JP2011222186A - Plasma light source and plasma light generating method - Google Patents

Plasma light source and plasma light generating method Download PDF

Info

Publication number
JP2011222186A
JP2011222186A JP2010087831A JP2010087831A JP2011222186A JP 2011222186 A JP2011222186 A JP 2011222186A JP 2010087831 A JP2010087831 A JP 2010087831A JP 2010087831 A JP2010087831 A JP 2010087831A JP 2011222186 A JP2011222186 A JP 2011222186A
Authority
JP
Japan
Prior art keywords
plasma
electrode
discharge
electrodes
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010087831A
Other languages
Japanese (ja)
Other versions
JP5590305B2 (en
Inventor
Hajime Kuwabara
一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010087831A priority Critical patent/JP5590305B2/en
Publication of JP2011222186A publication Critical patent/JP2011222186A/en
Application granted granted Critical
Publication of JP5590305B2 publication Critical patent/JP5590305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma light source that (1) stabilizes plasma light of EUV emission for a long time, (2) has a large emission solid angle,(3) continuously supplies a plasma medium,(4) increases output and reduces discharge jitters, and (5) prevents impurities from being in plasma to enhance conversion efficiency.SOLUTION: The plasma light source includes a pair of coaxial electrodes 10 whose center electrodes have their axially inner ends arranged opposite each other, a discharge environment holding device 20 which holds temperature and pressure in the pair of coaxial electrodes, and a voltage application device 30 which applies discharging voltages to the respective coaxial electrodes. Insulating members 16 are arranged in contact with external surfaces of the center electrodes 12 or internal surfaces of guide electrodes 14 symmetrically with respect to an axis Z-Z, and have a plurality of grooves through which a plasma metal of liquid metal seeps out. A tubular discharge is generated between the coaxial electrodes by surface discharges between the center electrodes and guide electrodes that are generated with the plasma medium of the liquid metal supplied through the grooves as discharge start pins, thereby confining plasma in the axial direction.

Description

本発明は、EUV放射のためのプラズマ光源とプラズマ光発生方法に関する。   The present invention relates to a plasma light source and a method for generating plasma light for EUV radiation.

次世代半導体の微細加工のために極端紫外光源を用いるリソグラフィが期待されている。リソグラフィとは回路パターンの描かれたマスクを通して光やビームをシリコン基盤上に縮小投影し、レジスト材料を感光させることで電子回路を形成する技術である。光リソグラフィで形成される回路の最小加工寸法は基本的には光源の波長に依存している。従って、次世代の半導体開発には光源の短波長化が必須であり、この光源開発に向けた研究が進められている。   Lithography using an extreme ultraviolet light source is expected for fine processing of next-generation semiconductors. Lithography is a technique for forming an electronic circuit by exposing a resist material to light and a beam by reducing and projecting them onto a silicon substrate through a mask on which a circuit pattern is drawn. The minimum processing dimension of a circuit formed by photolithography basically depends on the wavelength of the light source. Therefore, it is essential to shorten the wavelength of the light source for next-generation semiconductor development, and research for this light source development is underway.

次世代リソグラフィ光源として最も有力視されているのが、極端紫外光源(EUV:Extreme Ultra Violet)であり、およそ1〜100nmの波長領域の光を意味する。この領域の光はあらゆる物質に対し吸収率が高く、レンズ等の透過型光学系を利用することができないので、反射型光学系を用いることになる。また極端紫外光領域の光学系は非常に開発が困難で、限られた波長にしか反射特性を示さない。   The most promising next generation lithography light source is an extreme ultraviolet light source (EUV: Extreme Ultra Violet), which means light in the wavelength region of approximately 1 to 100 nm. The light in this region has a high absorptance with respect to all substances, and a transmissive optical system such as a lens cannot be used. Therefore, a reflective optical system is used. In addition, the optical system in the extreme ultraviolet region is very difficult to develop, and exhibits a reflection characteristic only at a limited wavelength.

現在、13.5nmに感度を有するMo/Si多層膜反射鏡が開発されており、この波長の光と反射鏡を組み合わせたリソグラフィ技術が開発されれば30nm以下の加工寸法を実現できると予測されている。さらなる微細加工技術の実現のために、波長13.5nmのリソグラフィ光源の開発が急務であり、高エネルギー密度プラズマからの輻射光が注目されている。   Currently, a Mo / Si multilayer reflector having a sensitivity of 13.5 nm has been developed, and it is expected that a processing dimension of 30 nm or less can be realized if a lithography technique combining light of this wavelength and the reflector is developed. ing. Development of a lithography light source with a wavelength of 13.5 nm is urgently required to realize further microfabrication technology, and radiation from a high energy density plasma has attracted attention.

光源プラズマ生成はレーザー照射方式(LPP:Laser Produced Plasma)とパルスパワー技術によって駆動されるガス放電方式(DPP:Discharge Produced Plasma)に大別できる。ガス放電方式(DPP)は、投入した電力が直接プラズマエネルギーに変換されるので、LPPに比べて変換効率で優位であるうえに、装置が小型で低コストという利点がある。   The light source plasma generation can be broadly classified into a laser irradiation method (LPP: Laser Produced Plasma) and a gas discharge method (DPP: Discharge Produced Plasma) driven by a pulse power technique. The gas discharge method (DPP) is advantageous in that the input power is directly converted into plasma energy, so that the conversion efficiency is superior to that of LPP, and the apparatus is small in size and low in cost.

プラズマから有効波長領域(in−band)の放射光への変換効率(Plasma Conversion E.ciency:P.C.E)は次式(1)のように表される。
P.C.E=(Pinband×τ)/E・・・(1)
ここで、Pinbandは有効波長領域のEUV放射光出力、τは放射持続時間、Eはプラズマに投入されたエネルギーである。
The conversion efficiency (plasma conversion E. science: PCE) from the plasma to the radiation in the effective wavelength region (in-band) is expressed by the following equation (1).
P. C. E = (P inband × τ) / E (1)
Here, P inband is the EUV radiation output in the effective wavelength region, τ is the radiation duration, and E is the energy input to the plasma.

有効波長領域に放射スペクトルを持つ元素としては、Xe,Sn,Li等が代表的であり、実験の容易さ、取り扱いやすさから開発初期はXeを中心に研究が進められてきた。しかし、近年では高出力、高効率を理由にSnが注目を浴び研究が進められている。また、有効波長領域にちょうどLyman−α共鳴線を有する水素様Liイオン(Li2+)に対する期待も高まってきている。 Xe, Sn, Li and the like are typical elements having a radiation spectrum in the effective wavelength region, and research has been progressed mainly on Xe in the early stages of development because of ease of experimentation and ease of handling. However, in recent years, Sn has been attracting attention and research is being promoted because of its high output and high efficiency. In addition, expectation for hydrogen-like Li ions (Li 2+ ) having just a Lyman-α resonance line in the effective wavelength region is increasing.

高温高密度プラズマからの放射スペクトルは、基本的にはターゲット物質の温度と密度によって決まり、プラズマの原子過程を計算した結果によると、EUV放射領域のプラズマにするにはXe,Snの場合で電子温度、電子密度がそれぞれ数10eV、1018cm−3程度,Liの場合で20eV、1018cm−3程度が最適とされている。 The radiation spectrum from a high-temperature, high-density plasma is basically determined by the temperature and density of the target material. According to the calculation result of the atomic process of the plasma, the electron in the case of Xe, Sn is used to make the plasma in the EUV radiation region. The optimum temperature and electron density are several tens of eV and about 10 18 cm −3 , respectively, and in the case of Li, about 20 eV and 10 18 cm −3 are optimum.

なお、上述したプラズマ光源は、非特許文献1,2および特許文献1,2に開示されている。   The plasma light source described above is disclosed in Non-Patent Documents 1 and 2 and Patent Documents 1 and 2.

佐藤弘人、他、「リソグラフィ用放電プラズマEUV光源」、OQD−08−28Hiroto Sato et al., “Discharge Plasma EUV Light Source for Lithography”, OQD-08-28 Jeroen Jonkers,“High power extreme ultra−violet(EUV) light sources for future lithography”,Plasma Sources Science and Technology, 15(2006) S8−S16Jeroen Jonkers, “High power extreme-violet (EUV) light sources for future lithography”, Plasma Sources Science and Technology 16 (Science 16)

特表2000−509190号公報、「X線放射線または極紫外線放射線を発生するための方法および装置」JP 2000-509190 A, “Method and apparatus for generating X-ray radiation or extreme ultraviolet radiation” 特開2004−226244号公報、「極端紫外光源および半導体露光装置」Japanese Patent Application Laid-Open No. 2004-226244, “Extreme Ultraviolet Light Source and Semiconductor Exposure Apparatus”

EUVリソグラフィ光源には、高い平均出力、微小な光源サイズ、飛散粒子(デブリ)が少ないこと等が要求される。現状では、EUV発光量が要求出力に対して極めて低く、高出力化が大きな課題の一つであるが、一方で高出力化のために入力エネルギーを大きくすると熱負荷によるダメージがプラズマ生成装置や光学系の寿命の低下を招いてしまう。従って、高EUV出力と低い熱負荷の双方を満たすためには、高いエネルギー変換効率が必要不可欠である。   An EUV lithography light source is required to have a high average output, a small light source size, a small amount of scattered particles (debris), and the like. At present, the EUV emission amount is extremely low with respect to the required output, and increasing the output is one of the major issues. On the other hand, if the input energy is increased for increasing the output, the damage caused by the thermal load will be caused by the plasma generator and The lifetime of the optical system is reduced. Therefore, high energy conversion efficiency is indispensable to satisfy both high EUV output and low heat load.

プラズマ形成初期には加熱や電離に多くのエネルギーを消費するうえに、EUVを放射するような高温高密度状態のプラズマは一般的に急速に膨張してしまうため、放射持続時間τが極端に短い。従って、変換効率を改善するためには、プラズマをEUV放射のために適した高温高密度状態で長時間(μsecオーダーで)維持することが重要になる。   In the initial stage of plasma formation, in addition to consuming a lot of energy for heating and ionization, high-temperature and high-density plasma that emits EUV generally expands rapidly, so the radiation duration τ is extremely short. . Therefore, in order to improve the conversion efficiency, it is important to maintain the plasma in a high temperature and high density state suitable for EUV radiation for a long time (on the order of μsec).

SnやLi等の常温固体の媒体はスペクトル変換効率が高い反面、プラズマ生成に溶融、蒸発等の相変化を伴うため、中性粒子等のデブリ(放電に伴う派生物)による装置内汚染の影響が大きくなる。そのため、ターゲット供給、回収システム強化も同様に要求される。   Room-temperature solid media such as Sn and Li have high spectral conversion efficiency, but the plasma generation is accompanied by phase changes such as melting and evaporation, so the effect of contamination inside the device due to debris (derived from discharge) such as neutral particles Becomes larger. Therefore, the target supply and recovery system must be strengthened as well.

現在の一般的なEUVプラズマ光源の放射時間は100nsec程度であり出力が極端に足りない。産業応用のため高変換効率と高平均出力を両立させる為には1ショットで数μsec(少なくとも1μsec以上)のEUV放射時間を達成する必要がある。つまり、高い変換効率を持つプラズマ光源を開発するためには、それぞれのターゲットに適した温度密度状態のプラズマを1μsec以上拘束し、安定したEUV放射を達成する必要がある。   The radiation time of the current general EUV plasma light source is about 100 nsec, and the output is extremely insufficient. In order to achieve both high conversion efficiency and high average output for industrial applications, it is necessary to achieve an EUV radiation time of several μsec (at least 1 μsec or more) in one shot. In other words, in order to develop a plasma light source having high conversion efficiency, it is necessary to restrain plasma in a temperature density state suitable for each target for 1 μsec or more to achieve stable EUV radiation.

さらに、従来のキャピラリー放電では、プラズマがキャピラリー内に閉じ込められてしまうため、有効な放射立体角が小さいという欠点もあった。   Furthermore, the conventional capillary discharge has a drawback that the effective radiation solid angle is small because the plasma is confined in the capillary.

また、ガス放電方式(DPP)において、電極間に放電を安定して発生させるには、放電電圧印加のタイミングに同期して、放電開始位置にレーザー光を照射することにより、放電ジッターを低減することができる。また、特に、レーザー光の多点照射により対称放電を発生させることができる。その反面、装置構造が複雑となり、装置コストが大幅に上昇する問題点がある。
更に、レーザー光の多点照射の場合、多数のレーザー光学系を設置するため、発生するEUV光を集光できる有効立体角が小さくなり、EUV光の利用効率が低下する問題点がある。
Further, in the gas discharge method (DPP), in order to stably generate a discharge between electrodes, discharge jitter is reduced by irradiating a laser beam to a discharge start position in synchronization with the timing of applying a discharge voltage. be able to. In particular, symmetrical discharge can be generated by multi-point irradiation with laser light. On the other hand, there is a problem that the device structure is complicated and the device cost is significantly increased.
Further, in the case of multi-point irradiation with laser light, since a large number of laser optical systems are installed, there is a problem that the effective solid angle at which the generated EUV light can be condensed becomes small, and the utilization efficiency of EUV light is reduced.

一方、EUV光の出力を高めるために、放電を複数の箇所で同時に発生させ、かつ放電ジッターを低減する手段として、放電開始点となる複数の金属ピンを対称に配置することが考えられる。しかし、この手段では、放電による金属ピンの損傷が激しく、長時間安定して動作できない。さらに、この手段では、蒸発した金属ピン物質が光源プラズマ中に不純物として混入するため、13.5nm近傍の有効なEUV光への変換効率が低下する問題点がある。   On the other hand, in order to increase the output of EUV light, it is conceivable to arrange a plurality of metal pins as discharge starting points symmetrically as a means for simultaneously generating discharge at a plurality of locations and reducing discharge jitter. However, with this means, the metal pin is severely damaged by electric discharge and cannot operate stably for a long time. Further, this means has a problem that the efficiency of conversion to effective EUV light in the vicinity of 13.5 nm is lowered because the evaporated metal pin substance is mixed as impurities in the light source plasma.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、EUV放射のためのプラズマ光を長時間(μsecオーダーで)安定して発生させることができ、発生したプラズマ光の有効な放射立体角が大きくでき、プラズマ媒体を連続して供給することができ、EUV光の出力を高めかつ放電ジッターを低減することができ、光源プラズマ中に混入する不純物を防止して有効なEUV光への変換効率を高めることができるプラズマ光源とプラズマ光発生方法を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to stably generate plasma light for EUV radiation for a long time (on the order of μsec), to increase the effective solid angle of the generated plasma light, and to make the plasma medium continuous. Plasma light source that can increase the output of EUV light, reduce discharge jitter, prevent impurities mixed in the light source plasma and increase the efficiency of conversion to effective EUV light And providing a method for generating plasma light.

本発明によれば、単一の軸線上に延びる棒状の中心電極と、該中心電極を一定の間隔を隔てて囲む管状のガイド電極と、前記中心電極とガイド電極の軸方向外端部に位置しその間を絶縁するリング状の絶縁部材とからなり、前記中心電極の軸方向内端部が間隔を隔てて対向配置された1対の同軸状電極と、
前記1対の同軸状電極内をプラズマ発生に適した温度及び圧力に保持する放電環境保持装置と、
前記各同軸状電極に極性を反転させた放電電圧を印加する電圧印加装置と、を備え、
前記絶縁部材は、前記中心電極の外面又はガイド電極の内面に密着し、液体金属のプラズマ媒体を軸方向内端面まで滲み出させる複数の溝を有している、ことを特徴とするプラズマ光源が提供される。
According to the present invention, a rod-shaped center electrode extending on a single axis, a tubular guide electrode that surrounds the center electrode at a predetermined interval, and an axially outer end portion of the center electrode and the guide electrode are positioned. A pair of coaxial electrodes, each of which is formed by a ring-shaped insulating member that insulates between them, wherein the inner ends in the axial direction of the central electrode are opposed to each other with a gap therebetween,
A discharge environment holding device for holding the inside of the pair of coaxial electrodes at a temperature and pressure suitable for plasma generation;
A voltage applying device that applies a discharge voltage with the polarity reversed to each of the coaxial electrodes, and
The plasma light source is characterized in that the insulating member has a plurality of grooves that are in close contact with the outer surface of the center electrode or the inner surface of the guide electrode and ooze the liquid metal plasma medium to the inner end surface in the axial direction. Provided.

本発明の好ましい実施形態によれば、前記絶縁部材は、前記中心電極及びガイド電極と電気的に絶縁されその軸方向内端面までプラズマ媒体を供給するプラズマ媒体供給部と、
前記プラズマ媒体供給部と前記中心電極及びガイド電極の間を絶縁する内側絶縁管及び外側絶縁管を備え、
前記複数の溝は、前記内側絶縁管の内面又は外側絶縁管の外面に前記単一の軸線に対して対称に配置されている。
According to a preferred embodiment of the present invention, the insulating member is electrically insulated from the center electrode and the guide electrode, and a plasma medium supply unit that supplies a plasma medium to an inner end surface in the axial direction thereof;
An inner insulating tube and an outer insulating tube that insulate between the plasma medium supply unit and the center electrode and the guide electrode;
The plurality of grooves are arranged symmetrically with respect to the single axis on the inner surface of the inner insulating tube or the outer surface of the outer insulating tube.

また前記プラズマ媒体はリチウム又はスズである、ことが好ましい。   The plasma medium is preferably lithium or tin.

また本発明によれば、(A) 単一の軸線上に延びる棒状の中心電極と、該中心電極を一定の間隔を隔てて囲む管状のガイド電極と、前記中心電極とガイド電極の軸方向外端部に位置しその間を絶縁するリング状の絶縁部材とからなり、前記中心電極の軸方向内端部が間隔を隔てて対向配置された1対の同軸状電極とを準備し、
かつ前記絶縁部材は、前記中心電極の外面又はガイド電極の内面に密着し、液体金属のプラズマ媒体を軸方向内端面まで滲み出させる複数の溝を有しており、
(B) 前記1対の同軸状電極内をプラズマ発生に適した温度及び圧力に保持し、
(C) 各同軸状電極の中心電極とガイド電極間に極性を反転させた放電電圧を印加して、1対の同軸状電極にそれぞれ、前記溝を介して供給された液体金属のプラズマ媒体を放電開始ピンとする中心電極とガイド電極間の面状放電を発生させ、該面状放電により、各同軸状電極の対向する中間位置に単一のプラズマを形成し、
(D) 次いで前記面状放電を1対の同軸状電極間の管状放電に繋ぎ換えて前記プラズマを軸方向に封じ込め、
(E) プラズマの発光エネルギーに相当するエネルギーを各同軸状電極から供給して同軸状電極間にプラズマ光を発生させる、ことを特徴とするプラズマ光発生方法が提供される。
Further, according to the present invention, (A) a rod-shaped center electrode extending on a single axis, a tubular guide electrode surrounding the center electrode at a predetermined interval, and an axially outside of the center electrode and the guide electrode A ring-shaped insulating member that is located at an end portion and insulates between them, and prepares a pair of coaxial electrodes in which the inner end portions in the axial direction of the center electrode are arranged to face each other with a gap therebetween,
The insulating member has a plurality of grooves that are in close contact with the outer surface of the center electrode or the inner surface of the guide electrode and ooze the liquid metal plasma medium to the inner end surface in the axial direction.
(B) maintaining the temperature and pressure suitable for plasma generation in the pair of coaxial electrodes;
(C) Applying a discharge voltage with the polarity reversed between the center electrode and the guide electrode of each coaxial electrode, and supplying a pair of coaxial electrodes to the pair of coaxial electrodes via the groove, respectively. A sheet discharge is generated between the center electrode and the guide electrode serving as a discharge start pin, and the sheet discharge forms a single plasma at the opposite intermediate position of each coaxial electrode,
(D) The planar discharge is then switched to a tubular discharge between a pair of coaxial electrodes to contain the plasma in the axial direction,
(E) A plasma light generating method is provided, wherein plasma light is generated between the coaxial electrodes by supplying energy corresponding to plasma emission energy from the coaxial electrodes.

上記本発明の装置及び方法によれば、中心電極とガイド電極の間の絶縁部材が、中心電極の外面又はガイド電極の内面に密着した複数の溝を有するので、この複数の溝を介して毛細管現象により液体金属のプラズマ媒体を軸方向内端面まで滲み出させることができる。
軸方向内端面まで滲み出した液体金属は中心電極又はガイド電極と同電位であるので、中心電極とガイド電極間に放電電圧を印加したとき、複数の液体金属(プラズマ媒体)が放電開始ピンとして機能する。
According to the apparatus and method of the present invention, the insulating member between the center electrode and the guide electrode has a plurality of grooves that are in close contact with the outer surface of the center electrode or the inner surface of the guide electrode. Due to the phenomenon, the liquid metal plasma medium can ooze out to the inner end face in the axial direction.
Since the liquid metal that has oozed to the inner end face in the axial direction has the same potential as the center electrode or the guide electrode, when a discharge voltage is applied between the center electrode and the guide electrode, a plurality of liquid metals (plasma media) serve as discharge start pins. Function.

また、複数の溝は、前記単一の軸線に対して対称に配置されているので、中心電極外周部(又はガイド電極内周部)に対称な配置で滲み出した液体金属(リチウム又はスズ)は、対称な配置の複数の放電開始ピンとして作用し、対称な面状放電を安定に行うことができる。   Further, since the plurality of grooves are arranged symmetrically with respect to the single axis, the liquid metal (lithium or tin) oozed out in a symmetrical arrangement on the outer peripheral portion of the center electrode (or the inner peripheral portion of the guide electrode) Acts as a plurality of symmetrically arranged discharge start pins, and can stably perform symmetric planar discharge.

さらに、液体金属は複数の溝を介して連続的に供給されるため、放電開始ピンとして作用しても消耗せず、高繰返し、長時間運転が可能である。   Furthermore, since the liquid metal is continuously supplied through a plurality of grooves, it does not wear even if it acts as a discharge start pin, and can be operated repeatedly for a long time.

また、液体金属は放電により蒸発するが、蒸発金属自体がプラズマ媒体(リチウム又はスズ)であるため、プラズマ媒体に不純物が混入するおそれは無い。   Further, although the liquid metal evaporates due to electric discharge, since the evaporated metal itself is a plasma medium (lithium or tin), there is no possibility that impurities are mixed into the plasma medium.

さらに、同軸状電極間にプラズマ光を発生させ、その発光点のまわりに特別な機器を必要としないので、レーザー光の多点照射の場合と比較して、発生するEUV光を集光できる有効立体角を大きくでき、EUV光の利用効率を高めることができる。   Furthermore, plasma light is generated between the coaxial electrodes, and no special equipment is required around the light emitting point. Therefore, compared to multi-point irradiation with laser light, the generated EUV light can be collected more effectively. The solid angle can be increased, and the utilization efficiency of EUV light can be increased.

従って、発生したプラズマ光の有効な放射立体角を大きくでき、EUV光の出力を高めかつ放電ジッターを低減することができ、光源プラズマ中に混入する不純物を防止して有効なEUV光への変換効率を高めることができる。   Therefore, the effective radiation solid angle of the generated plasma light can be increased, the EUV light output can be increased and the discharge jitter can be reduced, and impurities mixed in the light source plasma can be prevented and converted into effective EUV light. Efficiency can be increased.

また、中心電極及びガイド電極と電気的に絶縁されたプラズマ媒体供給部を備えて、その軸方向内端面までプラズマ媒体を供給するので、EUV放射のためのプラズマ光を長時間(μsecオーダーで)安定して発生させることができ、プラズマ媒体を連続して供給することができる。
In addition, a plasma medium supply unit that is electrically insulated from the center electrode and the guide electrode is provided, and the plasma medium is supplied to the inner end face in the axial direction. Therefore, plasma light for EUV radiation is emitted for a long time (on the order of μsec). It can generate stably and can supply a plasma medium continuously.

本発明によるプラズマ光源の全体構成図である。It is a whole block diagram of the plasma light source by this invention. 図1における同軸状電極の構成図である。It is a block diagram of the coaxial electrode in FIG. 本発明によるプラズマ光源の作動説明図である。It is operation | movement explanatory drawing of the plasma light source by this invention.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明によるプラズマ光源の全体構成図である。
この図において、本発明のプラズマ光源は、1対の同軸状電極10、放電環境保持装置20、及び電圧印加装置30を備える。
FIG. 1 is an overall configuration diagram of a plasma light source according to the present invention.
In this figure, the plasma light source of the present invention includes a pair of coaxial electrodes 10, a discharge environment holding device 20, and a voltage application device 30.

1対の同軸状電極10は、対称面1を中心として対向配置されている。
各同軸状電極10は、棒状の中心電極12、管状のガイド電極14及びリング状の絶縁部材16からなる。
The pair of coaxial electrodes 10 are disposed opposite to each other with the symmetry plane 1 as the center.
Each coaxial electrode 10 includes a rod-shaped center electrode 12, a tubular guide electrode 14, and a ring-shaped insulating member 16.

棒状の中心電極12は、単一の軸線Z−Z上に延びる導電性の電極である。
この例において、中心電極12の対称面1に対向する端面は、平面であるが、凹穴を設けてもよく、或いは、円弧状でもよい。
The rod-shaped center electrode 12 is a conductive electrode extending on a single axis ZZ.
In this example, the end surface of the center electrode 12 facing the symmetry plane 1 is a flat surface, but may be provided with a concave hole or may be arcuate.

管状のガイド電極14は、中心電極12を一定の間隔を隔てて囲み、その間にプラズマ媒体を保有するようになっている。なお、ガイド電極14の対称面1に対向する端面は、円弧状でも平面でもよい。   The tubular guide electrode 14 surrounds the central electrode 12 with a certain interval, and holds a plasma medium therebetween. The end face of the guide electrode 14 facing the symmetry plane 1 may be arcuate or flat.

リング状の絶縁部材16は、中心電極12とガイド電極14の軸方向外端部に位置し全体として中空円筒形状の電気的絶縁体であり、中心電極12とガイド電極14の間を電気的に絶縁する。   The ring-shaped insulating member 16 is an electrical insulator having a hollow cylindrical shape as a whole located at the axially outer ends of the center electrode 12 and the guide electrode 14, and electrically between the center electrode 12 and the guide electrode 14. Insulate.

上述した1対の同軸状電極10は、各中心電極12が同一の軸線Z−Z上に位置し、かつ中心電極12の軸方向内端部が間隔を隔てて対向配置され、互いに一定の間隔を隔てて対称に位置する。   In the pair of coaxial electrodes 10 described above, the center electrodes 12 are positioned on the same axis ZZ, and the inner ends in the axial direction of the center electrodes 12 are disposed to face each other with a certain distance therebetween. It is located symmetrically.

放電環境保持装置20は、同軸状電極10内をプラズマ発生に適した温度及び圧力に同軸状電極10を保持する。
放電環境保持装置20は、例えば、真空チャンバー、温度調節器、真空装置、及びプラズマ媒体供給装置により構成することができる。なおこの構成は必須ではなく、その他の構成であってもよい。
The discharge environment holding device 20 holds the coaxial electrode 10 at a temperature and pressure suitable for plasma generation in the coaxial electrode 10.
The discharge environment holding device 20 can be constituted by, for example, a vacuum chamber, a temperature controller, a vacuum device, and a plasma medium supply device. This configuration is not essential, and other configurations may be used.

電圧印加装置30は、各同軸状電極10に極性を反転させた放電電圧を印加する。
電圧印加装置30は、この例では、正電圧源32、負電圧源34及びトリガスイッチ36からなる。
正電圧源32は、一方(この例では左側)の同軸状電極10の中心電極12にそのガイド電極14より高い正の放電電圧を印加する。
負電圧源34は、他方(この例では右側)の同軸状電極10の中心電極12にそのガイド電極14より低い負の放電電圧を印加する。
トリガスイッチ36は、正電圧源32と負電圧源34を同時に作動させて、それぞれの同軸状電極12に同時に正負の放電電圧を印加する。
この構成により、本発明のプラズマ光源は、1対の同軸状電極10間に管状放電(後述する)を形成してプラズマを軸方向に封じ込めるようになっている。
The voltage application device 30 applies a discharge voltage with the polarity reversed to each coaxial electrode 10.
In this example, the voltage application device 30 includes a positive voltage source 32, a negative voltage source 34, and a trigger switch 36.
The positive voltage source 32 applies a positive discharge voltage higher than that of the guide electrode 14 to the center electrode 12 of the coaxial electrode 10 on one side (left side in this example).
The negative voltage source 34 applies a negative discharge voltage lower than that of the guide electrode 14 to the center electrode 12 of the other coaxial electrode 10 (right side in this example).
The trigger switch 36 simultaneously activates the positive voltage source 32 and the negative voltage source 34 to apply positive and negative discharge voltages to the respective coaxial electrodes 12 simultaneously.
With this configuration, the plasma light source of the present invention forms a tubular discharge (described later) between the pair of coaxial electrodes 10 to contain the plasma in the axial direction.

図2は、図1における同軸状電極の構成図である。この図において、(A)は、上述した1対の同軸状電極10の一方(左側)のみを示す側面図であり、(B)はそのB−B断面図である。
この図において、絶縁部材16は、中心電極12の外面(又はガイド電極14の内面でもよい)に密着し、単一の軸線Z−Zに対して対称に配置された複数(この例で8本)の溝16aを有する。この溝16aは、液体金属のプラズマ媒体6が毛細管現象を生じる程度に微細であり、液体金属のプラズマ媒体6を軸方向内端面まで毛細管現象により滲み出させるようになっている。
FIG. 2 is a configuration diagram of the coaxial electrode in FIG. In this figure, (A) is a side view showing only one (left side) of the pair of coaxial electrodes 10 described above, and (B) is a BB cross-sectional view thereof.
In this figure, the insulating member 16 is in close contact with the outer surface of the center electrode 12 (or the inner surface of the guide electrode 14), and a plurality (eight in this example) arranged symmetrically with respect to a single axis ZZ. ) Groove 16a. The groove 16a is so fine that the liquid metal plasma medium 6 causes a capillary phenomenon, and the liquid metal plasma medium 6 oozes out to the inner end face in the axial direction by the capillary phenomenon.

図2において、絶縁部材16は、プラズマ媒体供給部16bと内側絶縁管16c及び外側絶縁管16dを備える。   In FIG. 2, the insulating member 16 includes a plasma medium supply unit 16b, an inner insulating tube 16c, and an outer insulating tube 16d.

プラズマ媒体供給部16bは、この例では多孔質セラミックである。また、プラズマ媒体供給部16bの軸方向内端面には主媒体供給装置18を備える。
主媒体供給装置18は、プラズマ媒体供給部16bの軸方向内端面に密着して設けられ、プラズマ媒体供給部16bを通してその軸方向内端面までプラズマ媒体6を供給する。
主媒体供給装置18は、この例ではプラズマ媒体6を内部に保有する主リザーバー18a(例えばルツボ)と、ブラズマ媒体を加熱して液化する主加熱装置18bとからなる。主加熱装置18bは、図示しない電源に連結され、加熱速度を制御できるようになっている。
プラズマ媒体供給部16bの軸方向内端面におけるプラズマ媒体6は、液体又は気体である。
The plasma medium supply part 16b is a porous ceramic in this example. In addition, a main medium supply device 18 is provided on the inner end surface in the axial direction of the plasma medium supply unit 16b.
The main medium supply device 18 is provided in close contact with the inner end surface in the axial direction of the plasma medium supply unit 16b, and supplies the plasma medium 6 to the inner end surface in the axial direction through the plasma medium supply unit 16b.
In this example, the main medium supply device 18 includes a main reservoir 18a (for example, a crucible) that holds the plasma medium 6 therein, and a main heating device 18b that heats and liquefies the plasma medium. The main heating device 18b is connected to a power source (not shown) so that the heating rate can be controlled.
The plasma medium 6 on the inner end surface in the axial direction of the plasma medium supply unit 16b is a liquid or a gas.

内側絶縁管16c及び外側絶縁管16dは、プラズマ媒体供給部16bと中心電極12及びガイド電極14の間を絶縁する。内側絶縁管16c及び外側絶縁管16dは、例えば緻密なセラミックである。   The inner insulating tube 16 c and the outer insulating tube 16 d insulate the plasma medium supply unit 16 b from the center electrode 12 and the guide electrode 14. The inner insulating tube 16c and the outer insulating tube 16d are, for example, dense ceramic.

複数の溝16aは、内側絶縁管16cの内面(又は外側絶縁管16dの外面でもよい)に単一の軸線Z−Zに対して対称に配置されている。また、溝16aの軸方向内端面には補助媒体供給装置19を備える。
補助媒体供給装置19は、溝16aの軸方向内端面に密着して設けられ、溝16aを通してその軸方向内端面までプラズマ媒体6を供給する。
補助媒体供給装置19は、この例ではプラズマ媒体6を内部に保有する補助リザーバー19a(例えばルツボ)と、ブラズマ媒体を加熱して液化する補助加熱装置19bとからなる。補助加熱装置19bは、図示しない電源に連結され、加熱速度を制御できるようになっている。
溝16aの軸方向内端面におけるプラズマ媒体6は、液体である。
The plurality of grooves 16a are arranged symmetrically with respect to a single axis ZZ on the inner surface of the inner insulating tube 16c (or the outer surface of the outer insulating tube 16d). Further, an auxiliary medium supply device 19 is provided on the inner end surface in the axial direction of the groove 16a.
The auxiliary medium supply device 19 is provided in close contact with the inner end face in the axial direction of the groove 16a, and supplies the plasma medium 6 to the inner end face in the axial direction through the groove 16a.
In this example, the auxiliary medium supply device 19 includes an auxiliary reservoir 19a (for example, a crucible) that holds the plasma medium 6 therein, and an auxiliary heating device 19b that heats and liquefies the plasma medium. The auxiliary heating device 19b is connected to a power source (not shown) so that the heating rate can be controlled.
The plasma medium 6 on the inner end surface in the axial direction of the groove 16a is a liquid.

なお、主媒体供給装置18と補助媒体供給装置19は、互いに電気的に絶縁されており、かつ各々独立してプラズマ媒体6を供給できる限りで、異なる構成であってもよい。
また、主媒体供給装置18と補助媒体供給装置19によるプラズマ媒体6は、好ましくは同一のリチウム又はスズである。
The main medium supply device 18 and the auxiliary medium supply device 19 may have different configurations as long as they are electrically insulated from each other and can supply the plasma medium 6 independently.
The plasma medium 6 by the main medium supply device 18 and the auxiliary medium supply device 19 is preferably the same lithium or tin.

図3は、本発明によるプラズマ光源の作動説明図である。この図において、(A)は面状放電の発生時、(B)は面状放電の移動中、(C)はプラズマの形成時、(D)はプラズマ封じ込み磁場の形成時を示している。
以下、この図を参照して、本発明のプラズマ光発生方法を説明する。なおこの図では、放電環境保持装置20と電圧印加装置30は省略する。
FIG. 3 is an operation explanatory view of the plasma light source according to the present invention. In this figure, (A) shows the occurrence of a planar discharge, (B) shows the movement of the planar discharge, (C) shows the formation of plasma, and (D) shows the formation of a plasma confining magnetic field. .
Hereinafter, the plasma light generation method of the present invention will be described with reference to this drawing. In this figure, the discharge environment holding device 20 and the voltage application device 30 are omitted.

本発明のプラズマ光発生方法では、上述した1対の同軸状電極10を対向配置し、放電環境保持装置20により同軸状電極10内をプラズマ発生に適した温度及び圧力に保持し、電圧印加装置30により各同軸状電極10に極性を反転させた放電電圧を印加する。   In the plasma light generating method of the present invention, the pair of coaxial electrodes 10 described above are arranged to face each other, and the inside of the coaxial electrode 10 is held at a temperature and pressure suitable for plasma generation by the discharge environment holding device 20. A discharge voltage with the polarity reversed is applied to each coaxial electrode 10 by 30.

図3(A)に示すように、この電圧印加により、1対の同軸状電極10に絶縁部材16の表面でそれぞれ溝16aを介して供給された液体金属のプラズマ媒体6を放電開始ピンとする中心電極12とガイド電極14間の面状の放電電流(以下、面状放電2と呼ぶ)が発生する。面状放電2は、2次元的に広がる面状の放電電流である。
なお、「放電開始ピン」とは、放電を開始する際の放電電極として機能する導電体を意味する。
As shown in FIG. 3A, by applying this voltage, the liquid metal plasma medium 6 supplied to the pair of coaxial electrodes 10 through the grooves 16a on the surface of the insulating member 16 is used as a discharge start pin. A planar discharge current (hereinafter referred to as planar discharge 2) between the electrode 12 and the guide electrode 14 is generated. The planar discharge 2 is a planar discharge current that spreads two-dimensionally.
The “discharge start pin” means a conductor that functions as a discharge electrode when starting discharge.

なおこの際、左側の同軸状電極10の中心電極12は正電圧(+)、ガイド電極14は負電圧(−)に印加され、右側の同軸状電極10の中心電極12は負電圧(−)、そのガイド電極14は正電圧(+)に印加されている。
なお、両方のガイド電極14を接地させて0Vに保持し、一方の中心電極12を正電圧(+)に印加し、他方の中心電極12を負電圧(−)に印加してもよい。
At this time, the center electrode 12 of the left coaxial electrode 10 is applied with a positive voltage (+), the guide electrode 14 is applied with a negative voltage (−), and the center electrode 12 of the right coaxial electrode 10 is applied with a negative voltage (−). The guide electrode 14 is applied to a positive voltage (+).
Alternatively, both guide electrodes 14 may be grounded and held at 0 V, one center electrode 12 may be applied to a positive voltage (+), and the other center electrode 12 may be applied to a negative voltage (−).

また本発明において、複数の微細な溝16aは、単一の軸線Z−Zに対して対称に配置されているので、中心電極外周部(又はガイド電極内周部)に対称な配置で滲み出した液体金属(リチウム又はスズ)は、対称な配置の複数の放電開始ピンとして作用し、対称な面状放電を安定に行うことができる。   In the present invention, since the plurality of fine grooves 16a are arranged symmetrically with respect to the single axis ZZ, they ooze out in a symmetrical arrangement with respect to the outer peripheral portion of the center electrode (or the inner peripheral portion of the guide electrode). The liquid metal (lithium or tin) acts as a plurality of discharge start pins having a symmetrical arrangement, and can perform a symmetrical planar discharge stably.

図3(B)に示すように、面状放電2は、自己磁場によって電極から排出される方向(図で中心に向かう方向)に移動する。   As shown in FIG. 3B, the planar discharge 2 moves in a direction (direction toward the center in the figure) discharged from the electrode by the self magnetic field.

図3(C)に示すように、面状放電2が1対の同軸状電極10の先端に達すると、1対の面状放電2の間に挟まれたプラズマ媒体6が高密度、高温となり、各同軸状電極10の対向する中間位置(中心電極12の対称面1)に単一のプラズマ3が形成される。   As shown in FIG. 3C, when the sheet discharge 2 reaches the tip of the pair of coaxial electrodes 10, the plasma medium 6 sandwiched between the pair of sheet discharges 2 becomes high density and high temperature. A single plasma 3 is formed at an intermediate position (symmetric surface 1 of the center electrode 12) of the coaxial electrodes 10 facing each other.

さらに、この状態において、対向する1対の中心電極12は、正電圧(+)と負電圧(−)であり、同様に対向する1対のガイド電極14も、正電圧(+)と負電圧(−)であるので、図3(D)に示すように、面状放電2は対向する1対の中心電極12同士、及び対向する1対のガイド電極14の間で放電する管状放電4に繋ぎ換えられる。ここで、管状放電4とは、軸線Z−Zを囲む中空円筒状の放電電流を意味する。
この管状放電4が形成されると、図に符号5で示すプラズマ封じ込み磁場(磁気ビン)が形成され、プラズマ3を半径方向及び軸方向に封じ込むことができる。
Further, in this state, the pair of opposed center electrodes 12 are a positive voltage (+) and a negative voltage (−), and similarly, the pair of opposed guide electrodes 14 are also a positive voltage (+) and a negative voltage. Since (−), as shown in FIG. 3D, the planar discharge 2 is transformed into a tubular discharge 4 that discharges between a pair of opposed center electrodes 12 and between a pair of opposed guide electrodes 14. It can be reconnected. Here, the tubular discharge 4 means a hollow cylindrical discharge current surrounding the axis ZZ.
When this tubular discharge 4 is formed, a plasma containment magnetic field (magnetic bin) indicated by reference numeral 5 in the figure is formed, and the plasma 3 can be contained in the radial direction and the axial direction.

すなわち、磁気ビン5はプラズマ3の圧力により中央部は大きくその両側が小さくなり、プラズマ3に向かう軸方向の磁気圧勾配が形成され、この磁気圧勾配によりプラズマ3は中間位置に拘束される。さらにプラズマ電流の自己磁場によって中心方向にプラズマ3は圧縮(Zピンチ)され、半径方向にも自己磁場による拘束が働く。
この状態において、プラズマ3の発光エネルギーに相当するエネルギーを電圧印加装置30から供給し続ければ、高いエネルギー変換効率で、プラズマ光8(EUV)を長時間安定して発生させることができる。
That is, the central portion of the magnetic bin 5 is large due to the pressure of the plasma 3 and both sides thereof are small, and a magnetic pressure gradient in the axial direction toward the plasma 3 is formed. The plasma 3 is constrained to an intermediate position by this magnetic pressure gradient. Furthermore, the plasma 3 is compressed (Z pinch) in the center direction by the self-magnetic field of the plasma current, and the restraint by the self-magnetic field also acts in the radial direction.
In this state, if the energy corresponding to the emission energy of the plasma 3 is continuously supplied from the voltage application device 30, the plasma light 8 (EUV) can be stably generated for a long time with high energy conversion efficiency.

上述した本発明の装置及び方法によれば、中心電極12とガイド電極14の間の絶縁部材16が、中心電極12の外面(又はガイド電極14の内面)に密着した複数の溝16aを有するので、この複数の溝16aを介して毛細管現象により液体金属のプラズマ媒体6を軸方向内端面まで滲み出させることができる。
軸方向内端面まで滲み出した液体金属は中心電極12(又はガイド電極)と同電位であるので、中心電極12とガイド電極14間に放電電圧を印加したとき、複数の液体金属(プラズマ媒体6)が放電開始ピンとして機能する。
According to the apparatus and method of the present invention described above, the insulating member 16 between the center electrode 12 and the guide electrode 14 has the plurality of grooves 16a that are in close contact with the outer surface of the center electrode 12 (or the inner surface of the guide electrode 14). The liquid metal plasma medium 6 can ooze out to the inner end face in the axial direction by capillary action through the plurality of grooves 16a.
Since the liquid metal that has oozed out to the inner end face in the axial direction has the same potential as the center electrode 12 (or guide electrode), when a discharge voltage is applied between the center electrode 12 and the guide electrode 14, a plurality of liquid metals (plasma medium 6) are used. ) Functions as a discharge start pin.

また、複数の溝16aは、単一の軸線Z−Zに対して対称に配置されているので、中心電極外周部(又はガイド電極内周部)に対称な配置で滲み出した液体金属(リチウム又はスズ)は、対称な配置の複数の放電開始ピンとして作用し、対称な面状放電を安定に行うことができる。   Further, since the plurality of grooves 16a are arranged symmetrically with respect to the single axis ZZ, the liquid metal (lithium) oozed out in a symmetrical arrangement with respect to the outer peripheral portion of the center electrode (or the inner peripheral portion of the guide electrode). Or tin) acts as a plurality of discharge start pins having a symmetrical arrangement, and can perform a symmetrical planar discharge stably.

さらに、液体金属は複数の溝16aを介して連続的に供給されるため、放電開始ピンとして作用しても消耗せず、高繰返し、長時間運転が可能である。   Furthermore, since the liquid metal is continuously supplied through the plurality of grooves 16a, it does not wear even if it acts as a discharge start pin, and can be operated repeatedly for a long time.

また、液体金属は放電により蒸発するが、蒸発金属自体がプラズマ媒体6(リチウム又はスズ)であるため、プラズマ媒体6に不純物が混入するおそれは無い。   Further, although the liquid metal evaporates due to electric discharge, since the evaporated metal itself is the plasma medium 6 (lithium or tin), there is no possibility that impurities are mixed into the plasma medium 6.

さらに、同軸状電極間にプラズマ光を発生させ、その発光点のまわりに特別な機器を必要としないので、レーザー光の多点照射の場合と比較して、発生するEUV光を集光できる有効立体角を大きくでき、EUV光の利用効率を高めることができる。   Furthermore, plasma light is generated between the coaxial electrodes, and no special equipment is required around the light emitting point. Therefore, compared to multi-point irradiation with laser light, the generated EUV light can be collected more effectively. The solid angle can be increased, and the utilization efficiency of EUV light can be increased.

従って、発生したプラズマ光の有効な放射立体角を大きくでき、EUV光の出力を高めかつ放電ジッターを低減することができ、光源プラズマ中に混入する不純物を防止して有効なEUV光への変換効率を高めることができる。   Therefore, the effective radiation solid angle of the generated plasma light can be increased, the EUV light output can be increased and the discharge jitter can be reduced, and impurities mixed in the light source plasma can be prevented and converted into effective EUV light. Efficiency can be increased.

また、中心電極及びガイド電極と電気的に絶縁されたプラズマ媒体供給部を備えて、その軸方向内端面までプラズマ媒体を供給するので、EUV放射のためのプラズマ光を長時間(μsecオーダーで)安定して発生させることができ、プラズマ媒体を連続して供給することができる。   In addition, a plasma medium supply unit that is electrically insulated from the center electrode and the guide electrode is provided, and the plasma medium is supplied to the inner end face in the axial direction. Therefore, plasma light for EUV radiation is emitted for a long time (on the order of μsec). It can generate stably and can supply a plasma medium continuously.

なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.

1 対称面、2 面状放電、3 プラズマ、
4 管状放電、5 プラズマ封じ込み磁場、
6 プラズマ媒体、8 プラズマ光(EUV光)、
10 同軸状電極、12 中心電極、
14 ガイド電極、16 絶縁部材、
16a 溝、16b プラズマ媒体供給部、
16c 内側絶縁管、16d 外側絶縁管、
18 主媒体供給装置、
18a 主リザーバー、18b 主加熱装置、
19 補助媒体供給装置、
19a 補助リザーバー、19b 補助加熱装置、
20 放電環境保持装置、30 電圧印加装置、
32 正電圧源、34 負電圧源、36 トリガスイッチ


1 symmetry plane, 2 planar discharge, 3 plasma,
4 Tubular discharge, 5 plasma containment magnetic field,
6 plasma medium, 8 plasma light (EUV light),
10 coaxial electrode, 12 center electrode,
14 guide electrodes, 16 insulating members,
16a groove, 16b plasma medium supply unit,
16c inner insulating tube, 16d outer insulating tube,
18 Main medium supply device,
18a main reservoir, 18b main heating device,
19 Auxiliary medium supply device,
19a auxiliary reservoir, 19b auxiliary heating device,
20 discharge environment holding device, 30 voltage application device,
32 Positive voltage source, 34 Negative voltage source, 36 Trigger switch


Claims (4)

単一の軸線上に延びる棒状の中心電極と、該中心電極を一定の間隔を隔てて囲む管状のガイド電極と、前記中心電極とガイド電極の軸方向外端部に位置しその間を絶縁するリング状の絶縁部材とからなり、前記中心電極の軸方向内端部が間隔を隔てて対向配置された1対の同軸状電極と、
前記1対の同軸状電極内をプラズマ発生に適した温度及び圧力に保持する放電環境保持装置と、
前記各同軸状電極に極性を反転させた放電電圧を印加する電圧印加装置と、を備え、
前記絶縁部材は、前記中心電極の外面又はガイド電極の内面に密着し、液体金属のプラズマ媒体を軸方向内端面まで滲み出させる複数の溝を有している、ことを特徴とするプラズマ光源。
A rod-shaped center electrode extending on a single axis, a tubular guide electrode surrounding the center electrode at a predetermined interval, and a ring located at an axially outer end of the center electrode and the guide electrode and insulating between them A pair of coaxial electrodes, the inner ends of the central electrode being opposed to each other with a gap therebetween,
A discharge environment holding device for holding the inside of the pair of coaxial electrodes at a temperature and pressure suitable for plasma generation;
A voltage applying device that applies a discharge voltage with the polarity reversed to each of the coaxial electrodes, and
The plasma light source, wherein the insulating member has a plurality of grooves that are in close contact with the outer surface of the central electrode or the inner surface of the guide electrode and allow the liquid metal plasma medium to ooze out to the inner end surface in the axial direction.
前記絶縁部材は、前記中心電極及びガイド電極と電気的に絶縁されその軸方向内端面までプラズマ媒体を供給するプラズマ媒体供給部と、
前記プラズマ媒体供給部と前記中心電極及びガイド電極の間を絶縁する内側絶縁管及び外側絶縁管を備え、
前記複数の溝は、前記内側絶縁管の内面又は外側絶縁管の外面に前記単一の軸線に対して対称に配置されている、ことを特徴とする請求項1に記載のプラズマ光源。
The insulating member is electrically insulated from the center electrode and the guide electrode, and a plasma medium supply unit that supplies a plasma medium to an axially inner end surface thereof;
An inner insulating tube and an outer insulating tube that insulate between the plasma medium supply unit and the center electrode and the guide electrode;
2. The plasma light source according to claim 1, wherein the plurality of grooves are arranged symmetrically with respect to the single axis on the inner surface of the inner insulating tube or the outer surface of the outer insulating tube.
前記プラズマ媒体はリチウム又はスズである、ことを特徴とする請求項1に記載のプラズマ光源。   The plasma light source according to claim 1, wherein the plasma medium is lithium or tin. (A) 単一の軸線上に延びる棒状の中心電極と、該中心電極を一定の間隔を隔てて囲む管状のガイド電極と、前記中心電極とガイド電極の軸方向外端部に位置しその間を絶縁するリング状の絶縁部材とからなり、前記中心電極の軸方向内端部が間隔を隔てて対向配置された1対の同軸状電極とを準備し、
かつ前記絶縁部材は、前記中心電極の外面又はガイド電極の内面に密着し、液体金属のプラズマ媒体を軸方向内端面まで滲み出させる複数の溝を有しており、
(B) 前記1対の同軸状電極内をプラズマ発生に適した温度及び圧力に保持し、
(C) 各同軸状電極の中心電極とガイド電極間に極性を反転させた放電電圧を印加して、1対の同軸状電極にそれぞれ、前記溝を介して供給された液体金属のプラズマ媒体を放電開始ピンとする中心電極とガイド電極間の面状放電を発生させ、該面状放電により、各同軸状電極の対向する中間位置に単一のプラズマを形成し、
(D) 次いで前記面状放電を1対の同軸状電極間の管状放電に繋ぎ換えて前記プラズマを軸方向に封じ込め、
(E) プラズマの発光エネルギーに相当するエネルギーを各同軸状電極から供給して同軸状電極間にプラズマ光を発生させる、ことを特徴とするプラズマ光発生方法。
(A) A rod-shaped center electrode extending on a single axis, a tubular guide electrode surrounding the center electrode at a certain interval, and an axial end portion between the center electrode and the guide electrode. A ring-shaped insulating member that insulates, and preparing a pair of coaxial electrodes in which the axially inner end portions of the center electrode are opposed to each other with a gap therebetween,
The insulating member has a plurality of grooves that are in close contact with the outer surface of the center electrode or the inner surface of the guide electrode and ooze the liquid metal plasma medium to the inner end surface in the axial direction.
(B) maintaining the temperature and pressure suitable for plasma generation in the pair of coaxial electrodes;
(C) Applying a discharge voltage with the polarity reversed between the center electrode and the guide electrode of each coaxial electrode, and supplying a pair of coaxial electrodes to the pair of coaxial electrodes via the groove, respectively. A sheet discharge is generated between the center electrode and the guide electrode serving as a discharge start pin, and the sheet discharge forms a single plasma at the opposite intermediate position of each coaxial electrode,
(D) The planar discharge is then switched to a tubular discharge between a pair of coaxial electrodes to contain the plasma in the axial direction,
(E) A plasma light generation method characterized in that plasma light is generated between the coaxial electrodes by supplying energy corresponding to plasma emission energy from each coaxial electrode.
JP2010087831A 2010-04-06 2010-04-06 Plasma light source and plasma light generation method Expired - Fee Related JP5590305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010087831A JP5590305B2 (en) 2010-04-06 2010-04-06 Plasma light source and plasma light generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087831A JP5590305B2 (en) 2010-04-06 2010-04-06 Plasma light source and plasma light generation method

Publications (2)

Publication Number Publication Date
JP2011222186A true JP2011222186A (en) 2011-11-04
JP5590305B2 JP5590305B2 (en) 2014-09-17

Family

ID=45038961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087831A Expired - Fee Related JP5590305B2 (en) 2010-04-06 2010-04-06 Plasma light source and plasma light generation method

Country Status (1)

Country Link
JP (1) JP5590305B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084765A (en) * 2016-11-25 2018-05-31 株式会社Ihi Method for adjusting ablation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042848A (en) * 1974-05-17 1977-08-16 Ja Hyun Lee Hypocycloidal pinch device
JP2001215721A (en) * 1999-11-18 2001-08-10 Cymer Inc Plasma converging light source having improved pulse power source system
US7115887B1 (en) * 2005-03-15 2006-10-03 The United States Of America As Represented By The United States Department Of Energy Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042848A (en) * 1974-05-17 1977-08-16 Ja Hyun Lee Hypocycloidal pinch device
JP2001215721A (en) * 1999-11-18 2001-08-10 Cymer Inc Plasma converging light source having improved pulse power source system
US7115887B1 (en) * 2005-03-15 2006-10-03 The United States Of America As Represented By The United States Department Of Energy Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084765A (en) * 2016-11-25 2018-05-31 株式会社Ihi Method for adjusting ablation

Also Published As

Publication number Publication date
JP5590305B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5479723B2 (en) Plasma light source and plasma light generation method
WO2011027737A1 (en) Plasma light source
JP2012212942A (en) Plasma light source system
JP2007200919A (en) Extreme ultraviolet light source equipment
JP5212917B2 (en) Plasma light source
JP5622081B2 (en) Plasma light source
JP5590305B2 (en) Plasma light source and plasma light generation method
JP5212918B2 (en) Plasma light source
JP5656014B2 (en) Plasma light source and plasma light generation method
JP5733687B2 (en) Method for manufacturing plasma light source
JP6015149B2 (en) Plasma light source
JP5900172B2 (en) Plasma light source
JP5659543B2 (en) Plasma light source and plasma light generation method
JP5757112B2 (en) Method for manufacturing plasma light source
JP5510722B2 (en) Plasma light source and plasma light generation method
JP5552872B2 (en) Plasma light source and plasma light generation method
JP5622026B2 (en) Plasma light source and plasma light generation method
JP5953735B2 (en) Plasma light source
JP5621979B2 (en) Plasma light source and plasma light generation method
JP5948810B2 (en) Plasma light source
JP2012191040A (en) Plasma light source system
CN115668059A (en) Extreme ultraviolet light source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R151 Written notification of patent or utility model registration

Ref document number: 5590305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees