JP2011222461A - Transparent conductive film heater having temperature distribution equalizing structure - Google Patents

Transparent conductive film heater having temperature distribution equalizing structure Download PDF

Info

Publication number
JP2011222461A
JP2011222461A JP2010098269A JP2010098269A JP2011222461A JP 2011222461 A JP2011222461 A JP 2011222461A JP 2010098269 A JP2010098269 A JP 2010098269A JP 2010098269 A JP2010098269 A JP 2010098269A JP 2011222461 A JP2011222461 A JP 2011222461A
Authority
JP
Japan
Prior art keywords
conductive film
electrode
transparent conductive
electrodes
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010098269A
Other languages
Japanese (ja)
Other versions
JP4947448B2 (en
Inventor
Toshiyuki Takei
敏之 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO NAME CO Ltd
Original Assignee
SANKO NAME CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO NAME CO Ltd filed Critical SANKO NAME CO Ltd
Priority to JP2010098269A priority Critical patent/JP4947448B2/en
Publication of JP2011222461A publication Critical patent/JP2011222461A/en
Application granted granted Critical
Publication of JP4947448B2 publication Critical patent/JP4947448B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive transparent conductive film heater with high temperature distribution uniformity with good transparency, wide observing area and structural flexibility maintained, as a heater part used for controlling a temperature of equipment having a liquid crystal display, and equipment for observing a chemical reaction under a constant temperature.SOLUTION: A pair of parallel electrodes are manufactured by printing means using metallic paste provided on a transparent conductive film. One of the pair of the electrodes is made into upper and lower layers with an insulator interposed therebetween, and an electrical connecting point of the upper and lower layer electrodes is provided near an end that is furthest from a power source connection terminal, to which a power is supplied.

Description

本発明は、透明でフレキシブルなフィルムヒーターに関し、さらに詳しくはヒーター面の温度分布を均一にするための電極構造と透明導電膜の形状に関するものである。  The present invention relates to a transparent and flexible film heater, and more particularly to an electrode structure and a shape of a transparent conductive film for making the temperature distribution on the heater surface uniform.

透明導電膜フィルムヒーターは、液晶ディスプレイを動作温度に保持すること、あるいはボトル内の化学反応を観察しながら温度制御することなど、被観測物を適正な温度に保つために広く利用されている。この透明導電膜フィルムヒーターのフレキシビリティは、被観察物の形状に自由に合わせられることや繰り返し使用を可能にする耐久性のために重要な特性である。  The transparent conductive film heater is widely used for maintaining an object to be observed at an appropriate temperature, such as maintaining the liquid crystal display at an operating temperature, or controlling the temperature while observing a chemical reaction in the bottle. The flexibility of this transparent conductive film heater is an important characteristic for durability that allows it to be freely matched to the shape of the object to be observed and that can be used repeatedly.

従来、透明導電膜フィルムヒーターは、フィルム状のPETやPENなどの高分子基材の上に、ITOや酸化錫等の酸化金属系導電性素材からなる透明導電膜をスパッタリングなどで成膜し、適宜透明導電膜の両端に電力供給用の一対の電極を付与して形成されていた。電極には、ヒーターのフレキシビリティを維持するため、またコスト低減のために、印刷手段により、銀などの金属フィラーを混合した金属ペーストが用いられていた。  Conventionally, a transparent conductive film heater is formed by sputtering a transparent conductive film made of a metal oxide-based conductive material such as ITO or tin oxide on a film-like polymer base material such as PET or PEN. A pair of electrodes for supplying power was appropriately formed on both ends of the transparent conductive film. In order to maintain the flexibility of the heater and to reduce the cost, a metal paste in which a metal filler such as silver is mixed is used for the electrode.

特開2008−077879JP2008-0778779 特開2005−302553JP 2005-302553 A 特開平8−138841JP 8-138841 A 特開平7−153559JP-A-7-153559

発明が解決しようという課題Problems that the Invention is to Solve

透明導電膜フィルムヒーターに用いられている金属ペーストは電気導電率のきわめて低い有機樹脂を含むため金属単体よりも固有抵抗値が高く、透明導電膜の面積抵抗が低い場合には電極での電圧降下が発生し、被観測物を均一に加温できない不具合が生じていた。本発明はこの不具合を是正し、ヒーター面の温度分布の均一性が損なわれることを防ぐ手段を開示している。  The metal paste used in transparent conductive film heaters contains organic resin with extremely low electrical conductivity, so the specific resistance value is higher than that of single metal, and the voltage drop at the electrode when the area resistance of the transparent conductive film is low. Has occurred, causing the problem that the observed object cannot be heated uniformly. The present invention discloses means for correcting this problem and preventing the uniformity of the temperature distribution on the heater surface.

課題を解決するための手段Means for solving the problem

本発明においては、ヒーター面の温度分布の均一性を保つために5つの手段を講じるものである。  In the present invention, five measures are taken in order to maintain the uniformity of the temperature distribution on the heater surface.

第一の手段として、金属ペーストが印刷された一対の電極の片方に絶縁層を介して上下2層の電極となし、その電極の電源接続端子より遠い端部で上下2層の接続点を有する構造とする。  As a first means, upper and lower two-layer electrodes are formed on one of a pair of electrodes printed with a metal paste via an insulating layer, and the upper and lower two-layer connection points are provided at the ends far from the power connection terminals of the electrodes. Structure.

第二の手段として、上記第一の手段に加え、透明導電膜において、電極の長手方向と垂直に導電膜を一部除去したスリット状の導電膜除去溝を等間隔または不等間隔に設け、透明導電膜に流れる電流の方向を電極長手方向と垂直になるように規制する構造とする。  As a second means, in addition to the first means, in the transparent conductive film, slit-like conductive film removal grooves obtained by partially removing the conductive film perpendicular to the longitudinal direction of the electrodes are provided at equal intervals or unequal intervals. The structure is such that the direction of current flowing through the transparent conductive film is regulated to be perpendicular to the longitudinal direction of the electrode.

第三の手段として、一対の電極の両方において絶縁層を介して上下2層の電極となし、電極のほぼ中央に上下2層の接続点を設ける構造とする。  As a third means, both of the pair of electrodes are formed as upper and lower two-layer electrodes via an insulating layer, and a connection point of upper and lower two layers is provided substantially at the center of the electrodes.

第四の手段として、第三の手段に加え、透明導電膜において電極長手方向と垂直にスリット状の導電膜除去溝を設け、その溝幅を場所によって変える構造とする。  As a fourth means, in addition to the third means, a transparent conductive film is provided with a slit-like conductive film removal groove perpendicular to the longitudinal direction of the electrode, and the groove width is changed depending on the location.

第五の手段として、第四手段をさらに改良し、接続点から離れるに従い、導電膜除去溝を含めた隣あう単位幅当たり電極間距離の透明導電膜の抵抗値の差が、電極長手方向の単位長さ当たりの抵抗値に等しくなるような導電膜除去溝の構造とする。  As a fifth means, the fourth means is further improved, and as the distance from the connection point increases, the difference in the resistance value of the transparent conductive film in the distance between the electrodes per adjacent unit width including the conductive film removal groove increases in the longitudinal direction of the electrode. The conductive film removal groove has a structure that is equal to the resistance value per unit length.

第六の手段として、第三、四、五手段に加え、上下2層の電極の接続点の形状を長方形とし、その電極幅方向の辺は電極幅と同じ長さを持ち、電極長手方向の辺は電極幅の1/5以下とする。  As a sixth means, in addition to the third, fourth and fifth means, the shape of the connection point of the upper and lower two-layer electrodes is a rectangle, the sides in the electrode width direction have the same length as the electrode width, The side is 1/5 or less of the electrode width.

発明の効果The invention's effect

本発明の透明導電膜フィルムヒーターは次のような効果を有する。
(1) 最大限のフレキシビリティを保持しつつ、ヒーターの単位面積当たりの電流量 が均一になり、温度分布のばらつきがきわめて少ない。
(2) 電極を上下2層にすることにより、ディスプレイの観察面積を最大限確保でき る。
(3) 電極の形成には印刷手段を用いており、フレキシビリティが維持され、かつそ の手段の設備投資額が少ないため製造コストが安い。
(4) 透明導電膜に導電膜除去溝を設けることにより、さらに温度分布の均一性を高 めることができる。
(5) 一対の電極の両方とも二層構造にすることにより、観測物に巻きつけやすい構 造となる。
(6) 上下2層の電極の接続点を電極の中央に位置させることにより、電極の抵抗値 の上昇を最小限とし、接続点での電圧分布のバランスを良くすることができ、 電極における電力ロスも低減できる。
The transparent conductive film heater of the present invention has the following effects.
(1) While maintaining the maximum flexibility, the amount of current per unit area of the heater is uniform, and the variation in temperature distribution is extremely small.
(2) The display area of the display can be maximized by using two upper and lower electrodes.
(3) The printing method is used to form the electrode, and the manufacturing cost is low because the flexibility is maintained and the capital investment of the method is small.
(4) By providing the conductive film removal groove in the transparent conductive film, the uniformity of the temperature distribution can be further improved.
(5) By making both the pair of electrodes into a two-layer structure, the structure can be easily wrapped around the observation object.
(6) By positioning the connection point between the upper and lower electrodes in the center of the electrode, the increase in the resistance value of the electrode can be minimized and the balance of the voltage distribution at the connection point can be improved. Loss can also be reduced.

従来技術の説明図Illustration of prior art 電極の片方を上下2層にした実施例1の説明図Explanatory drawing of Example 1 which made one side of the electrode into upper and lower two layers 図2におけるA−A´断面図AA 'sectional view in FIG. 実施例1で透明導電膜形状のアスペクト比が大きくなった場合の説明図Explanatory drawing when the aspect ratio of the transparent conductive film shape is increased in Example 1 透明導電膜に等間隔の導電膜除去溝を設けた実施例2の説明図Explanatory drawing of Example 2 which provided the electrically conductive film removal groove | channel in the transparent conductive film at equal intervals 図5におけるB−B´断面図BB 'sectional view in FIG. 接続点を上下の電極の中央に設けた実施例3の説明図Explanatory drawing of Example 3 which provided the connection point in the center of the upper and lower electrodes. 図7におけるC−C´断面図CC 'sectional view in FIG. 透明導電膜に設けた導電膜除去溝の幅が場所により異なる実施例4の説明図Explanatory drawing of Example 4 from which the width | variety of the electrically conductive film removal groove | channel provided in the transparent conductive film changes with places 図9におけるD−D´断面図DD 'sectional view in FIG. 実施例5を説明するための従来技術の説明図Explanatory drawing of the prior art for demonstrating Example 5. FIG. 図11のE−E´断面図EE 'sectional view of FIG. 接続点の幅方向の辺W4と電極長手方向の辺L3の関係の説明図Explanatory drawing of the relationship between edge | side W4 of the width direction of a connection point, and edge | side L3 of an electrode longitudinal direction 図13におけるL3と接続点縁部の下層電極抵抗の説明図Explanatory drawing of lower layer electrode resistance of L3 and connection point edge part in FIG. 接続点の形状に関する実施例5の説明図Explanatory drawing of Example 5 regarding the shape of a connection point

ここで技術内容を詳しく説明する。図1に、従来使われてきた透明導電膜フィルムヒーターの平面図を示す。ITOや酸化錫などの透明導電膜30がスパッタリング等の薄膜形成技術により成膜されている高分子基材40のフィルム上に、一対の平行な電極10、11が銀粒子などからなる金属ペーストを用いて印刷手段により形成される。電極の端部には電力を供給するための電源接続端子20が設けられている。透明導電膜は電極印刷の前に、形状が高分子基材より適宜小さめに成形され不要部分は除去されている。なお、図1においては電極と導電膜が接している領域では上下対称な形状となっている。  Here, the technical contents will be described in detail. FIG. 1 is a plan view of a conventionally used transparent conductive film heater. A metal paste in which a pair of parallel electrodes 10 and 11 are made of silver particles or the like is formed on a film of a polymer substrate 40 on which a transparent conductive film 30 such as ITO or tin oxide is formed by a thin film forming technique such as sputtering. And formed by printing means. A power connection terminal 20 for supplying power is provided at the end of the electrode. Prior to electrode printing, the transparent conductive film is shaped to be appropriately smaller than the polymer base material, and unnecessary portions are removed. In FIG. 1, the region where the electrode and the conductive film are in contact has a vertically symmetrical shape.

この構造の透明導電膜フィルムヒーターにおいて、透明導電膜の面積抵抗が低い場合(20Ω/□以下)やアスペクト比が高い(形状が横に長い形、あるいは上下の電極間距離が小さい形状)場合は、透明導電膜の抵抗値に比べ、電極の抵抗値が相対的に大きくなり、電極の電源接続端子から他方の端部にかけて電圧降下が発生する。結果として、図1における点線の丸で示す高温領域50が発生し、電源接続端子から遠い領域の温度が上昇せず、ヒーター面全体で温度分布の不均一が起きる。  In the transparent conductive film heater with this structure, when the area resistance of the transparent conductive film is low (20Ω / □ or less) or the aspect ratio is high (the shape is long horizontally or the distance between the upper and lower electrodes is small) The resistance value of the electrode becomes relatively larger than the resistance value of the transparent conductive film, and a voltage drop occurs from the power connection terminal of the electrode to the other end. As a result, a high temperature region 50 indicated by a dotted circle in FIG. 1 is generated, the temperature in a region far from the power supply connection terminal does not rise, and the temperature distribution is uneven across the heater surface.

このような温度分布の不均一が起きた場合、透明導電膜フィルムヒーターに接触している被観測物の温度にも不均一が生じ、温度を一定に保つことが難しくなっていた。あるいは、化学反応を起こさせるボトルの場合には、温度のばらつきが多くなり、精度の高い実験が不可能になっていた。  When such temperature distribution non-uniformity occurs, non-uniformity also occurs in the temperature of the object in contact with the transparent conductive film heater, making it difficult to keep the temperature constant. Alternatively, in the case of a bottle that causes a chemical reaction, temperature variation increases, making it impossible to conduct highly accurate experiments.

このような温度分布の不均一を防ぐために、これまで、電極の一部あるいは全体を単体の金属で形成する方法が提案されてきた。すなわち、金属単体を電子ビーム蒸着、スパッタリング、電解メッキ、無電解メッキなどを用いて電極を成膜する方法である。この方法では、電極の導電率は大きく上がるものの、透明ヒーターの重要な特性であるフレキシビリティが失われ、使用時の耐久性が悪くなり、さらに成膜手段として高価な設備が必要であった。  In order to prevent such uneven temperature distribution, a method of forming a part or the whole of an electrode with a single metal has been proposed. That is, it is a method of forming a film of an electrode from a single metal using electron beam evaporation, sputtering, electrolytic plating, electroless plating, or the like. In this method, although the conductivity of the electrode is greatly increased, flexibility, which is an important characteristic of the transparent heater, is lost, durability during use is deteriorated, and expensive equipment is required as a film forming means.

本発明においては、電極の製法には金属ペーストの印刷手段を用い、低コストながら、高分子基材のフレキシビリティを十分に保持し、被観測物の観察面積を最大限にしつつ温度の不均一を防止した透明導電膜フィルムヒーターを提供するものである。  In the present invention, a metal paste printing means is used for the electrode manufacturing method, and the flexibility of the polymer base material is sufficiently maintained at a low cost, while the temperature of the object to be observed is maximized and the temperature is not uniform. The transparent conductive film film heater which prevented this is provided.

まず、温度分布の不均一を防ぐために、一対の電極の片側について絶縁層を介して上下2層とし、電源接続端子より最も遠い端部に上下の電極の電気的な接続点を設ける構造とする。このような構造にすることにより、電源接続端子20から見た、単位幅当たり電極間距離の透明導電膜の抵抗と電極の抵抗の和は一定となる。したがって、流れる電流値は場所によらず一定になり均一な温度分布が得られる。加えて、被観測物の観察面積は、電極を2層にしても変わることはなく最大限確保できる。  First, in order to prevent non-uniform temperature distribution, the upper and lower electrodes are provided on the one end of the pair of electrodes with an upper and lower two layers through an insulating layer, and the upper and lower electrodes are electrically connected at the end farthest from the power connection terminal. . With such a structure, the sum of the resistance of the transparent conductive film and the resistance of the electrode at a distance between the electrodes per unit width as viewed from the power connection terminal 20 becomes constant. Therefore, the value of the flowing current is constant regardless of the location, and a uniform temperature distribution is obtained. In addition, the observation area of the object to be observed can be ensured to the maximum without changing even if there are two layers of electrodes.

このような構造にしても、導電膜の面積抵抗がさらに下がった場合やアスペクト比が高くなった場合には、電極の上下2層接続点から他の側の電源接続端子に向かって斜めに電流路が形成される(図4)。当然、ヒーター面における温度の不均一が生じる。これを防止するため、透明導電膜フィルムヒーターに導電膜の一部を除去したスリット状の溝を設け、電流の流れを電極長手方向と垂直になるように規制する構造とする。  Even with such a structure, when the sheet resistance further decreases or the aspect ratio increases, the current is obliquely directed from the upper and lower two-layer connection point of the electrode toward the power supply connection terminal on the other side. A path is formed (FIG. 4). Naturally, temperature non-uniformity occurs on the heater surface. In order to prevent this, a slit-like groove from which a part of the conductive film is removed is provided in the transparent conductive film heater so that the current flow is regulated to be perpendicular to the longitudinal direction of the electrode.

さらに一対の電極(図1の構造では電極11と10)の両方とも上下2層とし、2層の接続点を導電膜30と接する電極の中央に配置する構造とすることである。電極長さが電極間距離(導電膜の縦方向の幅)に比べ大きくない場合にはこれだけでかなりの温度分布の均一性が達成される。さらに、図1のような形状においては一対の電極の両方の厚みが等しくなるので、ボトル等にきちんと巻きつけることができる。また、電極の片側だけの2層構造より、電極の実行長さが平均的に4分の1程度減少するので、電極の抵抗による電力ロスも半減する。  Furthermore, both the pair of electrodes (electrodes 11 and 10 in the structure of FIG. 1) are two layers in the upper and lower layers, and the connection point of the two layers is arranged in the center of the electrode in contact with the conductive film 30. If the electrode length is not larger than the distance between the electrodes (the width in the longitudinal direction of the conductive film), considerable temperature distribution uniformity can be achieved. Further, in the shape as shown in FIG. 1, since both the pair of electrodes have the same thickness, they can be properly wound around a bottle or the like. In addition, since the effective length of the electrode is reduced by about a quarter on average from the two-layer structure on only one side of the electrode, the power loss due to the resistance of the electrode is also halved.

このように一対の電極の両方を上下2層とし、接続点を中央にした場合でも、透明導電膜の面積抵抗が低い場合やアスペクト比が高くなった場合には、導電膜端部の温度が低くなる現象が生じる。さらにこれを防止するために、上述したような電極長手方向に垂直に導電膜を除去した導電膜除去溝を等間隔あるいは不等間隔に設ける構造とする。ただし、この場合には導電膜除去溝の溝幅を場所により異なることを特徴とする。具体的には接続点のある中央付近の溝幅を大きくすることにより、電源接続端子から見た電極と単位幅当たりの導電膜の抵抗値の和を略々一定とし、電流の流れを均一化することができる。  Thus, even when both of the pair of electrodes are upper and lower two layers and the connection point is in the center, when the area resistance of the transparent conductive film is low or the aspect ratio is high, the temperature at the end of the conductive film is A phenomenon of lowering occurs. Further, in order to prevent this, a structure in which the conductive film removal grooves in which the conductive film is removed perpendicularly to the electrode longitudinal direction as described above is provided at equal intervals or unequal intervals is employed. However, in this case, the groove width of the conductive film removal groove is different depending on the location. Specifically, by increasing the groove width near the center of the connection point, the sum of the resistance value of the electrode viewed from the power connection terminal and the conductive film per unit width is made approximately constant, and the current flow is made uniform. can do.

さらに温度の均一性を向上させるには、中央に設けた一対の電極の接続点中央を結んだ中心線から離れるに従い、隣り合う透明導電膜除去溝で仕切られる導電膜の抵抗値の差が、透明電極除去溝のピッチ当たりの電極の抵抗値に一致している構造とする。このように透明導電膜除去溝で仕切られる抵抗値が中心線から離れるに従い漸次減少していくことにより、導電膜端部にも電流が流れるようになり、より正確に導電膜面の温度分布の均一化を図ることができる。  In order to further improve the uniformity of the temperature, as the distance from the center line connecting the center of the connection point of the pair of electrodes provided in the center, the difference in the resistance value of the conductive film partitioned by the adjacent transparent conductive film removal grooves, The transparent electrode removal groove has a structure that matches the resistance value of the electrode per pitch. In this way, the resistance value partitioned by the transparent conductive film removal groove gradually decreases as the distance from the center line increases, so that current also flows through the conductive film end, and the temperature distribution on the conductive film surface is more accurately measured. Uniformity can be achieved.

接続点の位置が電極の中央にある構造では、接続点の電極幅方向の長さをw、接続点の電極長手方向の長さをLとすると、wは電極の幅と等しく、L<(1/5)・wである形状がよい。この関係は、この接続点を通って電流が下層電極の左右に流れ、いずれの方向にも同じ電圧で電流が供給される条件として求められる。したがって、Lが大きくなれば(L>w)電極における左右の電圧バランスが崩れ、温度分布に不均一性が現れる。なお、電極を片側だけ上下2層として接続点が電源接続端子の最も遠い端部にある構造においては、この限りではない。  In a structure in which the position of the connection point is in the center of the electrode, w is equal to the electrode width, where w is the length of the connection point in the electrode width direction and L is the length of the connection point in the electrode longitudinal direction. A shape that is 1/5) · w is preferable. This relationship is obtained as a condition in which current flows to the left and right of the lower electrode through this connection point, and current is supplied at the same voltage in any direction. Therefore, if L increases (L> w), the left and right voltage balance at the electrode is lost, and the temperature distribution becomes non-uniform. Note that this is not the case in a structure in which the electrode is formed in two upper and lower layers on one side and the connection point is at the farthest end of the power connection terminal.

一対の電極の片方を二層とし、電極の接続点を電源接続端子20から遠い位置に配置した実施例1を図2に示す。図3は図2のA−A´断面図である。図2においては、上側に配置した電極を2層とし、その電極を図3において上層電極11下層電極12としている。図3では電極をレジストでできた絶縁層70を介して二層となす構造に加え、接続点60の構造も示す。すなわち、上下2層電極の接続点60を経由して下層電極12に電流が供給される。本実施例においては、単位幅当たり電極間距離の透明導電膜の抵抗と電極の抵抗の和(電源接続端子20から見た抵抗値)は、透明導電膜内のどの位置においても一定となる。したがって、透明導電膜中の面積当たりの電流値が一定となり、温度分布も均一になる。    FIG. 2 shows a first embodiment in which one of the pair of electrodes has two layers and the connection point of the electrodes is arranged at a position far from the power supply connection terminal 20. 3 is a cross-sectional view taken along the line AA ′ of FIG. In FIG. 2, the electrode disposed on the upper side has two layers, and the electrode is an upper layer electrode 11 and a lower layer electrode 12 in FIG. 3. FIG. 3 shows the structure of the connection point 60 in addition to the structure in which the electrode is formed into two layers through an insulating layer 70 made of resist. That is, a current is supplied to the lower layer electrode 12 via the connection point 60 between the upper and lower two layer electrodes. In this embodiment, the sum of the resistance of the transparent conductive film and the resistance of the electrode at a distance between the electrodes per unit width (resistance value viewed from the power connection terminal 20) is constant at any position in the transparent conductive film. Therefore, the current value per area in the transparent conductive film is constant, and the temperature distribution is uniform.

他方、片方の電極が二層になっても被観測物を目視するための観察面積は従来と変わらず最大限の大きさを確保できる。なお、一対の電極の上下のどちらを2層にしてもこれまで説明してきた効果が変わることはない。  On the other hand, even if one electrode has two layers, the observation area for visually observing the object to be observed can be ensured the maximum size as before. Note that the effect described so far does not change regardless of which of the upper and lower sides of the pair of electrodes is two layers.

実施例1においては、従来技術に比べ均一な温度分布が得られ優れた透明導電膜フィルムヒーターとなるが、さらにアスペクト比が大きくなり、相対的に電極の抵抗が大きくなると図4に示すような斜め電流路80が発生する。このために、この電流路以外の場所の電流が減少し、図4に示す右下側低温領域S1と左上側低温領域S2が生じる。これを防ぐために、電流路を電極の長手方向に垂直になるよう流れ方を規制することが重要となる。  In Example 1, a uniform temperature distribution is obtained compared to the prior art, and an excellent transparent conductive film heater is obtained. However, when the aspect ratio is further increased and the resistance of the electrode is relatively increased, as shown in FIG. An oblique current path 80 is generated. For this reason, the current in places other than this current path is reduced, and the lower right side low temperature region S1 and the upper left side low temperature region S2 shown in FIG. 4 are generated. In order to prevent this, it is important to regulate the flow so that the current path is perpendicular to the longitudinal direction of the electrode.

この考えを具現化し、電流路を規制した実施例2が図5であり、そのB−B´断面図が図6である。図5においては、溝幅w1、溝長さL1のスリット状の導電膜除去溝90が等間隔で配置されている。このように、電流を電極長手方向と垂直に流れるように規制すると、図4にあるような温度分布の不均一を防ぐことができる。図5においては導電膜除去溝の間隔を等間隔としているが、不等間隔であっても、電流が電極長手方向に対して略々垂直であれば目的を達成するものである。溝幅についても必ずしも同じある必要はない。  FIG. 5 shows a second embodiment in which this idea is embodied and the current path is restricted, and FIG. 6 is a sectional view taken along the line BB ′. In FIG. 5, slit-like conductive film removal grooves 90 having a groove width w1 and a groove length L1 are arranged at equal intervals. In this way, if the current is regulated so as to flow perpendicularly to the longitudinal direction of the electrode, the temperature distribution non-uniformity as shown in FIG. 4 can be prevented. In FIG. 5, the intervals between the conductive film removal grooves are equal. However, even if the intervals are not equal, the object can be achieved if the current is substantially perpendicular to the longitudinal direction of the electrode. The groove width is not necessarily the same.

実施例2で示した導電膜除去溝90は幅100μm、ピッチ10mm程度で配置されるが、導電膜は透明であるため、この溝は目視で確認することが難しい。したがって、この導電膜除去溝により被観測物の観察時における不都合が生じることはない。  The conductive film removal grooves 90 shown in Example 2 are arranged with a width of about 100 μm and a pitch of about 10 mm. However, since the conductive film is transparent, it is difficult to visually confirm the grooves. Therefore, the conductive film removal groove does not cause inconvenience when observing the object to be observed.

なお、図5においては、導電膜除去溝と電極の間に上部連続部S3と下部連続部S4の透明導電膜の連続した部分を設けたが、これは必ずしも必要ではなく、溝が直接電極に接している構造であっても効果に変わりはない。  In FIG. 5, a continuous portion of the transparent conductive film of the upper continuous portion S3 and the lower continuous portion S4 is provided between the conductive film removal groove and the electrode, but this is not always necessary, and the groove is directly formed on the electrode. Even if the structure is in contact, the effect remains the same.

実施例1の図2の上側にある電極11、12と下側の電極10では厚みが異なり、ボトルなどに重ねて巻きつける場合には不具合を生じる。実施例2の図5においても同様である。また、両実施例とも電力を供給する電極の長さが従来例に比べ長くなっており、その分電力ロスも発生する。当然、電極の長さを少しでも減らし、余分な電力ロスの低減が必要となる。  The thicknesses of the electrodes 11 and 12 on the upper side in FIG. 2 of the first embodiment and the electrode 10 on the lower side are different from each other. The same applies to FIG. 5 of the second embodiment. In both embodiments, the length of the electrode for supplying power is longer than that of the conventional example, and power loss is generated accordingly. Naturally, it is necessary to reduce the length of the electrode as much as possible, and to reduce the extra power loss.

この考えから上側の電極も下側の電極も絶縁層を介して二層とし、接続点を電極の中央に持ってくることによりこれらの不具合を解消することができる。この考察の実施例3を図7に示す。図7のC−C´断面図を図8に示す。図7、8において、上側接続点61、下側接続点62の接続点中心を結ぶ中心線64より右側の上層電極は電気回路的にはダミーであり、機械的な厚みを左右同一にするために設けたものである。この電極厚みの均一化により、ボトルに巻く場合に、きちんと巻けるうえ繰り返し使用のための耐久性も向上する。  From this point of view, these problems can be solved by forming the upper electrode and the lower electrode in two layers through an insulating layer and bringing the connection point to the center of the electrode. Example 3 of this consideration is shown in FIG. FIG. 8 is a cross-sectional view taken along the line CC ′ of FIG. 7 and 8, the upper layer electrode on the right side of the center line 64 that connects the connection point centers of the upper connection point 61 and the lower connection point 62 is a dummy in terms of electric circuit, so that the mechanical thickness is the same on the left and right. Is provided. By making the electrode thickness uniform, when it is wound around a bottle, it can be properly wound and the durability for repeated use is also improved.

一方本実施例では、実施例1や2に比べ平均的に電極長さは3/4に短縮され、その分電極による電力ロスは略々半減する。この電力ロスの半減は透明導電膜に対する電極の場所による電圧の不均一の低減につながり、温度分布の不均一が緩和される。さらに、従来技術の図1の電源接続端子側から右側の端までの電圧降下に比べ、図7の中心線64から両端までの電圧降下は半減しているので、温度分布の不均一は一段と緩和される。  On the other hand, in this embodiment, the electrode length is reduced to 3/4 on average in comparison with the first and second embodiments, and the power loss due to the electrode is substantially halved. This half of the power loss leads to a reduction in voltage non-uniformity depending on the location of the electrode with respect to the transparent conductive film, and the non-uniform temperature distribution is alleviated. Further, since the voltage drop from the center line 64 to both ends in FIG. 7 is halved compared to the voltage drop from the power connection terminal side to the right end in FIG. 1 of the prior art, the uneven temperature distribution is further alleviated. Is done.

実機例4Example 4

実施例3においては、透明導電膜の面積抵抗が下がってきた場合(20Ω/□以下)や、アスペクト比が大きくなった場合には、透明導電膜の左右の端部における電流量が低下し、図7の透明導電膜30の端部に温度分布の不均一が生じる。これを防止するために、電極の長手方向の抵抗を含めた合計の抵抗値が等しくなるよう導電膜除去溝の幅を場所によって変えることを考える。この考えの実施例4を図9に示す。図9のD−D´断面図を図10に示す。基本的な考え方は、中心線64付近の導電膜除去溝の幅を端部の溝幅より大きくすることである。  In Example 3, when the sheet resistance of the transparent conductive film decreases (20Ω / □ or less) or when the aspect ratio increases, the amount of current at the left and right ends of the transparent conductive film decreases, Nonuniform temperature distribution occurs at the end of the transparent conductive film 30 in FIG. In order to prevent this, it is considered that the width of the conductive film removal groove is changed depending on the location so that the total resistance value including the resistance in the longitudinal direction of the electrode becomes equal. Example 4 of this idea is shown in FIG. FIG. 10 is a sectional view taken along the line DD ′ of FIG. The basic idea is to make the width of the conductive film removal groove near the center line 64 larger than the groove width at the end.

さらに精度を上げて考察すれば、透明導電膜に設ける複数の導電膜除去溝90において、中心線64上の溝を1番目とし、それから左右にn番目の導電膜除去溝の幅をWn、n+1番目の導電膜除去溝の幅をWn+1とする。導電膜除去溝の長さをL2とする。L2は電極間距離とほぼ等しくしなる。導電膜除去溝の並びピッチをW0として、ピッチ当たり電極間距離の透明導電膜の抵抗値をR0、ピッチ幅に相当する下層電極の長手方向の抵抗値をRp、n番目とn+1番目の導電膜除去溝に接する透明導電膜のピッチ幅当たりの電極間距離の抵抗値をRn、Rn+1とすると、次の式が成り立つようにWn、Wn+1を決めることができる。先ず、次の関係式が成り立つ。
ここで、W0≪Wn、W0≪Wn+1 であることを考慮すれば、次の式を得る。
この数2式を満たすように導電膜除去溝の幅を透明導電膜30に成形すれば、電極による電圧降下を補正し、膜全体に均一な電流密度が維持され、均一な温度分布が得られる。なお、nやn+1は中心線を対称線として、各々2個ずつ存在する。
Considering with further accuracy, in the plurality of conductive film removal grooves 90 provided in the transparent conductive film, the groove on the center line 64 is first, and then the width of the nth conductive film removal groove on the left and right is Wn, n + 1. The width of the second conductive film removal groove is Wn + 1. The length of the conductive film removal groove is L2. L2 is substantially equal to the distance between the electrodes. The arrangement pitch of the conductive film removal grooves is W0, the resistance value of the transparent conductive film at the distance between electrodes per pitch is R0, the resistance value in the longitudinal direction of the lower layer electrode corresponding to the pitch width is Rp, and the nth and n + 1th conductive films When the resistance value of the distance between the electrodes per pitch width of the transparent conductive film in contact with the removal groove is Rn, Rn + 1, Wn, Wn + 1 can be determined so that the following formula is established. First, the following relational expression holds.
Here, when considering that W0 << Wn, W0 << Wn + 1, the following expression is obtained.
If the width of the conductive film removal groove is formed in the transparent conductive film 30 so as to satisfy Equation 2, the voltage drop due to the electrodes is corrected, a uniform current density is maintained throughout the film, and a uniform temperature distribution is obtained. . Note that there are two n and n + 1, each having a center line as a symmetry line.

ここで、数2式の内容の具体例を示す。透明導電膜の面積抵抗値は、低めの典型的な値として20Ω/□、銀ペースト電極の面積抵抗値は0.02Ω/□である。電極幅を0.5cm(5mm)とすると、ピッチW0=1cm(10mm)としてRp=0.04Ωとなる。透明導電膜の電極間距離を4cm(40mm)とすると、透明導電膜のピッチ当たりの抵抗値はR0=80Ωとなる。さらにこれらの値を代入して数2式を計算する。
Here, a specific example of the contents of Equation 2 is shown. The sheet resistance value of the transparent conductive film is 20Ω / □ as a lower typical value, and the sheet resistance value of the silver paste electrode is 0.02Ω / □. If the electrode width is 0.5 cm (5 mm), the pitch W0 = 1 cm (10 mm) and Rp = 0.04Ω. When the distance between the electrodes of the transparent conductive film is 4 cm (40 mm), the resistance value per pitch of the transparent conductive film is R0 = 80Ω. Further, Equation 2 is calculated by substituting these values.

すなわち、図9の中心線64の位置から導電膜除去溝が離れるに従い、1ピッチ当たり5μmずつ溝の幅を減少させるような導電膜構造をとれば、電流を均一に流すことができる。必然的に、温度分布も均一になる。  That is, if the conductive film structure is such that the width of the groove is decreased by 5 μm per pitch as the conductive film removal groove is separated from the position of the center line 64 in FIG. Inevitably, the temperature distribution becomes uniform.

導電膜除去溝の形成精度が5μmに及ばない場合には、ピッチを全導電膜内で一定として溝の数を形成精度まで増す毎に幅を増減させれば、目的を達成することができる。たとえば形成精度が、50μmの場合、導電膜除去溝を10本進むごとに、溝の幅を50μm減らすことを意味する。
なお、透明導電膜上の導電膜除去溝の幅が視認可能な0.3mm以上になった場合でも、もともと透明であるため、導電膜除去溝が被観測物を観察する上で障害になることはない。
When the formation accuracy of the conductive film removal groove does not reach 5 μm, the object can be achieved by increasing and decreasing the width every time the number of grooves is increased to the formation accuracy with the pitch being constant in all the conductive films. For example, when the formation accuracy is 50 μm, this means that the groove width is reduced by 50 μm every time ten conductive film removal grooves are advanced.
Even when the width of the conductive film removal groove on the transparent conductive film becomes 0.3 mm or more which can be visually recognized, the conductive film removal groove becomes an obstacle to observing the object to be observed because it is originally transparent. There is no.

図11は拡大した接続点63に関する実施例5を説明するための従来技術の説明図であり、図12は、図11のE−E´線の断面図である。  FIG. 11 is an explanatory diagram of the prior art for explaining the fifth embodiment related to the enlarged connection point 63, and FIG. 12 is a cross-sectional view taken along the line EE ′ of FIG.

図7の実施例3や、図9の実施例4に示されている接続点は、図11に示すように長方形をしている。その電極幅方向の辺の長さをW4とし、電極長手方向の辺の長さをL3で表すと、図11ではW4はW3より狭く、L3はW4とほぼ等しいかそれ以上の寸法となっている。    The connection points shown in Example 3 of FIG. 7 and Example 4 of FIG. 9 are rectangular as shown in FIG. When the length of the side in the electrode width direction is W4 and the length of the side in the electrode longitudinal direction is represented by L3, in FIG. 11, W4 is narrower than W3, and L3 is approximately equal to or larger than W4. Yes.

実施例3、4に示したように接続点が電極の中央にある場合、図11のようにL3を大きくとった構造(L3がW3の寸法と同程度)では、接続点での電圧降下が発生し、電極の電圧が図11において左右非対称となり、電源から遠い側(右側)への電流量の減少が起きる。結果として、電流の不均一、温度分布の不均一が生まれる。  When the connection point is at the center of the electrode as shown in Examples 3 and 4, in the structure in which L3 is large as shown in FIG. 11 (L3 is approximately the same as the dimension of W3), the voltage drop at the connection point is small. As a result, the voltage of the electrode becomes asymmetrical in FIG. 11 and the amount of current decreases from the power source to the far side (right side). As a result, non-uniform current and non-uniform temperature distribution occur.

この不均一を防止するため、接続点での電圧降下の少ない形状を考察する。まず、電極の接続点での電流路の抵抗値Rwを計算する。接続点の電流路長さはL3に等しい。接続点電流路では電極の厚みを1層のtとする領域と、上下2層になっている厚み2tの領域がある。厚みが1層の領域の抵抗値をRw1、2層になっている領域の抵抗値をRw2、電極の固有抵抗をρ0とすると次の式を得る。
In order to prevent this non-uniformity, a shape with a small voltage drop at the connection point is considered. First, the resistance value Rw of the current path at the connection point of the electrode is calculated. The current path length at the connection point is equal to L3. In the connection point current path, there are a region where the thickness of the electrode is t of one layer and a region of thickness 2t which is two layers on the upper and lower sides. When the resistance value of the region having the thickness of 1 layer is Rw1, the resistance value of the region having the thickness of 1 layer is Rw2, and the specific resistance of the electrode is ρ0, the following equation is obtained.

一方、上層電極から下層電極へ電流が流れ込むときの抵抗RLは、下層電極の抵抗値計算の幅を図11、12に示すように ΔL(およそ1/100cmのオーダー)として表すと次の式を得る。
On the other hand, the resistance RL when the current flows from the upper layer electrode to the lower layer electrode can be expressed by the following formula when the width of the resistance value calculation of the lower layer electrode is expressed as ΔL (about 1/100 cm order) as shown in FIGS. obtain.

接続点で電圧降下が発生しない条件として、RLがRwに等しいかまたは小さいことである(RL≦Rw)。ここで、電極の材料である金属ペーストの厚みを0.0025cm、電極幅W3=0.5cm、印刷精度を考慮してΔL=0.02cmとおいて、接続点の電極幅方向の辺の長さW4を変えながらRw=RLとなるL3の値を求める。  As a condition that no voltage drop occurs at the connection point, RL is equal to or smaller than Rw (RL ≦ Rw). Here, the thickness of the metal paste as the electrode material is 0.0025 cm, the electrode width W3 = 0.5 cm, and ΔL = 0.02 cm in consideration of printing accuracy, and the length of the side in the electrode width direction of the connection point While changing W4, the value of L3 where Rw = RL is obtained.

図13にW4を0.005cmから0.5cmまで変えた時のL3の値を示す。この図13から、RwとRLが等しいときのL3の値はW4が増えるとともに小さくなり、最大の幅W4=W3で最小のL3の値として約0.02cmとなる。この時の下層電極12の接続点の電極電流路の抵抗値Rw(=RL)はどのように変化しているかを図14に示した。図14から、L3と同様にW4=W3で最小値になり、約0.0004Ωとなる。  FIG. 13 shows the value of L3 when W4 is changed from 0.005 cm to 0.5 cm. From FIG. 13, the value of L3 when Rw and RL are equal becomes smaller as W4 increases, and the maximum width W4 = W3 and the minimum L3 value is about 0.02 cm. FIG. 14 shows how the resistance value Rw (= RL) of the electrode current path at the connection point of the lower layer electrode 12 at this time changes. From FIG. 14, similarly to L3, the minimum value is obtained when W4 = W3, which is about 0.0004Ω.

図13、14から分かる通り、電極の接続点での左右の電圧降下を少なくし、均一な温度分布を得るためには、接続点の幅方向の辺の長さW4を電極の幅W3と等しくし、接続点の電極方向の辺の長さL3は極力小さくし、W3に比べ1/10以下とした方がよいことが分かる。 ここで、下層電極の接続点の抵抗値計算の幅ΔLとして印刷精度0.02cmを設定しているので、 その幅の分を誤差として加え、 接続点の電極長手方向の辺の長さL3は、0.02+2・ΔL=0.06cmとなる。結論として、電極幅0.5cmに比べ略々1/5以下にすることが望ましい。図15に実施例5におけるおおよその接続点の最適な平面形状を示す。  As can be seen from FIGS. 13 and 14, in order to reduce the left and right voltage drop at the electrode connection point and obtain a uniform temperature distribution, the side length W4 in the width direction of the connection point is equal to the electrode width W3. In addition, it can be seen that the length L3 of the connection point in the electrode direction should be as small as possible, and 1/10 or less as compared with W3. Here, since the printing accuracy of 0.02 cm is set as the resistance value calculation width ΔL of the connection point of the lower layer electrode, the length L3 of the side of the connection point in the electrode longitudinal direction is added as an error. 0.02 + 2 · ΔL = 0.06 cm. In conclusion, it is desirable that the electrode width is approximately 1/5 or less compared to the electrode width of 0.5 cm. FIG. 15 shows an optimum planar shape of the approximate connection point in the fifth embodiment.

実施例3、4のように、上側の電極と下側の電極の中央に接続点がある場合には、本考察の結果のような縦長の長方形の接続点形状とした方がよいが、実施例1、2のように、接続点が中央ではない場合にはこの限りではない。ただし、いずれの実施例においても、接続点の幅方向の辺の長さW4と電極の幅W3は誤差の範囲で一致している方がよい。  If there is a connection point at the center of the upper electrode and the lower electrode as in Examples 3 and 4, it is better to use a vertically long rectangular connection point shape as a result of this consideration, This is not the case when the connection point is not the center as in Examples 1 and 2. However, in any of the embodiments, it is preferable that the length W4 of the side in the width direction of the connection point and the width W3 of the electrode coincide within an error range.

産業上の利用の可能性Industrial applicability

恒温下で使う計測機のディスプレイの温度制御装置、カメラやビデオ機器および携帯電話における液晶ディスプレイの温度制御装置、新薬開発での加温水溶液内での錠剤溶解過程の観察装置や治療における点滴の加温装置等に適応の可能性がある。  Temperature control device for display of measuring instrument used under constant temperature, temperature control device for liquid crystal display in camera, video equipment and mobile phone, observation device for tablet dissolution process in heated aqueous solution in new drug development and addition of infusion in treatment There is a possibility of adaptation to temperature devices.

10 電極
11 上層電極
12 下層電極
20 電源接続端子
30 透明導電膜
40 高分子基材
50 高温領域
60 接続点
61 上側接続点
62 下側接続点
63 拡大した接続点
64 中心線
70 絶縁層(レジスト)
71 第5の実施例の絶縁層
80 斜め電流路
90 導電膜除去溝
DESCRIPTION OF SYMBOLS 10 Electrode 11 Upper layer electrode 12 Lower layer electrode 20 Power supply connection terminal 30 Transparent conductive film 40 Polymer substrate 50 High temperature region 60 Connection point 61 Upper connection point 62 Lower connection point 63 Expanded connection point 64 Center line 70 Insulating layer (resist)
71 Insulating layer 80 of fifth embodiment Diagonal current path 90 Conductive film removal groove

S1 右下側低温領域
S2 左上側低温領域
S3 上部連続部
S4 下部連続部
L 電極長手方向の接続点の長さ
L1 溝長さ
L2 導電膜除去溝の長さ
L3 接続点の電極長手方向の辺の長さ
ΔL 接続点の下層電極の抵抗値計算の幅
ρ0 電極の固有抵抗
R0 透明導電膜のピッチ幅での電極間距離の抵抗値
RL 接続点縁部の下層電極に電流が流れ込む抵抗
Rn n番目の導電膜除去溝に接するピッチ幅当り電極間距離の透明導電膜の抵抗値
Rn+1 n+1番目の導電膜除去溝に接するピッチ幅当り電極間距離の透明導電膜の抵抗値
Rp 電極の長手方向のピッチ長さの抵抗値
Rw 接続点の電極電流路の抵抗値
Rw1 接続点の電極電流路の1層だけの抵抗値(幅:W3−W4)
Rw2 接続点の電極電流路の2層の抵抗値(幅:W4)
t 電極の厚み
W 接続点の幅
W0 導電膜除去溝の並びピッチ
W1 溝幅
W3 電極の幅
W4 接続点の幅
Wn n番目の導電膜除去溝の幅
Wn+1 n+1番目の導電膜除去溝の幅
S1 Lower right side low temperature region S2 Upper left side low temperature region S3 Upper continuous portion S4 Lower continuous portion L Length of connection point L1 in the longitudinal direction of the electrode L1 Length of groove L2 Length of the conductive film removal groove L3 Side of the connection point in the longitudinal direction of the electrode Length ΔL Width of calculation of resistance value of lower layer electrode at connection point ρ0 Specific resistance of electrode R0 Resistance value of distance between electrodes at pitch width of transparent conductive film RL Resistance at which current flows into lower layer electrode of connection point edge Rn n The resistance value Rn + 1 of the transparent conductive film at the distance between the electrodes per pitch width in contact with the first conductive film removal groove The resistance value Rp of the transparent conductive film at the distance between the electrodes per pitch width in contact with the nth conductive film removal groove Rp Resistance value Rw of pitch length Resistance value Rw1 of electrode current path at connection point Resistance value of only one layer of electrode current path at connection point (width: W3-W4)
Rw2 Resistance value of two layers of electrode current path at connection point (width: W4)
t electrode thickness W connection point width W0 conductive film removal groove arrangement pitch W1 groove width W3 electrode width W4 connection point width Wn nth conductive film removal groove width Wn + 1 n + 1th conductive film removal groove width

Claims (6)

透明でフレキシブルな高分子基材上に、ヒーターとなる透明導電膜を形成し、その上に電力を供給するための金属ペーストからなる一対の電極を設けた構造において、その電極の片方を、絶縁層を介して上下2層となし、電力を供給する端子から最も遠い端部付近に上下2層の電気的導通を可能にする接続点を有することを特徴とする透明導電膜フィルムヒーター。  In a structure in which a transparent conductive film to be a heater is formed on a transparent and flexible polymer substrate, and a pair of electrodes made of a metal paste for supplying power is provided thereon, one of the electrodes is insulated. A transparent conductive film heater having two upper and lower layers through layers and having a connection point that enables electrical conduction between the upper and lower layers in the vicinity of the end farthest from the terminal for supplying power. 透明導電膜に、一対の電極の長手方向に垂直に、幅が製作精度より広く長さが一対の電極間距離にほぼ等しいスリット状の導電膜除去溝を等間隔あるいは不等間隔に設けたことを特徴とする請求項1に記載の透明導電膜フィルムヒーター。  The transparent conductive film is provided with slit-like conductive film removal grooves at equal or non-uniform intervals perpendicular to the longitudinal direction of the pair of electrodes and having a width larger than the manufacturing accuracy and approximately equal to the distance between the pair of electrodes. The transparent conductive film film heater according to claim 1. 透明でフレキシブルな高分子基材上に、ヒーターとなる透明導電膜を形成し、その上に電力を供給するための金属ペーストからなる一対の電極を設けた構造において、一対の電極の両方とも絶縁層を介して上下2層となし、その電極のほぼ中央にそれぞれ電気的導通を可能にする接続点を設けたことを特徴とする透明導電膜フィルムヒーター。  In a structure in which a transparent conductive film to be a heater is formed on a transparent and flexible polymer base material and a pair of electrodes made of a metal paste for supplying power is provided thereon, both of the pair of electrodes are insulated. A transparent conductive film heater having two upper and lower layers through layers, and a connection point that enables electrical conduction in each of the electrodes. 一対の電極の中央に設けられた接続点の中心を結ぶ直線を中心線とし、その中心線から離れるに従い溝幅が順次狭くなり、溝と溝の幅が等間隔あるいは不等間隔で、電極の長手方向と垂直な導電膜除去溝を設けたことを特徴とする請求項3に記載の透明導電膜フィルムヒーター。  The straight line connecting the centers of the connection points provided at the center of the pair of electrodes is set as the center line, and the groove width gradually decreases as the distance from the center line increases, and the width of the groove is equal or uneven. 4. The transparent conductive film heater according to claim 3, further comprising a conductive film removal groove perpendicular to the longitudinal direction. 上下に延びる中心線上にある導電膜除去溝を1番目とし、中心線から離れるに従い左右に順番に溝の番号を付け、n番目の溝の溝幅をWn、n+1番目の溝の溝幅をWn+1とし、1ピッチの幅をW0、一層の電極の長手方向のピッチ長さの抵抗値をRp、ピッチ幅で電極間距離の透明導電膜の抵抗値をR0とすると、
Wn−Wn+1=W0・Rp/R0
なる関係が成り立つような導電膜除去溝の溝幅の構造であることを特徴とする請求項4に記載の透明導電膜フィルムヒーター。
The conductive film removal groove on the center line extending in the vertical direction is the first, and the groove numbers are sequentially assigned to the left and right as the distance from the center line increases. The groove width of the nth groove is Wn, and the groove width of the (n + 1) th groove is Wn + 1. When the width of one pitch is W0, the resistance value of the pitch length in the longitudinal direction of one electrode is Rp, and the resistance value of the transparent conductive film having the pitch width and the distance between the electrodes is R0,
Wn−Wn + 1 = W0 · Rp / R0
The transparent conductive film heater according to claim 4, wherein the conductive film removal groove has a groove width structure that satisfies the following relationship.
一対の電極の幅をW3とし、電極の中央に設けられた長方形の接続点の電極幅方向の辺の長さをW4、 電極長手方向の辺の長さをL3とすると、略々 W4=W3 であり、L3≦(1/5)・W3 であることを特徴とする請求項3、4、5に記載の透明導電膜フィルムヒーター。  When the width of the pair of electrodes is W3, the length of the side in the electrode width direction of the rectangular connection point provided at the center of the electrode is W4, and the length of the side in the electrode longitudinal direction is L3, W4 = W3 The transparent conductive film heater according to claim 3, 4, or 5, wherein L3 ≦ (1/5) · W3.
JP2010098269A 2010-04-06 2010-04-06 Transparent conductive film heater with uniform temperature distribution structure Expired - Fee Related JP4947448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010098269A JP4947448B2 (en) 2010-04-06 2010-04-06 Transparent conductive film heater with uniform temperature distribution structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010098269A JP4947448B2 (en) 2010-04-06 2010-04-06 Transparent conductive film heater with uniform temperature distribution structure

Publications (2)

Publication Number Publication Date
JP2011222461A true JP2011222461A (en) 2011-11-04
JP4947448B2 JP4947448B2 (en) 2012-06-06

Family

ID=45039154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010098269A Expired - Fee Related JP4947448B2 (en) 2010-04-06 2010-04-06 Transparent conductive film heater with uniform temperature distribution structure

Country Status (1)

Country Link
JP (1) JP4947448B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351298A (en) * 2018-10-09 2019-02-19 浙江工业大学 A kind of discharge reactor and its application in methane or ethylene conversion
CN110262110A (en) * 2019-07-16 2019-09-20 中航华东光电有限公司 Uniformly heated abnormity LCD MODULE
EP3654732A1 (en) 2018-11-19 2020-05-20 Toyota Jidosha Kabushiki Kaisha Heating apparatus for window glass of vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353486A (en) * 1989-07-19 1991-03-07 Matsushita Electric Works Ltd Heating material and electrode for heating material
JPH03107123A (en) * 1989-09-21 1991-05-07 Canon Inc Panel heater
JPH08222355A (en) * 1995-02-13 1996-08-30 Nok Corp Planar heating element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353486A (en) * 1989-07-19 1991-03-07 Matsushita Electric Works Ltd Heating material and electrode for heating material
JPH03107123A (en) * 1989-09-21 1991-05-07 Canon Inc Panel heater
JPH08222355A (en) * 1995-02-13 1996-08-30 Nok Corp Planar heating element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109351298A (en) * 2018-10-09 2019-02-19 浙江工业大学 A kind of discharge reactor and its application in methane or ethylene conversion
EP3654732A1 (en) 2018-11-19 2020-05-20 Toyota Jidosha Kabushiki Kaisha Heating apparatus for window glass of vehicle
CN110262110A (en) * 2019-07-16 2019-09-20 中航华东光电有限公司 Uniformly heated abnormity LCD MODULE

Also Published As

Publication number Publication date
JP4947448B2 (en) 2012-06-06

Similar Documents

Publication Publication Date Title
JP5467449B2 (en) Lead wire wiring device, image display device, and lead wire wiring device manufacturing method
CN101131495A (en) Manufacturing of flexible display device panel
JP4947448B2 (en) Transparent conductive film heater with uniform temperature distribution structure
CN102566165B (en) Array substrate, array substrate production method and liquid crystal display
CN105051908B (en) Thin film transistor (TFT) array
TW201825714A (en) Producing method of mask and mother plate using therefor
KR101187744B1 (en) Liquid crystal display, method of manufacturing and apparatus of manufacturing the same
US9811225B2 (en) Touchscreen having shaped insulation part and method for manufacturing same
CN109065549B (en) Array substrate, manufacturing method thereof and display panel
CN109545799B (en) Display panel, manufacturing method and display device
JP2017017156A (en) Wiring board, thermal head, and method for producing wiring board
JP2007150088A (en) Wiring board and manufacturing method thereof
CN112770481B (en) Connection structure comprising a circuit body and a conductive body
US8742882B2 (en) Touch panel
US11414776B2 (en) Electrochemical processing device and method for operating electrochemical processing device
EP3441856A1 (en) Touch sensor and touch screen panel using same
US20170060325A1 (en) Display panel, touch display device and wire structure
JP2007304512A (en) Display apparatus and manufacturing method of the same
JP7195917B2 (en) Touch panel production method, wiring pattern production method, touch panel and wiring pattern
CN110690358A (en) Display panel, display device and manufacturing method of display panel
JP5656094B2 (en) Leader wiring device and image display device
KR101230318B1 (en) Method of manufacturing liquid crystal display
CN112534964A (en) Heater and article with heater
JP2019219773A (en) Touch panel sensor precursor and method of manufacturing touch panel sensor
JP2018144496A (en) Manufacturing method of printed wiring

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees