225400A (en) 2010-04-20 2010-04-20 Single crystal for magnetooptical element, and device using the single crystal

Country Status (1)

Country Link
JP (1) JP2011225400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105133015A (en) * 2015-08-06 2015-12-09 中国科学院理化技术研究所 Terbium vanadate-doped magneto-optical crystal, growth method and applications thereof
CN111005071A (en) * 2019-09-16 2020-04-14 中国科学院福建物质结构研究所 Dysprosium vanadate-doped magneto-optical crystal, and preparation growth method and application thereof
WO2022195895A1 (en) * 2021-03-19 2022-09-22 ギガフォトン株式会社 Optical isolator, ultraviolet laser apparatus, and method for manufacturing electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105133015A (en) * 2015-08-06 2015-12-09 中国科学院理化技术研究所 Terbium vanadate-doped magneto-optical crystal, growth method and applications thereof
CN111005071A (en) * 2019-09-16 2020-04-14 中国科学院福建物质结构研究所 Dysprosium vanadate-doped magneto-optical crystal, and preparation growth method and application thereof
WO2022195895A1 (en) * 2021-03-19 2022-09-22 ギガフォトン株式会社 Optical isolator, ultraviolet laser apparatus, and method for manufacturing electronic device

Similar Documents

Publication Publication Date Title
JP2011213552A (en) Garnet crystal for magnetooptical element
EP2492379B1 (en) Single crystal, process for producing same, optical isolator, and optical processor using same
US8625197B2 (en) Optical isolator
WO2012046755A1 (en) Magneto-optical material, faraday rotator, and optical isolator
JP5337011B2 (en) Terbium oxide crystals for magneto-optic elements
JP2012208490A (en) Optical module
JP2017137223A (en) Garnet type single crystal, production method therefor, and optical isolator and optical processor using same
CN104073879B (en) Bismuth displacement rare earth iron garnet single crystal and its manufacture method
JPWO2004029339A1 (en) Terbium-based paramagnetic garnet single crystal and porcelain optical device
JP5276640B2 (en) 1μm band optical isolator
Ikesue et al. Progress of magneto-optical ceramics
JP2011225400A (en) Single crystal for magnetooptical element, and device using the single crystal
Zhu et al. Growth and thermophysical properties of magneto-optical crystal TbVO4
Huang et al. Wavelength and temperature characteristics of BiYbIG film/YIG crystal composite structure for magneto-optical applications
EP3654088B1 (en) Optical isolator and faraday rotator
Manabe et al. Crystal growth and optical properties of gadolinium aluminum garnet
Huang et al. A new Bi-substituted rare-earth iron garnet for a wideband and temperature-stabilized optical isolator
JP6894865B2 (en) Method for manufacturing garnet-type crystals
JP5717207B2 (en) Terbium oxide crystals for magneto-optic elements
Huang et al. Structural, Magnetic and Magneto‐Optical Properties of (YYbBi) 3Fe5O12 Single Crystal for High‐Performance Magneto‐Optical Applications
JP2002348196A (en) Rare earth vanadate single crystal and method for making the same
JP7474725B2 (en) Optical Isolator
EP4332663A1 (en) Optical isolator
JP2013203569A (en) Sintered body for magneto-optic element and magneto-optic element
Jiang et al. Characteristics of Y3Fe5O12 ceramic at mid-infrared wavelengths and its Faraday isolator application