JP2011222760A - Manufacturing method of semiconductor light emitting diode or semiconductor light emitting device, and semiconductor light emitting diode or semiconductor light emitting device - Google Patents

Manufacturing method of semiconductor light emitting diode or semiconductor light emitting device, and semiconductor light emitting diode or semiconductor light emitting device Download PDF

Info

Publication number
JP2011222760A
JP2011222760A JP2010090583A JP2010090583A JP2011222760A JP 2011222760 A JP2011222760 A JP 2011222760A JP 2010090583 A JP2010090583 A JP 2010090583A JP 2010090583 A JP2010090583 A JP 2010090583A JP 2011222760 A JP2011222760 A JP 2011222760A
Authority
JP
Japan
Prior art keywords
semiconductor light
light emitting
ultraviolet
light
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010090583A
Other languages
Japanese (ja)
Other versions
JP5580100B2 (en
Inventor
Tsutomu Kotaki
勉 小田喜
Kazuaki Yamaguchi
和明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Rubber Kenkyusho KK
Original Assignee
Fine Rubber Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Rubber Kenkyusho KK filed Critical Fine Rubber Kenkyusho KK
Priority to JP2010090583A priority Critical patent/JP5580100B2/en
Publication of JP2011222760A publication Critical patent/JP2011222760A/en
Application granted granted Critical
Publication of JP5580100B2 publication Critical patent/JP5580100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of reducing variations in chromaticity in an easy process, in manufacturing a semiconductor diode or semiconductor light emitting device for obtaining white light by converting ultraviolet light from an ultraviolet light semiconductor light emitting element into red light, green light and blue light.SOLUTION: The manufacturing method includes: a light emitting diode preparation step of preparing many ultraviolet semiconductor light emitting diodes having variations of dominant wavelengths; a grouping step of classifying the ultraviolet semiconductor light emitting diodes into groups with prescribed luminance ranges on the basis of the luminance of the ultraviolet semiconductor light emitting diodes supplied with a prescribed value of power to emit light; a coating material preparation step of preparing plural kinds of coating materials having a prescribed blended composition including plural kinds of phosphors preset according to the groups in order to convert ultraviolet light to a prescribed luminescent color; and a coating step of coating the ultraviolet semiconductor light emitting diodes, having been classified into the groups, with the coating materials prepared according to the respective groups.

Description

本発明は、紫外光半導体発光素子から発せられた光を赤色蛍光体、緑色蛍光体及び青色蛍光体等から選ばれる複数種の蛍光体を用いて波長変換することにより、可視光を発する半導体発光ダイオードまたは半導体発光装置の製造方法に関する。   The present invention relates to a semiconductor light emitting device that emits visible light by converting the wavelength of light emitted from an ultraviolet semiconductor light emitting device using a plurality of types of phosphors selected from a red phosphor, a green phosphor, a blue phosphor, and the like. The present invention relates to a method for manufacturing a diode or a semiconductor light emitting device.

白色の光を発する発光ダイオードとして、YAG(アルミン酸イットリウム)系蛍光物質により青色半導体発光素子から発せられた光を波長変換し、波長変換された光の発色と元の光の青色を混色することにより得られる発光ダイオードが知られている。   As a light-emitting diode that emits white light, the wavelength of light emitted from a blue semiconductor light-emitting element is converted by a YAG (yttrium aluminate) -based fluorescent material, and the color of the wavelength-converted light and the blue color of the original light are mixed. There is known a light-emitting diode obtained by:

白色光を発する発光ダイオードに対して、近年、色度ばらつき範囲を抑制する要求レベルが高くなっている。従って、白色光の色度ばらつき範囲を如何に低コストで管理するかは、量産工程において重要な要素になっている。   In recent years, a demand level for suppressing a chromaticity variation range has been increased for light emitting diodes that emit white light. Therefore, how to manage the chromaticity variation range of white light at a low cost is an important factor in the mass production process.

青色半導体発光素子を用いた白色光を発する発光ダイオードの色度ばらつきの原因は、主として、発光素子自身の発光波長のばらつき、輝度のばらつき、及び蛍光体の配合組成及び配合量のばらつきによることが知られている。現在の技術において工業的に生産されている半導体発光素子は、個体ごとの発光波長や輝度のばらつきが大きい。これは、現在の半導体発光素子の工業的生産においては、半導体ウェハを基板表面でエピタキシャル成長させる際に、基板平面の全面において高精度に均一な成長を実現することが困難であるためである。このような半導体発光素子の量産時に発生する発光波長のばらつきや輝度のばらつきは、白色光を発する発光ダイオードの色度ばらつきを引き起こす原因になる。   The causes of chromaticity variations of light emitting diodes that emit white light using blue semiconductor light emitting devices are mainly due to variations in the emission wavelengths of the light emitting devices themselves, luminance variations, and variations in the composition and amount of phosphors. Are known. Semiconductor light-emitting elements that are industrially produced with the current technology have large variations in emission wavelength and brightness among individuals. This is because in the current industrial production of semiconductor light emitting devices, it is difficult to achieve uniform growth with high accuracy over the entire surface of the substrate when the semiconductor wafer is epitaxially grown on the substrate surface. Such variations in emission wavelength and luminance that occur during mass production of semiconductor light-emitting elements cause chromaticity variations in light-emitting diodes that emit white light.

従来の、青色光発光素子をYAG蛍光体を含有する被覆部材で被覆して得られた製品の発光色ばらつきを示すグラフの一例を図9に示す。図9のグラフに示す各点は、任意に選択した50個の製品の色度をXY系色度座標にプロットしたグラフである。XY系色度座標においては、x値が大きくなるほど青色から赤色に近づき、y値が大きくなるほど青色から緑色に近づく。図9中、破線Aで囲った部分が要求される色度ばらつきの規格値に合格する領域範囲を表す。図9における製品の色度ばらつきは広く、x軸方向のばらつきは蛍光体の配合量や分散性に強く影響を受け、y軸方向のばらつきは青色光発光素子の発光波長及び輝度に強く影響を受ける。従って、蛍光体の配合量や分散性のばらつきを抑制することによりx軸方向のばらつきが抑制され、青色光発光素子の発光波長及び輝度のばらつきを抑制することによりy軸方向のばらつきが抑制される。   FIG. 9 shows an example of a graph showing the variation in emission color of a product obtained by coating a conventional blue light emitting element with a covering member containing a YAG phosphor. Each point shown in the graph of FIG. 9 is a graph in which the chromaticities of 50 products selected arbitrarily are plotted on XY chromaticity coordinates. In the XY chromaticity coordinates, the blue value approaches red as the x value increases, and the blue value approaches green as the y value increases. In FIG. 9, a portion surrounded by a broken line A represents a region range that passes the required standard value of chromaticity variation. In FIG. 9, the chromaticity variation of the product is wide, the variation in the x-axis direction is strongly influenced by the amount and dispersion of the phosphor, and the variation in the y-axis direction strongly affects the emission wavelength and luminance of the blue light emitting element. receive. Therefore, variation in the x-axis direction is suppressed by suppressing variation in the amount of phosphor blended and dispersibility, and variation in the y-axis direction is suppressed by suppressing variation in emission wavelength and luminance of the blue light emitting element. The

色度ばらつき範囲を管理する方法として、下記特許文献1は、複数の青色発光素子をその発光波長及び輝度に従ってランク分けし、各ランク分けに対応して組合せ条件が設定された蛍光体と輝度調整をするための減光材とを含有する被覆部材を準備し、ランク分けに対応した青色発光素子と蛍光体等を含有する被覆部材とを組み合わせて一体化する白色発光装置の製造方法が開示されている。特許文献1には、具体的には次のような例が記載されている。すなわち、設計波長470nmの青色発光素子を量産した場合、得られる青色発光素子には、一般的に約20nmの幅で正規分布の発光波長のばらつきを有する。このようなばらつきを有する青色発光素子を波長4nmの幅ごとに4グループにグルーピングする。波長4nmの幅ごとにグルーピングされた青色発光素子は、さらに、輝度の範囲ごとに4グループに分類される。このようにして16のグループに分類する。そして16のグループに対応する蛍光体と減光材との配合組成を調整して被覆部材を調製し、各グループに属する青色発光素子を対応する被覆部材で被覆している。   As a method for managing the chromaticity variation range, Patent Document 1 below ranks a plurality of blue light emitting elements according to their emission wavelengths and luminances, and phosphors and luminance adjustments in which combination conditions are set corresponding to the respective rankings. A method for manufacturing a white light emitting device is disclosed in which a coating member containing a light reducing material for the purpose of preparation is prepared, and a blue light emitting element corresponding to ranking and a coating member containing a phosphor or the like are combined and integrated. ing. Specifically, Patent Document 1 describes the following example. That is, when a blue light emitting device having a design wavelength of 470 nm is mass-produced, the obtained blue light emitting device generally has a variation in emission wavelength of a normal distribution with a width of about 20 nm. Blue light emitting elements having such variations are grouped into four groups for each width of 4 nm wavelength. Blue light emitting elements grouped for each width of 4 nm wavelength are further classified into four groups for each luminance range. In this way, it is classified into 16 groups. A covering member is prepared by adjusting the blending composition of the phosphor and the light reducing material corresponding to the 16 groups, and the blue light emitting elements belonging to each group are covered with the corresponding covering member.

また、下記特許文献2は、LEDチップと蛍光体を含有する波長変換部とを組合せて白色光を生成して発光する発光装置の製造方法において、LEDチップを発光装置本体の実装部に実装した後、LEDチップの放射エネルギ又はその放射エネルギから算出される明るさに関する特性、及びLEDチップの発光スペクトルの特性の2つの特性に基づいてLEDチップをランク分けし、LEDチップの各ランクに対応させて適切な配合比率及び配合量の蛍光体を含有する予め作製した波長変換部を選択し、対応するLEDチップと組合せる発光装置の製造方法が開示されている。   Further, in Patent Document 2 below, in a method of manufacturing a light emitting device that generates white light by combining a LED chip and a wavelength conversion unit containing a phosphor, the LED chip is mounted on a mounting portion of the light emitting device body. After that, the LED chips are ranked based on the two characteristics of the LED chip radiant energy or the brightness characteristic calculated from the radiant energy and the emission spectrum characteristic of the LED chip, and correspond to each rank of the LED chip. A manufacturing method of a light emitting device is disclosed in which a wavelength conversion unit prepared in advance containing phosphors having an appropriate blending ratio and blending amount is selected and combined with a corresponding LED chip.

ところで、青色半導体発光素子から発せられる光を蛍光体により波長変換して得られる白色光を発光する発光ダイオードは、人間の視覚の錯覚を利用した擬似白色光の原理を用いた擬似発光の白色発光ダイオードである。擬似白色の発光ダイオードは青色発光素子が発光する青色光の一部をYAG系蛍光物質により緑色から黄色の範囲の光に波長変換し、青色発光素子が発光する波長変換されなかった青色光と混色させる。人間の目の網膜は、赤色、緑色、及び青色の三原色をそれぞれ感じる錐体を有し、これらの錐体の感知により幅広い色調を感知することができる。そして、錐体の分光感度は、緑の錐体と赤の錐体の感度が黄色から燈色付近で大きくオーバーラップしている。そのため黄色から燈色付近の範囲の光に波長変換した光によれば、赤と緑の両方の錐体に感受させることができる。これにより、発光素子が発する青色と蛍光体が発する黄色から燈色の光の2原色の光刺激で、人間の目には赤、緑、青の光を感じたと感知させる。この現象により人間の網膜に白色を感じさせる。このような原理を用いた擬似白色の発光ダイオードは色彩の正確さを必要としない照明用途において用いられている。このような2色によるピークのみを有する擬似白色のスペクトルは、太陽光の連続的に幅広い範囲のスペクトルとは大きく異なる。そのために、例えば、擬似白色の発光ダイオードで照らされた被照体の色は、太陽光で照らされた被照体の色とは相当に異なるという問題があった。   By the way, a light-emitting diode that emits white light obtained by converting the wavelength of light emitted from a blue semiconductor light-emitting element with a phosphor is a pseudo-white light emission that uses the principle of pseudo-white light using the illusion of human vision. It is a diode. The pseudo white light emitting diode converts the wavelength of part of the blue light emitted from the blue light emitting element into light in the range from green to yellow with a YAG phosphor, and mixes with the unconverted blue light emitted from the blue light emitting element. Let The retina of the human eye has cones that sense the three primary colors of red, green, and blue, respectively, and can detect a wide range of colors by sensing these cones. The spectral sensitivity of the cones greatly overlaps between the sensitivity of the green cone and that of the red cone from yellow to near amber. Therefore, according to the light whose wavelength is converted to light in the range from yellow to near amber, both the red and green cones can be perceived. As a result, the human eye senses that the light of red, green, and blue is sensed by light stimulation of two primary colors of blue emitted from the light emitting element and yellow to amber light emitted from the phosphor. This phenomenon makes the human retina feel white. Pseudo white light-emitting diodes using such a principle are used in lighting applications that do not require color accuracy. Such a pseudo-white spectrum having only peaks due to two colors is greatly different from the spectrum of a continuously wide range of sunlight. Therefore, for example, there is a problem that the color of the illuminated object illuminated by the pseudo white light emitting diode is considerably different from the color of the illuminated object illuminated by sunlight.

このような問題を解決する方法として、特許文献2にも記載されているように、赤色系蛍光体、緑色系蛍光体、及び青色系蛍光体により紫外光半導体発光素子から発せられる光を波長変換し、各蛍光体からの発光を混合することにより白色の光を発する発光ダイオードが知られている。このような紫外光を赤色系蛍光体、緑色系蛍光体、及び青色系蛍光体により波長変換して得られる光を混合して得られる発光色は、赤色光、緑色光、及び青色光の3色の混色により得られる白色であるために、正確な色彩を表現できる。   As a method for solving such a problem, as described in Patent Document 2, wavelength conversion of light emitted from an ultraviolet semiconductor light emitting element by a red phosphor, a green phosphor, and a blue phosphor is performed. A light-emitting diode that emits white light by mixing light emitted from each phosphor is known. The emission colors obtained by mixing the light obtained by wavelength conversion of such ultraviolet light with a red phosphor, a green phosphor, and a blue phosphor are red light, green light, and blue light. Since the white color is obtained by color mixing, an accurate color can be expressed.

特開2004−119743号公報JP 2004-119743 A 特開2006−303140号公報JP 2006-303140 A

特許文献1に開示された技術は、青色発光素子からの青色光と蛍光体が発する黄色から燈色付近の光とを混色して得られる擬似白色光を得る技術である。特許文献1に開示された方法により、白色光のばらつきを抑制するためには、例えば、波長で4ランク、さらに輝度で4ランクに分けて、16グループもの細かいグループ分けが必要であった。従って、細かいグループ分けに対応した配合組成の被覆部材を用意する必要があり、白色光の色度ばらつき範囲を管理するコストが高かった。同様に、特許文献2に開示された技術においても、LEDチップの放射エネルギ又はその放射エネルギから算出される明るさに関する特性、及びLEDチップの発光スペクトルの特性の2つの特性に基づいてLEDチップをランク分けするために、白色光の色度ばらつき範囲を管理するコストが高かった。   The technique disclosed in Patent Document 1 is a technique for obtaining pseudo white light obtained by mixing blue light from a blue light emitting element and light from yellow to near amber emitted from a phosphor. In order to suppress the variation in white light by the method disclosed in Patent Document 1, for example, a fine grouping of 16 groups is required, with 4 ranks according to wavelength and 4 ranks according to luminance. Therefore, it is necessary to prepare a covering member having a composition corresponding to fine grouping, and the cost of managing the chromaticity variation range of white light is high. Similarly, in the technique disclosed in Patent Document 2, the LED chip is based on the two characteristics of the LED chip radiant energy or the brightness characteristic calculated from the radiant energy, and the emission spectrum characteristic of the LED chip. In order to rank, the cost of managing the chromaticity variation range of white light was high.

本発明は上述した問題を解決すべく、紫外光半導体発光素子からの紫外光を複数種の蛍光体を用いて可視光に変換する半導体ダイオードまたは半導体発光装置の製造において、色度ばらつきの低減を容易な工程で行うことができる製造方法を提供することを目的とする。   In order to solve the above-described problems, the present invention reduces chromaticity variation in the manufacture of a semiconductor diode or a semiconductor light emitting device that converts ultraviolet light from an ultraviolet semiconductor light emitting element into visible light using a plurality of types of phosphors. It aims at providing the manufacturing method which can be performed by an easy process.

本発明者らは、紫外光半導体発光素子からの紫外光を赤色光、緑色光、及び青色光等に変換して白色光等の可視光を得るための半導体ダイオードまたは半導体発光装置の製造において、色度ばらつきの低減を容易な工程で行う方法を検討していたところ、紫外光から発せられる光は、青色発光半導体素子が発する青色光のような可視光ではないために、紫外光の波長のばらつきは、可視光の色度のばらつきに大きな影響を与えないことを見出し、本発明に想到するに至った。   In manufacturing a semiconductor diode or a semiconductor light emitting device for obtaining visible light such as white light by converting ultraviolet light from an ultraviolet light semiconductor light emitting element into red light, green light, blue light, and the like, We were investigating a method for reducing the chromaticity variation in an easy process, and the light emitted from the ultraviolet light is not visible light like the blue light emitted by the blue light emitting semiconductor element. It has been found that the variation does not greatly affect the variation in chromaticity of visible light, and the present invention has been conceived.

従来、紫外光半導体発光素子を用いて可視光を発光させる半導体発光ダイオードを製造する場合においても青色光発光素子が発する青色光を色変換して白色光を発する半導体発光ダイオードを製造する場合と同様のばらつき管理手法が採用されていたと思われる。しかしながら、本発明者らの詳細な検討により、紫外光半導体発光素子が発光する紫外光を赤色光,青色光,及び緑色光等の可視光に変換して白色光を発する製品を量産する場合には、ばらつきの抑制に紫外光半導体発光素子の発光波長は、輝度に比べて殆ど無視してもよいことを見出した。本発明者らはこの理由は以下の3つの理由によると考えている。   Conventionally, in the case of manufacturing a semiconductor light emitting diode that emits visible light using an ultraviolet light semiconductor light emitting element, it is the same as the case of manufacturing a semiconductor light emitting diode that emits white light by color-converting blue light emitted from a blue light emitting element. It seems that the variation management method was adopted. However, according to detailed examinations by the present inventors, when mass-producing products that emit white light by converting ultraviolet light emitted by the ultraviolet light-emitting semiconductor light emitting device into visible light such as red light, blue light, and green light. Found that the emission wavelength of the ultraviolet light-emitting semiconductor light-emitting element can be almost ignored as compared with the luminance in order to suppress the variation. The present inventors believe that this reason is due to the following three reasons.

すなわち、(1)紫外光は人間の目に認識される可視光ではなく、色度のある光を構成する色要素にはならないために、紫外光の波長のばらつきは青色光の発光波長のばらつきとは異なり、色度に直接影響を与えない、(2)赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体等が励起される波長域はある程度の半値幅を有するために、紫外光半導体発光素子が発光する紫外光の波長が多少ばらついたとしても、蛍光体が発光する発光強度に大きな影響を与えない、(3)赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体等のそれぞれの発光スペクトルは異なるために、それぞれ所定の単位の光量により励起されて発する蛍光強度の大きさは各蛍光体ごとによって異なり、励起するための光量が変われば、赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体等のそれぞれが発する蛍光強度のバランスが崩れてしまうために、輝度の影響により色度が影響を受けやすい。従って、赤色系蛍光体、青色系蛍光体、及び緑色系蛍光体等の配合組成を正確に配合したとしても、輝度が変われば、赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体等のそれぞれが発する蛍光強度のバランスが容易に崩れてしまう。   That is, (1) ultraviolet light is not visible light recognized by the human eye and is not a color element that constitutes light with chromaticity. Therefore, the variation in the wavelength of the ultraviolet light is the variation in the emission wavelength of the blue light. Unlike the above, there is no direct influence on the chromaticity. (2) The wavelength range in which the red, blue, and green phosphors are excited has a certain half-value width. Even if the wavelength of the ultraviolet light emitted from the semiconductor light emitting device varies somewhat, the emission intensity emitted by the phosphor is not greatly affected. (3) Red phosphor, blue phosphor, green phosphor, etc. Since the emission spectra of the phosphors are different from each other, the intensity of the fluorescence intensity emitted and excited by a predetermined amount of light varies depending on each phosphor. If the amount of excitation light varies, the red phosphor and the blue phosphor Phosphor and green To balance the fluorescence intensity, each emitting system, such as phosphor, it is lost, the chromaticity is likely affected by the influence of luminance. Accordingly, even if the blending composition of the red phosphor, the blue phosphor, the green phosphor and the like is accurately blended, the red phosphor, the blue phosphor, the green phosphor, etc., if the luminance is changed. The balance of the fluorescence intensity emitted from each of these will be easily lost.

上述のような知見から見出された本発明の一局面は、紫外光半導体発光ダイオードを備えた半導体発光装置の製造方法であって、主波長のばらつきを有する、多数の紫外光半導体発光ダイオードを準備する発光ダイオード準備工程と、多数の紫外光半導体発光ダイオードのそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度範囲ごとに各紫外光半導体発光ダイオードをグループ分けするグルーピング工程と、紫外光を所定の発光色に変換するために、グループ毎に対応して予め設定された、複数種の蛍光体を含む所定の配合組成を有する、複数種の被覆材を準備する被覆材準備工程と、グループ分けされた各紫外光半導体発光ダイオードを、各グループに対応して準備された被覆材で被覆する被覆工程と、を備える半導体発光装置の製造方法である。   One aspect of the present invention found from the above knowledge is a method for manufacturing a semiconductor light emitting device including an ultraviolet light semiconductor light emitting diode, and includes a large number of ultraviolet light semiconductor light emitting diodes having variations in main wavelengths. Based on the light emitting diode preparation step to be prepared and the luminance when each of the many ultraviolet semiconductor light emitting diodes is supplied with a predetermined value of power to emit light, the ultraviolet light semiconductor light emitting diodes are grouped for each predetermined luminance range. Preparing a plurality of types of coating materials having a predetermined composition containing a plurality of types of phosphors set in advance for each group in order to convert the ultraviolet light into a predetermined emission color And a coating process for coating each grouped ultraviolet light emitting diode with a coating material prepared for each group. A method for manufacturing a semiconductor light-emitting device.

また、本発明の他の一局面は、紫外光半導体発光素子を備えた半導体発光ダイオードの製造方法であって、主波長のばらつきを有する、多数の紫外光半導体発光素子を準備する素子準備工程と、多数の紫外光半導体発光素子のそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度範囲ごとに各紫外光半導体発光素子をグループ分けするグルーピング工程と、紫外光を所定の発光色に変換するために、グループ毎に対応して予め設定された、複数種の蛍光体を含む所定の配合組成を有する、複数種の被覆材を準備する被覆材準備工程と、グループ分けされた各紫外光半導体発光素子を、各グループに対応して準備された被覆材で被覆する被覆工程と、を備える半導体発光ダイオードの製造方法である。   Another aspect of the present invention is a method for manufacturing a semiconductor light-emitting diode including an ultraviolet light semiconductor light-emitting element, and includes an element preparation step for preparing a large number of ultraviolet light-emitting semiconductor light-emitting elements having a variation in dominant wavelength; A grouping step of grouping each ultraviolet light semiconductor light emitting element for each predetermined luminance range based on the brightness when a predetermined value of electric power is supplied to each of the plurality of ultraviolet light semiconductor light emitting elements to emit light; and ultraviolet light In order to convert a predetermined emission color, a coating material preparation step for preparing a plurality of coating materials having a predetermined composition including a plurality of types of phosphors set in advance for each group, and And a covering step of covering each grouped ultraviolet light emitting element with a covering material prepared for each group.

なお、本発明における紫外光半導体発光ダイオードは、紫外光半導体発光素子を封止して得られる構成体であり、紫外光半導体発光装置は、紫外光半導体発光ダイオードを蛍光体を含有する被覆材で被覆して得られる構成体を意味するものとする。   The ultraviolet light semiconductor light-emitting diode in the present invention is a structure obtained by sealing an ultraviolet light semiconductor light-emitting element, and the ultraviolet light semiconductor light-emitting device is a coating material containing a phosphor. It shall mean the structure obtained by coating.

本発明の製造方法によれば、紫外光半導体発光素子からの紫外光を複数種の蛍光体により可視光に変換して所定の色の光を発する半導体ダイオードまたは半導体発光装置を製造する場合において、色度ばらつきの低減を容易な工程で行うことができる。   According to the manufacturing method of the present invention, in the case of manufacturing a semiconductor diode or a semiconductor light emitting device that emits light of a predetermined color by converting ultraviolet light from an ultraviolet light semiconductor light emitting element into visible light by a plurality of phosphors, The chromaticity variation can be reduced by an easy process.

第一実施形態の半導体発光装置10の断面模式図を示す。The cross-sectional schematic diagram of the semiconductor light-emitting device 10 of 1st embodiment is shown. 第一実施形態の他の形態の半導体発光装置20の断面模式図を示す。The cross-sectional schematic diagram of the semiconductor light-emitting device 20 of the other form of 1st embodiment is shown. 第二実施形態の半導体発光ダイオード30の断面模式図を示す。The cross-sectional schematic diagram of the semiconductor light-emitting diode 30 of 2nd embodiment is shown. 第二実施形態の他の形態の半導体発光ダイオード40の断面模式図を示す。The cross-sectional schematic diagram of the semiconductor light emitting diode 40 of the other form of 2nd embodiment is shown. 比較例で評価された各近紫外半導体発光ダイオードのxy系色度座標を示す。The xy system chromaticity coordinate of each near ultraviolet semiconductor light emitting diode evaluated by the comparative example is shown. 参考例で評価された半導体発光装置に電流値20mAの電流を流したときの発光スペクトルを示す。An emission spectrum is shown when a current of 20 mA is passed through the semiconductor light emitting device evaluated in the reference example. 参考例で評価された、電流値を20〜100mAまでの範囲で変化させたときの各ピーク強度の相対的な変化をプロットしたグラフを示す。The graph which plotted the relative change of each peak intensity when changing the electric current value in the range to 20-100 mA evaluated by the reference example is shown. 実施例で評価された半導体発光装置のxy系色度座標を示す。The xy system chromaticity coordinate of the semiconductor light-emitting device evaluated in the Example is shown. 図9は青色光発光素子をYAG蛍光体を含有する被覆部材で被覆して得られた半導体発光装置の発光色のばらつきの一例を示すグラフである。FIG. 9 is a graph showing an example of variation in emission color of a semiconductor light emitting device obtained by coating a blue light emitting element with a covering member containing a YAG phosphor.

[第一実施形態]
本実施形態の半導体発光装置の製造方法を図1及び図2を参照しながら詳しく説明する。
[First embodiment]
A method for manufacturing the semiconductor light emitting device of this embodiment will be described in detail with reference to FIGS.

図1は本実施形態の半導体発光装置10の断面模式図を示す。半導体発光装置10はチップ型の紫外光半導体発光ダイオード1と、紫外光半導体発光ダイオード1の表面を被覆するシート状被覆材7とから構成されている。紫外光半導体発光ダイオード1は、上面が開口した凹部を有する発光体収容部材2を有する。凹部の底部からは一対のリード4a,4bが発光体収容部材2の外部へ延出されている。凹部は紫外光半導体発光素子3を収容し、紫外光半導体発光素子3はリード4a,4bに底部及びリード細線5により接続されている。紫外光半導体発光素子3を収容する凹部は、透明樹脂からなる封止材6で封止されている。   FIG. 1 is a schematic cross-sectional view of a semiconductor light emitting device 10 of this embodiment. The semiconductor light emitting device 10 includes a chip-type ultraviolet semiconductor light emitting diode 1 and a sheet-like coating material 7 that covers the surface of the ultraviolet semiconductor light emitting diode 1. The ultraviolet light semiconductor light emitting diode 1 has a light emitter housing member 2 having a recess having an upper surface opened. A pair of leads 4 a and 4 b extend from the bottom of the recess to the outside of the light emitter housing member 2. The concave portion accommodates the ultraviolet light semiconductor light emitting element 3, and the ultraviolet light semiconductor light emitting element 3 is connected to the leads 4 a and 4 b by the bottom and the lead wire 5. The concave portion for accommodating the ultraviolet semiconductor light emitting element 3 is sealed with a sealing material 6 made of a transparent resin.

一方、紫外光半導体発光ダイオード1を被覆するシート状被覆材7は、後述するように一定の色度範囲の白色光を発光させるための所定の配合比率及び全体量になるように調整された、赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bを含む。なお、蛍光体の全体量は、シート状被覆材7の厚みを調製することにより容易に調整することができる。また、シート状被覆材7の表面には、必要に応じて紫外光が外部に漏出することを抑制するための紫外光吸収層を設けてもよい。   On the other hand, the sheet-shaped coating material 7 that coats the ultraviolet light-emitting semiconductor light-emitting diode 1 was adjusted so as to have a predetermined blending ratio and a total amount for emitting white light in a certain chromaticity range, as will be described later. A red phosphor R, a green phosphor G, and a blue phosphor B are included. The total amount of the phosphor can be easily adjusted by adjusting the thickness of the sheet-like covering material 7. Moreover, you may provide the ultraviolet light absorption layer for suppressing the ultraviolet light to leak outside as needed on the surface of the sheet-like coating material 7.

シート状被覆材7の固定手段は、貼り合わせ、係止、嵌合等、とくに限定されない。また、シート状被覆材7に配合された蛍光体の組成は白色光を発光させるように調整されたものであるが、発光色は特に限定されるものではない。   The fixing means for the sheet-like covering material 7 is not particularly limited, such as bonding, locking, fitting and the like. Moreover, although the composition of the phosphor blended in the sheet-like covering material 7 is adjusted so as to emit white light, the emission color is not particularly limited.

そして、リード4a,4bを通じて紫外光半導体発光素子3に通電することにより、紫外光半導体発光素子3が紫外光 UVを発し、発せられた紫外光 UVはシート状被覆材7中の赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bをそれぞれ励起させて、赤色光、緑色光、青色光に変換される。そして、赤色光、緑色光、青色光が混合されることにより、人間の視覚に白色光として感知させる。このようにして得られる白色光は、擬似白色光とは異なり、赤色、緑色、及び青色の3原色を含むような幅広いスペクトルを有するために、優れた演色性を示す。   Then, by energizing the ultraviolet light semiconductor light emitting element 3 through the leads 4 a and 4 b, the ultraviolet light semiconductor light emitting element 3 emits ultraviolet light UV, and the emitted ultraviolet light UV is a red phosphor in the sheet-like coating material 7. R, green phosphor G, and blue phosphor B are respectively excited and converted into red light, green light, and blue light. Then, the red light, the green light, and the blue light are mixed to make human vision sense white light. Unlike the pseudo white light, the white light obtained in this way has a wide spectrum including the three primary colors of red, green, and blue, and thus exhibits excellent color rendering.

また、図2は別の形態の半導体発光装置20の断面模式図を示す。半導体発光装置20は砲弾型の紫外光半導体発光ダイオード11と、紫外光半導体発光ダイオード11の表面を被覆するキャップ状被覆材17とから構成されている。紫外光半導体発光ダイオード11は、一対の配線導体13及び14と、配線導体13に電気的に接続された紫外光半導体発光素子3と、この紫外光半導体発光素子3と配線導体14とを電気的に接続するボンディングワイヤ15とを備え、これらを砲弾型の封止材16により封止した構造を有する。   FIG. 2 is a schematic cross-sectional view of another form of semiconductor light emitting device 20. The semiconductor light emitting device 20 includes a shell-type ultraviolet light semiconductor light emitting diode 11 and a cap-shaped covering material 17 that covers the surface of the ultraviolet light semiconductor light emitting diode 11. The ultraviolet light semiconductor light emitting diode 11 electrically connects the pair of wiring conductors 13 and 14, the ultraviolet light semiconductor light emitting element 3 electrically connected to the wiring conductor 13, and the ultraviolet light semiconductor light emitting element 3 and the wiring conductor 14. And a bonding wire 15 that is connected to the substrate, and has a structure in which these are sealed with a shell-type sealing material 16.

キャップ状被覆材17は、後述するように一定の色度範囲の白色光を発光させるための所定の配合比率及び全体量になるように調整された、赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bを含む。なお、蛍光体の全体量は、キャップ状被覆材17の厚みを調製することにより容易に調整することができる。また、キャップ状被覆材17の表面には、必要に応じて紫外光が外部に漏出することを抑制するための紫外光吸収層を設けてもよい。   As will be described later, the cap-shaped covering material 17 includes a red phosphor R and a green phosphor G that are adjusted to have a predetermined blending ratio and a total amount for emitting white light in a certain chromaticity range. And blue phosphor B. The total amount of the phosphor can be easily adjusted by adjusting the thickness of the cap-shaped covering material 17. Moreover, you may provide the ultraviolet light absorption layer for suppressing that ultraviolet light leaks outside as needed on the surface of the cap-shaped coating | covering material 17. FIG.

そして、配線導体13、14を通じて紫外光半導体発光素子3に通電することにより、紫外光半導体発光素子3が紫外光 UVを発し、発せられた紫外光 UVはキャップ状被覆材17中の赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bをそれぞれ励起させて、赤色光、緑色光、青色光に変換される。そして、赤色光、緑色光、青色光が混合されることにより、人間の視覚に白色光として感知させる。   Then, by energizing the ultraviolet light semiconductor light emitting element 3 through the wiring conductors 13 and 14, the ultraviolet light semiconductor light emitting element 3 emits ultraviolet light UV, and the emitted ultraviolet light UV is red fluorescence in the cap-shaped covering material 17. The body R, the green phosphor G, and the blue phosphor B are excited to be converted into red light, green light, and blue light. Then, the red light, the green light, and the blue light are mixed to make human vision sense white light.

本実施形態の製造方法によれば、上述したような半導体発光装置を量産する場合において、紫外光半導体発光ダイオードが発する輝度のみに基づいてグループ分けし、各グループに属する紫外光半導体発光ダイオードに適切な配合組成及び配合量の蛍光体を含有する被覆材を調製し、それらを組み合わせることにより、量産時の色度のばらつきを抑制することができる。   According to the manufacturing method of the present embodiment, when mass-producing semiconductor light-emitting devices as described above, the semiconductor light-emitting devices are grouped based only on the luminance emitted by the ultraviolet light-emitting semiconductor light-emitting diodes, and are suitable for the ultraviolet light semiconductor light-emitting diodes belonging to each group. By preparing a coating material containing a phosphor having a suitable composition and amount, and combining them, variation in chromaticity during mass production can be suppressed.

本実施形態の半導体発光装置の製造方法においては、例えば、0〜20nm程度の範囲内で主波長のばらつきを有する、多数の紫外光半導体発光ダイオードを準備する発光ダイオード準備工程と、多数の紫外光半導体発光ダイオードのそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度範囲ごとに各紫外光半導体発光ダイオードをグループ分けするグルーピング工程と、紫外光を白色光に変換するために、グループ毎に対応して予め設定された、赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体を含む、複数種の被覆材を準備する被覆材準備工程と、グループ分けされた各紫外光半導体発光ダイオードを、各グループに対応して調製された被覆材で被覆する被覆工程と、を備える。   In the method for manufacturing a semiconductor light emitting device according to the present embodiment, for example, a light emitting diode preparation step for preparing a large number of ultraviolet semiconductor light emitting diodes having a main wavelength variation within a range of about 0 to 20 nm, and a large number of ultraviolet light. Based on the brightness when each semiconductor light emitting diode is supplied with a predetermined value of power to emit light, a grouping process for grouping each ultraviolet light semiconductor light emitting diode for each predetermined brightness range, and converting ultraviolet light into white light In order to do this, a coating material preparation step for preparing a plurality of types of coating materials including a red phosphor, a blue phosphor, and a green phosphor, which are set in advance for each group, is grouped. And a coating step of coating each ultraviolet light semiconductor light-emitting diode with a coating material prepared for each group.

発光ダイオード準備工程は、例えば、0〜20nm程度の範囲内で主波長のばらつきを有する、多数の紫外光半導体発光ダイオードを準備する工程である。具体的には、例えば、主波長405nmを設計値とする紫外光半導体発光ダイオードを用いる場合、量産時のばらつきにより、主波長405nmを中心として、0〜20nm程度の範囲内で主波長のばらつきが発生する。本実施形態の製造方法によれば、多数の紫外光半導体発光ダイオードの主波長の中心波長に対して、例えば、0〜20nm程度の範囲内に入っていれば、紫外光半導体発光ダイオードを発光波長に基づいてランク分けをする必要がない。   The light emitting diode preparation step is a step of preparing a large number of ultraviolet light semiconductor light emitting diodes having variations in main wavelength within a range of about 0 to 20 nm, for example. Specifically, for example, when an ultraviolet semiconductor light emitting diode having a design value of the main wavelength of 405 nm is used, variation in the main wavelength is within a range of about 0 to 20 nm centering on the main wavelength of 405 nm due to variations during mass production. appear. According to the manufacturing method of the present embodiment, for example, if the wavelength is within a range of about 0 to 20 nm with respect to the center wavelength of the main wavelengths of a large number of ultraviolet semiconductor light-emitting diodes, the ultraviolet light-emitting semiconductor light-emitting diodes are allowed to emit light. There is no need to rank based on.

紫外光半導体発光ダイオードとしては、主波長350〜380nmの範囲の光を発する紫外光及び主波長380〜420nmの範囲の光を発する近紫外光を発する発光ダイオード等が用いられる。具体的には、例えば、GaN系,SiC系;ZnS系,ZnSe系等の紫外光半導体素子が封止されてなる紫外光半導体発光ダイオードが挙げられる。   As the ultraviolet light semiconductor light emitting diode, a light emitting diode that emits ultraviolet light that emits light having a dominant wavelength in the range of 350 to 380 nm and near ultraviolet light that emits light having a dominant wavelength in the range of 380 to 420 nm is used. Specifically, for example, an ultraviolet light semiconductor light-emitting diode formed by sealing an ultraviolet light semiconductor element such as a GaN-based, SiC-based; ZnS-based, ZnSe-based or the like can be given.

次に、上述のようにして準備された多数の紫外光半導体発光ダイオードのそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度の範囲ごとに各紫外光半導体発光ダイオードをグループ分けするグルーピング工程について説明する。   Next, based on the luminance when each of the multiple ultraviolet semiconductor light-emitting diodes prepared as described above is supplied with a predetermined value of power to emit light, each ultraviolet light semiconductor light-emitting device is output for each predetermined luminance range. A grouping process for grouping the diodes will be described.

グルーピング工程は、0〜20nm程度の範囲内の主波長のばらつきは考慮せず、単に各紫外光半導体発光ダイオードの輝度のみに基づいて所定の輝度の範囲ごとにランク分けして、グループ分けする工程である。   The grouping step is a step of performing grouping by ranking according to a predetermined luminance range based on only the luminance of each ultraviolet light-emitting semiconductor light-emitting diode without considering the variation of the main wavelength within the range of about 0 to 20 nm. It is.

輝度によるグループ分けは、例えば、各紫外光半導体発光ダイオードをLEDテスタに接続して駆動電圧を印加して発光させ、所定の電流値のときの各紫外光半導体発光ダイオードの輝度を測定し、所定の輝度の範囲ごとにランク分けすることにより行われる。電流値は、用途や素子に応じて適宜選択される。グループ分けのランク数は、多ければ多いほど高い精度で色度のばらつきは抑制されるが、用途に応じた要求レベルに応じて適宜設定される。具体的には、例えば、輝度のばらつきが、分布中心の相対輝度を1としたときに0.5〜2.0程度の範囲で分布している場合、相対値0.4の範囲毎にグループ分けした場合には3〜4ランク、0.2の範囲毎にグループ分けした場合には、6〜7ランク、0.1の範囲毎にグループ分けした場合には、15ランク程度にランク分けされる。なお相対輝度の算出は、LEDの出力評価として三刺激値Yの平均値を相対輝度1として算出する方法が代表例として挙げられるが、その他の方法としては、LEDの放射エネルギー(J)や放射束(W)や放射強度(W/Sr)や放射輝度(W/sr/m2)や放射照度(W/m2)等の測定値に基づいて算出する方法等も挙げられる。 The grouping by luminance is, for example, connecting each ultraviolet light semiconductor light emitting diode to an LED tester and applying a driving voltage to emit light, measuring the luminance of each ultraviolet light semiconductor light emitting diode at a predetermined current value, This is done by ranking each luminance range. The current value is appropriately selected according to the application and the element. The larger the number of ranks for grouping, the higher the chromaticity variation is suppressed with higher accuracy, but it is set appropriately according to the required level according to the application. Specifically, for example, when the variation in luminance is distributed in the range of about 0.5 to 2.0 when the relative luminance at the center of the distribution is 1, the group for each range of the relative value 0.4. When divided into groups of 3 to 4 ranks, when divided into groups of 0.2, when divided into groups of 6 to 7 ranks and 0.1, it is ranked into about 15 ranks. The As a representative example of the calculation of the relative luminance, a method of calculating the average value of the tristimulus values Y as the relative luminance 1 is used as an output evaluation of the LED. As other methods, as other methods, the radiant energy (J) of the LED and the radiation Examples of the method include calculation based on measurement values such as bundle (W), radiant intensity (W / Sr), radiance (W / sr / m 2 ), and irradiance (W / m 2 ).

次に、被覆材準備工程について説明する。   Next, the coating material preparation process will be described.

被覆材準備工程は、紫外光半導体発光ダイオードを被覆するための、赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体を透明樹脂に分散させた、グループ毎に対応して予め設定された複数の配合組成の被覆材を調製して準備する工程である。   The covering material preparation step is set in advance for each group in which a red phosphor, a blue phosphor, and a green phosphor for covering an ultraviolet semiconductor light emitting diode are dispersed in a transparent resin. This is a step of preparing and preparing a coating material having a plurality of blend compositions.

グループ毎に対応して予め設定される被覆材の配合組成は、例えば、各グループに属する紫外光半導体発光ダイオードの輝度の中央値に基づき、各グループの紫外光半導体発光ダイオードを用いた場合に色度ばらつきが平準化されるような配合比率及び配合量が予め決定される。   The composition of the coating material set in advance corresponding to each group is, for example, based on the median value of the luminance of the ultraviolet light semiconductor light-emitting diodes belonging to each group, when the ultraviolet light semiconductor light-emitting diodes of each group are used. The blending ratio and blending amount that level the degree variation are determined in advance.

各蛍光体の具体例としては、例えば、赤色系蛍光体(R)として、CaAlSiN3:Eu2+、CaS:Eu、ZnS:Cu、Y2O2S:Eu、一般式AEu(1-x)Lnx28(AはLi,K,Na,及びAgよりなる群から選ばれる1種、LnはY,La,及びGdよりなる群から選ばれる1種、BはW又はMoである。)などが、青色系蛍光体として、(Sr,Ca)10(PO4)6Cl2:Eu2+、ZnS:Ag、などが、緑色系蛍光体として、BaMg2Al16O27:Eu2+,Mn2+、ZnS:Cu,Al、ZnS:Cu,Au,Al、Eu付活βサイアロンなどが挙げられる。また、色度を微調整するために、例えば、黄色系蛍光体として、Y3-XGaXAl512:Ce(0≦x≦3)で表されるアルミン酸イットリウム系蛍光物質(YAG)等の蛍光体を必要に応じて配合してもよい。また、波長変換した光を散乱させたり、さらに着色する目的で蛍光体とともに顔料を配合してもよい。このような顔料としては酸化チタン、コバルトブルー、群青、酸化鉄等の顔料が挙げられる。 Specific examples of each phosphor include, for example, CaAlSiN 3 : Eu 2+ , CaS: Eu, ZnS: Cu, Y 2 O 2 S: Eu, and a general formula AEu (1-x ) as a red phosphor (R). ) Ln x B 2 O 8 ( A is Li, K, Na, and one selected from the group consisting of Ag, Ln is Y, La, and one selected from the group consisting of Gd, B is W or Mo Etc.) as blue phosphors, (Sr, Ca) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , ZnS: Ag, etc. as green phosphors, BaMg 2 Al 16 O 27 : Examples include Eu 2+ , Mn 2+ , ZnS: Cu, Al, ZnS: Cu, Au, Al, Eu-activated β sialon. Further, in order to finely adjust the chromaticity, e.g., as a yellow phosphor, Y 3-X Ga X Al 5 O 12: Ce (0 ≦ x ≦ 3) in yttrium aluminate based fluorescent material represented (YAG ) Etc. may be blended if necessary. Moreover, you may mix | blend a pigment with a fluorescent substance for the purpose of scattering the wavelength-converted light or coloring further. Examples of such pigment include pigments such as titanium oxide, cobalt blue, ultramarine blue, and iron oxide.

被覆材を構成する透明樹脂としては、シリコーン樹脂、シリコーンエラストマー、エポキシ樹脂等の光透過率が高い透明性樹脂がとくに限定なく用いられる。   As the transparent resin constituting the coating material, a transparent resin having a high light transmittance such as a silicone resin, a silicone elastomer, and an epoxy resin is used without any particular limitation.

被覆材の形態としては、紫外光半導体発光ダイオードから発せられる光を入射させ、蛍光体により光を波長変換することが可能な形態であればとくに限定なく用いられる。その具体例としては、例えば、図1に示したような紫外光半導体発光ダイオードの発光面に対向するように配置されるシート状被覆材や、図2に示した紫外光半導体発光ダイオードの発光面を覆うキャップ状被覆材の他、紫外光半導体発光ダイオードの表面に塗布形成される塗膜形態、等、とくに限定されない。   The form of the covering material is not particularly limited as long as the light emitted from the ultraviolet semiconductor light emitting diode is incident and the light can be wavelength-converted by the phosphor. Specific examples thereof include, for example, a sheet-like covering material disposed so as to face the light emitting surface of the ultraviolet light semiconductor light emitting diode as shown in FIG. 1, and the light emitting surface of the ultraviolet light semiconductor light emitting diode shown in FIG. In addition to the cap-shaped covering material that covers the surface, there is no particular limitation on the form of the coating film formed on the surface of the ultraviolet semiconductor light emitting diode.

被覆材中への各蛍光体の分散は、設定された配合比率に基づいて、各蛍光体と透明樹脂を公知の方法により混練する方法により行われる。また、全配合量の調整は被覆材中の蛍光体の濃度に基づいて、被覆材の厚みを調整すること等によっても容易に制御できる。この場合、各蛍光体を配合比に調整した後、均一に分散してもよいし、各蛍光体を個別に分散したシート状となし、その後、配合比及び配合量に合わせ積層して被覆材となしてもよい。   Dispersion of each phosphor in the coating material is performed by a method of kneading each phosphor and transparent resin by a known method based on the set blending ratio. Also, the adjustment of the total blending amount can be easily controlled by adjusting the thickness of the coating material based on the concentration of the phosphor in the coating material. In this case, after adjusting each phosphor to the blending ratio, it may be uniformly dispersed, or each phosphor is individually dispersed into a sheet, and then laminated according to the blending ratio and blending amount. It may be.

また、シート状やキャップ状の被覆材の製造は、蛍光材を分散させた樹脂基材を圧縮成形や射出成形等を用いて所定の形状に成形する通常の成形方法による行うことができる。   The sheet-like or cap-like coating material can be produced by a normal molding method in which a resin base material in which a fluorescent material is dispersed is molded into a predetermined shape using compression molding, injection molding, or the like.

次に、グループ分けされた各紫外光半導体発光ダイオードを、各グループに対応するように調製された被覆材で被覆する被覆工程について説明する。   Next, a coating process for coating each grouped ultraviolet semiconductor light-emitting diode with a coating material prepared to correspond to each group will be described.

被覆工程の具体例としては、例えば、グループ分けされた図1に示すようなチップ型の紫外光半導体発光ダイオード1を、そのグループに対応した所定の配合比率及び全体量の蛍光体が分散されたシート状被覆材7で貼り合わせたり、嵌合手段または係合手段を用いて固定して被覆する方法や、グループ分けされた図2に示すような砲弾型紫外光半導体発光ダイオード11の表面をそのグループに対応した所定の配合比率及び全体量の蛍光体が分散されたキャップ状被覆材17を被せて被覆する方法や、グループ分けされた紫外光半導体発光ダイオードの表面に、そのグループに対応した設定配合の蛍光体が分散された液状樹脂分散体を塗布して半導体発光ダイオードの表面に塗膜を形成する方法等が挙げられる。   As a specific example of the coating process, for example, a chip-type ultraviolet semiconductor light emitting diode 1 as shown in FIG. 1 is dispersed with a predetermined blending ratio and a total amount of phosphors corresponding to the group. A method of laminating with a sheet-like covering material 7 or fixing and using a fitting means or engaging means, or a grouped cannonball type ultraviolet light semiconductor light emitting diode 11 as shown in FIG. A method of covering with a cap-shaped coating material 17 in which a predetermined blending ratio corresponding to a group and an entire amount of phosphors are dispersed, and setting on the surface of the grouped ultraviolet light emitting diodes corresponding to the group Examples thereof include a method of applying a liquid resin dispersion in which the blended phosphor is dispersed to form a coating film on the surface of the semiconductor light emitting diode.

本実施形態の製造方法によれば、多数の紫外光半導体発光ダイオードをその輝度のみによってグループ分けすることにより色度のばらつきを抑制することができるために、色度のばらつき管理が容易になる。また、輝度をより細かくランク分けしてグループ化することにより、高精度な色度のばらつき管理を行うことができる。
[第二実施形態]
本実施形態の半導体発光ダイオードの製造方法を図3及び図4を参照しながら詳しく説明する。なお、本実施形態においては、第一実施形態と共通する部分の説明については、説明を省略する。
According to the manufacturing method of this embodiment, since a large number of ultraviolet semiconductor light-emitting diodes can be grouped only by their brightness, chromaticity variation can be suppressed, so that chromaticity variation management becomes easy. In addition, it is possible to perform highly accurate chromaticity variation management by classifying the luminances into finer ranks.
[Second Embodiment]
A manufacturing method of the semiconductor light emitting diode of the present embodiment will be described in detail with reference to FIGS. In addition, in this embodiment, description is abbreviate | omitted about description of the part which is common in 1st embodiment.

図3は本実施形態の半導体発光ダイオード30の断面模式図を示す。半導体発光ダイオード30はチップ型の紫外光半導体発光ダイオードである。半導体発光ダイオード30は、上面が開口した凹部を有する発光体収容部材2を有する。凹部の底部からは一対のリード4a,4bが発光体収容部材2の外部へ延出されている。凹部は紫外光半導体発光素子3を収容し、紫外光半導体発光素子3はリード4a,4bに底部及びリード細線5により接続されている。紫外光半導体発光素子3を収容する凹部は、封止材26で封止されている。   FIG. 3 is a schematic cross-sectional view of the semiconductor light emitting diode 30 of the present embodiment. The semiconductor light emitting diode 30 is a chip-type ultraviolet semiconductor light emitting diode. The semiconductor light emitting diode 30 has the light emitter housing member 2 having a recess having an upper surface opened. A pair of leads 4 a and 4 b extend from the bottom of the recess to the outside of the light emitter housing member 2. The concave portion accommodates the ultraviolet light semiconductor light emitting element 3, and the ultraviolet light semiconductor light emitting element 3 is connected to the leads 4 a and 4 b by the bottom and the lead wire 5. The recess that accommodates the ultraviolet semiconductor light emitting element 3 is sealed with a sealing material 26.

封止材26は、透明樹脂に、後述するように一定の色度範囲の白色光を発光させるために所定の配合比率及び全体量になるように調整された、赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bを分散させたものである。また、封止材26の表面には、必要に応じて紫外光が外部に漏出することを抑制するための紫外光吸収層を設けてもよい。   The sealing material 26 is a red-based phosphor R, a green-based material adjusted to have a predetermined blending ratio and an overall amount in order to cause the transparent resin to emit white light in a certain chromaticity range as described later. The phosphor G and the blue phosphor B are dispersed. Moreover, you may provide the ultraviolet light absorption layer in order to suppress that ultraviolet light leaks outside as needed on the surface of the sealing material 26. FIG.

そして、リード4a,4bを通じて紫外光半導体発光素子3に通電することにより、紫外光半導体発光素子3が紫外光 UVを発し、発せられた紫外光 UVは封止材26中の赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bをそれぞれ励起させて、赤色光、緑色光、青色光に変換される。そして、赤色光、緑色光、青色光が混合されることにより、人間の視覚に白色光として感知させる。   Then, by energizing the ultraviolet light semiconductor light emitting element 3 through the leads 4 a and 4 b, the ultraviolet light semiconductor light emitting element 3 emits ultraviolet light UV, and the emitted ultraviolet light UV is the red phosphor R in the sealing material 26. The green phosphor G and the blue phosphor B are excited to be converted into red light, green light, and blue light. Then, the red light, the green light, and the blue light are mixed to make human vision sense white light.

また、図4は別の形態の半導体発光ダイオード40の断面模式図を示す。半導体発光ダイオード40は砲弾型の紫外光半導体発光ダイオードである。半導体発光ダイオード40は、一対の配線導体13及び14と、配線導体13に電気的に接続された紫外光半導体発光素子3と、この紫外光半導体発光素子3と配線導体14とを電気的に接続するボンディングワイヤ15とを備え、これらを砲弾型の封止材36により封止した構造を有する。封止材36は、後述するように一定の色度範囲の白色光を発光させるための所定の配合比率及び全体量になるように調整された、赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bを含む。また、封止材36の表面には、必要に応じて紫外光が外部に漏出することを抑制するための紫外光吸収層を設けてもよい。   FIG. 4 is a schematic cross-sectional view of another form of semiconductor light emitting diode 40. The semiconductor light emitting diode 40 is a bullet-type ultraviolet light semiconductor light emitting diode. The semiconductor light emitting diode 40 includes a pair of wiring conductors 13 and 14, an ultraviolet semiconductor light emitting element 3 electrically connected to the wiring conductor 13, and an electrical connection between the ultraviolet semiconductor light emitting element 3 and the wiring conductor 14. And a bonding wire 15 that is sealed with a shell-type sealing material 36. As will be described later, the sealing material 36 includes a red phosphor R, a green phosphor G, which are adjusted to have a predetermined blending ratio and an overall amount for emitting white light in a certain chromaticity range. And blue phosphor B. Moreover, you may provide the ultraviolet light absorption layer for suppressing that ultraviolet light leaks outside as needed on the surface of the sealing material 36. FIG.

そして、配線導体13、14を通じて紫外光半導体発光素子3に通電することにより、紫外光半導体発光素子3が紫外光 UVを発し、発せられた紫外光 UVは封止材36中の赤色系蛍光体R、緑系蛍光体G、及び青色系蛍光体Bをそれぞれ励起させて、赤色光、緑色光、青色光に変換される。そして、赤色光、緑色光、青色光が混合されることにより、人間の視覚に白色光として感知させる。   Then, by energizing the ultraviolet light semiconductor light emitting element 3 through the wiring conductors 13 and 14, the ultraviolet light semiconductor light emitting element 3 emits ultraviolet light UV, and the emitted ultraviolet light UV is a red phosphor in the sealing material 36. R, green phosphor G, and blue phosphor B are respectively excited and converted into red light, green light, and blue light. Then, the red light, the green light, and the blue light are mixed to make human vision sense white light.

本実施形態の白色光を発光する半導体発光ダイオードの製造方法は、例えば、0〜20nm程度の範囲内で主波長のばらつきを有する、多数の紫外光半導体発光素子を準備する素子準備工程と、多数の紫外光半導体発光素子のそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度の範囲ごとに各紫外光半導体発光素子をグループ分けするグルーピング工程と、紫外光を白色光に変換するために、グループ毎に対応して予め設定された、少なくとも赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体を含む、複数種の被覆材を準備する被覆材準備工程と、前記グループ分けされた各紫外光半導体発光素子を、各グループに対応して調製された前記被覆材で被覆する被覆工程と、を備える。   The manufacturing method of the semiconductor light emitting diode that emits white light according to the present embodiment includes, for example, an element preparation step of preparing a large number of ultraviolet semiconductor light emitting elements having a variation in main wavelength within a range of about 0 to 20 nm, and a number of processes. A grouping step for grouping each ultraviolet light semiconductor light-emitting element for each predetermined luminance range based on the luminance when each of the ultraviolet light semiconductor light-emitting elements emits light by supplying a predetermined value of power; A coating material preparation step of preparing a plurality of types of coating materials including at least a red phosphor, a blue phosphor, and a green phosphor, which are set in advance for each group in order to convert to white light. And a coating step of coating each of the grouped ultraviolet light-emitting semiconductor light-emitting elements with the coating material prepared for each group.

素子準備工程は、例えば、0〜20nm程度の範囲内で主波長のばらつきを有する、多数の紫外光半導体発光素子を準備する工程である。本実施形態の製造方法によれば、入手した多数の紫外光半導体発光素子を波長ばらつきに対してさらに厳密にランク分けをする必要はない。   The element preparation step is a step of preparing a number of ultraviolet semiconductor light-emitting elements having a main wavelength variation within a range of about 0 to 20 nm, for example. According to the manufacturing method of this embodiment, it is not necessary to rank the obtained many ultraviolet semiconductor light emitting elements more strictly with respect to wavelength variations.

紫外光半導体発光素子としては、主波長350〜380nmの範囲の光を発する紫外光及び主波長380〜420nmの範囲の光を発する近紫外光を発する半導体発光素子がとくに限定なく用いられる。具体的には、例えば、GaN系,SiC系;ZnS系,ZnSe系等の紫外光半導体素子が挙げられる。   As the ultraviolet light semiconductor light-emitting element, a semiconductor light-emitting element emitting ultraviolet light that emits light having a main wavelength in the range of 350 to 380 nm and near ultraviolet light that emits light having a main wavelength in the range of 380 to 420 nm is used without particular limitation. Specifically, for example, GaN-based, SiC-based; ZnS-based, ZnSe-based and other ultraviolet semiconductor devices.

次に、上述のようにして準備された多数の紫外光半導体発光素子のそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度の範囲ごとに各紫外光半導体発光素子をグループ分けするグルーピング工程について説明する。   Next, based on the luminance when each of the many ultraviolet semiconductor light-emitting elements prepared as described above is supplied with a predetermined value of power to emit light, each ultraviolet light semiconductor light-emitting device is output for each predetermined luminance range. A grouping process for grouping elements will be described.

グルーピング工程は、主波長のばらつきは考慮せず、単に各紫外光半導体発光素子の輝度のみに基づいて所定の輝度の範囲ごとにランク分けして、グループ化する工程である。   The grouping step is a step of grouping by ranking for each predetermined luminance range based on only the luminance of each ultraviolet light semiconductor light-emitting element without considering the variation of the main wavelength.

輝度によるグループ分けは、例えば、各紫外光半導体発光素子をLEDテスタに接続して駆動電圧を印加して発光させ、所定の電流値のときの各紫外光半導体発光ダイオードの輝度を測定し、所定の輝度の範囲ごとにランク分けすることにより行われる。輝度のばらつきは、分布中心輝度を1とした場合、例えば、0.5〜2.0程度の範囲で正規分布している。そして、このようにして測定された輝度に基づいて、各紫外光半導体発光素子をグループ分けする。   The grouping by luminance is, for example, connecting each ultraviolet light semiconductor light emitting element to an LED tester and applying a driving voltage to emit light, measuring the luminance of each ultraviolet light semiconductor light emitting diode at a predetermined current value, This is done by ranking each luminance range. For example, when the distribution center luminance is 1, the luminance variation is normally distributed in a range of about 0.5 to 2.0. And based on the brightness | luminance measured in this way, each ultraviolet-ray semiconductor light-emitting device is grouped.

次に、被覆材準備工程について説明する。   Next, the coating material preparation process will be described.

被覆材準備工程は、赤色系蛍光体,青色系蛍光体,及び緑色系蛍光体等を透明樹脂に分散させた、グループ毎に対応して予め設定される複数の配合組成の被覆材を調製する工程である。   The coating material preparation step prepares a coating material having a plurality of blending compositions set in advance corresponding to each group in which a red phosphor, a blue phosphor, a green phosphor, and the like are dispersed in a transparent resin. It is a process.

グループ毎に対応して予め設定される被覆材の配合組成は、例えば、各グループに属する紫外光半導体発光素子の輝度の中央値に基づき、各グループの紫外光半導体発光素子を用いた場合にばらつきが平準化されるような配合比率及び全配合量が決定される。   The composition of the coating material set in advance corresponding to each group varies, for example, based on the median value of the luminance of the ultraviolet semiconductor light emitting element belonging to each group, when the ultraviolet semiconductor light emitting element of each group is used. The blending ratio and the total blending amount are determined so as to be leveled.

被覆材の形態としては、紫外光半導体発光素子から発せられる光を入射させ、蛍光体により光を波長変換することが可能な形態であればとくに限定なく用いられる。   The form of the covering material is not particularly limited as long as the light emitted from the ultraviolet semiconductor light emitting element is incident and the wavelength of light can be converted by the phosphor.

次に、グループ分けされた各紫外光半導体発光素子を、各グループに対応するように調製された被覆材で被覆する被覆工程について説明する。   Next, a coating process for coating each grouped ultraviolet semiconductor light emitting element with a coating material prepared to correspond to each group will be described.

被覆工程の具体例としては、例えば、図3に示したようなチップ型の紫外光半導体発光ダイオード30に収納される紫外光半導体発光素子3を封止する封止材26に蛍光体を分散させた形態や、図4に示した砲弾型の紫外光半導体発光ダイオード40に収納される紫外光半導体発光素子3を封止する砲弾型の封止材36に蛍光体を分散させた形態、等、とくに限定されない。各グループ毎に回路基板に実装された複数の紫外光半導体発光素子を前記封止材で封止する工程である封止方法は、トランスファー成形、射出成形、圧縮成形等を用いた、公知の半導体発光ダイオードの製造に用いられる封止方法等がとくに限定なく用いられる。なお、封止に際しては、回路基板に各グループ毎にまとめて実装された複数の紫外光半導体発光素子をそのグループに対応する封止材で封止することが好ましい。   As a specific example of the covering step, for example, a phosphor is dispersed in a sealing material 26 for sealing the ultraviolet semiconductor light emitting element 3 housed in the chip type ultraviolet semiconductor light emitting diode 30 as shown in FIG. A form in which phosphors are dispersed in a bullet-shaped sealing material 36 for sealing the ultraviolet semiconductor light-emitting element 3 housed in the bullet-shaped ultraviolet semiconductor light-emitting diode 40 shown in FIG. There is no particular limitation. A known semiconductor using transfer molding, injection molding, compression molding or the like is a sealing method that is a process of sealing a plurality of ultraviolet semiconductor light emitting elements mounted on a circuit board for each group with the sealing material. The sealing method used for manufacturing the light emitting diode is not particularly limited. In sealing, it is preferable to seal a plurality of ultraviolet semiconductor light emitting elements mounted on the circuit board for each group together with a sealing material corresponding to the group.

本実施形態の製造方法によれば、多数の紫外光半導体発光素子をその輝度のみによってグループ分けすることにより色度のばらつきを抑制することができるために、色度のばらつき管理が容易になる。また、輝度をより細かくランク分けしてグループ化することにより、高精度な色度のばらつき管理を行うことができる。   According to the manufacturing method of the present embodiment, chromaticity variation can be easily managed because chromaticity variation can be suppressed by grouping a large number of ultraviolet semiconductor light-emitting elements only by their luminance. In addition, it is possible to perform highly accurate chromaticity variation management by classifying the luminances into finer ranks.

なお、上記の第一実施形態及び第二実施形態において、赤色系蛍光体,青色系蛍光体及び緑色系蛍光体を用いた被覆材により高精度に色度のばらつきが低減された白色光を得る導体発光ダイオードまたは半導体発光装置の製造方法を説明したが、白色光に限らず、少なくとも二種類の異なる色度光に変換される異なった複数種類の蛍光体を配合した被覆材を用いることによって、高精度に色度のばらつきを低減した半導体発光ダイオードまたは半導体発光装置の製造方法を実現することができる。   In the first embodiment and the second embodiment described above, white light with reduced chromaticity variation is obtained with high accuracy by the coating material using the red phosphor, the blue phosphor, and the green phosphor. The manufacturing method of the conductor light emitting diode or the semiconductor light emitting device has been described, but not only white light, but by using a coating material containing a plurality of different types of phosphors that are converted into at least two different types of chromaticity light, A method of manufacturing a semiconductor light emitting diode or a semiconductor light emitting device with reduced chromaticity variation with high accuracy can be realized.

次に、本発明を実施例によりさらに具体的に説明する、なお、本発明の範囲は実施例により何ら限定されるものではない。   EXAMPLES Next, the present invention will be described more specifically with reference to examples. Note that the scope of the present invention is not limited to the examples.

[比較例:色度ばらつきの評価]
はじめに、30個の砲弾型の近紫外半導体発光ダイオードNo.1〜30(設計波長405nm)の発光面を蛍光体を含有するシリコーン被覆材で被覆したときの色度ばらつきを示す比較例について説明する。
[Comparative example: Evaluation of chromaticity variation]
First, 30 cannonball type near ultraviolet semiconductor light emitting diodes No. A comparative example showing chromaticity variation when a light emitting surface of 1 to 30 (design wavelength 405 nm) is coated with a silicone coating material containing a phosphor will be described.

近紫外半導体発光ダイオードNo.1〜30のそれぞれに20mAに設定した電流を流し、積分球内で発光させ、主波長及び輝度を分光光度計(MCPD-7000 大塚電子製)を用いて測定した。このとき、30個の砲弾型の近紫外半導体発光ダイオードの主波長は395〜415nmの範囲のばらつきを有していた。また、輝度は、分布中心輝度を1とした場合、0.5〜1.7の相対輝度範囲でばらつきを有していた。   Near ultraviolet semiconductor light emitting diode No. A current set to 20 mA was supplied to each of 1 to 30 and light was emitted in an integrating sphere, and the dominant wavelength and luminance were measured using a spectrophotometer (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.). At this time, the main wavelengths of the 30 bullet-type near-ultraviolet semiconductor light-emitting diodes varied within a range of 395 to 415 nm. Further, when the distribution center luminance is 1, the luminance has a variation in a relative luminance range of 0.5 to 1.7.

次に、近紫外半導体発光ダイオードNo.1〜30のそれぞれに予め調製したキャップ状被覆材を被せた。なお、キャップ状被覆材は以下のようにして調製した。   Next, a near ultraviolet semiconductor light emitting diode No. Each of 1 to 30 was covered with a cap-shaped coating material prepared in advance. The cap-shaped covering material was prepared as follows.

シリコーンゴム(KE-1935 信越化学製)100gに青色蛍光体:(Sr,Ca)10(PO4)6Cl2:Eu2+を33.25g、緑蛍光体:BaMg2Al16O27:Eu2+,Mn2+を60.57g、赤色蛍光体:CaAlSiN3:Eu2+を6.175g配合して真空攪拌機を用いて混練して分散させた。そして得られた組成物を金型と加熱プレスを用いて膜厚200μmで砲弾型の近紫外半導体発光ダイオードに密着するように嵌められるキャップ状被覆材を成形した。このとき成形条件は130℃,5分とした。 100 g of silicone rubber (KE-1935 manufactured by Shin-Etsu Chemical), 33.25 g of blue phosphor: (Sr, Ca) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , green phosphor: BaMg 2 Al 16 O 27 : Eu 2 + , 57.57 g of Mn 2+ and 6.175 g of red phosphor: CaAlSiN 3 : Eu 2+ were blended and kneaded and dispersed using a vacuum stirrer. And the cap-shaped coating | covering material with which the obtained composition was fit | attached so that it might closely_contact | adhere to a bullet type near ultraviolet semiconductor light-emitting diode with a film thickness of 200 micrometers was shape | molded using the metal mold | die and the heating press. At this time, the molding conditions were 130 ° C. and 5 minutes.

そして、近紫外半導体発光ダイオードNo.1〜30のそれぞれにキャップ状被覆材を被せ、白色光を発する半導体発光装置を作製した。そして各半導体発光装置をそれぞれ積分球内に入れて、20mAで点灯させた。そして、分光光度計(MCPD-7000 大塚電子製)で得られた発光の三刺激値を測定し、また、xy系色度換算をした。結果を表1に示す。また、測定されたxy系色度座標を図5に示す。   The near ultraviolet semiconductor light emitting diode No. Each of 1 to 30 was covered with a cap-like covering material to produce a semiconductor light emitting device emitting white light. Each semiconductor light emitting device was put in an integrating sphere and turned on at 20 mA. Then, the tristimulus values of luminescence obtained with a spectrophotometer (MCPD-7000, manufactured by Otsuka Electronics Co., Ltd.) were measured, and the xy chromaticity was converted. The results are shown in Table 1. The measured xy chromaticity coordinates are shown in FIG.

Figure 2011222760
Figure 2011222760

図5の結果から、半導体発光装置の発光色はx軸方向よりもy軸方向に大きくばらついていた。また、例えば、No.19とNo.20とでは、いずれも主波長は406nmであるが、得られる白色光の色度のy値はそれぞれ0.2283と0.1994と大きなばらつきを有していた。このことから、紫外光を蛍光体により変換して得られる可視光においては、主波長のばらつきよりも輝度のばらつきに大きな影響を受けることがわかる。また、表1からは、明るさを示す三刺激値のY値が輝度に強い影響を受けていることがわかる。すなわち、明るさを示す三刺激値のY値が高い場合には色度のy値は低くなり、三刺激値のy値が高い場合には色度のy値が低くなることがわかる。   From the results shown in FIG. 5, the emission color of the semiconductor light emitting device greatly varies in the y axis direction than in the x axis direction. For example, No. 19 and No. 20, the main wavelength was 406 nm, but the y value of the chromaticity of the obtained white light had large variations of 0.2283 and 0.1994, respectively. From this, it can be seen that visible light obtained by converting ultraviolet light with a phosphor is more greatly affected by luminance variations than main wavelength variations. Further, it can be seen from Table 1 that the Y value of the tristimulus value indicating brightness is strongly influenced by the luminance. That is, when the Y value of the tristimulus value indicating brightness is high, the chromaticity y value is low, and when the tristimulus value y value is high, the chromaticity y value is low.

[参考例:赤色蛍光体、緑色蛍光体、及び青色蛍光体の発光強度と輝度との関係の評価]
比較例において用いた近紫外半導体発光ダイオードNo.10を用いて得られた半導体発光装置を用いて、赤色蛍光体、緑色蛍光体、及び青色蛍光体の発光強度と輝度との関係を評価した。図6に、上記半導体発光装置に電流値20mAの電流を流したときの発光スペクトルを示す。図6に示す発光スペクトルにおいては405nm付近に近紫外半導体発光ダイオードが発する近紫外光のピーク、460nm付近に青色蛍光体が発する青色光のピーク、530nm付近に緑色蛍光体が発する緑色光のピーク、640nm付近に赤色蛍光体が発する赤色光のピークが認められる。
[Reference Example: Evaluation of relationship between emission intensity and luminance of red phosphor, green phosphor, and blue phosphor]
The near ultraviolet semiconductor light emitting diode No. used in the comparative example. Using the semiconductor light emitting device obtained by using No. 10, the relationship between the emission intensity and the luminance of the red phosphor, the green phosphor, and the blue phosphor was evaluated. FIG. 6 shows an emission spectrum when a current of 20 mA is passed through the semiconductor light emitting device. In the emission spectrum shown in FIG. 6, the peak of near ultraviolet light emitted by the near ultraviolet semiconductor light emitting diode near 405 nm, the peak of blue light emitted by the blue phosphor near 460 nm, the peak of green light emitted by the green phosphor near 530 nm, A red light peak emitted by the red phosphor is observed around 640 nm.

また、電流値を20〜100mAまでの範囲で変化させたときの各ピーク強度の相対的な変化を、電流値20mAのときの各ピークの強度を1として、プロットしたグラフを図7に示す。   In addition, FIG. 7 shows a graph in which the relative change of each peak intensity when the current value is changed in the range of 20 to 100 mA is plotted with the intensity of each peak when the current value is 20 mA as 1.

図7から、近紫外光(n−UV透過光)のピーク、青色光(青)のピーク、赤色光(赤)のピーク及び緑色光(緑)のピークはの強度は電流値が増加するにつれて増加していくことがわかる。しかし、緑色光のピークは電流値が増加するにつれて増加していく割合が低くなった。このことから、紫外光を赤色蛍光体、緑色蛍光体、青色蛍光体で波長変換して得られる白色光においては、同じ組成及び同じ量の蛍光体の配合組成を有する被覆材を用いても、輝度の違いによって発光色がばらつくことがわかる。   From FIG. 7, the intensity of the peak of near ultraviolet light (n-UV transmitted light), the peak of blue light (blue), the peak of red light (red), and the peak of green light (green) increases as the current value increases. You can see that it increases. However, the rate at which the green light peak increased as the current value increased decreased. From this, in the white light obtained by converting the wavelength of ultraviolet light with a red phosphor, a green phosphor, and a blue phosphor, even if a coating material having the same composition and the same amount of the phosphor composition is used, It can be seen that the emission color varies depending on the luminance.

[実施例]
比較例で用いた、近紫外半導体発光ダイオードNo.1〜30を明るさのみに基づいて相対輝度の範囲で分けて6群のグループ(A〜F群)を得た。
[Example]
The near ultraviolet semiconductor light emitting diode No. used in the comparative example. 1 to 30 were divided by the range of relative luminance based only on the brightness to obtain 6 groups (A to F groups).

そして、各群の相対輝度の中央値を有する近紫外半導体発光ダイオードに基づく色度調整により、表2に示すような配合組成及び全配合量を予め設定し、実験例1と同様にして各群に属する近紫外半導体発光ダイオードを被覆するためのキャップ状被覆材a〜fを得た。ここで、蛍光体量とはシリコーン100gとした場合の各蛍光体の配合質量である。   Then, by adjusting the chromaticity based on the near-ultraviolet semiconductor light-emitting diode having the median relative luminance of each group, the blending composition and the total blending amount as shown in Table 2 are set in advance, and each group as in Experimental Example 1 Cap-shaped covering materials a to f for covering the near-ultraviolet semiconductor light-emitting diode belonging to the above were obtained. Here, the amount of phosphor is the blending mass of each phosphor when 100 g of silicone is used.

そして、各群の近紫外半導体発光ダイオードそれぞれに、各群に対応するキャップ状被覆材a〜fを被せ、白色光を発する半導体発光装置を作製した。そして、比較例と同様にして、各半導体発光装置を点灯させ三刺激値を測定し色度換算した。結果を表2に示す。また、測定されたxy系色度座標を図8に示す。   Then, the near-ultraviolet semiconductor light-emitting diodes in each group were covered with cap-shaped covering materials a to f corresponding to the respective groups, and semiconductor light-emitting devices that emit white light were produced. Then, as in the comparative example, each semiconductor light emitting device was turned on, the tristimulus value was measured, and the chromaticity was converted. The results are shown in Table 2. The measured xy chromaticity coordinates are shown in FIG.

Figure 2011222760
Figure 2011222760

表2及び図8の実施例の結果と表1及び図5の比較例の結果とを比べると、実施例で得られた30個の半導体発光装置においては、ばらつきが大幅に低減されていることがわかる。この結果から、近紫外半導体発光ダイオードを輝度のみでグループ化し、各グループに対応する被覆材で被覆することにより、色度ばらつきを大幅に低減させることができることがわかる。   Comparing the results of the example of Table 2 and FIG. 8 with the results of the comparative example of Table 1 and FIG. 5, the variation in the 30 semiconductor light emitting devices obtained in the example is greatly reduced. I understand. From this result, it can be seen that the chromaticity variation can be greatly reduced by grouping the near-ultraviolet semiconductor light-emitting diodes only by luminance and coating them with a coating material corresponding to each group.

1 チップ型紫外光半導体発光ダイオード
2 発光体収容部材
3紫外光半導体発光素子
4a,4b リード
5 リード細線
6、16、26、36 封止材
7 シート状被覆材
11 砲弾型紫外光半導体発光ダイオード
13,14 配線導体
17 キャップ状被覆材
30 半導体発光ダイオード
40 半導体発光ダイオード
R 赤色系蛍光体
G 緑色系蛍光体
B 青色系蛍光体
DESCRIPTION OF SYMBOLS 1 Chip type ultraviolet light semiconductor light emitting diode 2 Light emitter housing member 3 Ultraviolet light semiconductor light emitting element 4a, 4b Lead 5 Lead thin wire 6, 16, 26, 36 Sealing material 7 Sheet-shaped covering material 11 Cannonball type ultraviolet light semiconductor light emitting diode 13 , 14 Wiring conductor 17 Cap-shaped covering material 30 Semiconductor light emitting diode 40 Semiconductor light emitting diode R Red phosphor G Green phosphor B Blue phosphor

Claims (6)

紫外光半導体発光ダイオード備えた半導体発光装置の製造方法であって、
主波長のばらつきを有する、多数の紫外光半導体発光ダイオードを準備する発光ダイオード準備工程と、
前記多数の紫外光半導体発光ダイオードのそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度範囲ごとに各紫外光半導体発光ダイオードをグループ分けするグルーピング工程と、
紫外光を所定の発光色に変換するために、前記各グループ毎に対応して予め設定された複数種の蛍光体を含む所定の配合組成を有する、複数種の被覆材を準備する被覆材準備工程と、
前記グループ分けされた各紫外光半導体発光ダイオードを、各グループに対応して準備された前記被覆材で被覆する被覆工程と、を備えることを特徴とする半導体発光装置の製造方法。
A method for manufacturing a semiconductor light emitting device including an ultraviolet light semiconductor light emitting diode,
A light-emitting diode preparation step of preparing a large number of ultraviolet semiconductor light-emitting diodes having variations in dominant wavelength;
A grouping step of grouping the respective ultraviolet light semiconductor light emitting diodes for each predetermined luminance range, based on the luminance when light is emitted by supplying a predetermined value of power to each of the plurality of ultraviolet light semiconductor light emitting diodes;
In order to convert ultraviolet light into a predetermined emission color, a coating material preparation for preparing a plurality of types of coating materials having a predetermined blending composition including a plurality of types of phosphors set in advance corresponding to each group Process,
A method of manufacturing the semiconductor light emitting device, comprising: a step of coating the grouped ultraviolet semiconductor light emitting diodes with the coating material prepared for each group.
前記被覆材準備工程が、前記グループ毎に対応して予め設定された、複数種の蛍光体を透明性樹脂に分散させた成形材料で成形する工程を備える請求項1に記載の半導体発光装置の製造方法。   2. The semiconductor light emitting device according to claim 1, wherein the covering material preparing step includes a step of forming a molding material in which a plurality of types of phosphors are dispersed in a transparent resin, which is set in advance for each group. Production method. 前記被覆材が前記紫外光半導体発光ダイオードをキャップするキャップ形状を有する請求項2に記載の半導体発光装置の製造方法。   The method of manufacturing a semiconductor light emitting device according to claim 2, wherein the covering material has a cap shape that caps the ultraviolet semiconductor light emitting diode. 前記被覆材が紫外光半導体発光ダイオードを覆うシート形状を有する請求項2に記載の半導体発光装置の製造方法。   The manufacturing method of the semiconductor light-emitting device according to claim 2, wherein the covering material has a sheet shape covering the ultraviolet semiconductor light-emitting diode. 紫外光半導体発光素子を備えた半導体発光ダイオードの製造方法であって、
主波長のばらつきを有する、多数の紫外光半導体発光素子を準備する素子準備工程と、
前記多数の紫外光半導体発光素子のそれぞれに所定値の電力を供給して発光させたときの輝度に基づき、所定の輝度範囲ごとに各紫外光半導体発光素子をグループ分けするグルーピング工程と、
紫外光を所定の発光色に変換するために、前記各グループ毎に対応して予め設定された複数種の蛍光体を含む所定の配合組成を有する、複数種の被覆材を準備する被覆材準備工程と、
前記グループ分けされた各紫外光半導体発光素子を、各グループに対応して準備された前記被覆材で被覆する被覆工程と、を備えることを特徴とする半導体発光ダイオードの製造方法。
A method for producing a semiconductor light emitting diode comprising an ultraviolet light semiconductor light emitting element,
An element preparation step for preparing a large number of ultraviolet light-emitting semiconductor light-emitting elements having variations in the dominant wavelength;
A grouping step of grouping each ultraviolet light semiconductor light emitting element for each predetermined luminance range based on the brightness when light is emitted by supplying a predetermined value of power to each of the multiple ultraviolet light semiconductor light emitting elements;
In order to convert ultraviolet light into a predetermined emission color, a coating material preparation for preparing a plurality of types of coating materials having a predetermined blending composition including a plurality of types of phosphors set in advance corresponding to each group Process,
A method of manufacturing the semiconductor light-emitting diode, comprising: a step of covering each of the grouped ultraviolet light-emitting semiconductor light-emitting elements with the coating material prepared corresponding to each group.
前記被覆材準備工程が、前記各グループ毎に対応して予め設定された、複数種の蛍光体を分散させた封止材を調製する工程であり、
前記被覆工程が、前記各グループ毎に回路基板に実装された複数の紫外光半導体発光素子を前記封止材で封止する工程である請求項5に記載の半導体発光ダイオードの製造方法。
The covering material preparation step is a step of preparing a sealing material in which a plurality of types of phosphors are dispersed, which is set in advance for each group.
6. The method of manufacturing a semiconductor light emitting diode according to claim 5, wherein the covering step is a step of sealing a plurality of ultraviolet semiconductor light emitting elements mounted on a circuit board for each group with the sealing material.
JP2010090583A 2010-04-09 2010-04-09 Method for manufacturing semiconductor light emitting device or method for manufacturing semiconductor light emitting diode Active JP5580100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010090583A JP5580100B2 (en) 2010-04-09 2010-04-09 Method for manufacturing semiconductor light emitting device or method for manufacturing semiconductor light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010090583A JP5580100B2 (en) 2010-04-09 2010-04-09 Method for manufacturing semiconductor light emitting device or method for manufacturing semiconductor light emitting diode

Publications (2)

Publication Number Publication Date
JP2011222760A true JP2011222760A (en) 2011-11-04
JP5580100B2 JP5580100B2 (en) 2014-08-27

Family

ID=45039346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090583A Active JP5580100B2 (en) 2010-04-09 2010-04-09 Method for manufacturing semiconductor light emitting device or method for manufacturing semiconductor light emitting diode

Country Status (1)

Country Link
JP (1) JP5580100B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243129A (en) * 2012-05-04 2013-12-05 Soraa Inc Led lamp with improved quality of light
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
US9488324B2 (en) 2011-09-02 2016-11-08 Soraa, Inc. Accessories for LED lamp systems
JP2017157621A (en) * 2016-02-29 2017-09-07 豊田合成株式会社 White light-emitting device
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
JP2019175926A (en) * 2018-03-27 2019-10-10 京セラ株式会社 Light-emitting device and illuminating device
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
JP2020205325A (en) * 2019-06-17 2020-12-24 日亜化学工業株式会社 Manufacturing method of light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208818A (en) * 1999-01-13 2000-07-28 Asahi Rubber:Kk Light emitting device
JP2001107036A (en) * 1999-10-05 2001-04-17 Asahi Rubber:Kk Method for supporting production of phosphor-covered body, production support system thereof, and phosphor- covered body for luminescent element
WO2006033239A1 (en) * 2004-09-22 2006-03-30 Kabushiki Kaisha Toshiba Light emitting device, and back light and liquid crystal display employing it
JP2006303140A (en) * 2005-04-20 2006-11-02 Matsushita Electric Works Ltd Manufacturing method of light-emitting device, and manufacturing method of light-emitting device unit using light-emitting device
JP2007123915A (en) * 2005-10-28 2007-05-17 Philips Lumileds Lightng Co Llc Encapsulated lamination film including phosphor covering led (light emitting diode)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208818A (en) * 1999-01-13 2000-07-28 Asahi Rubber:Kk Light emitting device
JP2001107036A (en) * 1999-10-05 2001-04-17 Asahi Rubber:Kk Method for supporting production of phosphor-covered body, production support system thereof, and phosphor- covered body for luminescent element
WO2006033239A1 (en) * 2004-09-22 2006-03-30 Kabushiki Kaisha Toshiba Light emitting device, and back light and liquid crystal display employing it
JP2006303140A (en) * 2005-04-20 2006-11-02 Matsushita Electric Works Ltd Manufacturing method of light-emitting device, and manufacturing method of light-emitting device unit using light-emitting device
JP2007123915A (en) * 2005-10-28 2007-05-17 Philips Lumileds Lightng Co Llc Encapsulated lamination film including phosphor covering led (light emitting diode)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553754B2 (en) 2009-09-18 2020-02-04 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US11662067B2 (en) 2009-09-18 2023-05-30 Korrus, Inc. LED lamps with improved quality of light
US11105473B2 (en) 2009-09-18 2021-08-31 EcoSense Lighting, Inc. LED lamps with improved quality of light
US10557595B2 (en) 2009-09-18 2020-02-11 Soraa, Inc. LED lamps with improved quality of light
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US9488324B2 (en) 2011-09-02 2016-11-08 Soraa, Inc. Accessories for LED lamp systems
US11054117B2 (en) 2011-09-02 2021-07-06 EcoSense Lighting, Inc. Accessories for LED lamp systems
JP2017084795A (en) * 2012-05-04 2017-05-18 ソラア インコーポレーテッドSoraa Inc. Led lamps with improved light
JP2013243129A (en) * 2012-05-04 2013-12-05 Soraa Inc Led lamp with improved quality of light
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US9410664B2 (en) 2013-08-29 2016-08-09 Soraa, Inc. Circadian friendly LED light source
JP2017157621A (en) * 2016-02-29 2017-09-07 豊田合成株式会社 White light-emitting device
JP2019175926A (en) * 2018-03-27 2019-10-10 京セラ株式会社 Light-emitting device and illuminating device
JP2020205325A (en) * 2019-06-17 2020-12-24 日亜化学工業株式会社 Manufacturing method of light-emitting device
JP7022284B2 (en) 2019-06-17 2022-02-18 日亜化学工業株式会社 Manufacturing method of light emitting device

Also Published As

Publication number Publication date
JP5580100B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP5580100B2 (en) Method for manufacturing semiconductor light emitting device or method for manufacturing semiconductor light emitting diode
US8847507B2 (en) Illuminating device
EP2400567B1 (en) Phosphor selection for a Light-Emitting Device
US8294162B2 (en) LED device and LED lighting apparatus
JP6853614B2 (en) LED lighting device, its manufacturing method and LED lighting method
JP4975671B2 (en) Light source having multiple white LEDs with different output spectra
US9115852B2 (en) Method for producing a plurality of LED illumination devices and a plurality of LED chipsets for illumination devices, and LED illumination device
US8747697B2 (en) Gallium-substituted yttrium aluminum garnet phosphor and light emitting devices including the same
US9231170B2 (en) Phosphor LED
EP2717337B1 (en) Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system
US20050127833A1 (en) White light LED and method to adjust the color output of same
JP2007066969A (en) White light emitting diode and its fabrication process
US9923126B2 (en) Light emitting device having high color rendering using three phosphor types
US20040090161A1 (en) Method for manufacturing a light emitting device
US9219201B1 (en) Blue light emitting devices that include phosphor-converted blue light emitting diodes
US10374133B2 (en) Light emitting apparatus with two primary lighting peaks
US20130015461A1 (en) Light-emitting Device Capable of Producing White Light And Light Mixing Method For Producing White Light With Same
JP5082427B2 (en) Light emitting device
JP6512013B2 (en) Image display device
JP2005056885A (en) Method of manufacturing semiconductor light emitting device
TW201320411A (en) Optoelectronic semiconductor component and module with a plurality of such components
JP3987516B2 (en) Phosphor and light emitting diode
JP6846072B1 (en) Light emitting device and lighting device
CN209626217U (en) A kind of structure in rgb light source
JP4960300B2 (en) Surface emitting source device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140710

R150 Certificate of patent or registration of utility model

Ref document number: 5580100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250