JP2011222572A - Solid-state imaging element, method of manufacturing the same and electronic information apparatus - Google Patents

Solid-state imaging element, method of manufacturing the same and electronic information apparatus Download PDF

Info

Publication number
JP2011222572A
JP2011222572A JP2010086579A JP2010086579A JP2011222572A JP 2011222572 A JP2011222572 A JP 2011222572A JP 2010086579 A JP2010086579 A JP 2010086579A JP 2010086579 A JP2010086579 A JP 2010086579A JP 2011222572 A JP2011222572 A JP 2011222572A
Authority
JP
Japan
Prior art keywords
insulating film
film
solid
charge transfer
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010086579A
Other languages
Japanese (ja)
Other versions
JP5651364B2 (en
Inventor
Masayuki Fujio
正之 藤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010086579A priority Critical patent/JP5651364B2/en
Publication of JP2011222572A publication Critical patent/JP2011222572A/en
Application granted granted Critical
Publication of JP5651364B2 publication Critical patent/JP5651364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an insulator film in a gap between transfer electrodes without causing the deterioration of pixel characteristics.SOLUTION: During a thermal oxidation treatment, a silicon nitride film is embedded in a gap G between charge transfer electrodes as a thermal oxidation barrier film. The gap G between charge transfer electrodes and an opening 8b on the upper side of a light receiving portion 5 that is a photoelectric conversion portion are formed at the same time. In addition, a third insulator film 11 that is thinner and stable is formed as a result of thermal oxidation of a surface of the light receiving portion 5, a p-type impurity ion is injected in a surface portion of the light receiving portion 5 of an n-type semiconductor substrate 1 through this third insulator film 11 that is thin and stable, and a high-concentration surface p+ layer is formed. Furthermore, a second insulator film 10 is removed from within the gap G and a fourth insulator film 12 is embedded in the gap G again. The insulator film to be embedded in the gap G between charge transfer electrodes (the fourth insulator film 12) and a reflection suppression film on the light receiving portion 5 (the fourth insulator film 12) are manufactured in the same process with the same materials.

Description

本発明は、被写体からの画像光を光電変換して撮像する半導体素子で構成された固体撮像素子およびその製造方法であって、特に、固体撮像素子の電荷転送電極間絶縁膜の製造方法およびこの製造方法により作製された固体撮像素子に関し、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。   The present invention relates to a solid-state imaging device composed of a semiconductor element that images image light from a subject by photoelectric conversion, and a method for manufacturing the solid-state imaging device. Regarding a solid-state imaging device manufactured by a manufacturing method, for example, a digital camera such as a digital video camera and a digital still camera using the solid-state imaging device as an image input device in an imaging unit, an image input camera such as a surveillance camera, a scanner device, The present invention relates to an electronic information device such as a facsimile apparatus, a television telephone apparatus, and a camera-equipped mobile telephone apparatus.

近年、固体撮像素子においては、高画素化が進んでおり、画素数増加に伴い信号電荷の高速転送が必要となるため、とりわけ電荷転送電極の低抵抗化と、電荷転送電極間ギャップの微細化が重要となってきている。   In recent years, solid-state imaging devices have been increasing in number of pixels, and as the number of pixels increases, it is necessary to transfer signal charges at a high speed. In particular, the resistance of the charge transfer electrodes is reduced and the gap between the charge transfer electrodes is miniaturized. Has become important.

この電荷転送電極間ギャップは、狭く加工して転送チャネル内のポテンシャルを均一にする必要がある。従来、電荷転送電極間ギャップを形成した後、電荷転送電極であるポリシリコンなどの導電性膜を酸化させて電荷転送電極間への絶縁膜形成を行っており、この熱酸化膜形成方法では、転送チャネル表面や、ポリシリコンなどの導電性膜が熱酸化により、侵食されてスマイリング形状となり、電荷転送電極間ギャップが広がることから、素子の微細化の妨げとなるだけではなく、電荷転送電極幅が小さくなって転送チャネル内のポテンシャルを均一な状態にできなくなり、これによって、転送チャネルへの転送パルスが局所的に印加されにくい領域が形成されることになることから、電荷転送劣化が生じてしまう問題があった。   The gap between the charge transfer electrodes needs to be narrowed to make the potential in the transfer channel uniform. Conventionally, after forming a gap between charge transfer electrodes, a conductive film such as polysilicon which is a charge transfer electrode is oxidized to form an insulating film between the charge transfer electrodes. In this thermal oxide film forming method, The surface of the transfer channel and the conductive film such as polysilicon are eroded by thermal oxidation to form a smiley shape and the gap between the charge transfer electrodes widens, which not only hinders device miniaturization, but also the width of the charge transfer electrode. As a result, the potential in the transfer channel cannot be made uniform, thereby forming a region where the transfer pulse to the transfer channel is difficult to be applied locally. There was a problem.

このため、特許文献1では、電荷転送電極間ギャップに、熱酸化を行わずに、LPCVD法で絶縁膜を充填させることにより、電荷転送電極間ギャップの拡がりがなく、絶縁膜を形成させる方法が開示されている。   Therefore, Patent Document 1 discloses a method of forming an insulating film without expanding the gap between charge transfer electrodes by filling the gap between charge transfer electrodes with an insulating film by LPCVD without performing thermal oxidation. It is disclosed.

この特許文献1での製造方法を簡単に説明すると、まず、シリコン基板上にゲート絶縁膜と、ゲート電極としてのポリシリコンを成膜し、電荷転送電極間ギャップに開口を有するレジストパターンの形成を行って、それをマスクにポリシリコンをエッチングし、電荷転送電極間ギャップを形成させる。この後、LPCVD法により、シリコン酸化膜(HTO)や、シリコン窒化膜を成膜することによりギャップ部を充填させるようにして、電荷転送電極間ギャップに絶縁膜を形成させている。   The manufacturing method in Patent Document 1 will be briefly described. First, a gate insulating film and polysilicon as a gate electrode are formed on a silicon substrate, and a resist pattern having an opening in a gap between charge transfer electrodes is formed. Then, using this as a mask, the polysilicon is etched to form a gap between the charge transfer electrodes. Thereafter, an insulating film is formed in the gap between the charge transfer electrodes so as to fill the gap portion by forming a silicon oxide film (HTO) or a silicon nitride film by LPCVD.

図12(a)〜図12(c)、図13(a)および図13(b)はそれぞれ、特許文献1に開示されている従来の固体撮像素子の製造方法の各製造工程を示す要部縦断面図である。   12 (a) to 12 (c), FIG. 13 (a), and FIG. 13 (b) are main parts showing respective manufacturing steps of the conventional method for manufacturing a solid-state imaging device disclosed in Patent Document 1. It is a longitudinal cross-sectional view.

図12(a)に示すように、従来の固体撮像素子の製造方法として、このシリコン基板101上のゲート酸化膜102上に、Heで希釈したSiHを反応性ガスとして用いた減圧CVD法により、膜厚0.4μmの多結晶シリコン膜を形成する。このときの基板温度は摂氏600〜700度とする。この後、POClとNとOとの混合ガス雰囲気中で摂氏900度の熱処理を行って多結晶シリコン膜103をドーピングする(リン酸処理)。 As shown in FIG. 12A, as a conventional method for manufacturing a solid-state imaging device, a low-pressure CVD method using SiH 4 diluted with He as a reactive gas on a gate oxide film 102 on the silicon substrate 101 is used. Then, a polycrystalline silicon film having a thickness of 0.4 μm is formed. The substrate temperature at this time is 600 to 700 degrees Celsius. Thereafter, heat treatment is performed at 900 degrees Celsius in a mixed gas atmosphere of POCl 3 , N 2, and O 2 to dope the polycrystalline silicon film 103 (phosphoric acid treatment).

続いて、この上層にポジレジストを厚さ0.5〜1.4μmとなるように塗布する。図12(b)に示すように、フォトリソグラフィにより所望のマスクを用いて露光し、現像、水洗を行い、開口幅g=0.2μmのレジストパターンR1を形成する。   Subsequently, a positive resist is applied to the upper layer so as to have a thickness of 0.5 to 1.4 μm. As shown in FIG. 12B, exposure is performed by photolithography using a desired mask, development and washing are performed to form a resist pattern R1 having an opening width g = 0.2 μm.

この後、図12(c)に示すように、このレジストパターンR1をマスクとして、HBrとOまたはHBrとClとの混合ガスを用いた反応性イオンエッチングにより、ゲート酸化膜102の窒化シリコン膜102bをエッチングストッパとして多結晶シリコン膜103を選択的にエッチング除去し、電極パターンを形成する。ここでは、ECRまたはICPなどのエッチング装置を用いるのが望ましい。ここでは、アッシングによりレジストパターンR1を除去している。 Thereafter, as shown in FIG. 12C, silicon nitride of the gate oxide film 102 is formed by reactive ion etching using a mixed gas of HBr and O 2 or HBr and Cl 2 using the resist pattern R1 as a mask. Using the film 102b as an etching stopper, the polycrystalline silicon film 103 is selectively removed by etching to form an electrode pattern. Here, it is desirable to use an etching apparatus such as ECR or ICP. Here, the resist pattern R1 is removed by ashing.

さらに、図13(a)に示すように、モノシランとNOとを用いた減圧CVD法により、この電極のパターンの表面に膜厚80nmの酸化シリコン膜(HTO)からなる電極間絶縁膜104を形成する。ここで、基板温度は摂氏750度に維持し、成膜室内の圧力は1.2Torrとした。 Further, as shown in FIG. 13A, the interelectrode insulating film 104 made of a silicon oxide film (HTO) having a thickness of 80 nm is formed on the surface of the pattern of this electrode by a low pressure CVD method using monosilane and N 2 O. Form. Here, the substrate temperature was maintained at 750 degrees Celsius, and the pressure in the film formation chamber was 1.2 Torr.

この後、図13(b)に示すように、NHとDCS(SiHCl)とを用いた減圧CVD法によりこの電極間絶縁膜104全体を覆うように窒化シリコン膜からなる絶縁膜105を形成する。 Thereafter, as shown in FIG. 13B, an insulating film 105 made of a silicon nitride film is formed so as to cover the entire interelectrode insulating film 104 by a low pressure CVD method using NH 3 and DCS (SiH 2 Cl 2 ). Form.

次に、レジストを塗布し、フォトリソグラフィにより光電変換部であるフォトダイオード形成領域に開口部を有するレジストパターンを形成し、レジストパターンをマスクとして、HBrとOまたはHBrとClとの混合ガスを用いた反応性イオンエッチングにより、フォトダイオード形成領域上を開口する。 Next, a resist is applied, a resist pattern having an opening is formed in a photodiode formation region which is a photoelectric conversion portion by photolithography, and a mixed gas of HBr and O 2 or HBr and Cl 2 using the resist pattern as a mask An opening is formed on the photodiode formation region by reactive ion etching using.

その後、このレジストパターンをそのまま残し、これをマスクとしてフォトダイオードのpn接合を形成するためのイオン注入を行い、シリコン基板101との間にpn接合を形成する拡散領域を形成する。このpn接合によって受光部としての光電変換部が形成される。   Thereafter, the resist pattern is left as it is, and ion implantation for forming a pn junction of the photodiode is performed using the resist pattern as a mask, thereby forming a diffusion region for forming a pn junction with the silicon substrate 101. The pn junction forms a photoelectric conversion unit as a light receiving unit.

このように、狭ギャップの電極間領域を持つように電極パターンを形成し、この電極パターン間に減圧CVD法により、酸化シリコン膜からなる電極間絶縁膜を形成している。ここでは、電極間領域の幅gを0.2μmとし、この狭い電極間領域に減圧CVDにより膜質の良好な酸化シリコン膜からなる電極間絶縁膜104を形成したものである。ここでは、この微細幅の開口を形成するために、フォトリソグラフィによりレジスト膜に開口を形成した後に、有機材料を塗布し、加熱処理により熱硬化を行うことにより、レジスト膜の表面に熱硬化層を形成し、開口部のサイズを縮小し、微細開口部を形成することにより、解像限界を超えた微細幅の微細開口を形成し、このレジスト膜をマスクとしてエッチングを行い、高精度の寸法精度で微細間隙を持つ電荷転送電極を形成することができる。   Thus, an electrode pattern is formed so as to have a narrow gap interelectrode region, and an interelectrode insulating film made of a silicon oxide film is formed between the electrode patterns by a low pressure CVD method. Here, the width g of the interelectrode region is 0.2 μm, and the interelectrode insulating film 104 made of a silicon oxide film having a good film quality is formed in this narrow interelectrode region by low pressure CVD. Here, in order to form an opening having a fine width, an opening is formed in the resist film by photolithography, an organic material is applied, and thermosetting is performed by heat treatment, whereby a thermosetting layer is formed on the surface of the resist film. The size of the opening is reduced, and the fine opening is formed to form a fine opening with a fine width exceeding the resolution limit. A charge transfer electrode having a fine gap can be formed with high accuracy.

特開2004−335804号公報JP 2004-335804 A

上記従来の固体撮像素子の製造方法では、電荷転送電極間ギャップ(電極間領域の幅g)のみを形成し、そこに絶縁膜を埋め込み、その後、受光部である光電変換部上方の開口部を加工している。電荷転送電極間ギャップと光電変換部上方の開口部とを同時に形成すると、光電変換部上方の開口部側壁にギャップ埋め込み用の絶縁膜が付いて開口幅が狭くなってしまう。このため、電荷転送電極間ギャップと光電変換部上方の開口部の形成は別工程で行っている。このように、別工程のため、光電変換部上方の開口部の形成に際して、位置合わせ精度がばらつくことにより、光電変換部形成用の開口部が電荷転送電極間ギャップ部側にまでオーバーラップすることもあり、この場合には、ポリシリコンエッチング中に電荷転送電極間ギャップ部の絶縁膜が除去されたり、シリコン基板自体がエッチングされたり、不要なイオン注入が行われて、リークが生じてしまい、結果的に受光感度などの画素特性が劣化するという問題があった。   In the conventional method for manufacturing a solid-state imaging device, only the gap between the charge transfer electrodes (the width g of the interelectrode region) is formed, an insulating film is embedded therein, and then the opening above the photoelectric conversion unit that is the light receiving unit is formed. Processing. If the gap between the charge transfer electrodes and the opening above the photoelectric conversion part are formed simultaneously, an insulating film for filling the gap is attached to the side wall of the opening above the photoelectric conversion part, and the opening width becomes narrow. For this reason, the formation of the gap between the charge transfer electrodes and the opening above the photoelectric conversion portion is performed in separate steps. As described above, since the alignment accuracy varies when forming the opening above the photoelectric conversion portion because of a separate process, the opening for forming the photoelectric conversion portion overlaps to the gap between the charge transfer electrodes. In this case, the insulating film in the gap portion between the charge transfer electrodes is removed during the polysilicon etching, the silicon substrate itself is etched, unnecessary ion implantation is performed, and a leak occurs. As a result, there is a problem that pixel characteristics such as light receiving sensitivity deteriorate.

また、上記従来の固体撮像素子の製造方法では、光電変換部の開口に用いるレジストパターンをそのまま残して、これをマスクにしてフォトダイオードの表面P+注入を行っている。このイオン注入は、ゲート電極のエッチング後の下地残膜越しに行われることになるので、エッチング残膜がばらついた場合にシリコン基板内の不純物イオン注入の深さや濃度が変動してしまい、これによって安定した受光感度が得られなくなって画素特性が劣化するといった問題があった。   Further, in the conventional method for manufacturing a solid-state imaging device, the resist pattern used for the opening of the photoelectric conversion portion is left as it is, and this is used as a mask to perform the surface P + implantation of the photodiode. Since this ion implantation is performed over the base residual film after etching of the gate electrode, the depth and concentration of impurity ion implantation in the silicon substrate fluctuate when the etching residual film varies. There is a problem in that stable light receiving sensitivity cannot be obtained and pixel characteristics deteriorate.

さらに、従来の一般的な固体撮像素子の製造方法では、受光部(光電変換部)における反射光の発生を抑制し、反射光の再入射による画質の乱れを防止するために、受光部上にシリコン窒化膜からなる反射防止膜(低反射膜)を設けている。これを上記従来の製造方法に適用した場合には、電荷転送電極間ギャップ部への埋め込み絶縁膜と、受光部上の反射防止膜とを別々の工程で作成する必要がある。このため、コスト増となったり、ゲート電極上に必要以上に層間膜が形成されてしまい、遮光膜表面が高くなることによりレンズと基板間距離が大きくなって、特に、斜め集光ができなくなり、受光感度が劣化するといった問題があった。   Furthermore, in the conventional general solid-state imaging device manufacturing method, in order to suppress the generation of reflected light in the light receiving unit (photoelectric conversion unit) and prevent image quality disturbance due to re-incidence of the reflected light, An antireflection film (low reflection film) made of a silicon nitride film is provided. When this is applied to the above-described conventional manufacturing method, it is necessary to form the buried insulating film in the gap portion between the charge transfer electrodes and the antireflection film on the light receiving portion in separate steps. For this reason, the cost increases, an interlayer film is formed on the gate electrode more than necessary, and the distance between the lens and the substrate increases due to an increase in the surface of the light shielding film. There is a problem that the light receiving sensitivity deteriorates.

本発明は、上記従来の問題を解決するもので、電荷転送不良や受光領域の縮小、さらには受光感度の劣化など各種画素特性の劣化がなく、転送電極間ギャップ内に絶縁膜を形成することができる固体撮像素子の製造方法および、この固体撮像素子の製造方法により製造した固体撮像素子を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and does not cause deterioration of various pixel characteristics such as charge transfer failure, reduction of light receiving area, and deterioration of light receiving sensitivity, and an insulating film is formed in the gap between transfer electrodes. It is an object to provide a method for manufacturing a solid-state image pickup device capable of performing image processing, and an electronic information device such as a camera-equipped mobile phone device using the solid-state image pickup device manufactured by the method for manufacturing a solid-state image pickup device as an image input device in an image pickup unit. And

本発明の固体撮像素子の製造方法は、半導体基板上にゲート絶縁膜を介して成膜された導電性膜をパターニングして電荷転送部上にギャップ部を形成しかつ、入射光を撮像する複数の受光部の上方にそれぞれ開口部を形成した電荷転送電極を形成する電荷転送電極形成工程と、該電荷転送電極上および該ギャップ部内を含むゲート絶縁膜上に第1の絶縁膜を成膜する第1の絶縁膜成膜工程と、該第1の絶縁膜上に第2の絶縁膜を成膜する第2の絶縁膜成膜工程と、該ギャップ部内の第2の絶縁膜を残存させた状態で、該受光部の上方の基板面および該電荷転送電極の上表面が露出するまで各絶縁膜を除去するエッチバック工程と、該受光部の上方の基板面および該電荷転送電極の上表面に熱酸化により第3の絶縁膜を成膜する第3の絶縁膜成膜工程と、該ギャップ部内の第2の絶縁膜を除去した後に、基板全面に第4の絶縁膜を成膜する第4の絶縁膜成膜工程とを有するものであり、そのことにより上記目的が達成される。   In the method for manufacturing a solid-state imaging device according to the present invention, a conductive film formed on a semiconductor substrate via a gate insulating film is patterned to form a gap portion on the charge transfer portion, and to pick up incident light. A charge transfer electrode forming step of forming charge transfer electrodes each having an opening above the light receiving portion, and a first insulating film is formed on the charge transfer electrode and on the gate insulating film including the gap portion. A first insulating film forming step; a second insulating film forming step of forming a second insulating film on the first insulating film; and the second insulating film in the gap portion is left. An etch-back process for removing each insulating film until the upper surface of the substrate and the upper surface of the charge transfer electrode are exposed, and the upper surface of the substrate and the upper surface of the charge transfer electrode. A third insulating film is formed by thermal oxidation on the third insulating film. And a fourth insulating film forming step of forming a fourth insulating film on the entire surface of the substrate after removing the second insulating film in the gap portion. Achieved.

また、好ましくは、本発明の固体撮像素子の製造方法における第1の絶縁膜成膜工程は、LPCVD法でSiHガスとNOを用いて、所定の温度で所定膜厚のシリコン酸化膜を前記第1の絶縁膜として成膜する。 Preferably, the first insulating film forming step in the method for manufacturing a solid-state imaging device according to the present invention is a silicon oxide film having a predetermined thickness at a predetermined temperature using SiH 4 gas and N 2 O by LPCVD. Is formed as the first insulating film.

さらに、好ましくは、本発明の固体撮像素子の製造方法における第2の絶縁膜成膜工程は、LPCVD法でSiHCLガスとNHガスを用いて、所定の温度で所定膜厚のシリコン窒化膜を前記第2の絶縁膜として成膜する。 Further preferably, the second insulating film forming step in the method for manufacturing a solid-state imaging device of the present invention is performed by using a SiH 2 CL 2 gas and an NH 3 gas by LPCVD, and silicon having a predetermined film thickness at a predetermined temperature. A nitride film is formed as the second insulating film.

さらに、好ましくは、本発明の固体撮像素子の製造方法におけるエッチバック工程は、前記第2の絶縁膜を前記第1の絶縁膜が露出するまで全面エッチバックを行って、前記受光部の表面側および該電荷転送電極の表面側の該第2の絶縁膜を除去しつつ、該ギャップ部内の第2の絶縁膜を残存させる第2の絶縁膜除去工程と、該受光部の表面上方の基板面が露出するまで該第1の絶縁膜および該ゲート絶縁膜を除去すると共に、該電荷転送電極の上表面が露出するまで該第1の絶縁膜を除去する第1の絶縁膜除去工程とを有する。   Further preferably, in the method of manufacturing a solid-state imaging device according to the present invention, in the etch back step, the entire surface of the light receiving unit is etched back until the first insulating film is exposed to the second insulating film. And a second insulating film removing step of leaving the second insulating film in the gap while removing the second insulating film on the surface side of the charge transfer electrode, and a substrate surface above the surface of the light receiving portion Removing the first insulating film and the gate insulating film until the upper surface of the charge transfer electrode is exposed, and removing the first insulating film until the upper surface of the charge transfer electrode is exposed. .

さらに、好ましくは、本発明の固体撮像素子の製造方法における第3の絶縁膜を通して前記受光部の表面側に、該受光部の不純物導電型とは逆導電型の不純物をイオン注入して表面逆導電型層を形成する表面逆導電型層形成工程を更に有する。   Further preferably, the surface reverse is performed by ion-implanting impurities having a conductivity type opposite to the impurity conductivity type of the light receiving portion into the surface side of the light receiving portion through the third insulating film in the method for manufacturing a solid-state imaging device of the present invention. The method further includes a surface reverse conductivity type layer forming step of forming the conductivity type layer.

さらに、好ましくは、本発明の固体撮像素子の製造方法における第4の絶縁膜の成膜前に、リン酸(HPO)を用いて、前記ギャップ部内の第2の絶縁膜をエッチング除去する。 Further preferably, the second insulating film in the gap portion is removed by etching using phosphoric acid (H 3 PO 4 ) before the formation of the fourth insulating film in the method for manufacturing a solid-state imaging device of the present invention. To do.

さらに、好ましくは、本発明の固体撮像素子の製造方法において、前記第4の絶縁膜形成工程は、前記第4の絶縁膜の前記ギャップ部内への充填と、前記受光部の表面上方への反射防止膜としての該第4の絶縁膜の形成を同時に行う。   Still preferably, in a method for manufacturing a solid-state imaging device according to the present invention, the fourth insulating film forming step includes filling the gap in the fourth insulating film and reflecting the surface of the light receiving unit upward. The fourth insulating film as a prevention film is formed at the same time.

さらに、好ましくは、本発明の固体撮像素子の製造方法において、前記電荷転送電極形成工程の前に、前記半導体基板に所定の不純物をイオン注入して、前記受光部と、該受光部からの信号電荷を電荷転送するための電荷転送部とをそれぞれ形成する不純物拡散領域形成工程を更に有する。   Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, a predetermined impurity is ion-implanted into the semiconductor substrate before the charge transfer electrode forming step, and the light receiving unit and a signal from the light receiving unit The semiconductor device further includes an impurity diffusion region forming step for forming charge transfer portions for transferring charges.

さらに、好ましくは、本発明の固体撮像素子の製造方法において、前記第4の絶縁膜成膜工程の後に、前記第4の絶縁膜上に遮光膜を形成し、前記受光部の上方の遮光膜を開口する遮光膜形成工程を更に有する。   Further preferably, in the method for manufacturing a solid-state imaging device according to the present invention, a light shielding film is formed on the fourth insulating film after the fourth insulating film forming step, and the light shielding film above the light receiving unit. A light-shielding film forming step for opening the opening.

さらに、好ましくは、本発明の固体撮像素子の製造方法において、前記第2の絶縁膜と前記第4の絶縁膜とは共にシリコン窒化膜である。   Further preferably, in the method for manufacturing a solid-state imaging device of the present invention, both the second insulating film and the fourth insulating film are silicon nitride films.

さらに、好ましくは、本発明の固体撮像素子の製造方法において、前記第1の絶縁膜はCVD酸化膜であり、前記第3の絶縁膜は熱酸化膜である。   Still preferably, in a method for manufacturing a solid-state imaging device according to the present invention, the first insulating film is a CVD oxide film, and the third insulating film is a thermal oxide film.

さらに、好ましくは、本発明の固体撮像素子の製造方法において、前記ギャップ部は、電荷転送電極間ギャップである。   Still preferably, in a method for manufacturing a solid-state imaging device according to the present invention, the gap portion is a gap between charge transfer electrodes.

本発明の固体撮像素子は、本発明の上記固体撮像素子の製造方法により製造された固体撮像素子であって、前記半導体基板上に前記ゲート絶縁膜を介して、前記電荷転送部上に所定間隔の前記ギャップ部と前記受光部上方に開口部を有する導電性膜からなる電荷転送電極が設けられ、該ギャップ部内は該導電性膜が熱酸化により侵食されておらず、該ギャップ部内は基板表面から該ゲート絶縁膜を介して前記第1の絶縁膜および前記第4の絶縁膜が埋め込まれ、該受光部上方の基板表面は該第3の絶縁膜を介して該第4の絶縁膜が形成されているものであり、そのことにより上記目的が達成される。   The solid-state imaging device of the present invention is a solid-state imaging device manufactured by the above-described method for manufacturing a solid-state imaging device of the present invention, and has a predetermined interval on the charge transfer portion via the gate insulating film on the semiconductor substrate. A charge transfer electrode made of a conductive film having an opening is provided above the gap portion and the light receiving portion, the conductive film is not eroded by thermal oxidation in the gap portion, and the gap portion has a substrate surface. The first insulating film and the fourth insulating film are embedded through the gate insulating film, and the fourth insulating film is formed on the substrate surface above the light receiving portion through the third insulating film. This achieves the above object.

また、好ましくは、本発明の固体撮像素子において、前記第3の絶縁膜である熱酸化膜により前記半導体基板の表面に段差ができている。   Preferably, in the solid-state imaging device of the present invention, a step is formed on the surface of the semiconductor substrate by the thermal oxide film which is the third insulating film.

さらに、好ましくは、本発明の固体撮像素子において、前記電荷転送電極間のギャップ部内への埋め込み絶縁膜が前記第4の絶縁膜で構成され、該第4の絶縁膜が前記受光部上の反射防止膜を兼ねている。   Further preferably, in the solid-state imaging device of the present invention, a buried insulating film in the gap portion between the charge transfer electrodes is constituted by the fourth insulating film, and the fourth insulating film is reflected on the light receiving portion. Also serves as a prevention film.

本発明の電子情報機器は、本発明の上記固体撮像素子を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。   The electronic information device of the present invention uses the solid-state imaging device of the present invention as an image input device in an imaging unit, and thereby achieves the above object.

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

本発明においては、半導体基板上にゲート絶縁膜を介して成膜された導電性膜をパターニングして電荷転送部上にギャップ部を形成しかつ、入射光を撮像する複数の受光部の上方にそれぞれ開口部を形成した電荷転送電極を形成する電荷転送電極形成工程と、電荷転送電極上およびギャップ部内を含むゲート絶縁膜上に第1の絶縁膜を成膜する第1の絶縁膜成膜工程と、第1の絶縁膜上に第2の絶縁膜を成膜する第2の絶縁膜成膜工程と、ギャップ部内の第2の絶縁膜を残存させた状態で、受光部の上方の基板面および該電荷転送電極の上表面が露出するまで各絶縁膜を除去するエッチバック工程と、受光部の上方の基板面および電荷転送電極の上表面に熱酸化により第3の絶縁膜を成膜する第3の絶縁膜成膜工程と、ギャップ部内の第2の絶縁膜を除去した後に、基板全面に第4の絶縁膜を成膜する第4の絶縁膜成膜工程とを有している。この第3の絶縁膜を通して受光部表面側に、受光部の不純物導電型とは逆導電型の不純物を注入して表面逆導電型層を形成する表面逆導電型層形成工程を更に有している。   In the present invention, a conductive film formed on a semiconductor substrate through a gate insulating film is patterned to form a gap portion on the charge transfer portion, and above a plurality of light receiving portions for imaging incident light. Charge transfer electrode forming step for forming charge transfer electrodes each having an opening, and first insulating film forming step for forming a first insulating film on the charge transfer electrode and on the gate insulating film including the gap portion And a second insulating film forming step for forming a second insulating film on the first insulating film, and a substrate surface above the light receiving portion in a state where the second insulating film in the gap portion is left. And an etch back step of removing each insulating film until the upper surface of the charge transfer electrode is exposed, and a third insulating film is formed by thermal oxidation on the substrate surface above the light receiving portion and the upper surface of the charge transfer electrode. A third insulating film forming step and a second in the gap After removal of the Enmaku, and a fourth insulating film forming step of forming a fourth insulating film on the entire surface of the substrate. A surface reverse conductivity type layer forming step of forming a surface reverse conductivity type layer by injecting an impurity having a conductivity type opposite to the impurity conductivity type of the light receiving portion into the light receiving portion surface side through the third insulating film is further provided. Yes.

これによって、第3の絶縁膜形成時に、電荷転送電極間ギャップ内には、熱酸化抑制膜としての第2の絶縁膜が充填されているので、ギャップ下の転送チャネル表面や電荷転送電極の側壁は酸化されず、電荷転送電極間ギャップの従来のような熱酸化による拡大が抑制されて、電荷転送不良や受光領域の縮小などの画素特性が劣化しない。   Thereby, when the third insulating film is formed, the gap between the charge transfer electrodes is filled with the second insulating film as a thermal oxidation suppressing film, so that the surface of the transfer channel below the gap and the side wall of the charge transfer electrode Is not oxidized, and expansion of the gap between the charge transfer electrodes due to thermal oxidation as in the past is suppressed, and pixel characteristics such as charge transfer failure and reduction of the light receiving area do not deteriorate.

また、電荷転送電極間ギャップと光電変換部上方の開口部とを同時に一工程で形成するため、工程の簡略化が図られると共に、電荷転送電極間ギャップと光電変換部上方の開口部と位置合わせ精度もばらつかず、それによる受光感度などの画素特性の劣化も発生しない。   In addition, since the gap between the charge transfer electrodes and the opening above the photoelectric conversion unit are simultaneously formed in one step, the process can be simplified and the gap between the charge transfer electrode and the opening above the photoelectric conversion unit can be aligned. The accuracy does not vary, and pixel characteristics such as light receiving sensitivity are not deteriorated.

さらに、第3の絶縁膜は受光部の表面を熱酸化して膜厚が安定しているので、この膜厚が安定した第3の絶縁膜を通してシリコン基板内の表面側に受光部とは逆導電型の不純物イオンを注入するので、その不純物イオンの深さや濃度が変動することなく、それによる受光感度などの画素特性も劣化しない。   Further, since the third insulating film is thermally oxidized on the surface of the light receiving portion and the film thickness is stable, the third insulating film is opposite to the light receiving portion on the surface side in the silicon substrate through the third insulating film having a stable film thickness. Since the conductivity type impurity ions are implanted, the depth and concentration of the impurity ions do not fluctuate and the pixel characteristics such as the light receiving sensitivity are not deteriorated.

第2の絶縁膜をギャップ内から除去して、第4の絶縁膜をギャップ内に埋め戻しているので、ゲート電極上やその側壁の第2の絶縁膜も除去され、ゲート電極の高さやその側壁の絶縁膜の幅が必要最小限に抑えられる。また、電荷転送電極間ギャップ部への埋め込み絶縁膜と、受光部上の反射防止膜とを同一工程で作成するため、工程が簡略化されると共に、ゲート電極上に必要以上に層間膜が形成されず、遮光膜表面も高くならない。これによって、従来のように例えば斜め集光ができなくなって感度が劣化するといった問題も解消される。   Since the second insulating film is removed from the gap and the fourth insulating film is backfilled in the gap, the second insulating film on the gate electrode and the side wall is also removed, and the height of the gate electrode The width of the insulating film on the side wall can be minimized. In addition, since the buried insulating film in the gap between the charge transfer electrodes and the antireflection film on the light receiving part are formed in the same process, the process is simplified and an interlayer film is formed on the gate electrode more than necessary. The surface of the light shielding film is not increased. As a result, for example, the problem that the light can not be collected obliquely and the sensitivity is deteriorated as in the conventional case is solved.

したがって、電荷転送不良や受光領域の縮小、さらには受光感度の劣化など各種画素特性の劣化がなく、転送電極間に絶縁膜を形成することができる。   Therefore, there is no deterioration of various pixel characteristics such as charge transfer failure, reduction of the light receiving area, and deterioration of light receiving sensitivity, and an insulating film can be formed between the transfer electrodes.

以上により、本発明によれば、熱酸化する第3の絶縁膜形成時に、電荷転送電極間ギャップ内には、熱酸化抑制膜としての第2の絶縁膜が充填されているため、ギャップ下の転送チャネル表面や電荷転送電極の側壁は酸化されず、電荷転送電極間ギャップの従来のような熱酸化による拡大を抑制することができて、電荷転送不良や受光領域の縮小などの画素特性の劣化がない。また、電荷転送電極間ギャップと光電変換部上方の開口部とを同時に形成するため、従来のように電荷転送電極間ギャップと光電変換部上方の開口部との位置合わせ精度がばらつくこともなく、それによる電荷転送不良などの画素特性の劣化も発生しない。さらに、受光部の表面を熱酸化して膜厚が薄く安定した第3の絶縁膜を成膜し、この膜厚が薄く安定した第3の絶縁膜を通して半導体基板内に、受光部とは逆導電型の不純物イオンの注入が為されるため、その不純物イオンの注入深さやその濃度が変動したりばらついたりすることなく、それによる受光感度など画素特性の劣化も発生しない。さらに、第2の絶縁膜をギャップ内から除去して、第4の絶縁膜をギャップ内に埋め戻しているため、電荷転送電極側壁の第2の絶縁膜も除去され、ゲート電極側壁の絶縁膜幅を必要最小限に抑えることができる。また、電荷転送電極間ギャップ部への埋め込み絶縁膜と、受光部上の反射防止膜とを同一工程で同一材料にて作成すれば、電荷転送電極上に必要以上に層間膜が形成されず、遮光膜表面の高さが従来のように高くならず、従来のように例えば斜め集光ができなくなって感度が劣化するといった問題も解消される。したがって、電荷転送不良や受光領域の縮小、さらには受光感度の劣化など各種画素特性の劣化がなく、転送電極間ギャップ内に絶縁膜を安定的に形成することができる。   As described above, according to the present invention, when the third insulating film to be thermally oxidized is formed, the gap between the charge transfer electrodes is filled with the second insulating film as the thermal oxidation suppressing film. The surface of the transfer channel and the side wall of the charge transfer electrode are not oxidized, and expansion of the gap between the charge transfer electrodes due to conventional thermal oxidation can be suppressed, resulting in deterioration of pixel characteristics such as charge transfer failure and light receiving area reduction There is no. In addition, since the gap between the charge transfer electrodes and the opening above the photoelectric conversion unit are formed at the same time, the alignment accuracy between the gap between the charge transfer electrodes and the opening above the photoelectric conversion unit does not vary as in the past, As a result, pixel characteristics such as charge transfer failure are not deteriorated. Furthermore, the surface of the light receiving portion is thermally oxidized to form a thin and stable third insulating film, and this thin and stable third insulating film is passed through the semiconductor substrate into the semiconductor substrate opposite to the light receiving portion. Since the conductivity type impurity ions are implanted, the implantation depth and concentration of the impurity ions do not fluctuate or vary, and pixel characteristics such as light receiving sensitivity are not deteriorated. Further, since the second insulating film is removed from the gap and the fourth insulating film is backfilled in the gap, the second insulating film on the side wall of the charge transfer electrode is also removed, and the insulating film on the side wall of the gate electrode is removed. The width can be minimized. Also, if the insulating film embedded in the gap portion between the charge transfer electrodes and the antireflection film on the light receiving portion are made of the same material in the same process, an interlayer film is not formed more than necessary on the charge transfer electrode, The height of the surface of the light-shielding film is not increased as in the prior art, and the problem that sensitivity is deteriorated due to the fact that, for example, oblique condensing cannot be performed is eliminated. Therefore, there is no deterioration of various pixel characteristics such as charge transfer failure, reduction of the light receiving area, and deterioration of light receiving sensitivity, and the insulating film can be stably formed in the gap between the transfer electrodes.

本発明の実施形態1における固体撮像素子の単位画素部の要部構成例を示す平面図である。It is a top view which shows the principal part structural example of the unit pixel part of the solid-state image sensor in Embodiment 1 of this invention. (a)は、図1の縦方向のAA’線断面図、(b)は、図1の横方向のBB’線断面図である。1A is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line BB ′ in the horizontal direction in FIG. 1. 図1の固体撮像素子の製造方法における不純物拡散領域形成・ゲート絶縁膜およびゲート電極材料成膜工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。FIG. 2 is a longitudinal sectional view showing an impurity diffusion region formation / gate insulating film and gate electrode material deposition step in the method for manufacturing the solid-state imaging device of FIG. 1, wherein (a) is a longitudinal sectional view taken along line AA ′ of FIG. ) Is a longitudinal sectional view taken along line BB ′ of FIG. 図1の固体撮像素子の製造方法におけるゲート電極形成工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。2A and 2B are longitudinal sectional views showing a gate electrode forming step in the method for manufacturing the solid-state imaging device in FIG. 1, wherein FIG. 1A is a longitudinal sectional view taken along line AA ′ in FIG. 1, and FIG. It is. 図1の固体撮像素子の製造方法におけるシリコン酸化膜(第1の絶縁膜)およびシリコン窒化膜(第2の絶縁膜)成膜工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。FIG. 2 is a longitudinal sectional view showing a silicon oxide film (first insulating film) and silicon nitride film (second insulating film) film forming step in the method of manufacturing the solid-state imaging device of FIG. AA 'line longitudinal cross-sectional view, (b) is a BB' line longitudinal cross-sectional view of FIG. 図1の固体撮像素子の製造方法におけるシリコン窒化膜(第2の絶縁膜)エッチバック工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。FIG. 2 is a longitudinal sectional view showing a silicon nitride film (second insulating film) etch-back process in the method for manufacturing the solid-state imaging device of FIG. 1, wherein (a) is a longitudinal sectional view taken along the line AA ′ of FIG. It is a BB 'line longitudinal cross-sectional view of FIG. 図1の固体撮像素子の製造方法におけるシリコン酸化膜(第1の絶縁膜)およびゲート絶縁膜エッチング除去工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。It is a longitudinal cross-sectional view which shows the silicon oxide film (1st insulating film) and gate insulating film etching removal process in the manufacturing method of the solid-state image sensor of FIG. 1, Comprising: (a) is the AA 'line longitudinal cross-sectional view of FIG. (B) is the BB 'line longitudinal cross-sectional view of FIG. 図1の固体撮像素子の製造方法におけるシリコン熱酸化膜(第3の絶縁膜)形成工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。It is a longitudinal cross-sectional view which shows the silicon thermal oxide film (3rd insulating film) formation process in the manufacturing method of the solid-state image sensor of FIG. 1, Comprising: (a) is the AA 'line longitudinal cross-sectional view of FIG. It is a BB 'line longitudinal cross-sectional view of FIG. 図1の固体撮像素子の製造方法におけるフォトダイオード表面P+注入およびギャップG内第2絶縁膜除去工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。FIG. 2 is a longitudinal sectional view showing a photodiode surface P + implantation and a second insulating film removal step in the gap G in the method for manufacturing the solid-state imaging device of FIG. 1, wherein FIG. ) Is a longitudinal sectional view taken along line BB ′ of FIG. 図1の固体撮像素子の製造方法におけるシリコン窒化膜(第4の絶縁膜)形成工程を示す縦断面図であって、(a)は図1のAA’線縦断面図、(b)は図1のBB’線縦断面図である。FIG. 2 is a longitudinal sectional view showing a silicon nitride film (fourth insulating film) forming step in the method for manufacturing the solid-state imaging device of FIG. 1, wherein (a) is a longitudinal sectional view taken along line AA ′ of FIG. 1, and (b) is a diagram. 1 is a longitudinal sectional view taken along line BB ′ of FIG. 本発明の実施形態2として、本発明の実施形態1の固体撮像素子20からの撮像信号を所定の信号処理をしてカラー画像信号を得る固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。As Embodiment 2 of the present invention, an outline of an electronic information device using a solid-state imaging device that obtains a color image signal by performing predetermined signal processing on an imaging signal from the solid-state imaging device 20 of Embodiment 1 of the present invention as an imaging unit. It is a block diagram which shows the example of a structure. (a)〜(c)はそれぞれ、特許文献1に開示されている従来の固体撮像素子の製造方法の各製造工程(その1)を示す要部縦断面図である。(A)-(c) is a principal part longitudinal cross-sectional view which shows each manufacturing process (the 1) of the manufacturing method of the conventional solid-state image sensor currently disclosed by patent document 1, respectively. (a)および(b)はそれぞれ、特許文献1に開示されている従来の固体撮像素子の製造方法の各製造工程(その2)を示す要部縦断面図である。(A) And (b) is a principal part longitudinal cross-sectional view which shows each manufacturing process (the 2) of the manufacturing method of the conventional solid-state image sensor currently disclosed by patent document 1, respectively.

以下に、本発明の固体撮像素子およびその製造方法の実施形態1および、この固体撮像素子の製造方法により製造された固体撮像素子を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態2について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。   Embodiment 1 of the solid-state imaging device and manufacturing method thereof according to the present invention, and a mobile phone device with a camera, for example, using a solid-state imaging device manufactured by the manufacturing method of the solid-state imaging device as an image input device in an imaging unit Embodiment 2 of the electronic information device will be described in detail with reference to the drawings. In addition, each thickness, length, etc. of the structural member in each figure are not limited to the structure to illustrate from a viewpoint on drawing preparation.

(実施形態1)
図1は、本発明の実施形態1における固体撮像素子の単位画素部の要部構成例を示す平面図である。
(Embodiment 1)
FIG. 1 is a plan view illustrating a configuration example of a main part of a unit pixel unit of a solid-state imaging device according to Embodiment 1 of the present invention.

図1において、本実施形態1の固体撮像素子20は、被写体からの画像光を光電変換して撮像する複数の受光部5が縦方向および横方向にマトリクス状に配置されている。縦方向に配列された複数の受光部5と、この複数の受光部5に隣接する縦方向に配列された複数の受光部5との間には、縦方向に電荷転送電極であるゲート電極8およびその下の垂直CCD電荷転送部3が配置されている。受光部5から左右いずれかの転送ゲート電極8下の垂直CCD電荷転送部3に読み出された信号電荷を、転送ゲート電極8に所定の転送パルスを印加して垂直方向(ここでは図1の下方向)に垂直CCD電荷転送部3に沿って電荷転送するようになっている。   In FIG. 1, the solid-state imaging device 20 according to the first embodiment includes a plurality of light receiving units 5 that photoelectrically convert image light from a subject and image it in a matrix form in the vertical and horizontal directions. Between the plurality of light receiving portions 5 arranged in the vertical direction and the plurality of light receiving portions 5 arranged in the vertical direction adjacent to the plurality of light receiving portions 5, a gate electrode 8 which is a charge transfer electrode in the vertical direction. The vertical CCD charge transfer unit 3 is disposed below it. A signal charge read from the light receiving unit 5 to the vertical CCD charge transfer unit 3 below either the left or right transfer gate electrode 8 is applied to the transfer gate electrode 8 by applying a predetermined transfer pulse (here, in FIG. 1). Charges are transferred along the vertical CCD charge transfer unit 3 (downward).

図2(a)は、図1の縦方向のAA’線断面図、図2(b)は、図1の横方向のBB’線断面図である。   2A is a cross-sectional view taken along line AA ′ in FIG. 1, and FIG. 2B is a cross-sectional view taken along line BB ′ in FIG.

図2(a)に示すように、シリコン基板であるn型半導体基板1に低濃度のp型ウェル2が形成され、このp型ウェル2上にn型不純物による垂直CCD転送部3が形成されている。   As shown in FIG. 2A, a low-concentration p-type well 2 is formed on an n-type semiconductor substrate 1 which is a silicon substrate, and a vertical CCD transfer unit 3 made of n-type impurities is formed on the p-type well 2. ing.

n型半導体基板1の表面上にゲート絶縁膜7を介して、ギャップ部Gを有する転送ゲート電極8が形成され、ギャップ部G間には、第1の絶縁膜9として、CVDによるシリコン酸化膜が形成されており、転送ゲート電極8上に第3の絶縁膜11として、熱酸化によるシリコン酸化膜がそれぞれ形成されている。これら第1の絶縁膜9、第3の絶縁膜11の上面に形成されるシリコン窒化膜からなる第4の絶縁膜12を介して、例えばタングステン(W)膜などの遮光膜13が設けられている。   A transfer gate electrode 8 having a gap portion G is formed on the surface of the n-type semiconductor substrate 1 via a gate insulating film 7. A silicon oxide film formed by CVD is used as a first insulating film 9 between the gap portions G. A silicon oxide film formed by thermal oxidation is formed on the transfer gate electrode 8 as the third insulating film 11. A light shielding film 13 such as a tungsten (W) film is provided through a fourth insulating film 12 made of a silicon nitride film formed on the upper surfaces of the first insulating film 9 and the third insulating film 11. Yes.

このギャップ部G間には、CVDによるシリコン酸化膜とシリコン窒化膜により充填されており、ギャップ部G間のゲート電極材と、ギャップG下の基板表面にはゲート絶縁膜以外の熱酸化による従来のような侵食部がない。   A gap between the gap portions G is filled with a silicon oxide film and a silicon nitride film formed by CVD, and the gate electrode material between the gap portions G and the substrate surface under the gap G are conventionally oxidized by thermal oxidation other than the gate insulating film. There is no erosion part.

一方、図2(b)に示すように、n型半導体基板1に低濃度のp型ウェル2が形成されている。さらに、p型ウェル2内には、信号電荷を電化転送するための領域である垂直CCD電荷転送部3と、画素毎の素子分離領域であるチャネルストップ領域4と、画素毎の受光部であるフォトダイオード部5と、このフォトダイオード部5で発生した信号電荷を垂直CCD電荷転送部3に読出すための電荷読出し領域6とが形成されている。   On the other hand, as shown in FIG. 2B, a low-concentration p-type well 2 is formed in an n-type semiconductor substrate 1. Further, in the p-type well 2, there are a vertical CCD charge transfer unit 3 that is a region for electrically transferring signal charges, a channel stop region 4 that is an element isolation region for each pixel, and a light receiving unit for each pixel. A photodiode portion 5 and a charge read region 6 for reading signal charges generated in the photodiode portion 5 to the vertical CCD charge transfer portion 3 are formed.

ゲート電極8は基板上にゲート絶縁膜7を介して形成されている。この場合、転送ゲート電極8は電荷転送と信号電荷の読出しとを兼用している。このゲート電極8の上面および側壁には、シリコン酸化膜からなる第1の絶縁膜9または第3の絶縁膜11が形成され、少なくともシリコン窒化膜からなる第4の絶縁膜12を介して、例えばタングステン(W)膜などの遮光膜13が設けられている。受光部5の表面には、熱酸化による均一な膜厚で形成される第3の絶縁膜11が設けられているので、フォトダイオード表面P+注入がばらつき少なく行われるので、読み出し特性の劣化が抑制できる。   The gate electrode 8 is formed on the substrate via the gate insulating film 7. In this case, the transfer gate electrode 8 is used for both charge transfer and signal charge reading. A first insulating film 9 or a third insulating film 11 made of a silicon oxide film is formed on the upper surface and the side wall of the gate electrode 8, and at least via a fourth insulating film 12 made of a silicon nitride film, for example A light shielding film 13 such as a tungsten (W) film is provided. Since the third insulating film 11 formed with a uniform film thickness by thermal oxidation is provided on the surface of the light receiving portion 5, the photodiode surface P + implantation is performed with little variation, so that deterioration of read characteristics is suppressed. it can.

したがって、本実施形態1の固体撮像素子20において、基板表面上にゲート絶縁膜7と、垂直転送部にギャップGと受光部5に開口部を有する導電性膜(ゲート電極材料8a)からなるゲート電極8とが形成されており、ギャップGは少なくとも導電性膜が従来のように熱酸化により侵食されていない領域を有している。このギャップGにおいて、基板表面側からゲート絶縁膜7と第1の絶縁膜9(シリコン酸化膜)を介して第4の絶縁膜12(シリコン窒化膜)が埋め込まれている。一方、受光部5の表面側には、膜厚が安定した第3の絶縁膜11(熱酸化膜)を介して、第4の絶縁膜12が形成されていることを特徴とし、第1の絶縁膜9はCVD酸化膜であり、その上の第3の絶縁膜11は熱酸化膜であることを特徴としている。上述した本発明に係る固体撮像素子20によれば、電荷転送電極間ギャップGは導電性膜の従来のような熱酸化による拡がりがなく、また、ギャップG下の転送チャネル表面も第1の絶縁膜9によって酸化されていないので、電荷転送に劣化がない。また、受光部5の表面側は、熱酸化膜である第3の絶縁膜11により膜厚が均一な絶縁膜が形成されることにより、フォトダイオード表面P+の不純物イオン注入がばらつき少なく行われるので、読み出し特性の劣化が抑制できる。さらに、ギャップGの埋め込み絶縁膜と、受光部5上の反射防止膜をシリコン窒化膜の第4の絶縁膜12で同時に形成されているので、ゲート電極8上に層間膜が必要以上に形成されることがなく、その結果、遮光膜13の表面高さがより高くなることがないので、斜め光に対する受光感度劣化をも抑制することができる。   Therefore, in the solid-state imaging device 20 according to the first embodiment, the gate is formed of the gate insulating film 7 on the substrate surface, the conductive film (gate electrode material 8a) having the gap G in the vertical transfer portion and the opening in the light receiving portion 5. The electrode 8 is formed, and the gap G has at least a region in which the conductive film is not eroded by thermal oxidation as in the prior art. In the gap G, a fourth insulating film 12 (silicon nitride film) is buried from the substrate surface side through the gate insulating film 7 and the first insulating film 9 (silicon oxide film). On the other hand, a fourth insulating film 12 is formed on the surface side of the light receiving portion 5 via a third insulating film 11 (thermal oxide film) having a stable film thickness. The insulating film 9 is a CVD oxide film, and the third insulating film 11 thereon is a thermal oxide film. According to the solid-state imaging device 20 according to the present invention described above, the gap G between the charge transfer electrodes does not expand due to thermal oxidation of the conductive film as in the conventional case, and the surface of the transfer channel below the gap G also has the first insulation. Since the film 9 is not oxidized, there is no deterioration in charge transfer. Further, on the surface side of the light receiving portion 5, an insulating film having a uniform thickness is formed by the third insulating film 11 which is a thermal oxide film, so that impurity ion implantation of the photodiode surface P + is performed with little variation. Deterioration of read characteristics can be suppressed. Further, since the buried insulating film of the gap G and the antireflection film on the light receiving portion 5 are formed simultaneously by the fourth insulating film 12 of the silicon nitride film, an interlayer film is formed on the gate electrode 8 more than necessary. As a result, the surface height of the light shielding film 13 does not become higher, so that it is possible to suppress the deterioration of the light receiving sensitivity with respect to the oblique light.

上記構成の本実施形態1の固体撮像素子20の製造方法について図3〜図10を用いて詳細に説明する。   A method for manufacturing the solid-state imaging device 20 of the first embodiment having the above-described configuration will be described in detail with reference to FIGS.

図3〜図10はそれぞれ、図1の固体撮像素子20の製造方法における各製造工程を示す縦断面図であって、図3(a)〜図10(a)は、図1のAA’線縦断面図、図3(b)〜図10(b)は、図1のBB’線縦断面図である。   3 to 10 are longitudinal sectional views showing respective manufacturing steps in the method for manufacturing the solid-state imaging device 20 of FIG. 1, and FIGS. 3A to 10A are taken along line AA ′ of FIG. FIG. 3B to FIG. 10B are longitudinal sectional views taken along the line BB ′ of FIG.

図3(a)および図3(b)の不純物拡散領域形成工程に示したように、まず、例えばn型シリコンからなるn型半導体基板1にp型ウェル2を形成し、p型ウェル2内に各不純物拡散領域として、n型不純物を導入してフォトダイオード部5と、垂直CCD電荷転送部3と、選択的にp型不純物を導入してチャネルストップ画素分離部4と、信号電荷を垂直電荷転送部3に読出すための電荷読出し領域6とをそれぞれ形成する。   As shown in the impurity diffusion region forming step in FIG. 3A and FIG. 3B, first, a p-type well 2 is formed in an n-type semiconductor substrate 1 made of, for example, n-type silicon, As each impurity diffusion region, an n-type impurity is introduced and a photodiode portion 5 and a vertical CCD charge transfer portion 3 are selectively introduced. A p-type impurity is selectively introduced and a channel stop pixel separation portion 4 is vertically directed. A charge reading region 6 for reading to the charge transfer unit 3 is formed.

さらに、ゲート絶縁膜およびゲート電極材料成膜工程では、各不純物拡散領域が形成された半導体基板1の表面上に、例えば膜厚30nmのシリコン酸化膜からなるゲート絶縁膜7と、この上に、例えば膜厚200nmのリンドープポリシリコンからなるゲート電極材料膜8aとを形成する。   Further, in the gate insulating film and gate electrode material film forming step, on the surface of the semiconductor substrate 1 on which each impurity diffusion region is formed, a gate insulating film 7 made of, for example, a 30 nm-thickness silicon oxide film, For example, a gate electrode material film 8a made of phosphorus-doped polysilicon having a thickness of 200 nm is formed.

次に、図4(a)および図4(b)のゲート電極形成工程に示すように、フォトレジスト(図示せず)をマスクとして、ゲート絶縁膜7の残膜が例えば10nm程度になるように、ゲート電極材料膜8aをドライエッチングして、スペース幅が例えば100nmのギャップGと、受光部5の上方に開口部8bを有するゲート電極8を形成する。   Next, as shown in the gate electrode formation step in FIGS. 4A and 4B, the remaining film of the gate insulating film 7 is, for example, about 10 nm using a photoresist (not shown) as a mask. Then, the gate electrode material film 8a is dry-etched to form a gate electrode 8 having a gap G having a space width of, for example, 100 nm and an opening 8b above the light receiving portion 5.

その後、図5(a)および図5(b)のシリコン酸化膜(第1の絶縁膜)およびシリコン窒化膜(第2の絶縁膜)成膜工程に示すように、ゲート絶縁膜7およびゲート電極8上の基板全面に、LPCVD法などでSiHガスとNOを用いて、例えば摂氏800度の温度で膜厚が20nmのシリコン酸化膜(HTO)からなる第1の絶縁膜9を成膜する。引き続いて、第1の絶縁膜9上に、LPCVD法などでSiHCLガスとNHガスを用いて、例えば摂氏800度の温度で膜厚が70nmのシリコン窒化膜からなる第2の絶縁膜10(犠牲膜)を成膜する。この場合、ギャップG内には、これらの第1の絶縁膜9とその上の第2の絶縁膜10により完全充填されるように適宜膜厚が設定される。 Thereafter, as shown in the steps of forming the silicon oxide film (first insulating film) and the silicon nitride film (second insulating film) in FIGS. 5A and 5B, the gate insulating film 7 and the gate electrode A first insulating film 9 made of a silicon oxide film (HTO) having a thickness of 20 nm, for example, is formed at a temperature of 800 degrees Celsius on the entire surface of the substrate 8 using LPH or the like using SiH 4 gas and N 2 O. Film. Subsequently, a second insulation made of a silicon nitride film having a thickness of 70 nm, for example, at a temperature of 800 degrees Celsius is formed on the first insulation film 9 by using an LPH method or the like using SiH 2 CL 2 gas and NH 3 gas. A film 10 (sacrificial film) is formed. In this case, the film thickness is appropriately set so that the gap G is completely filled with the first insulating film 9 and the second insulating film 10 thereon.

このように、第1の絶縁膜9とその上の第2の絶縁膜10とを分けて成膜するのは、リンドープポリシリコンからなるゲート電極材料膜8aに、シリコン窒化膜からなる第2の絶縁膜10を直に成膜すると付き難いため、ポリシリコンのギャップG内にポリシリコンに接着性のよい第1の絶縁膜9を介して第2の絶縁膜10を成膜している。   As described above, the first insulating film 9 and the second insulating film 10 formed thereon are separately formed because the second electrode made of silicon nitride film is formed on the gate electrode material film 8a made of phosphorus-doped polysilicon. Therefore, the second insulating film 10 is formed in the polysilicon gap G through the first insulating film 9 having good adhesion to the polysilicon.

続いて、図6(a)および図6(b)のシリコン窒化膜(第2の絶縁膜)エッチバック工程に示すように、第2の絶縁膜10のシリコン窒化膜を第1の絶縁膜9のシリコン酸化膜が露出するまで全面エッチバックを行って、受光部5の表面上方の第2の絶縁膜10のシリコン窒化膜を除去しつつ、ギャップG内の第2の絶縁膜10は残存させ、ゲート電極8の側壁にサイドウオールとして第2の絶縁膜10を形成する。なお、この全面エッチバックはゲート電極8上の第1の絶縁膜9を完全に除去するまで行ってもよい。但し、例えばエッチング量が多すぎた場合にはギャップG内に充填されていた第1の絶縁膜9と第2の絶縁膜10が後退し、後に行う熱酸化での酸化抑制膜としての機能が損なわれることになるので、全面エッチバック後に第2の絶縁膜10でギャップGが保護されるように適宜調整すればよい。   Subsequently, as shown in the silicon nitride film (second insulating film) etch back step in FIGS. 6A and 6B, the silicon nitride film of the second insulating film 10 is replaced with the first insulating film 9. The entire surface is etched back until the silicon oxide film is exposed to remove the silicon nitride film of the second insulating film 10 above the surface of the light receiving portion 5 while leaving the second insulating film 10 in the gap G remaining. Then, the second insulating film 10 is formed as a sidewall on the side wall of the gate electrode 8. Note that this entire surface etch back may be performed until the first insulating film 9 on the gate electrode 8 is completely removed. However, for example, when the etching amount is too large, the first insulating film 9 and the second insulating film 10 filled in the gap G recede and function as an oxidation suppression film in the thermal oxidation performed later. Therefore, it may be adjusted as appropriate so that the gap G is protected by the second insulating film 10 after the entire surface is etched back.

さらに、図7(a)および図7(b)のシリコン酸化膜(第1の絶縁膜)およびゲート絶縁膜エッチング除去工程に示すように、受光部5の表面上方の第1の絶縁膜9と、ゲート絶縁膜7をシリコン基板が露出するように、例えばフッ酸(HF)により、エッチング除去する。   Further, as shown in the silicon oxide film (first insulating film) and gate insulating film etching removal step in FIGS. 7A and 7B, the first insulating film 9 above the surface of the light receiving portion 5 and Then, the gate insulating film 7 is removed by etching using, for example, hydrofluoric acid (HF) so that the silicon substrate is exposed.

このときのウエットエッチングは、ゲート電極8の側壁の第2の絶縁膜10がリフトオフしないように調整する。図6(a)および図6(b)に示す全面エッチバックの工程において、ゲート絶縁膜7のエッチング後の残膜を10nm以下に薄くすることにより、本ウエットエッチングを極力少なくすることができるので、ゲート電極8端部下部の第1の絶縁膜7のウエット横入りを小さくすることができる。   The wet etching at this time is adjusted so that the second insulating film 10 on the side wall of the gate electrode 8 is not lifted off. In the overall etch back process shown in FIGS. 6A and 6B, this wet etching can be minimized as much as possible by thinning the remaining film after etching the gate insulating film 7 to 10 nm or less. In addition, the horizontal penetration of the first insulating film 7 below the end of the gate electrode 8 can be reduced.

その後、図8(a)および図8(b)のシリコン熱酸化膜(第3の絶縁膜)形成工程に示すように、例えば摂氏850度の熱酸化を行って、受光部5の表面およびゲート電極8の表面に第3の絶縁膜11としてのシリコン酸化膜を10nmの厚みで形成する。この第3の絶縁膜11である熱酸化膜により、受光部5上方のn型半導体基板1のシリコン表面に段差ができている。受光部5の表面の第3の絶縁膜11は、熱酸化により均一な膜厚で形成されているので、この後に行う(図示せず)、フォトダイオード表面P+注入がばらつき少なく行われるので、読み出し特性の劣化が抑制できる。   Thereafter, as shown in the silicon thermal oxide film (third insulating film) formation step in FIGS. 8A and 8B, for example, thermal oxidation at 850 degrees Celsius is performed, and the surface of the light receiving unit 5 and the gate A silicon oxide film as a third insulating film 11 is formed with a thickness of 10 nm on the surface of the electrode 8. A step is formed on the silicon surface of the n-type semiconductor substrate 1 above the light receiving portion 5 by the thermal oxide film as the third insulating film 11. Since the third insulating film 11 on the surface of the light receiving portion 5 is formed with a uniform film thickness by thermal oxidation, the photodiode surface P + implantation is performed with little variation when performed after this (not shown). Deterioration of characteristics can be suppressed.

なお、この場合、熱酸化を行っても、ギャップG内には、酸化抑制膜として機能する第2の絶縁膜10により保護されているので、酸化シフトは0であるから、ギャップG間のゲート電極8のスペース幅の広がりを抑制することができる。   In this case, even if thermal oxidation is performed, the gap G is protected by the second insulating film 10 functioning as an oxidation suppression film, so that the oxidation shift is 0. The expansion of the space width of the electrode 8 can be suppressed.

続いて、図9(a)および図9(b)のフォトダイオード表面P+注入およびギャップG内第2絶縁膜除去工程に示すように、シリコン熱酸化膜である第3の絶縁膜11を通してフォトダイオード表面P+注入を安定的に行って表面P+層(図示せず)を形成し、リン酸(HPO)を用いて、ギャップG内の第2の絶縁膜10を完全にエッチング除去する。ゲート電極8は、リン酸の第2の絶縁膜10に対して選択比の高いシリコン酸化膜で構成される第1の絶縁膜9または第3の絶縁膜11で覆われているので、ゲート電極8としてのポリシリコン表面が荒れて抵抗異常となることもない。 Subsequently, as shown in the photodiode surface P + implantation and the second insulating film removal step in the gap G in FIGS. 9A and 9B, the photodiode is passed through the third insulating film 11 which is a silicon thermal oxide film. The surface P + implantation is stably performed to form a surface P + layer (not shown), and the second insulating film 10 in the gap G is completely etched away using phosphoric acid (H 3 PO 4 ). Since the gate electrode 8 is covered with the first insulating film 9 or the third insulating film 11 formed of a silicon oxide film having a high selectivity with respect to the second insulating film 10 of phosphoric acid, the gate electrode The surface of the polysilicon as 8 is not roughened and does not cause a resistance abnormality.

さらに、図10(a)および図10(b)のシリコン窒化膜(第4の絶縁膜)形成工程に示すように、第4の絶縁膜12として例えば厚さが50nmのシリコン窒化膜を形成して、ギャップG内への層間絶縁膜の充填と、受光部5の表面上方への反射防止膜の形成を同時に行う。   Further, as shown in the silicon nitride film (fourth insulating film) forming step in FIGS. 10A and 10B, a silicon nitride film having a thickness of, for example, 50 nm is formed as the fourth insulating film 12. Thus, the filling of the interlayer insulating film into the gap G and the formation of the antireflection film above the surface of the light receiving portion 5 are simultaneously performed.

リン酸(HPO)により、シリコン窒化膜の第2の絶縁膜10をギャップG内から除去して、同じシリコン窒化膜からなる第4の絶縁膜12をギャップG内に埋め戻しているため、ゲート電極8側壁の第2の絶縁膜10も除去され、ゲート電極8側壁の絶縁膜の幅が必要最小限に抑えられるので、遮光膜13による開口部を平面視面積で狭くすることがなくなり、また、ゲート電極8上に層間膜が必要以上に形成されることがなく、遮光膜13の表面高さが従来のように高くなることもないので、斜め光に対する受光感度の劣化を抑制することができる。 The second insulating film 10 made of silicon nitride is removed from the gap G with phosphoric acid (H 3 PO 4 ), and the fourth insulating film 12 made of the same silicon nitride film is filled back into the gap G. For this reason, the second insulating film 10 on the side wall of the gate electrode 8 is also removed, and the width of the insulating film on the side wall of the gate electrode 8 can be minimized. In addition, since an interlayer film is not formed more than necessary on the gate electrode 8 and the surface height of the light shielding film 13 is not increased as in the prior art, it is possible to suppress deterioration of light receiving sensitivity to oblique light. can do.

以上の各工程によって、受光部5の表面の均一な絶縁膜形成と、ギャップGの拡がりがない層間絶縁膜の理想形状を両立して形成することが可能となる。   Through the above steps, it is possible to form both a uniform insulating film on the surface of the light-receiving portion 5 and an ideal shape of the interlayer insulating film in which the gap G is not widened.

その後、遮光膜形成工程において、例えばCVD法などによって膜厚100nmのタングステン(W)膜などの遮光膜13を基板全面に形成し、フォトダイオード5に対応する箇所の遮光膜10を開口して、図2(a)および図2(b)に示した固体撮像素子20を得る。なお、図示しないが、遮光膜13のゲート電極8や半導体基板1との耐圧確保を目的に、第4の絶縁膜12上の遮光膜13との間に例えば膜厚が50nmのシリコン酸化膜を形成したり、密着性向上を目的にチタンナイトライド膜を形成してもよい。   Thereafter, in the light shielding film forming step, a light shielding film 13 such as a tungsten (W) film having a thickness of 100 nm is formed on the entire surface of the substrate by, for example, CVD, and the light shielding film 10 corresponding to the photodiode 5 is opened. The solid-state imaging device 20 shown in FIGS. 2A and 2B is obtained. Although not shown, for example, a silicon oxide film having a thickness of 50 nm is formed between the light shielding film 13 and the light shielding film 13 on the fourth insulating film 12 for the purpose of ensuring the breakdown voltage between the light shielding film 13 and the gate electrode 8 and the semiconductor substrate 1. A titanium nitride film may be formed for the purpose of forming or improving adhesion.

その後、図示しないがプラズマCVD法などでシリコンナイトライドなどのパッシベーション膜を形成してカラーフィルタさらにその上にオンチップレンズなどを形成して固体撮像素子20を得ることができる。   Thereafter, although not shown, a passivation film such as silicon nitride is formed by a plasma CVD method or the like, and a color filter and an on-chip lens or the like are further formed thereon, whereby the solid-state imaging device 20 can be obtained.

したがって、本実施形態1の固体撮像素子20の製造方法は、n型シリコン基板である半導体基板1のp型ウェル内にn型不純物を注入して、受光部5と、受光部5からの信号電荷を電荷転送するための垂直CCD電荷転送部3とをそれぞれ形成する不純物拡散領域形成工程と、不純物拡散領域として受光部5および垂直CCD電荷転送部3が形成されたn型半導体基板1上にゲート絶縁膜7を介して成膜された導電性膜としてのゲート電極材料膜8aをパターニングして垂直CCD電荷転送部3に等間隔にギャップG(ギャップ部)を形成しかつ、入射光を撮像する複数の受光部5の上方にそれぞれ開口部8bを形成したゲート電極8を形成する電荷転送電極形成工程と、ゲート電極8およびゲート絶縁膜7上に第1の絶縁膜9を成膜して、ギャップG内にも第1の絶縁膜9を成膜する第1の絶縁膜成膜工程と、第1の絶縁膜9上に犠牲膜としての第2の絶縁膜10を成膜して、ギャップG内に第2の絶縁膜10を埋め込む第2の絶縁膜成膜工程と、ギャップG内の第2の絶縁膜10を残存させた状態で、受光部5の上方の基板面が露出するまで、受光部5の上方の第2の絶縁膜10、第1の絶縁膜9およびゲート絶縁膜を除去すると共に、ゲート電極8の上表面(上面)が露出するまで、ゲート電極8上の第2の絶縁膜10および第1の絶縁膜9を除去するエッチバック工程と、受光部5の上方の基板面およびゲート電極8の上側表面に熱酸化により膜厚が薄く安定化した第3の絶縁膜11を成膜する第3の絶縁膜成膜工程と、第3の絶縁膜11を通して受光部5の表面側(基板面側)に、受光部5の不純物導電型(n型)とは逆導電型のp型不純物を注入して表面逆導電型層である表面p+層を受光部5上に形成する表面p+層形成工程と、ギャップG内の第2の絶縁膜10を除去した後に、基板全面に第4の絶縁膜12を成膜して絶縁膜を埋め直す第4の絶縁膜成膜工程と、第4の絶縁膜12上に遮光膜13を形成し、この受光部5の上方の遮光膜13を光入射用の開口部を開口する遮光膜形成工程とを有している。   Therefore, in the manufacturing method of the solid-state imaging device 20 according to the first embodiment, n-type impurities are injected into the p-type well of the semiconductor substrate 1 which is an n-type silicon substrate, and the light receiving unit 5 and the signal from the light receiving unit 5 Impurity diffusion region forming step for forming a vertical CCD charge transfer unit 3 for transferring charges, and an n-type semiconductor substrate 1 on which the light receiving unit 5 and the vertical CCD charge transfer unit 3 are formed as impurity diffusion regions The gate electrode material film 8a as a conductive film formed through the gate insulating film 7 is patterned to form gaps G (gap parts) at equal intervals in the vertical CCD charge transfer part 3 and image the incident light. A charge transfer electrode forming step of forming a gate electrode 8 having an opening 8b formed above each of the plurality of light receiving portions 5, and a first insulating film 9 formed on the gate electrode 8 and the gate insulating film 7. A first insulating film forming step for forming the first insulating film 9 also in the gap G, and a second insulating film 10 as a sacrificial film are formed on the first insulating film 9, and the gap Until the substrate surface above the light receiving portion 5 is exposed in the state in which the second insulating film 10 is embedded in the G and the second insulating film 10 in the gap G is left. The second insulating film 10, the first insulating film 9, and the gate insulating film above the light receiving portion 5 are removed, and the second surface on the gate electrode 8 is exposed until the upper surface (upper surface) of the gate electrode 8 is exposed. Etchback process for removing the insulating film 10 and the first insulating film 9, and a third insulating film whose thickness is stabilized thinly by thermal oxidation on the substrate surface above the light receiving portion 5 and the upper surface of the gate electrode 8 11 is formed on the surface side of the light receiving portion 5 (base) through the third insulating film 11. The surface p + layer is formed on the light receiving portion 5 by injecting a p-type impurity having a conductivity type opposite to the impurity conductivity type (n-type) of the light receiving portion 5 into the light receiving portion 5. A fourth insulating film forming step of forming a fourth insulating film 12 over the entire surface of the substrate and refilling the insulating film after removing the second insulating film 10 in the gap G; A light-shielding film 13 is formed on the insulating film 12, and the light-shielding film 13 above the light-receiving portion 5 includes a light-shielding film forming step of opening an opening for light incidence.

この場合、熱酸化処理時に、電荷転送電極間ギャップG内には、熱酸化抑制膜としてのシリコン窒化膜が充填されている。また、電荷転送電極間ギャップGと光電変換部である受光部5上方の開口部8bとを同時に形成する。さらに、受光部5の表面を熱酸化して膜厚が薄く安定した第3の絶縁膜11を成膜し、この膜厚が薄く安定した第3の絶縁膜11を通してn型半導体基板1の受光部5の表面部にp型不純物イオンの注入が為されて高濃度表面p+層を形成する。さらに、第2の絶縁膜10をギャップG内から除去して、第4の絶縁膜12をギャップG内に埋め戻している。また、電荷転送電極間ギャップGへの埋め込み絶縁膜(第4の絶縁膜12)と、受光部5上の反射防止膜(第4の絶縁膜12)とを同一工程で同一材料で作製する。   In this case, during the thermal oxidation process, the gap G between the charge transfer electrodes is filled with a silicon nitride film as a thermal oxidation suppressing film. Further, the gap G between the charge transfer electrodes and the opening 8b above the light receiving portion 5 which is a photoelectric conversion portion are formed simultaneously. Further, the surface of the light receiving portion 5 is thermally oxidized to form a thin and stable third insulating film 11, and the n-type semiconductor substrate 1 receives light through the thin and stable third insulating film 11. A p-type impurity ion is implanted into the surface portion of the portion 5 to form a high concentration surface p + layer. Further, the second insulating film 10 is removed from the gap G, and the fourth insulating film 12 is backfilled in the gap G. In addition, the buried insulating film (fourth insulating film 12) in the gap G between the charge transfer electrodes and the antireflection film (fourth insulating film 12) on the light receiving portion 5 are manufactured using the same material in the same process.

以上により、本実施形態1の固体撮像素子20の製造方法によれば、熱酸化処理時に、電荷転送電極間ギャップG内には、熱酸化抑制膜としてのシリコン窒化膜が充填されているので、ギャップG下の転送チャネル表面やゲート電極8の側壁は酸化されず、電荷転送電極間ギャップGの従来のような熱酸化による拡大を抑制することができる。このように、信号電荷の読み出し特性や受光部5での受光感度の劣化がなく、熱酸化処理での電荷転送間ギャップGの拡大を抑制することができるため、微細で高速電荷転送可能な固体撮像素子20を製造することができる。   As described above, according to the method for manufacturing the solid-state imaging device 20 of Embodiment 1, the silicon nitride film as the thermal oxidation suppressing film is filled in the gap G between the charge transfer electrodes during the thermal oxidation process. The surface of the transfer channel under the gap G and the side wall of the gate electrode 8 are not oxidized, and expansion of the charge transfer interelectrode gap G due to thermal oxidation as in the related art can be suppressed. As described above, since there is no deterioration of the signal charge reading characteristics and the light receiving sensitivity in the light receiving section 5 and the expansion of the gap G between charge transfers in the thermal oxidation process can be suppressed, a fine and solid that can transfer charges at high speed. The image sensor 20 can be manufactured.

また、電荷転送電極間ギャップGと光電変換部である受光部5上方の開口部8bとを同時に形成するため、従来のように電荷転送電極間ギャップGと受光部5上方の開口部8bとの位置合わせ精度がばらつくこともなく、それによる画素特性の劣化も発生しない。   Further, since the gap G between the charge transfer electrodes and the opening 8b above the light receiving portion 5 which is a photoelectric conversion portion are formed at the same time, the gap G between the charge transfer electrodes and the opening 8b above the light receiving portion 5 are conventionally formed. The alignment accuracy does not vary, and pixel characteristics are not deteriorated.

さらに、受光部5の表面を熱酸化して膜厚が薄く安定した第3の絶縁膜11を成膜し、この膜厚が薄く安定した第3の絶縁膜11を通してn型半導体基板1の受光部5の表面部にp型不純物イオンの注入が為されて高濃度表面p+層を形成するため、p型不純物イオンの注入深さやその濃度が変動したりばらついたりすることなく、それによる画素特性の劣化も発生しない。   Further, the surface of the light receiving portion 5 is thermally oxidized to form a thin and stable third insulating film 11, and the n-type semiconductor substrate 1 receives light through the thin and stable third insulating film 11. Since the p-type impurity ions are implanted into the surface portion of the portion 5 to form a high-concentration surface p + layer, the p-type impurity ion implantation depth and its concentration do not fluctuate or vary. Degradation does not occur.

さらに、第2の絶縁膜10をギャップG内から除去して、第4の絶縁膜12をギャップG内に埋め戻しているため、ゲート電極8の側壁の第2の絶縁膜10も除去され、ゲート電極8の側壁の絶縁膜幅を必要最小限に抑えることができる。また、電荷転送電極間ギャップGへの埋め込み絶縁膜(第4の絶縁膜12)と、受光部5上の反射防止膜(第4の絶縁膜12)とを同一工程で同一材料で作製するため、ゲート電極8上に必要以上に層間膜(ここでは第3の絶縁膜11および第4の絶縁膜12だけ)が形成されず、遮光膜13の表面高さが高くならない。   Furthermore, since the second insulating film 10 is removed from the gap G and the fourth insulating film 12 is backfilled in the gap G, the second insulating film 10 on the side wall of the gate electrode 8 is also removed, The insulating film width on the side wall of the gate electrode 8 can be minimized. In addition, the buried insulating film (fourth insulating film 12) in the gap G between the charge transfer electrodes and the antireflection film (fourth insulating film 12) on the light receiving portion 5 are manufactured with the same material in the same process. The interlayer film (only the third insulating film 11 and the fourth insulating film 12 here) is not formed on the gate electrode 8 more than necessary, and the surface height of the light shielding film 13 is not increased.

したがって、画素特性の劣化なく、ゲート電極8間ギャップG内に絶縁膜(ここでは第1の絶縁膜9および第4の絶縁膜12だけ)を形成することができる。   Accordingly, an insulating film (here, only the first insulating film 9 and the fourth insulating film 12) can be formed in the gap G between the gate electrodes 8 without deterioration of the pixel characteristics.

(実施形態2)
図11は、本発明の実施形態2として、本発明の実施形態1の固体撮像素子20からの撮像信号を所定の信号処理をしてカラー画像信号を得る固体撮像装置を撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
(Embodiment 2)
FIG. 11 shows, as Embodiment 2 of the present invention, an electronic device using a solid-state imaging device that obtains a color image signal by performing predetermined signal processing on an imaging signal from the solid-state imaging device 20 according to Embodiment 1 of the present invention. It is a block diagram which shows the schematic structural example of an information apparatus.

図6において、本実施形態3の電子情報機器90は、上記実施形態1の固体撮像素子20からの撮像信号を所定の信号処理をしてカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示部93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信部94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなどの画像出力部95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示部93と、通信部94と、プリンタなどの画像出力部95とのうちの少なくともいずれかを有していてもよい。   In FIG. 6, the electronic information device 90 of the third embodiment includes a solid-state imaging device 91 that obtains a color image signal by performing predetermined signal processing on the imaging signal from the solid-state imaging device 20 of the first embodiment, and the solid-state imaging. A memory unit 92 such as a recording medium that enables data recording after the color image signal from the device 91 is subjected to predetermined signal processing for recording, and the color image signal from the solid-state imaging device 91 is subjected to predetermined signal processing for display A display unit 93 such as a liquid crystal display device that can be displayed on a display screen such as a liquid crystal display screen later, and a color image signal from the solid-state imaging device 91 are subjected to predetermined signal processing for communication, and then communication processing is enabled. An image of a communication unit 94, such as a transmission / reception device, and a printer or the like that can perform print processing after performing predetermined print signal processing for color image signals from the solid-state imaging device 91 for printing. And a power unit 95. The electronic information device 90 is not limited to this, but in addition to the solid-state imaging device 91, at least one of a memory unit 92, a display unit 93, a communication unit 94, and an image output unit 95 such as a printer. You may have.

この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。   As described above, the electronic information device 90 includes, for example, a digital camera such as a digital video camera and a digital still camera, an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera, and a video phone camera. An electronic device having an image input device such as an image input camera, a scanner device, a facsimile device, a camera-equipped mobile phone device, and a portable terminal device (PDA) is conceivable.

したがって、本実施形態3によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力部95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。   Therefore, according to the third embodiment, based on the color image signal from the solid-state imaging device 91, it can be displayed on the display screen, or can be printed out on the paper by the image output unit 95. (Printing), communicating this as communication data in a wired or wireless manner, performing a predetermined data compression process in the memory unit 92 and storing it in a good manner, or performing various data processings satisfactorily Can do.

なお、上記実施形態1では、特に詳細には説明しなかったが、半導体基板上にゲート絶縁膜を介して成膜された導電性膜をパターニングして電荷転送部上にギャップ部を形成しかつ、入射光を撮像する複数の受光部の上方にそれぞれ開口部を形成した電荷転送電極を形成する電荷転送電極形成工程と、電荷転送電極上およびギャップ部内を含むゲート絶縁膜上に第1の絶縁膜を成膜する第1の絶縁膜成膜工程と、第1の絶縁膜上に第2の絶縁膜を成膜する第2の絶縁膜成膜工程と、ギャップ部内の第2の絶縁膜を残存させた状態で、受光部の上方の基板面および電荷転送電極の上表面が露出するまで各絶縁膜を除去するエッチバック工程と、受光部の上方の基板面および電荷転送電極の上表面に熱酸化により第3の絶縁膜を成膜する第3の絶縁膜成膜工程と、ギャップ部内の第2の絶縁膜を除去した後に、基板全面に第4の絶縁膜を成膜する第4の絶縁膜成膜工程とを有すれば、電荷転送不良や受光領域の縮小、さらには受光感度の劣化など各種画素特性の劣化がなく、転送電極間ギャップ内に絶縁膜を形成することができる本発明の目的を達成することができる。   Although not described in detail in the first embodiment, the conductive film formed on the semiconductor substrate via the gate insulating film is patterned to form a gap portion on the charge transfer portion, and A charge transfer electrode forming step for forming charge transfer electrodes each having an opening formed above a plurality of light receiving portions for imaging incident light, and a first insulation on the charge transfer electrode and the gate insulating film including the gap portion A first insulating film forming step for forming a film; a second insulating film forming step for forming a second insulating film on the first insulating film; and a second insulating film in the gap portion. In the state of being left behind, the etch back process of removing each insulating film until the upper surface of the substrate and the charge transfer electrode above the light receiving portion is exposed, and the upper surface of the substrate and the upper surface of the charge transfer electrode above the light receiving portion. A third insulating film is formed by thermal oxidation to form a third insulating film. If there is a film forming step and a fourth insulating film forming step for forming a fourth insulating film on the entire surface of the substrate after removing the second insulating film in the gap, charge transfer failure and light reception It is possible to achieve the object of the present invention in which an insulating film can be formed in the gap between the transfer electrodes without deterioration of various pixel characteristics such as reduction of the area and deterioration of light receiving sensitivity.

以上のように、本発明の好ましい実施形態1、2を用いて本発明を例示してきたが、本発明は、この実施形態1、2に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1、2の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention was illustrated using preferable Embodiment 1, 2 of this invention, this invention should not be limited and limited to this Embodiment 1,2. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range based on the description of the present invention and the common general technical knowledge, from the description of specific preferred embodiments 1 and 2 of the present invention. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、被写体からの画像光を光電変換して撮像する半導体素子で構成された固体撮像素子およびその製造方法であって、特に、固体撮像素子の電荷転送電極間絶縁膜の製造方法およびこの製造方法により作製された固体撮像素子に関し、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、熱酸化する第3の絶縁膜形成時に、電荷転送電極間ギャップ内には、熱酸化抑制膜としての第2の絶縁膜が充填されているので、ギャップ下の転送チャネル表面や電荷転送電極の側壁は酸化されず、電荷転送電極間ギャップの従来のような熱酸化による拡大を抑制することができて、電荷転送不良や受光領域の縮小などの画素特性の劣化がない。また、電荷転送電極間ギャップと光電変換部上方の開口部とを同時に形成するため、従来のように電荷転送電極間ギャップと光電変換部上方の開口部との位置合わせ精度がばらつくこともなく、それによる電荷転送不良などの画素特性の劣化も発生しない。さらに、受光部の表面を熱酸化して膜厚が薄く安定した第3の絶縁膜を成膜し、この膜厚が薄く安定した第3の絶縁膜を通して半導体基板内に、受光部とは逆導電型の不純物イオンの注入が為されるため、その不純物イオンの注入深さやその濃度が変動したりばらついたりすることなく、それによる受光感度など画素特性の劣化も発生しない。さらに、第2の絶縁膜をギャップ内から除去して、第4の絶縁膜をギャップ内に埋め戻しているため、電荷転送電極側壁の第2の絶縁膜も除去され、ゲート電極側壁の絶縁膜幅を必要最小限に抑えることができる。また、電荷転送電極間ギャップ部への埋め込み絶縁膜と、受光部上の反射防止膜とを同一工程で同一材料にて作成すれば、電荷転送電極上に必要以上に層間膜が形成されず、遮光膜表面の高さが従来のように高くならず、従来のように例えば斜め集光ができなくなって感度が劣化するといった問題も解消される。したがって、電荷転送不良や受光領域の縮小、さらには受光感度の劣化など各種画素特性の劣化がなく、転送電極間ギャップ内に絶縁膜を安定的に形成することができる。   The present invention relates to a solid-state imaging device composed of a semiconductor element that images image light from a subject by photoelectric conversion, and a method for manufacturing the solid-state imaging device. Regarding a solid-state imaging device manufactured by a manufacturing method, for example, a digital camera such as a digital video camera and a digital still camera using the solid-state imaging device as an image input device in an imaging unit, an image input camera such as a surveillance camera, a scanner device, In the field of electronic information equipment such as a facsimile apparatus, a television telephone apparatus, and a camera-equipped mobile telephone apparatus, when a third insulating film to be thermally oxidized is formed, a second film serving as a thermal oxidation suppressing film is formed in the gap between the charge transfer electrodes. Since the insulating film is filled, the transfer channel surface under the gap and the side wall of the charge transfer electrode are not oxidized, It is possible to suppress the expansion by conventional such thermal oxidation of the gap between the charge transferring electrodes, no deterioration of the pixel characteristic, such as reduction of the charge transfer failure and the light-receiving region. In addition, since the gap between the charge transfer electrodes and the opening above the photoelectric conversion unit are formed at the same time, the alignment accuracy between the gap between the charge transfer electrodes and the opening above the photoelectric conversion unit does not vary as in the past, As a result, pixel characteristics such as charge transfer failure are not deteriorated. Furthermore, the surface of the light receiving portion is thermally oxidized to form a thin and stable third insulating film, and this thin and stable third insulating film is passed through the semiconductor substrate into the semiconductor substrate opposite to the light receiving portion. Since the conductivity type impurity ions are implanted, the implantation depth and concentration of the impurity ions do not fluctuate or vary, and pixel characteristics such as light receiving sensitivity are not deteriorated. Further, since the second insulating film is removed from the gap and the fourth insulating film is backfilled in the gap, the second insulating film on the side wall of the charge transfer electrode is also removed, and the insulating film on the side wall of the gate electrode is removed. The width can be minimized. Also, if the insulating film embedded in the gap portion between the charge transfer electrodes and the antireflection film on the light receiving portion are made of the same material in the same process, an interlayer film is not formed more than necessary on the charge transfer electrode, The height of the surface of the light-shielding film is not increased as in the prior art, and the problem that sensitivity is deteriorated due to the fact that, for example, oblique condensing cannot be performed is eliminated. Therefore, there is no deterioration of various pixel characteristics such as charge transfer failure, reduction of the light receiving area, and deterioration of light receiving sensitivity, and the insulating film can be stably formed in the gap between the transfer electrodes.

1 n型半導体基板(半導体基板)
2 p型ウェル
3 垂直CCD電荷転送部(電荷転送部)
4 チャネルストップ領域(画素分離領域)
5 受光部(フォトダイオードまたは光電変換部)
6 電荷読出し領域
7 ゲート絶縁膜
8 ゲート電極(電荷転送電極)
8a ゲート電極材料膜(導電性膜)
8b 開口部
9 第1の絶縁膜(CVDシリコン酸化膜)
10 第2の絶縁膜(シリコン窒化膜)
11 第3の絶縁膜(シリコン熱酸化膜)
12 第4の絶縁膜(シリコン窒化膜)
13 遮光膜(タングステン膜)
G ギャップ(ギャップ部)
20 固体撮像素子
90 電子情報機器
91 固体撮像装置
92 メモリ部
93 表示部
94 通信部
95 画像出力部
1 n-type semiconductor substrate (semiconductor substrate)
2 p-type well 3 vertical CCD charge transfer unit (charge transfer unit)
4 Channel stop area (pixel separation area)
5 Light receiver (photodiode or photoelectric converter)
6 Charge readout region 7 Gate insulating film 8 Gate electrode (charge transfer electrode)
8a Gate electrode material film (conductive film)
8b Opening 9 First insulating film (CVD silicon oxide film)
10 Second insulating film (silicon nitride film)
11 Third insulating film (silicon thermal oxide film)
12 Fourth insulating film (silicon nitride film)
13 Shading film (tungsten film)
G gap (gap part)
DESCRIPTION OF SYMBOLS 20 Solid-state image sensor 90 Electronic information equipment 91 Solid-state imaging device 92 Memory part 93 Display part 94 Communication part 95 Image output part

Claims (16)

半導体基板上にゲート絶縁膜を介して成膜された導電性膜をパターニングして電荷転送部上にギャップ部を形成しかつ、入射光を撮像する複数の受光部の上方にそれぞれ開口部を形成した電荷転送電極を形成する電荷転送電極形成工程と、該電荷転送電極上および該ギャップ部内を含むゲート絶縁膜上に第1の絶縁膜を成膜する第1の絶縁膜成膜工程と、該第1の絶縁膜上に第2の絶縁膜を成膜する第2の絶縁膜成膜工程と、該ギャップ部内の第2の絶縁膜を残存させた状態で、該受光部の上方の基板面および該電荷転送電極の上表面が露出するまで各絶縁膜を除去するエッチバック工程と、該受光部の上方の基板面および該電荷転送電極の上表面に熱酸化により第3の絶縁膜を成膜する第3の絶縁膜成膜工程と、該ギャップ部内の第2の絶縁膜を除去した後に、基板全面に第4の絶縁膜を成膜する第4の絶縁膜成膜工程とを有する固体撮像素子の製造方法。   A conductive film formed on a semiconductor substrate through a gate insulating film is patterned to form a gap portion on the charge transfer portion, and an opening is formed above each of the plurality of light receiving portions that capture incident light. A charge transfer electrode forming step of forming the charge transfer electrode, a first insulating film forming step of forming a first insulating film on the charge transfer electrode and on the gate insulating film including the gap portion, A second insulating film forming step for forming a second insulating film on the first insulating film, and a substrate surface above the light receiving portion in a state in which the second insulating film in the gap is left. And an etch back step of removing each insulating film until the upper surface of the charge transfer electrode is exposed, and forming a third insulating film on the substrate surface above the light receiving portion and the upper surface of the charge transfer electrode by thermal oxidation. A third insulating film forming step for forming a film, and a second insulating film in the gap portion. After removing the film, a method for manufacturing a solid-state imaging device and a fourth insulating film forming step of forming a fourth insulating film on the entire surface of the substrate. 前記第1の絶縁膜成膜工程は、LPCVD法でSiHガスとNOを用いて、所定の温度で所定膜厚のシリコン酸化膜を前記第1の絶縁膜として成膜する請求項1に記載の固体撮像素子の製造方法。 2. The first insulating film forming step forms a silicon oxide film having a predetermined film thickness as the first insulating film at a predetermined temperature using SiH 4 gas and N 2 O by LPCVD. The manufacturing method of the solid-state image sensor as described in 1 .. 前記第2の絶縁膜成膜工程は、LPCVD法でSiHCLガスとNHガスを用いて、所定の温度で所定膜厚のシリコン窒化膜を前記第2の絶縁膜として成膜する請求項1に記載の固体撮像素子の製造方法。 In the second insulating film forming step, a silicon nitride film having a predetermined film thickness is formed as the second insulating film at a predetermined temperature using SiH 2 CL 2 gas and NH 3 gas by LPCVD. Item 2. A method for manufacturing a solid-state imaging device according to Item 1. 前記エッチバック工程は、前記第2の絶縁膜を前記第1の絶縁膜が露出するまで全面エッチバックを行って、前記受光部の表面側および該電荷転送電極の表面側の該第2の絶縁膜を除去しつつ、該ギャップ部内の第2の絶縁膜を残存させる第2の絶縁膜除去工程と、該受光部の表面上方の基板面が露出するまで該第1の絶縁膜および該ゲート絶縁膜を除去すると共に、該電荷転送電極の上表面が露出するまで該第1の絶縁膜を除去する第1の絶縁膜除去工程とを有する請求項1に記載の固体撮像素子の製造方法。   In the etch-back step, the second insulating film is etched back until the first insulating film is exposed, and the second insulation on the surface side of the light receiving portion and the surface side of the charge transfer electrode is performed. A second insulating film removing step of leaving the second insulating film in the gap portion while removing the film, and the first insulating film and the gate insulation until the substrate surface above the surface of the light receiving portion is exposed. The method for manufacturing a solid-state imaging device according to claim 1, further comprising a first insulating film removing step of removing the first insulating film until the upper surface of the charge transfer electrode is exposed while removing the film. 前記第3の絶縁膜を通して前記受光部の表面側に、該受光部の不純物導電型とは逆導電型の不純物をイオン注入して表面逆導電型層を形成する表面逆導電型層形成工程を更に有する請求項1に記載の固体撮像素子の製造方法。   A surface reverse conductivity type layer forming step of forming a surface reverse conductivity type layer by ion-implanting an impurity having a conductivity type opposite to the impurity conductivity type of the light receiving portion into the surface side of the light receiving portion through the third insulating film; Furthermore, the manufacturing method of the solid-state image sensor of Claim 1 which has. 前記第4の絶縁膜の成膜前に、リン酸(HPO)を用いて、前記ギャップ部内の第2の絶縁膜をエッチング除去する請求項1に記載の固体撮像素子の製造方法。 2. The method of manufacturing a solid-state imaging device according to claim 1, wherein the second insulating film in the gap portion is removed by etching using phosphoric acid (H 3 PO 4 ) before forming the fourth insulating film. 前記第4の絶縁膜形成工程は、前記第4の絶縁膜の前記ギャップ部内への充填と、前記受光部の表面上方への反射防止膜としての該第4の絶縁膜の形成を同時に行う請求項1に記載の固体撮像素子の製造方法。   The fourth insulating film forming step simultaneously fills the gap portion with the fourth insulating film and forms the fourth insulating film as an antireflection film above the surface of the light receiving portion. Item 2. A method for manufacturing a solid-state imaging device according to Item 1. 前記電荷転送電極形成工程の前に、前記半導体基板に所定の不純物をイオン注入して、前記受光部と、該受光部からの信号電荷を電荷転送するための電荷転送部とをそれぞれ形成する不純物拡散領域形成工程を更に有する請求項1に記載の固体撮像素子の製造方法。   Prior to the charge transfer electrode forming step, a predetermined impurity is ion-implanted into the semiconductor substrate to form the light receiving portion and a charge transfer portion for transferring a signal charge from the light receiving portion, respectively. The method for manufacturing a solid-state imaging device according to claim 1, further comprising a diffusion region forming step. 前記第4の絶縁膜成膜工程の後に、前記第4の絶縁膜上に遮光膜を形成し、前記受光部の上方の遮光膜を開口する遮光膜形成工程を更に有する請求項1に記載の固体撮像素子の製造方法。   The light-shielding film forming step of forming a light-shielding film on the fourth insulating film and opening a light-shielding film above the light-receiving portion after the fourth insulating film-forming step. Manufacturing method of solid-state image sensor. 前記第2の絶縁膜と前記第4の絶縁膜とは共にシリコン窒化膜である請求項1に記載の固体撮像素子の製造方法。   The method for manufacturing a solid-state imaging element according to claim 1, wherein both the second insulating film and the fourth insulating film are silicon nitride films. 前記第1の絶縁膜はCVD酸化膜であり、前記第3の絶縁膜は熱酸化膜である請求項1に記載の固体撮像素子の製造方法。   The method for manufacturing a solid-state imaging element according to claim 1, wherein the first insulating film is a CVD oxide film, and the third insulating film is a thermal oxide film. 前記ギャップ部は、電荷転送電極間ギャップである請求項1に記載の固体撮像素子の製造方法。   The method for manufacturing a solid-state imaging device according to claim 1, wherein the gap portion is a gap between charge transfer electrodes. 請求項1〜12のいずれかに記載の固体撮像素子の製造方法により製造された固体撮像素子であって、
前記半導体基板上に前記ゲート絶縁膜を介して、前記電荷転送部上に所定間隔の前記ギャップ部と前記受光部上方に開口部を有する導電性膜からなる電荷転送電極が設けられ、該ギャップ部内は該導電性膜が熱酸化により侵食されておらず、該ギャップ部内は基板表面から該ゲート絶縁膜を介して前記第1の絶縁膜および前記第4の絶縁膜が埋め込まれ、該受光部上方の基板表面は該第3の絶縁膜を介して該第4の絶縁膜が形成されている固体撮像素子。
A solid-state imaging device manufactured by the method for manufacturing a solid-state imaging device according to claim 1,
A charge transfer electrode made of a conductive film having an opening above the light receiving part and the gap part at a predetermined interval on the charge transfer part is provided on the semiconductor substrate via the gate insulating film. The conductive film is not eroded by thermal oxidation, and the first insulating film and the fourth insulating film are embedded in the gap portion from the substrate surface through the gate insulating film, and above the light receiving portion. A solid-state imaging device in which the fourth insulating film is formed on the surface of the substrate via the third insulating film.
前記第3の絶縁膜である熱酸化膜により前記半導体基板の表面に段差ができている請求項13に記載の固体撮像素子。   The solid-state imaging device according to claim 13, wherein a step is formed on a surface of the semiconductor substrate by a thermal oxide film that is the third insulating film. 前記電荷転送電極間のギャップ部内への埋め込み絶縁膜が前記第4の絶縁膜で構成され、該第4の絶縁膜が前記受光部上の反射防止膜を兼ねている請求項13に記載の固体撮像素子。   14. The solid according to claim 13, wherein a buried insulating film in a gap portion between the charge transfer electrodes is constituted by the fourth insulating film, and the fourth insulating film also serves as an antireflection film on the light receiving portion. Image sensor. 請求項13〜15のいずれかに記載の固体撮像素子を画像入力デバイスとして撮像部に用いた電子情報機器。   An electronic information device using the solid-state imaging device according to claim 13 as an image input device in an imaging unit.
JP2010086579A 2010-04-02 2010-04-02 Solid-state imaging device, manufacturing method thereof, and electronic information device Active JP5651364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086579A JP5651364B2 (en) 2010-04-02 2010-04-02 Solid-state imaging device, manufacturing method thereof, and electronic information device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086579A JP5651364B2 (en) 2010-04-02 2010-04-02 Solid-state imaging device, manufacturing method thereof, and electronic information device

Publications (2)

Publication Number Publication Date
JP2011222572A true JP2011222572A (en) 2011-11-04
JP5651364B2 JP5651364B2 (en) 2015-01-14

Family

ID=45039207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086579A Active JP5651364B2 (en) 2010-04-02 2010-04-02 Solid-state imaging device, manufacturing method thereof, and electronic information device

Country Status (1)

Country Link
JP (1) JP5651364B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509075B (en) * 2020-04-29 2022-03-29 武汉新芯集成电路制造有限公司 Semiconductor device and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992812A (en) * 1995-09-21 1997-04-04 Toshiba Corp Manufacture of semiconductor device
JP2000022119A (en) * 1998-01-16 2000-01-21 Lg Semicon Co Ltd Solid state image device and fabrication thereof
JP2006253478A (en) * 2005-03-11 2006-09-21 Fuji Photo Film Co Ltd Solid-state imaging element and its manufacturing method
JP2006344914A (en) * 2005-06-10 2006-12-21 Sony Corp Solid-state imaging apparatus, its manufacturing method, and camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992812A (en) * 1995-09-21 1997-04-04 Toshiba Corp Manufacture of semiconductor device
JP2000022119A (en) * 1998-01-16 2000-01-21 Lg Semicon Co Ltd Solid state image device and fabrication thereof
JP2006253478A (en) * 2005-03-11 2006-09-21 Fuji Photo Film Co Ltd Solid-state imaging element and its manufacturing method
JP2006344914A (en) * 2005-06-10 2006-12-21 Sony Corp Solid-state imaging apparatus, its manufacturing method, and camera

Also Published As

Publication number Publication date
JP5651364B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
KR102135529B1 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
KR101968197B1 (en) Image sensor and method of forming the same
JP2010263177A (en) Solid-state image capturing element and driving method for the same, method for manufacturing solid-state image capturing element, and electronic information device
US8115851B2 (en) Solid-state image capturing apparatus, method for manufacturing same, and electronic information device
US10381389B2 (en) Solid state imaging device, manufacturing method of solid state imaging device, and imaging system
US9853072B2 (en) Solid-state imaging element and manufacturing method for solid-state imaging element
US8368161B2 (en) Solid-state image capturing device, method of manufacturing solid-state image capturing device, and image capturing apparatus
JP2016219792A (en) Solid-state imaging apparatus, method for manufacturing solid-state imaging apparatus, and imaging system
KR101543098B1 (en) Solid-state image pickup device and method of fabricating the same
KR20150122866A (en) Image sensor and method of forming the same
JP5651364B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP5349372B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
CN101442065B (en) Image sensor and method for manufacturing the same
JP2006344914A (en) Solid-state imaging apparatus, its manufacturing method, and camera
JP2010056245A (en) Semiconductor image pickup element, manufacturing method thereof and electronic apparatus
JP2010129786A (en) Method of manufacturing solid-state imaging apparatus, and electronic information apparatus
JP2012119492A (en) Solid state imaging device, manufacturing method thereof, and electronic information apparatus
JP2008263037A (en) Solid-state imaging device, its manufacturing method, and electronic information apparatus
JP4715110B2 (en) Manufacturing method of solid-state imaging device
JP5697961B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP2012064815A (en) Solid state image sensor and method of manufacturing the same, electronic information apparatus
JP2013098261A (en) Solid-state imaging device, manufacturing method thereof, and electronic information apparatus
JP2012129373A (en) Solid state image sensor manufacturing method, solid state image sensor and electronic information apparatus
JP5231288B2 (en) Semiconductor device manufacturing method, solid-state image sensor manufacturing method, solid-state image sensor, and electronic information device
JP2014033149A (en) Solid state image sensor and manufacturing method thereof and electronic information apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5651364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350