JP5621979B2 - Plasma light source and plasma light generation method - Google Patents

Plasma light source and plasma light generation method Download PDF

Info

Publication number
JP5621979B2
JP5621979B2 JP2010269087A JP2010269087A JP5621979B2 JP 5621979 B2 JP5621979 B2 JP 5621979B2 JP 2010269087 A JP2010269087 A JP 2010269087A JP 2010269087 A JP2010269087 A JP 2010269087A JP 5621979 B2 JP5621979 B2 JP 5621979B2
Authority
JP
Japan
Prior art keywords
coaxial
plasma
electrode
pair
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010269087A
Other languages
Japanese (ja)
Other versions
JP2012119207A (en
Inventor
一 桑原
一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010269087A priority Critical patent/JP5621979B2/en
Publication of JP2012119207A publication Critical patent/JP2012119207A/en
Application granted granted Critical
Publication of JP5621979B2 publication Critical patent/JP5621979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)

Description

本発明は、EUV放射のためのプラズマ光源とプラズマ光発生方法に関する。   The present invention relates to a plasma light source and a method for generating plasma light for EUV radiation.

およそ1〜100nmの波長領域の光を極端紫外(EUV:Extreme Ultra Violet)光と呼び、本願において「EUV光」又は「プラズマ光」と略称する。   Light in the wavelength region of approximately 1 to 100 nm is called extreme ultraviolet (EUV) light, and is abbreviated as “EUV light” or “plasma light” in the present application.

EUV光(プラズマ光)は、あらゆる物質に対し吸収率が高く、レンズ等の透過型光学系を利用することができない。そのため、EUV光には反射型光学系が用いられるが、この領域の光は、限られた波長にしか反射特性を示さない特性がある。   EUV light (plasma light) has a high absorptivity with respect to all substances, and a transmission optical system such as a lens cannot be used. For this reason, a reflective optical system is used for EUV light, but the light in this region has a characteristic that exhibits a reflection characteristic only at a limited wavelength.

現在、EUV光の波長領域のうち、13.5nmに感度を有するMo/Si多層膜反射鏡が開発されている。従って、この反射鏡と波長13.5nmの光とを組み合わせたリソグラフィ技術により30nm以下の加工寸法を実現することができる。そのためさらなる微細加工技術の実現のために、波長13.5nmのEUV光源の開発が急務であり、高エネルギー密度プラズマからの輻射光が注目されている。   Currently, a Mo / Si multilayer reflector having sensitivity at 13.5 nm in the wavelength region of EUV light has been developed. Therefore, a processing dimension of 30 nm or less can be realized by a lithography technique that combines this reflecting mirror and light having a wavelength of 13.5 nm. Therefore, development of an EUV light source with a wavelength of 13.5 nm is urgently required to realize further microfabrication technology, and radiation from a high energy density plasma has attracted attention.

光源プラズマ生成はレーザー照射(LPP:Laser Produced Plasma)方式とパルスパワー技術によって駆動されるガス放電(DPP:Discharge Produced Plasma)方式に大別できる。DPPは、投入した電力が直接プラズマエネルギーに変換されるので、LPPに比べて変換効率で優位であるうえに、装置が小型で低コストという利点がある。   Light source plasma generation can be broadly classified into laser irradiation (LPP: Laser Produced Plasma) and gas discharge (DPP: Discharge Produced Plasma) driven by pulse power technology. DPP has the advantage that the input power is directly converted into plasma energy, so that it has an advantage in conversion efficiency compared to LPP, and the apparatus is small in size and low in cost.

有効波長領域に放射スペクトルを持つ元素としては、Xe,Sn,Li等が代表的であり、従来はXeを中心に研究が進められてきた。しかし、近年では高出力、高効率を理由にSnが注目を浴び研究が進められている。また、in−band領域にちょうどLyman−α共鳴線を有する水素様Liイオン(Li2+)に対する期待も高まってきている。 Typical examples of elements having a radiation spectrum in the effective wavelength region include Xe, Sn, Li, and the like. Conventionally, research has been focused on Xe. However, in recent years, Sn has been attracting attention and research is being promoted because of its high output and high efficiency. In addition, expectation for hydrogen-like Li ions (Li 2+ ) having just a Lyman-α resonance line in the in-band region is increasing.

高温高密度プラズマからの放射スペクトルは、基本的にはターゲット物質の温度と密度によって決まり、プラズマの原子過程を計算した結果によると、EUV放射領域のプラズマにするにはXe,Snの場合で電子温度、電子密度がそれぞれ数10eV、1018cm−3程度,Liの場合で20eV、1018cm−3程度が最適とされている。 The radiation spectrum from a high-temperature, high-density plasma is basically determined by the temperature and density of the target material. According to the calculation result of the atomic process of the plasma, the electron in the case of Xe, Sn is used to make the plasma in the EUV radiation region. The optimum temperature and electron density are several tens of eV and about 10 18 cm −3 , respectively, and in the case of Li, about 20 eV and 10 18 cm −3 are optimum.

なお、上述したプラズマ光源は、非特許文献1,2および特許文献1に開示されている。   The plasma light source described above is disclosed in Non-Patent Documents 1 and 2 and Patent Document 1.

佐藤弘人、他、「リソグラフィ用放電プラズマEUV光源」、OQD−08−28Hiroto Sato et al., “Discharge Plasma EUV Light Source for Lithography”, OQD-08-28 Jeroen Jonkers,“High power extreme ultra−violet(EUV) light sources for future lithography”,Plasma Sources Science and Technology, 15(2006) S8−S16Jeroen Jonkers, “High power extreme-violet (EUV) light sources for future lithography”, Plasma Sources Science and Technology 16 (Science 16)

特開2004−226244号公報、「極端紫外光源および半導体露光装置」Japanese Patent Application Laid-Open No. 2004-226244, “Extreme Ultraviolet Light Source and Semiconductor Exposure Apparatus”

EUV光源には、高い平均出力、及び微小な光源サイズが要求される。現状では、EUV発光量が要求出力に対して極めて低く、高出力化が大きな課題の一つである。しかし、高出力化のために入力エネルギーを大きくすると熱負荷によるダメージがプラズマ生成装置や光学系の寿命の低下を招いてしまう。従って、高EUV出力と低い熱負荷の双方を満たすためには、高いエネルギー変換効率が必要不可欠である。   An EUV light source is required to have a high average output and a small light source size. At present, the EUV emission amount is extremely low with respect to the required output, and high output is one of the major issues. However, if the input energy is increased to increase the output, the damage due to the heat load leads to a decrease in the lifetime of the plasma generator and the optical system. Therefore, high energy conversion efficiency is indispensable to satisfy both high EUV output and low heat load.

プラズマ形成初期には加熱や電離に多くのエネルギーを消費するうえに、EUVを放射するような高温高密度状態のプラズマは一般的に急速に膨張してしまうため、放射持続時間τが極端に短い。従って、変換効率を改善するためには、プラズマをEUV放射のために適した高温高密度状態で長時間(μsecオーダーで)維持することが重要になる。   In the initial stage of plasma formation, in addition to consuming a lot of energy for heating and ionization, high-temperature and high-density plasma that emits EUV generally expands rapidly, so the radiation duration τ is extremely short. . Therefore, in order to improve the conversion efficiency, it is important to maintain the plasma in a high temperature and high density state suitable for EUV radiation for a long time (on the order of μsec).

現在の一般的なEUVプラズマ光源の放射時間は100nsec程度であり出力が極端に足りない。産業応用のため高変換効率と高平均出力を両立させる為には1ショットで数μsecのEUV放射時間を達成する必要がある。つまり、高い変換効率を持つプラズマ光源を開発するためには、それぞれのターゲットに適した温度密度状態のプラズマを数μsec(少なくとも1μsec以上)拘束し、安定したEUV放射を達成する必要がある。   The radiation time of the current general EUV plasma light source is about 100 nsec, and the output is extremely insufficient. In order to achieve both high conversion efficiency and high average output for industrial applications, it is necessary to achieve an EUV radiation time of several μsec per shot. In other words, in order to develop a plasma light source having high conversion efficiency, it is necessary to achieve stable EUV radiation by constraining plasma in a temperature density state suitable for each target for several μsec (at least 1 μsec or more).

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、EUV放射のためのプラズマ光を長時間(μsecオーダーで)安定して発生させることができるプラズマ光源とプラズマ光発生方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide a plasma light source and a plasma light generation method capable of stably generating plasma light for EUV radiation for a long time (on the order of μsec).

本発明によれば、対向配置された1対の同軸状電極を有しその中間位置にプラズマを軸方向に閉じ込める複数の同軸電極対と、
該各同軸電極対にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に各同軸電極対内を保持する放電環境保持装置と、
前記各同軸電極対の各同軸状電極に極性を反転させた放電電圧を印加する電圧印加装置と、を備え、
前記複数の同軸電極対は、前記中間位置で互いに交差して配置されており、
前記電圧印加装置は、前記各同軸電極対の同軸状電極に位相がずれた放電電圧を印加する、ことを特徴とするプラズマ光源が提供される。
According to the present invention, a plurality of coaxial electrode pairs having a pair of coaxial electrodes arranged opposite to each other and confining plasma in the axial direction at an intermediate position thereof,
A discharge environment holding device for supplying a plasma medium to each coaxial electrode pair and holding the inside of each coaxial electrode pair at a temperature and pressure suitable for plasma generation;
A voltage applying device that applies a discharge voltage having a polarity reversed to each coaxial electrode of each coaxial electrode pair, and
The plurality of coaxial electrode pairs are arranged to cross each other at the intermediate position,
A plasma light source is provided in which the voltage application device applies a discharge voltage having a phase shift to the coaxial electrodes of the coaxial electrode pairs.

本発明の実施形態によれば、前記各同軸状電極は、単一の軸線上に延びる棒状の中心電極と、該中心電極を一定の間隔を隔てて囲む管状のガイド電極と、中心電極とガイド電極の間に位置しその間を絶縁するリング状の絶縁体とからなり、
1対の同軸状電極の各中心電極は、前記同一の軸線上に位置し、かつ互いに一定の間隔を隔てて対称に位置する。
According to an embodiment of the present invention, each of the coaxial electrodes includes a rod-shaped center electrode extending on a single axis, a tubular guide electrode surrounding the center electrode at a predetermined interval, and the center electrode and the guide. It consists of a ring-shaped insulator located between the electrodes and insulating between them,
The center electrodes of the pair of coaxial electrodes are positioned on the same axis and are symmetrically spaced from each other at a constant interval.

また、本発明によれば、対向配置された1対の同軸状電極を有しその中間位置にプラズマを軸方向に閉じ込める複数の同軸電極対を前記中間位置で互いに交差させて配置し、
前記各同軸電極対にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に各同軸電極対内を保持し、
前記各同軸電極対の各同軸状電極に位相がずれた放電電圧を極性を反転させて印加し、
前記各同軸電極対の同軸状電極に位相がずれた面状放電を発生させ、該面状放電により前記中間位置に単一のプラズマを形成し、次いで前記面状放電を1対の同軸状電極間の管状放電に繋ぎ換えて前記プラズマを前記中間位置に閉じ込める位相がずれた磁場を形成する、ことを特徴とするプラズマ光発生方法が提供される。
Further, according to the present invention, a plurality of coaxial electrode pairs having a pair of coaxial electrodes arranged opposite to each other and confining plasma in the axial direction at an intermediate position thereof are arranged so as to cross each other at the intermediate position,
Supplying a plasma medium to each of the coaxial electrode pairs and maintaining the inside of each coaxial electrode pair at a temperature and pressure suitable for plasma generation;
Applying a discharge voltage whose phase is shifted to each coaxial electrode of each coaxial electrode pair with the polarity reversed,
A planar discharge out of phase is generated in the coaxial electrodes of each coaxial electrode pair, a single plasma is formed at the intermediate position by the planar discharge, and then the planar discharge is converted into a pair of coaxial electrodes. There is provided a plasma light generation method characterized by forming an out of phase magnetic field confining the plasma at the intermediate position by switching to a tubular discharge in between.

上記本発明の装置と方法によれば、対向配置された1対の同軸状電極を有しその中間位置にプラズマを軸方向に閉じ込める複数の同軸電極対を備え、1対の同軸状電極にそれぞれ面状の放電電流(面状放電)を発生させ、該面状放電により各同軸状電極の対向する中間位置に単一のプラズマを形成し、次いで前記面状放電を1対の同軸状電極間の管状放電に繋ぎ換えて前記プラズマを閉じ込める磁場(磁気ビン)を形成するので、EUV放射のためのプラズマ光を長時間(μsecオーダーで)安定して発生させることができる。   According to the apparatus and method of the present invention, a pair of coaxial electrodes disposed opposite to each other are provided, and a plurality of coaxial electrode pairs for confining plasma in the axial direction are provided at intermediate positions between the pair of coaxial electrodes. A planar discharge current (planar discharge) is generated, and a single plasma is formed by the planar discharge at an intermediate position opposed to each coaxial electrode, and then the planar discharge is performed between a pair of coaxial electrodes. Since a magnetic field (magnetic bin) for confining the plasma is formed by switching to the tubular discharge, plasma light for EUV radiation can be stably generated for a long time (on the order of μsec).

また前記複数の同軸電極対は、前記中間位置で互いに交差して配置されており、前記電圧印加装置は、前記各同軸電極対の同軸状電極に位相がずれた放電電圧を印加するので、中間位置のプラズマに複数の同軸電極対により位相がずれた閉じ込め磁場を形成できる。
従って、閉じ込め磁場が常にプラズマに作用するので、リチウムの様な軽元素でも、放電電流反転時にプラズマ損失が発生せず、EUV出力の高出力化、高変換効率化が実現できる。
The plurality of coaxial electrode pairs are arranged so as to cross each other at the intermediate position, and the voltage application device applies a discharge voltage having a phase shift to the coaxial electrode of each coaxial electrode pair. A confined magnetic field out of phase can be formed in the position plasma by a plurality of coaxial electrode pairs.
Therefore, since the confined magnetic field always acts on the plasma, even with a light element such as lithium, no plasma loss occurs when the discharge current is reversed, and high EUV output and high conversion efficiency can be realized.

本発明によるプラズマ光源の実施形態図である。1 is an embodiment diagram of a plasma light source according to the present invention. FIG. 図1のプラズマ光源の作動説明図である。It is operation | movement explanatory drawing of the plasma light source of FIG. 本発明による放電電流の説明図である。It is explanatory drawing of the discharge current by this invention.

以下、本発明の好ましい実施例を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明によるプラズマ光源の実施形態図である。
この図において、本発明のプラズマ光源は、複数の同軸電極対10、放電環境保持装置20、及び電圧印加装置30を備える。
FIG. 1 is a diagram showing an embodiment of a plasma light source according to the present invention.
In this figure, the plasma light source of the present invention includes a plurality of coaxial electrode pairs 10, a discharge environment holding device 20, and a voltage application device 30.

同軸電極対10は、この例では2組であり、それぞれ対向配置された1対の同軸状電極11を有し、その中間位置11aにプラズマ3を軸方向に閉じ込めるようになっている。なお、同軸電極対10は、2組に限定されず、3組以上であってもよい。   In this example, there are two pairs of coaxial electrodes 10. Each pair of coaxial electrodes 10 has a pair of coaxial electrodes 11 arranged to face each other, and the plasma 3 is confined in the axial direction at an intermediate position 11a. The coaxial electrode pair 10 is not limited to two pairs, and may be three or more pairs.

各同軸電極対10において、1対の同軸状電極11は、中間位置11aを中心として対向配置されている。各同軸状電極11は、棒状の中心電極12、管状のガイド電極14及びリング状の絶縁体16からなる。   In each coaxial electrode pair 10, a pair of coaxial electrodes 11 are opposed to each other with the intermediate position 11 a as the center. Each coaxial electrode 11 includes a rod-shaped center electrode 12, a tubular guide electrode 14, and a ring-shaped insulator 16.

棒状の中心電極12は、単一の軸線Z−Z上に延びる導電性の電極である。この例において、中心電極12の対称面1に対向する端面に凹穴12aが設けられ、後述する面状放電電流2と管状放電4を安定化させるようになっている。なお、この構成は必須ではなく、中心電極12の対称面1に対向する端面は、円弧状でも平面でもよい。   The rod-shaped center electrode 12 is a conductive electrode extending on a single axis ZZ. In this example, a concave hole 12a is provided on the end face of the center electrode 12 facing the symmetry plane 1 so as to stabilize the planar discharge current 2 and the tubular discharge 4 described later. This configuration is not essential, and the end face of the center electrode 12 facing the symmetry plane 1 may be arcuate or flat.

管状のガイド電極14は、中心電極12を一定の間隔を隔てて囲み、その間にプラズマ媒体を保有するようになっている。プラズマ媒体は、Xe,Sn,Li等のガスであることが好ましい。また、ガイド電極14の対称面1に対向する端面は、円弧状でも平面でもよい。   The tubular guide electrode 14 surrounds the central electrode 12 with a certain interval, and holds a plasma medium therebetween. The plasma medium is preferably a gas such as Xe, Sn, or Li. Further, the end face of the guide electrode 14 facing the symmetry plane 1 may be arcuate or flat.

リング状の絶縁体16は、中心電極12とガイド電極14の間に位置する中空円筒形状の電気的絶縁体であり、中心電極12とガイド電極14の間を電気的に絶縁する。
なお、絶縁体16の形状はこの例に限定されず、中心電極12とガイド電極14の間を電気的に絶縁する限りで、その他の形状であってもよい。
The ring-shaped insulator 16 is a hollow cylindrical electrical insulator positioned between the center electrode 12 and the guide electrode 14 and electrically insulates between the center electrode 12 and the guide electrode 14.
The shape of the insulator 16 is not limited to this example, and may be other shapes as long as the center electrode 12 and the guide electrode 14 are electrically insulated.

上述した1対の同軸状電極11は、各中心電極12が同一の軸線Z−Z上に位置し、かつ互いに一定の間隔を隔てて対称に位置する。   In the pair of coaxial electrodes 11 described above, the center electrodes 12 are positioned on the same axis ZZ and are symmetrically spaced apart from each other.

図1において、上述した2組の同軸電極対10は、中間位置11aで互いに交差して配置されている。この交差は、この例では、2組の同軸電極対10の軸線が同一平面(紙面に平行な平面)内で直交する配置である。
なお、本発明はこの交差に限定されず、3組の同軸電極対10を3次元的に直交配置してもよい。また、本発明は直交配置に限定されず、2組以上の同軸電極対10を中間位置11aにおいて、任意の角度で2次元的又は3次元的に交差させてもよい。
In FIG. 1, the two pairs of coaxial electrodes 10 described above are arranged so as to cross each other at an intermediate position 11a. In this example, the intersection is an arrangement in which the axes of the two coaxial electrode pairs 10 are orthogonal to each other in the same plane (a plane parallel to the paper surface).
The present invention is not limited to this intersection, and three sets of coaxial electrode pairs 10 may be three-dimensionally arranged orthogonally. Further, the present invention is not limited to the orthogonal arrangement, and two or more pairs of coaxial electrode pairs 10 may be crossed two-dimensionally or three-dimensionally at an arbitrary angle at the intermediate position 11a.

放電環境保持装置20は、各同軸電極対10にプラズマ媒体を供給し、かつプラズマ発生に適した温度及び圧力に各同軸電極対10の内部を保持する。
放電環境保持装置20は、例えば、真空チャンバー、温度調節器、真空装置、及びプラズマ媒体供給装置により構成することができる。なおこの構成は必須ではなく、その他の構成であってもよい。
The discharge environment holding device 20 supplies a plasma medium to each coaxial electrode pair 10 and holds the inside of each coaxial electrode pair 10 at a temperature and pressure suitable for plasma generation.
The discharge environment holding device 20 can be constituted by, for example, a vacuum chamber, a temperature controller, a vacuum device, and a plasma medium supply device. This configuration is not essential, and other configurations may be used.

電圧印加装置30は、各同軸電極対10の各同軸状電極11に極性を反転させた放電電圧を印加する。電圧印加装置30は、この例では、正電圧源32、負電圧源34及びトリガスイッチ36からなる。   The voltage application device 30 applies a discharge voltage with the polarity reversed to each coaxial electrode 11 of each coaxial electrode pair 10. In this example, the voltage application device 30 includes a positive voltage source 32, a negative voltage source 34, and a trigger switch 36.

正電圧源32は、一方(この例では左側)の同軸状電極11の中心電極12にそのガイド電極14より高い正の放電電圧を印加する。
負電圧源34は、他方(この例では右側)の同軸状電極11の中心電極12にそのガイド電極14より低い負の放電電圧を印加する。
なお、正電圧源32及び負電圧源34は、それぞれ内部にコンデンサを有しており、放電時の放電電流を蓄電し再利用するようになっている。
The positive voltage source 32 applies a positive discharge voltage higher than that of the guide electrode 14 to the center electrode 12 of the coaxial electrode 11 on one side (left side in this example).
The negative voltage source 34 applies a negative discharge voltage lower than that of the guide electrode 14 to the center electrode 12 of the other coaxial electrode 11 (right side in this example).
Each of the positive voltage source 32 and the negative voltage source 34 has a capacitor therein, and stores and reuses a discharge current at the time of discharge.

トリガスイッチ36は、正電圧源32と負電圧源34を同時に作動させて、それぞれの同軸状電極12に同時に正負の放電電圧を印加する。
この構成により、本発明のプラズマ光源は、1対の同軸状電極11間に管状放電(後述する)を形成してプラズマを軸方向に閉じ込めるようになっている。
The trigger switch 36 simultaneously activates the positive voltage source 32 and the negative voltage source 34 to apply positive and negative discharge voltages to the respective coaxial electrodes 12 simultaneously.
With this configuration, the plasma light source of the present invention forms a tubular discharge (described later) between the pair of coaxial electrodes 11 to confine the plasma in the axial direction.

図2は、図1のプラズマ光源の作動説明図である。なおこの図は、図1の2組の同軸電極対10のそれぞれの作動を示している。
この図において、(A)は面状放電の発生時、(B)は面状放電の移動中、(C)はプラズマの形成時、(D)はプラズマ閉じ込め磁場の形成時を示している。
以下、この図を参照して、本発明のプラズマ光発生方法を説明する。
FIG. 2 is an operation explanatory view of the plasma light source of FIG. This figure shows the operation of each of the two coaxial electrode pairs 10 of FIG.
In this figure, (A) shows the occurrence of a planar discharge, (B) shows the movement of the planar discharge, (C) shows the formation of the plasma, and (D) shows the formation of the plasma confinement magnetic field.
Hereinafter, the plasma light generation method of the present invention will be described with reference to this drawing.

本発明のプラズマ光発生方法では、上述した同軸電極対10を構成する1対の同軸状電極11を対向配置し、放電環境保持装置20により同軸状電極11内にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に保持し、電圧印加装置30により各同軸状電極11に極性を反転させた放電電圧を印加する。   In the plasma light generation method of the present invention, a pair of coaxial electrodes 11 constituting the above-described coaxial electrode pair 10 are arranged opposite to each other, a plasma medium is supplied into the coaxial electrode 11 by a discharge environment holding device 20, and plasma is generated. The discharge voltage with the polarity reversed is applied to each coaxial electrode 11 by the voltage application device 30.

図2(A)に示すように、この電圧印加により、1対の同軸状電極11に絶縁体16の表面でそれぞれ面状の放電電流(以下、面状放電2と呼ぶ)が発生する。面状放電2は、2次元的に広がる面状の放電電流であり、後述する実施例では「電流シート」と呼ぶ。
なおこの際、左側の同軸状電極11の中心電極12は正電圧(+)、ガイド電極14は負電圧(−)に印加され、右側の同軸状電極11の中心電極12は負電圧(−)、そのガイド電極14は正電圧(+)に印加されている。
なお、両方のガイド電極14を接地させて0Vに保持し、一方の中心電極12を正電圧(+)に印加し、他方の中心電極12を負電圧(−)に印加してもよい。
As shown in FIG. 2A, a planar discharge current (hereinafter referred to as planar discharge 2) is generated on the surface of the insulator 16 in the pair of coaxial electrodes 11 by applying this voltage. The planar discharge 2 is a planar discharge current that spreads two-dimensionally, and is referred to as a “current sheet” in the examples described later.
At this time, the center electrode 12 of the left coaxial electrode 11 is applied with a positive voltage (+), the guide electrode 14 is applied with a negative voltage (−), and the center electrode 12 of the right coaxial electrode 11 is applied with a negative voltage (−). The guide electrode 14 is applied to a positive voltage (+).
Alternatively, both guide electrodes 14 may be grounded and held at 0 V, one center electrode 12 may be applied to a positive voltage (+), and the other center electrode 12 may be applied to a negative voltage (−).

図2(B)に示すように、面状放電2は、自己磁場によって電極から排出される方向(図で中心に向かう方向)に移動する。   As shown in FIG. 2 (B), the planar discharge 2 moves in a direction (direction toward the center in the figure) discharged from the electrode by the self magnetic field.

図2(C)に示すように、面状放電2が1対の同軸状電極11の先端に達すると、1対の面状放電2の間に挟まれたプラズマ媒体6が高密度、高温となり、各同軸状電極11の対向する中間位置(中心電極12の対称面1)に単一のプラズマ3が形成される。   As shown in FIG. 2 (C), when the sheet discharge 2 reaches the tips of the pair of coaxial electrodes 11, the plasma medium 6 sandwiched between the pair of sheet discharges 2 becomes high density and high temperature. A single plasma 3 is formed at an intermediate position (symmetric surface 1 of the center electrode 12) of the coaxial electrodes 11 facing each other.

さらに、この状態において、対向する1対の中心電極12は、正電圧(+)と負電圧(−)であり、同様に対向する1対のガイド電極14も、正電圧(+)と負電圧(−)であるので、図2(D)に示すように、面状放電2は対向する1対の中心電極12同士、及び対向する1対のガイド電極14の間で放電する管状放電4に繋ぎ換えられる。ここで、管状放電4とは、軸線Z−Zを囲む中空円筒状の放電電流を意味する。   Further, in this state, the pair of opposed center electrodes 12 are a positive voltage (+) and a negative voltage (−), and similarly, the pair of opposed guide electrodes 14 are also a positive voltage (+) and a negative voltage. Since (−), as shown in FIG. 2D, the planar discharge 2 is applied to the tubular discharge 4 that discharges between the pair of opposed center electrodes 12 and between the pair of opposed guide electrodes 14. It can be reconnected. Here, the tubular discharge 4 means a hollow cylindrical discharge current surrounding the axis ZZ.

この管状放電4が形成されると、図に符号5で示すプラズマ閉じ込め磁場(磁気ビン)が形成され、プラズマ3を半径方向及び軸方向に封じ込むことができる。
すなわち、磁気ビン5はプラズマ3の圧力により中央部は大きくその両側が小さくなり、プラズマ3に向かう軸方向の磁気圧勾配が形成され、この磁気圧勾配によりプラズマ3は中間位置に拘束される。さらにプラズマ電流の自己磁場によって中心方向にプラズマ3は圧縮(Zピンチ)され、半径方向にも自己磁場による拘束が働く。
When this tubular discharge 4 is formed, a plasma confinement magnetic field (magnetic bin) indicated by reference numeral 5 is formed in the figure, and the plasma 3 can be sealed in the radial direction and the axial direction.
That is, the central portion of the magnetic bin 5 is large due to the pressure of the plasma 3 and both sides thereof are small, and a magnetic pressure gradient in the axial direction toward the plasma 3 is formed. The plasma 3 is constrained to an intermediate position by this magnetic pressure gradient. Furthermore, the plasma 3 is compressed (Z pinch) in the center direction by the self-magnetic field of the plasma current, and the restraint by the self-magnetic field also acts in the radial direction.

この状態において、プラズマ3の発光エネルギーに相当するエネルギーを電圧印加装置30から供給し続ければ、高いエネルギー変換効率で、プラズマ光8(EUV)を長時間安定して発生させることができる。   In this state, if the energy corresponding to the emission energy of the plasma 3 is continuously supplied from the voltage application device 30, the plasma light 8 (EUV) can be stably generated for a long time with high energy conversion efficiency.

図3は、本発明による放電電流の説明図である。この図において、(A)は単一の電圧印加装置30による放電電流の変化、(B)は2組の同軸電極対10における放電電流の位相のずれを示す図、(C)は3組の同軸電極対10における放電電流の位相のずれを示す図である。   FIG. 3 is an explanatory diagram of the discharge current according to the present invention. In this figure, (A) is a change in discharge current by a single voltage application device 30, (B) is a diagram showing a phase shift of the discharge current in two pairs of coaxial electrodes 10, and (C) is three sets. 3 is a diagram showing a phase shift of a discharge current in a coaxial electrode pair 10. FIG.

電圧印加装置30による放電は、コンデンサに蓄積した電気をトリガスイッチ36により瞬時に放電し、かつ余分な電気をコンデンサに再充電する。従って、図3(A)に示すように、単一の電圧印加装置30による放電電流の変化は一定の周期(2π)で正負を繰り返しながら減衰する。   In discharging by the voltage application device 30, electricity accumulated in the capacitor is instantaneously discharged by the trigger switch 36, and excess electricity is recharged in the capacitor. Therefore, as shown in FIG. 3A, the change in the discharge current by the single voltage application device 30 is attenuated while repeating positive and negative at a constant period (2π).

本発明の電圧印加装置30は、各同軸電極対10の同軸状電極11に位相がずれた放電電圧を印加する。この位相のずれは、2組の同軸電極対10の場合、好ましくは周期の半分(π)であり、3組の同軸電極対10の場合、好ましくは周期の1/3(2π/3)である。   The voltage application device 30 of the present invention applies a discharge voltage whose phase is shifted to the coaxial electrode 11 of each coaxial electrode pair 10. This phase shift is preferably half of the period (π) in the case of two pairs of coaxial electrodes 10 and preferably in one third (2π / 3) of the period in the case of three pairs of coaxial electrodes 10. is there.

その結果、位相がずれた放電電流が各同軸電極対10の同軸状電極11に流れる。すなわち、位相がずれた放電電圧を印加することにより、図3(B)(C)に示すように、位相がずれた放電電流が同軸状電極11に流れる。
従って、各同軸電極対10の同軸状電極11に位相がずれた面状放電2を発生させ、この面状放電2により中間位置11aに単一のプラズマ3を形成し、次いで面状放電を1対の同軸状電極間の管状放電4に繋ぎ換えてプラズマ3を前記中間位置11aに閉じ込める位相がずれた磁場を形成することができる。
As a result, out-of-phase discharge currents flow through the coaxial electrodes 11 of each coaxial electrode pair 10. That is, by applying a discharge voltage that is out of phase, a discharge current that is out of phase flows through the coaxial electrode 11 as shown in FIGS.
Therefore, a phased discharge 2 is generated in the coaxial electrode 11 of each coaxial electrode pair 10, and a single plasma 3 is formed at the intermediate position 11 a by this planar discharge 2. By switching to the tubular discharge 4 between the pair of coaxial electrodes, an out-of-phase magnetic field for confining the plasma 3 in the intermediate position 11a can be formed.

上述した本発明の装置と方法によれば、対向配置された1対の同軸状電極11を備え、1対の同軸状電極11にそれぞれ面状の放電電流(面状放電2)を発生させ、面状放電2により各同軸状電極11の対向する中間位置に単一のプラズマ3を形成し、次いで面状放電2を1対の同軸状電極間の管状放電4に繋ぎ換えてプラズマ3を閉じ込めるプラズマ閉じ込め磁場5(磁気ビン5)を形成するので、EUV放射のためのプラズマ光を長時間(μsecオーダーで)安定して発生させることができる。   According to the apparatus and method of the present invention described above, a pair of coaxial electrodes 11 arranged opposite to each other are provided, and a pair of coaxial electrodes 11 are caused to generate planar discharge currents (planar discharge 2), respectively. A single plasma 3 is formed at the opposite intermediate position of each coaxial electrode 11 by the planar discharge 2, and then the planar discharge 2 is connected to a tubular discharge 4 between a pair of coaxial electrodes to confine the plasma 3. Since the plasma confinement magnetic field 5 (magnetic bin 5) is formed, plasma light for EUV radiation can be stably generated for a long time (on the order of μsec).

また複数の同軸電極対10は、中間位置11aで互いに交差して配置されており、電圧印加装置30は、各同軸電極対10の同軸状電極11に位相がずれた放電電圧を印加するので、中間位置11aのプラズマ3に複数の同軸電極対10により位相がずれた閉じ込め磁場5を形成できる。
従って、放電電流が低下しゼロになる時間帯を無くし、閉じ込め磁場5が常にプラズマ3に作用するので、リチウムの様な軽元素でも、放電電流反転時にプラズマ損失が発生せず、EUV出力の高出力化、高変換効率化が実現できる。
Further, the plurality of coaxial electrode pairs 10 are arranged so as to cross each other at the intermediate position 11a, and the voltage application device 30 applies a discharge voltage whose phase is shifted to the coaxial electrode 11 of each coaxial electrode pair 10, A confined magnetic field 5 whose phase is shifted by a plurality of coaxial electrode pairs 10 can be formed in the plasma 3 at the intermediate position 11a.
Therefore, since the time period in which the discharge current is reduced to zero is eliminated and the confinement magnetic field 5 always acts on the plasma 3, even with a light element such as lithium, no plasma loss occurs when the discharge current is reversed, and the EUV output is high. Output and high conversion efficiency can be realized.

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, a various change can be added in the range which does not deviate from the summary of this invention.

1 対称面、2 面状放電(電流シート)、3 プラズマ、
4 管状放電、5 プラズマ閉じ込め磁場、6 プラズマ媒体、
8 プラズマ光(EUV)、
10 同軸電極対、11 同軸状電極、11a 中間位置、
12 中心電極、12a 凹穴、
14 ガイド電極、16 絶縁体、
20 放電環境保持装置、30 電圧印加装置、
32 正電圧源、34 負電圧源、36 トリガスイッチ、
1 symmetry plane, 2 sheet discharge (current sheet), 3 plasma,
4 tubular discharge, 5 plasma confinement magnetic field, 6 plasma medium,
8 Plasma light (EUV),
10 Coaxial electrode pair, 11 Coaxial electrode, 11a Intermediate position,
12 center electrode, 12a recessed hole,
14 guide electrodes, 16 insulators,
20 discharge environment holding device, 30 voltage application device,
32 positive voltage source, 34 negative voltage source, 36 trigger switch,

Claims (3)

対向配置された1対の同軸状電極を有しその中間位置にプラズマを軸方向に閉じ込める複数の同軸電極対と、
該各同軸電極対にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に各同軸電極対内を保持する放電環境保持装置と、
前記各同軸電極対の各同軸状電極に極性を反転させた放電電圧を印加する電圧印加装置と、を備え、
前記複数の同軸電極対は、前記中間位置で互いに交差して配置されており、
前記電圧印加装置は、前記各同軸電極対の同軸状電極に位相がずれた放電電圧を印加する、ことを特徴とするプラズマ光源。
A plurality of coaxial electrode pairs having a pair of coaxial electrodes arranged opposite to each other and confining plasma in the axial direction at an intermediate position thereof;
A discharge environment holding device for supplying a plasma medium to each coaxial electrode pair and holding the inside of each coaxial electrode pair at a temperature and pressure suitable for plasma generation;
A voltage applying device that applies a discharge voltage having a polarity reversed to each coaxial electrode of each coaxial electrode pair, and
The plurality of coaxial electrode pairs are arranged to cross each other at the intermediate position,
The plasma light source, wherein the voltage application device applies a discharge voltage having a phase shift to the coaxial electrode of each coaxial electrode pair.
前記各同軸状電極は、単一の軸線上に延びる棒状の中心電極と、該中心電極を一定の間隔を隔てて囲む管状のガイド電極と、中心電極とガイド電極の間に位置しその間を絶縁するリング状の絶縁体とからなり、
1対の同軸状電極の各中心電極は、前記同一の軸線上に位置し、かつ互いに一定の間隔を隔てて対称に位置する、ことを特徴とする請求項1に記載のプラズマ光源。
Each of the coaxial electrodes is a rod-shaped center electrode extending on a single axis, a tubular guide electrode that surrounds the center electrode at a predetermined interval, and is located between the center electrode and the guide electrode and insulated between them. A ring-shaped insulator that
2. The plasma light source according to claim 1, wherein the central electrodes of the pair of coaxial electrodes are located on the same axis and are symmetrically spaced apart from each other.
対向配置された1対の同軸状電極を有しその中間位置にプラズマを軸方向に閉じ込める複数の同軸電極対を前記中間位置で互いに交差させて配置し、
前記各同軸電極対にプラズマ媒体を供給しかつプラズマ発生に適した温度及び圧力に各同軸電極対内を保持し、
前記各同軸電極対の各同軸状電極に位相がずれた放電電圧を極性を反転させて印加し、
前記各同軸電極対の同軸状電極に位相がずれた面状放電を発生させ、該面状放電により前記中間位置に単一のプラズマを形成し、次いで前記面状放電を1対の同軸状電極間の管状放電に繋ぎ換えて前記プラズマを前記中間位置に閉じ込める位相がずれた磁場を形成する、ことを特徴とするプラズマ光発生方法。

A plurality of coaxial electrode pairs having a pair of coaxial electrodes arranged opposite to each other and confining plasma in the axial direction at an intermediate position between the coaxial electrode pairs at the intermediate position;
Supplying a plasma medium to each of the coaxial electrode pairs and maintaining the inside of each coaxial electrode pair at a temperature and pressure suitable for plasma generation;
Applying a discharge voltage whose phase is shifted to each coaxial electrode of each coaxial electrode pair with the polarity reversed,
A planar discharge out of phase is generated in the coaxial electrodes of each coaxial electrode pair, a single plasma is formed at the intermediate position by the planar discharge, and then the planar discharge is converted into a pair of coaxial electrodes. A method of generating plasma light, characterized by forming an out of phase magnetic field confining the plasma at the intermediate position by switching to a tubular discharge in between.

JP2010269087A 2010-12-02 2010-12-02 Plasma light source and plasma light generation method Expired - Fee Related JP5621979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269087A JP5621979B2 (en) 2010-12-02 2010-12-02 Plasma light source and plasma light generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269087A JP5621979B2 (en) 2010-12-02 2010-12-02 Plasma light source and plasma light generation method

Publications (2)

Publication Number Publication Date
JP2012119207A JP2012119207A (en) 2012-06-21
JP5621979B2 true JP5621979B2 (en) 2014-11-12

Family

ID=46501806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269087A Expired - Fee Related JP5621979B2 (en) 2010-12-02 2010-12-02 Plasma light source and plasma light generation method

Country Status (1)

Country Link
JP (1) JP5621979B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042848A (en) * 1974-05-17 1977-08-16 Ja Hyun Lee Hypocycloidal pinch device
JPH06204178A (en) * 1993-01-07 1994-07-22 Matsushita Electric Ind Co Ltd Plasma generator
JP3317957B2 (en) * 1999-03-15 2002-08-26 サイマー インコーポレイテッド Plasma focus high energy photon source with blast shield
AU2003280823A1 (en) * 2003-11-17 2005-06-06 Tetsu Miyamoto Method for generating high-temperature high-density plasma by cusp cross-section pinch
JP5479723B2 (en) * 2008-12-18 2014-04-23 株式会社Ihi Plasma light source and plasma light generation method

Also Published As

Publication number Publication date
JP2012119207A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5479723B2 (en) Plasma light source and plasma light generation method
WO2011027737A1 (en) Plasma light source
KR101370615B1 (en) Plasma light source system
JP5212917B2 (en) Plasma light source
JP5622081B2 (en) Plasma light source
JP5621979B2 (en) Plasma light source and plasma light generation method
JP5212918B2 (en) Plasma light source
JP5656014B2 (en) Plasma light source and plasma light generation method
JP5590305B2 (en) Plasma light source and plasma light generation method
JP5659543B2 (en) Plasma light source and plasma light generation method
JP5622026B2 (en) Plasma light source and plasma light generation method
JP6015149B2 (en) Plasma light source
JP5757112B2 (en) Method for manufacturing plasma light source
JP5552872B2 (en) Plasma light source and plasma light generation method
JP5510722B2 (en) Plasma light source and plasma light generation method
JP5953735B2 (en) Plasma light source
JP5948810B2 (en) Plasma light source
JP5733687B2 (en) Method for manufacturing plasma light source
JP5685910B2 (en) Plasma light source and plasma light generation method
JP7095236B2 (en) Plasma light source system
JP2009111313A (en) Cooling mechanism of preliminary ionization mechanism in discharge-excited gas laser apparatus
JP2018169544A (en) Plasma light source
JP2017195145A (en) Plasma light source and method for generating plasma light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R151 Written notification of patent or utility model registration

Ref document number: 5621979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees