JP2011221259A - Insulation film composition - Google Patents

Insulation film composition Download PDF

Info

Publication number
JP2011221259A
JP2011221259A JP2010089905A JP2010089905A JP2011221259A JP 2011221259 A JP2011221259 A JP 2011221259A JP 2010089905 A JP2010089905 A JP 2010089905A JP 2010089905 A JP2010089905 A JP 2010089905A JP 2011221259 A JP2011221259 A JP 2011221259A
Authority
JP
Japan
Prior art keywords
insulating film
aspect ratio
alumina powder
film
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010089905A
Other languages
Japanese (ja)
Other versions
JP5466983B2 (en
Inventor
Minoru Numaguchi
穣 沼口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2010089905A priority Critical patent/JP5466983B2/en
Publication of JP2011221259A publication Critical patent/JP2011221259A/en
Application granted granted Critical
Publication of JP5466983B2 publication Critical patent/JP5466983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fixing For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation film composition which is capable of forming an insulation film having a further superior withstand voltage characteristic.SOLUTION: Thick film insulation paste having glass as its principal element includes alumina powder with its aspect ratio of 1.2 or less, produced using CVD; therefore, voltage which an insulation film, obtained from the thick film insulation paste, can withstand can be increased. Especially, when the alumina powder has an aspect ratio of 1.1 or less and is significantly spherical, a denser insulation film can be obtained as the result of burning, since protrusions come to be rarely caused to the insulation film and high dispersibility is obtained when preparing the thick film insulation paste, so that the density of the film is increased at the time of printing and desiccation.

Description

本発明は、基材上に電極を保護する等の目的で設けられる絶縁膜、特に複写機の定着ヒータ等の絶縁膜の形成に好適な絶縁膜組成物に関する。   The present invention relates to an insulating film composition suitable for forming an insulating film provided for the purpose of protecting an electrode on a substrate, particularly an insulating film such as a fixing heater of a copying machine.

例えば、トナー画像を紙等に転写して定着する形式の複写機では、その定着装置においてその紙等が加熱されつつ加圧されることによって、転写されたトナーが溶融させられてその紙等に定着させられる。定着装置には、その紙等を加熱するための定着ヒータと、その紙等を定着ヒータに向かって加圧しつつ一方向に送るための加圧ローラとが備えられている。このような定着装置の一形式として、定着ヒータを平板長尺状に形成すると共に、加圧ローラとの間にその回転に伴って回転させられる耐熱樹脂製の定着フィルムを設けて、定着装置を小型化すると共にその熱容量を低下させたものがある。   For example, in a copying machine of a type in which a toner image is transferred to a paper or the like and fixed, the transferred toner is melted and applied to the paper or the like by being heated and pressurized in the fixing device. It is fixed. The fixing device includes a fixing heater for heating the paper or the like, and a pressure roller for feeding the paper or the like toward the fixing heater in one direction. As one type of such a fixing device, a fixing heater is formed in a long plate shape, and a fixing film made of a heat-resistant resin that is rotated with the rotation is provided between the pressure roller and the fixing device. There is one that has been reduced in size and reduced its heat capacity.

上記の定着ヒータは、例えば、ガラスやセラミックス等から成る平板状の基板の表面に、印刷或いは転写等の適宜の方法でAg/Pd合金等から成る抵抗発熱体層を設けたものである。この抵抗発熱体層は、例えばその両端部においてAg等から成る電極端子に接続されると共に、その表面がガラスを主成分とする絶縁膜で覆われている。このような絶縁膜は、平板状の定着ヒータに限られず、円筒状の絶縁性基材の外周面に抵抗発熱体層を設けた定着ローラにも設けられ、複写機の他に、回路基板においても、その表面に設けられた電極等の導体膜や電子部品等を保護する目的で絶縁膜が形成される。   In the fixing heater, for example, a resistance heating element layer made of an Ag / Pd alloy or the like is provided on the surface of a flat substrate made of glass, ceramics, or the like by an appropriate method such as printing or transfer. The resistance heating element layer is connected, for example, to electrode terminals made of Ag or the like at both ends thereof, and the surface thereof is covered with an insulating film containing glass as a main component. Such an insulating film is not limited to a flat fixing heater, but is also provided on a fixing roller having a resistance heating element layer on the outer peripheral surface of a cylindrical insulating substrate. In addition, an insulating film is formed for the purpose of protecting a conductor film such as an electrode provided on the surface, an electronic component, and the like.

特開平10−338543号公報JP 10-338543 A 特開平11−147711号公報Japanese Patent Laid-Open No. 11-147711 特開2001−226117号公報JP 2001-226117 A

ところで、上記のような絶縁膜において、高い信頼性を得るためには、耐電圧が可及的に高く絶縁破壊が容易に起きないことが望まれる。これに対して、ガラス粉末の5〜45(wt%)をアルミナ粉末に置き換えることによって耐電圧を高めたガラスペーストが提案されている(例えば、特許文献1を参照。)。このガラスペーストは、900(℃)以下の比較的低い焼成温度で緻密な膜を形成し得る低軟化点ガラスを用いた場合に耐電圧が低くなる傾向にあることから、膜厚を厚くすることなく耐電圧を高めることを目的としたものである。しかしながら、上記ガラスペーストから生成される絶縁膜は、耐電圧が未だ低く、一層の向上が望まれていた。   By the way, in order to obtain high reliability in the insulating film as described above, it is desired that the withstand voltage is as high as possible and that dielectric breakdown does not easily occur. On the other hand, a glass paste having a higher withstand voltage by replacing 5-45 wt% of the glass powder with alumina powder has been proposed (see, for example, Patent Document 1). This glass paste tends to have a low withstand voltage when using a low softening point glass that can form a dense film at a relatively low firing temperature of 900 (° C.) or less. The purpose is to increase the withstand voltage. However, the insulating film produced from the glass paste has a low withstand voltage, and further improvement has been desired.

本発明は、以上の事情を背景として為されたものであって、その目的は、耐電圧が一層高い絶縁膜を形成し得る絶縁膜組成物を提供することにある。   The present invention has been made against the background of the above circumstances, and an object thereof is to provide an insulating film composition capable of forming an insulating film having a higher withstand voltage.

斯かる目的を達成するため、本発明の要旨とするところは、所定の基材の表面に絶縁膜を形成するために用いられるガラスを主成分とする絶縁膜組成物であって、アスペクト比が1.2以下のアルミナ粉末を含むことにある。   In order to achieve such an object, the gist of the present invention is an insulating film composition mainly composed of glass used for forming an insulating film on the surface of a predetermined substrate, and having an aspect ratio. It contains 1.2 or less alumina powder.

このようにすれば、ガラスを主成分とする絶縁膜組成物には、アルミナ粉末が含まれていることから、その絶縁膜組成物から形成される絶縁膜の耐電圧が高められる。このとき、アルミナ粉末のアスペクト比が1.2以下と小さく球形に近いことから、一層耐電圧の高い絶縁膜が得られる。   In this way, since the insulating film composition containing glass as a main component contains the alumina powder, the withstand voltage of the insulating film formed from the insulating film composition is increased. At this time, since the aspect ratio of the alumina powder is as small as 1.2 or less and close to a sphere, an insulating film having a higher withstand voltage can be obtained.

なお、本願において「アスペクト比」は、粒子の長径/短径比で、球形に近いほど値が1に近くなる。アスペクト比が小さいほど耐電圧も高くなり且つばらつきも小さくなる利点がある。すなわち、上記アルミナ粉末は、球形に近いほど好ましい。   In the present application, the “aspect ratio” is the ratio of the major axis / minor axis of the particle, and the value becomes closer to 1 as the particle becomes closer to a sphere. The smaller the aspect ratio, the higher the withstand voltage and the smaller the variation. That is, it is preferable that the alumina powder is closer to a spherical shape.

因みに、ガラスを主成分とする絶縁膜組成物にアルミナ粉末を添加することは、前述したように従来から知られていることであり(前記特許文献1を参照。)、また、そのような絶縁膜組成物は市販されている。しかしながら、現在までに知られているこれらの絶縁膜組成物では、添加するアルミナ粉末の物性については特に考慮されていなかった。そのため、製造コスト面で有利な安価な破砕アルミナが用いられていたことから、アスペクト比が大きいので、耐電圧のばらつきが大きくなり、信頼性に欠けていたものと考えられる。   Incidentally, the addition of alumina powder to an insulating film composition containing glass as a main component is conventionally known as described above (see Patent Document 1), and such insulation. The film composition is commercially available. However, in these insulating film compositions known to date, no particular consideration has been given to the physical properties of the alumina powder to be added. For this reason, since low-cost crushed alumina, which is advantageous in terms of manufacturing cost, was used, the aspect ratio was large, so the variation in withstand voltage was large, and it was considered that the reliability was lacking.

また、回路基板の導体膜や電子部品等を保護するための絶縁膜を形成するための樹脂組成物において、アルミナ粉末をフィラーとして添加することが提案されている(前記特許文献2、3を参照。)。この樹脂組成物は、樹脂の熱伝導性が低いことから、これを改善する目的でアルミナ粉末を添加したものである。したがって、本願発明と同様に絶縁膜組成物にアルミナ粉末を添加するものではあるが、主成分が相違すると共にアルミナ粉末を添加する目的も全く相違する。   Further, it has been proposed to add alumina powder as a filler in a resin composition for forming an insulating film for protecting a conductor film, an electronic component or the like on a circuit board (see Patent Documents 2 and 3). .). Since this resin composition has a low thermal conductivity, an alumina powder is added for the purpose of improving the resin composition. Therefore, the alumina powder is added to the insulating film composition as in the present invention, but the main component is different and the purpose of adding the alumina powder is completely different.

ここで、好適には、前記アルミナ粉末のアスペクト比は、1.1以下である。このようにすれば、アルミナ粉末が一層球形に近づくことから、焼成後の絶縁膜に突起が一層生じ難くなる。しかも、絶縁膜を形成するに際して絶縁膜組成物のペーストを調製してスクリーン印刷法を利用する場合には、一層球形に近いアルミナ粉末が用いられることからペーストの分散性が向上するので、印刷、乾燥後における膜の密度が一層高められ、焼成後に一層緻密な絶縁膜が得られる利点がある。   Here, preferably, the aspect ratio of the alumina powder is 1.1 or less. In this way, since the alumina powder becomes more spherical, protrusions are less likely to occur in the fired insulating film. In addition, when the insulating film composition paste is prepared and the screen printing method is used when forming the insulating film, the dispersibility of the paste is improved because alumina powder having a more spherical shape is used. There is an advantage that the density of the film after drying is further increased and a denser insulating film can be obtained after firing.

また、好適には、前記アルミナ粉末は化学蒸着(CVD)法を用いて製造されたものである。CVD法を用いると、アスペクト比が小さい球形に近い微細なアルミナ粉末を容易に製造できると共に、粒径のばらつきも小さいため、一層耐電圧が高く且つばらつきの小さい絶縁膜を形成し得る絶縁膜組成物が得られる。上記CVD法は、例えば、アルミニウムアルコキシドを加水分解して合成した水酸化アルミニウムを塩素等のハロゲンガスと共に噴射して気相成長させることでアルミナ粉末を得るものである。アスペクト比の小さいアルミナ粉末の製造方法はCVD法に限られず、液相法や破砕粉末を加工する方法なども考えられるが、上記のようなCVD法によれば、ばらつきの少ない粉末を安価に製造できることから好ましい。   Preferably, the alumina powder is manufactured using a chemical vapor deposition (CVD) method. By using the CVD method, it is possible to easily produce a fine spherical alumina powder with a small aspect ratio and a small variation in particle size, so that an insulating film composition that can form an insulating film with higher withstand voltage and smaller variation A thing is obtained. In the CVD method, for example, aluminum powder synthesized by hydrolyzing aluminum alkoxide is jetted together with a halogen gas such as chlorine to be vapor-phase grown to obtain alumina powder. The production method of alumina powder with a small aspect ratio is not limited to the CVD method, but a liquid phase method or a method of processing a crushed powder can be considered. However, according to the CVD method as described above, a powder with little variation is produced at low cost. It is preferable because it is possible.

また、好適には、前記アルミナ粉末は、平均粒径D50が5(μm)以下である。形成する絶縁膜の膜厚にも依存するが、平均粒径が5(μm)以下であれば、定着ヒータや回路基板の絶縁膜用途などにおいて問題となるような突起が生じ難く、しかも、耐電圧の最小値も十分に高くなる。   Preferably, the alumina powder has an average particle diameter D50 of 5 (μm) or less. Depending on the film thickness of the insulating film to be formed, if the average particle size is 5 (μm) or less, the projections that cause problems in insulating film applications such as fixing heaters and circuit boards are unlikely to occur. The minimum voltage is also sufficiently high.

また、好適には、前記アルミナ粉末は、平均粒径D50が0.3(μm)以上である。添加するアルミナ粉末の凝集を抑制して高い分散性を得るためには、平均粒径を0.3(μm)以上とすることが好ましい。   Preferably, the alumina powder has an average particle diameter D50 of 0.3 (μm) or more. In order to suppress aggregation of the alumina powder to be added and obtain high dispersibility, the average particle size is preferably set to 0.3 (μm) or more.

また、好適には、前記アルミナ粉末は、ガラス粉末に対して、30〜70(wt%)の範囲で添加される。70(wt%)以下に留めれば、アルミナ粉末の添加に伴って焼成後の膜面が荒れることが十分に抑制されるので、表面平滑性の一層高い絶縁膜が得られる。また、30(wt%)以上にすれば、熱伝導性も十分に高くなる。同様な観点から、アルミナ粉末の添加量は40〜60(wt%)の範囲が一層好ましい。   Preferably, the alumina powder is added in a range of 30 to 70 (wt%) with respect to the glass powder. If it is kept at 70 (wt%) or less, the film surface after baking is sufficiently suppressed with the addition of alumina powder, so that an insulating film with higher surface smoothness can be obtained. Further, if it is 30 (wt%) or more, the thermal conductivity is sufficiently high. From the same viewpoint, the amount of alumina powder added is more preferably in the range of 40 to 60 (wt%).

なお、本発明において、絶縁膜の主成分となるガラスは特に限定されず、鉛ガラスでも無鉛ガラスでもよい。鉛ガラスとしては、例えば、PbO-SiO2-ZnO系ガラスやPbO-SiO2-B2O3系ガラス等が挙げられる。また、無鉛ガラスとしては、SiO2-B2O3-ZnO系ガラス、SiO2-B2O3-ZnO-Al2O3系ガラス、Bi2O3-B2O3系ガラス等が挙げられる。何れにおいても、上記成分に加えてアルカリ金属酸化物やアルカリ土類酸化物等を適宜含むことができる。 In the present invention, the glass as the main component of the insulating film is not particularly limited, and may be lead glass or lead-free glass. Examples of the lead glass include PbO—SiO 2 —ZnO glass and PbO—SiO 2 —B 2 O 3 glass. Lead-free glass includes SiO 2 -B 2 O 3 -ZnO glass, SiO 2 -B 2 O 3 -ZnO-Al 2 O 3 glass, Bi 2 O 3 -B 2 O 3 glass, etc. It is done. In any case, in addition to the above components, an alkali metal oxide, an alkaline earth oxide, or the like can be appropriately contained.

また、好適には、本発明の絶縁膜組成物は、複写機等のトナー定着に用いられる定着ヒータの表面に形成された抵抗発熱体層を覆う絶縁膜を形成するためのものである。本発明の絶縁膜組成物は、前述したように低アスペクト比のアルミナ粉末が添加されることで高い耐電圧を有するため、高電圧が印加される定着ヒータの絶縁膜に好適である。   Preferably, the insulating film composition of the present invention is for forming an insulating film covering a resistance heating element layer formed on the surface of a fixing heater used for fixing toner in a copying machine or the like. Since the insulating film composition of the present invention has a high withstand voltage when the alumina powder having a low aspect ratio is added as described above, it is suitable for an insulating film of a fixing heater to which a high voltage is applied.

本発明の一実施例の絶縁膜組成物で絶縁膜を形成した定着ヒータが備えられた定着装置の要部断面構成を模式的に示す図である。1 is a diagram schematically illustrating a cross-sectional configuration of a main part of a fixing device provided with a fixing heater in which an insulating film is formed with an insulating film composition according to an embodiment of the present invention. 本発明の一実施例の絶縁膜組成物で絶縁膜を形成した他の定着ヒータの断面構造を模式的に示す図である。It is a figure which shows typically the cross-sectional structure of the other fixing heater which formed the insulating film with the insulating film composition of one Example of this invention. 本発明の一実施例の絶縁膜組成物で絶縁膜を形成した回路基板の断面構造を模式的に示す図である。It is a figure which shows typically the cross-section of the circuit board which formed the insulating film with the insulating film composition of one Example of this invention. 低アスペクト比のアルミナ粉末を添加した本発明の一実施例の絶縁膜組成物から形成した絶縁膜の耐電圧特性を、高アスペクト比のアルミナ粉末を添加した比較例のそれと共に示す図である。It is a figure which shows the withstand voltage characteristic of the insulating film formed from the insulating film composition of one Example of this invention which added the alumina powder of the low aspect ratio with that of the comparative example which added the alumina powder of the high aspect ratio. 実施例、比較例共に図4に示したものとは異なるアルミナ粉末を用いた絶縁膜の耐電圧特性を示す図である。It is a figure which shows the withstand voltage characteristic of the insulating film using the alumina powder different from what was shown in FIG. 4 in the Example and the comparative example. 高アスペクト比のアルミナ粉末の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the alumina powder of a high aspect ratio. 高アスペクト比のアルミナ粉末の他の例を示す電子顕微鏡写真である。It is an electron micrograph which shows the other example of the alumina powder of a high aspect ratio. 低アスペクト比のアルミナ粉末の一例を示す電子顕微鏡写真である。2 is an electron micrograph showing an example of low aspect ratio alumina powder. 低アスペクト比のアルミナ粉末の他の例を示す電子顕微鏡写真である。It is an electron micrograph which shows the other example of the alumina powder of a low aspect ratio.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例の定着ヒータ10が備えられた複写機の定着装置の要部構成を模式的に示す断面図である。図1において、定着装置は、定着ヒータ10が基台12の下端部に固定されると共に、略円筒形状の定着フィルム14がその周囲に配置され、更に、それらの下方に加圧ローラ16がその軸心回りの回転可能に設けられている。   FIG. 1 is a cross-sectional view schematically showing a main configuration of a fixing device of a copying machine provided with a fixing heater 10 according to an embodiment of the present invention. In FIG. 1, the fixing device includes a fixing heater 10 fixed to the lower end portion of a base 12, a substantially cylindrical fixing film 14 disposed around the fixing heater 10, and a pressure roller 16 below the fixing film 14. It is provided so as to be rotatable around an axis.

上記の定着ヒータ10は、アルミナ等のセラミック材料から成る紙面に垂直な方向に長い平板長尺状の基材18と、その一面に適宜のパターンで設けられた抵抗発熱体層20と、その抵抗発熱体層20を覆う絶縁膜22とを備えたもので、基材18が基台12に設けられた凹部に埋め込まれた状態で固定されている。   The fixing heater 10 includes a flat plate-like base material 18 made of a ceramic material such as alumina and extending in a direction perpendicular to the paper surface, a resistance heating element layer 20 provided in an appropriate pattern on one surface thereof, and a resistance thereof. The base material 18 is fixed in a state of being embedded in a recess provided in the base 12.

上記の抵抗発熱体層20は、例えばAg/Pd合金等から成るもので、トナー定着に必要な発熱量が得られるように適宜のパターン、例えば基材18の一端側から他端側に向かう直線状パターンや屈曲パターン等で設けられている。なお、基材18の長手方向の両端部には、図示しない一対の電極が前記絶縁膜22から露出した状態で設けられており、上記抵抗発熱体層20はその両端部がこれら一対の電極に接続されている。   The resistance heating element layer 20 is made of, for example, an Ag / Pd alloy or the like, and has an appropriate pattern such as a straight line from one end side to the other end side of the substrate 18 so as to obtain a heat generation amount necessary for toner fixing. Provided in the shape pattern, the bent pattern, or the like. It should be noted that a pair of electrodes (not shown) are provided at both ends in the longitudinal direction of the base material 18 so as to be exposed from the insulating film 22, and the resistance heating element layer 20 has both ends at the pair of electrodes. It is connected.

また、前記絶縁膜22は、例えば、SiO2-B2O3-ZnO系ガラスと、フィラーとから成るもので、例えば10〜50(μm)程度の範囲内の厚さ寸法で設けられている。上記のガラスは、例えば、ネットワーク成分であるSiO2、B2O3、ZnOを合計で73(mol%)、中間ネットワーク成分であるAl2O3を4(mol%)、修飾酸化物成分であるBaO、SrOを合計で23(mol%)の割合で含む組成を備えている。また、このガラスの軟化点は690(℃)程度、熱膨張率は67(%)程度である。 The insulating film 22 is made of, for example, SiO 2 —B 2 O 3 —ZnO-based glass and a filler, and is provided with a thickness within a range of about 10 to 50 (μm), for example. . The above glass is composed of, for example, network components SiO 2 , B 2 O 3 and ZnO in total 73 (mol%), intermediate network component Al 2 O 3 4 (mol%), and a modified oxide component. It has a composition containing certain BaO and SrO in a total proportion of 23 (mol%). The glass has a softening point of about 690 (° C.) and a coefficient of thermal expansion of about 67 (%).

また、上記のフィラーは、アスペクト比が1.2以下、例えば1.07程度で、平均粒径が0.8(μm)程度のアルミナ粉末から成るもので、絶縁膜22中に45(wt%)程度の割合で含まれている。このフィラーは、絶縁膜22の耐電圧を高める目的で添加されたものである。上記アルミナ粉末は、例えば、アルミニウムアルコキシドを加水分解して合成した水酸化アルミニウムを塩素ガスと共に噴射して気相成長させることによって製造したもので、このような製造方法によることから、上述したように微細でアスペクト比が小さい特徴を有している。   The filler is made of alumina powder having an aspect ratio of 1.2 or less, for example, about 1.07, and an average particle size of about 0.8 (μm), and is contained in the insulating film 22 at a ratio of about 45 (wt%). It is. This filler is added for the purpose of increasing the withstand voltage of the insulating film 22. The alumina powder is produced by, for example, spraying aluminum hydroxide synthesized by hydrolyzing aluminum alkoxide together with chlorine gas and performing vapor phase growth. It is fine and has a small aspect ratio.

また、前記の加圧ローラ16は、例えばアルミニウム製円柱24の外周面にシリコーンゴム26が固着されたもので、図示しない軸受け装置にそのアルミニウム製円柱24が回転可能に軸支されている。加圧ローラ16は、その使用状態において、定着フィルム14を介して定着ヒータ10に押圧されるようになっている。   The pressure roller 16 is made of, for example, a silicone rubber 26 fixed to the outer peripheral surface of an aluminum cylinder 24, and the aluminum cylinder 24 is rotatably supported by a bearing device (not shown). The pressure roller 16 is pressed against the fixing heater 10 through the fixing film 14 in the use state.

このように構成された定着装置において、図示しない転写装置によりトナーが転写された記録紙28等が送られてくると、定着ヒータ10と加圧ローラ16との間で定着フィルム14を介して加圧されると同時に加熱され、トナーに含まれる樹脂が溶融して、その記録紙28等にトナーが定着させられる。このとき、定着フィルム14は、加圧ローラ16の回転に伴って回転させられるので、定着ヒータ10はその表面すなわち絶縁膜22の表面が定着フィルム14で擦られることになるが、本実施例の絶縁膜22は高い耐電圧を有することから、これにより静電気が発生しても、絶縁破壊が生じ難い特徴を有している。   In the fixing device configured as described above, when the recording paper 28 or the like on which the toner is transferred by a transfer device (not shown) is fed, the recording paper 28 is added between the fixing heater 10 and the pressure roller 16 via the fixing film 14. The resin contained in the toner is melted at the same time as being pressed, and the toner is fixed on the recording paper 28 or the like. At this time, since the fixing film 14 is rotated in accordance with the rotation of the pressure roller 16, the surface of the fixing heater 10, that is, the surface of the insulating film 22 is rubbed with the fixing film 14. Since the insulating film 22 has a high withstand voltage, even if static electricity is generated by this, the insulating film 22 has a characteristic that dielectric breakdown does not easily occur.

すなわち、上記の絶縁膜22は、前述したようにアスペクト比が小さいアルミナ粉末を含むことから、例えば耐電圧の平均値が120(V/μm)以上と十分に高く、且つ、ばらつきも±10(%)程度と十分に小さい優れた耐電圧特性を有している。そのため、耐電圧が十分に高いことから、複写機の使用中に発生する静電気による絶縁破壊が生じ難いのである。しかも、耐電圧のばらつきが小さいことから、所望の耐電圧特性を備えた定着ヒータ10を高い歩留まりで製造できる利点もある。   That is, since the insulating film 22 includes the alumina powder having a small aspect ratio as described above, the average withstand voltage is sufficiently high, for example, 120 (V / μm) or more, and the variation is ± 10 ( %) And has an excellent withstand voltage characteristic that is sufficiently small. Therefore, since the withstand voltage is sufficiently high, dielectric breakdown due to static electricity generated during use of the copying machine is unlikely to occur. In addition, since the variation in withstand voltage is small, there is an advantage that the fixing heater 10 having a desired withstand voltage characteristic can be manufactured with a high yield.

図2は、複写機に上記定着ヒータ10および定着フィルム14に代えて用いられる他の実施例の円筒状の定着ヒータ30の断面構造を模式的に示したものである。定着ヒータ30は、円筒状の基材32と、その外周面に固着された抵抗発熱体層34と、その抵抗発熱体層34を覆う絶縁膜36とを備えている。   FIG. 2 schematically shows a cross-sectional structure of a cylindrical fixing heater 30 of another embodiment used in the copying machine in place of the fixing heater 10 and the fixing film 14. The fixing heater 30 includes a cylindrical base material 32, a resistance heating element layer 34 fixed to the outer peripheral surface thereof, and an insulating film 36 covering the resistance heating element layer 34.

上記の基材32は、例えば、SiO2-B2O3-Al2O3系の硬質ガラスから成るものである。この硬質ガラスには、上記成分の他に少量のアルカリ金属酸化物やアルカリ土類金属酸化物などが含まれている。 The substrate 32 is made of, for example, SiO 2 —B 2 O 3 —Al 2 O 3 hard glass. This hard glass contains a small amount of an alkali metal oxide or an alkaline earth metal oxide in addition to the above components.

また、上記の抵抗発熱体層34は、前記抵抗発熱体層20と同様にAg/Pd合金等を用いて直線状パターンや螺旋状パターン等の適宜の形状で設けられている。また、絶縁膜36は前記絶縁膜22と同様に構成されたものである。このような形態の定着ヒータにおいても、その使用時には抵抗発熱体層34に高電圧が印加されると共に、記録紙28や加圧ローラ16等と擦れ合うことから、高い耐電圧が要求されるが、定着ヒータ10と同様に絶縁膜36が優れた耐電圧特性を有することから、耐電圧に優れた定着ヒータ30を高い歩留まりで製造できる利点がある。   The resistance heating element layer 34 is provided in an appropriate shape such as a linear pattern or a spiral pattern using an Ag / Pd alloy or the like, like the resistance heating element layer 20. The insulating film 36 is configured in the same manner as the insulating film 22. Even in such a fixing heater, a high voltage is applied to the resistance heating element layer 34 when used, and the recording paper 28 and the pressure roller 16 rub against each other. Since the insulating film 36 has an excellent withstand voltage characteristic like the fixing heater 10, there is an advantage that the fixing heater 30 having an excellent withstand voltage can be manufactured with a high yield.

また、このように優れた耐電圧特性を有する絶縁膜22、36を構成するガラスは、上述した定着ヒータ10、30に限られず、耐電圧が高く且つ信頼性を要求される他の用途、例えば、図3に示すような厚膜ハイブリッドICその他の回路基板40の絶縁膜42にも用いられる。   Further, the glass constituting the insulating films 22 and 36 having such an excellent withstand voltage characteristic is not limited to the fixing heaters 10 and 30 described above, and other applications that require high withstand voltage and high reliability, for example, The thick film hybrid IC as shown in FIG. 3 and other insulating films 42 of the circuit board 40 are also used.

図3において、回路基板40は、アルミナ等から成る基板44の一面に導体膜46を形成すると共にICやチップ抵抗等の電子部品48を実装し、これらを絶縁膜42で覆ったものである。上記導体膜46は、例えばAgやAg/Pd等の厚膜導体材料から成るもので、電子部品48は、この導体膜46にハンダ等を用いて固着されている。このような用途においても、低アスペクト比のアルミナ粉末をフィラーとして含む本実施例の絶縁膜42によれば、十分に高い耐電圧が得られるので、回路基板40の信頼性が高められる利点がある。   In FIG. 3, a circuit board 40 is formed by forming a conductor film 46 on one surface of a substrate 44 made of alumina or the like and mounting an electronic component 48 such as an IC or a chip resistor, and covering them with an insulating film 42. The conductor film 46 is made of a thick film conductor material such as Ag or Ag / Pd, for example, and the electronic component 48 is fixed to the conductor film 46 using solder or the like. Even in such an application, according to the insulating film 42 of the present embodiment containing the low-aspect-ratio alumina powder as a filler, a sufficiently high withstand voltage can be obtained, so that there is an advantage that the reliability of the circuit board 40 can be improved. .

また、上記図1〜図3に示す何れの用途においても、上記絶縁膜22,36,42は、ガラスに比べて熱伝導率の高いアルミナ粉末を含むことから、熱伝導性も高められているので、放熱性にも優れている特徴を有する。   In any of the applications shown in FIGS. 1 to 3, since the insulating films 22, 36, and 42 contain alumina powder having higher thermal conductivity than glass, thermal conductivity is also improved. Therefore, it has the characteristic which is excellent also in heat dissipation.

上記のような絶縁膜22,36,42は、例えば、ガラス粉末およびフィラーをベヒクル中に分散した厚膜絶縁ペーストすなわち絶縁膜組成物を調製し、これを抵抗発熱体層20、34や導体膜46等の上にディッピングやスクリーン印刷等の適宜の塗布方法を用いて塗布し、焼成処理を施すことによって形成される。   For the insulating films 22, 36, 42, for example, a thick film insulating paste, that is, an insulating film composition in which glass powder and filler are dispersed in a vehicle is prepared, and this is used as the resistance heating element layers 20, 34 and the conductor film. It is formed by applying on a suitable coating method such as dipping or screen printing on 46 and the like, followed by baking treatment.

図4、図5は、上記のようにして形成される絶縁膜の耐電圧を、フィラーとして添加するアルミナ粉末のアスペクト比および粒径を変化させて評価した結果を示したものである。用いたアルミナ粉末の特性およびガラスとの混合比を表1,2に示す。これら表1,2において、「高アスペクト比アルミナ」が比較例、「低アスペクト比アルミナ」が実施例である。表1に示すアルミナAは、平均粒径(D50)が0.8(μm)と微細なもの、表2に示すアルミナBは、平均粒径が4(μm)前後と比較的大きなものである。粒径は何れもレーザ回折法で測定した値である。これら4種のアルミナの電子顕微鏡写真を図6〜図9に示す。なお、微粉のアルミナAを用いた厚膜絶縁ペーストのガラス:アルミナ混合比(wt%)は、55:45とし、アルミナBを用いたものは50:50とした。なお、何れのサンプルも、フィラーとして添加したアルミナ粉末のアスペクト比・粒径・混合比が異なる他は同様な条件で絶縁膜を形成した。   4 and 5 show the results of evaluating the withstand voltage of the insulating film formed as described above by changing the aspect ratio and the particle size of the alumina powder added as a filler. The characteristics of the alumina powder used and the mixing ratio with glass are shown in Tables 1 and 2. In Tables 1 and 2, “high aspect ratio alumina” is a comparative example, and “low aspect ratio alumina” is an example. Alumina A shown in Table 1 has a fine average particle diameter (D50) of 0.8 (μm), and alumina B shown in Table 2 has a relatively large average particle diameter of around 4 (μm). The particle diameter is a value measured by a laser diffraction method. Electron micrographs of these four types of alumina are shown in FIGS. The glass: alumina mixing ratio (wt%) of the thick film insulating paste using fine powdered alumina A was 55:45, and that using alumina B was 50:50. In each sample, an insulating film was formed under the same conditions except that the alumina powder added as a filler had different aspect ratios, particle sizes, and mixing ratios.

上記図4、図5に示す耐電圧特性は、例えば、平坦なアルミナ基板上に厚膜導体を印刷形成して下部電極を設け、その上に各厚膜絶縁ペーストを厚膜スクリーン印刷によって塗布して焼成処理を施して絶縁膜を形成した後、その絶縁膜上にCuテープを貼り付けて上部電極を形成し、試験装置によって上下電極間に交流電圧を印加して、印加電圧毎の絶縁破壊個数(累積値)を測定することにより評価した。サンプル数は各仕様とも36個である。この評価では、印加電圧を0.1(V)ずつ上昇させて、絶縁破壊が起きたときの電圧を測定値とした。上記試験装置としては、KIKUSUI社製TOS-5051を使用した。また、グラフに示した電圧は実効値である。   The withstand voltage characteristics shown in FIGS. 4 and 5 are as follows. For example, a thick film conductor is printed on a flat alumina substrate to form a lower electrode, and each thick film insulating paste is applied thereon by thick film screen printing. After forming an insulating film by baking, Cu tape is pasted on the insulating film to form the upper electrode, and an AC voltage is applied between the upper and lower electrodes using a test device, and dielectric breakdown occurs at each applied voltage. Evaluation was made by measuring the number (cumulative value). The number of samples is 36 for each specification. In this evaluation, the applied voltage was increased by 0.1 (V), and the voltage when dielectric breakdown occurred was taken as the measured value. As the test apparatus, TOS-5051 manufactured by KIKUSUI was used. The voltage shown in the graph is an effective value.

図4において、平均粒径が0.8(μm)と微細なアルミナ粉末を用いた場合には、膜厚が22(μm)程度の絶縁膜を形成することができるが、低アスペクト比のアルミナを用いた実施例では2.4〜3.1(kV)程度、すなわち109〜141(V/μm)程度の耐電圧が得られる。これに対して、高アスペクト比のアルミナを用いた比較例では1.7〜2.1(kV)程度、すなわち77〜95(V/μm)程度の耐電圧に留まる。単位厚み当たりの平均値およびばらつきでみると、実施例では、平均値が120(V/μm)程度で、ばらつきが22(V/μm)程度であるのに対し、比較例では、平均値が84(V/μm)程度で、ばらつきが18(V/μm)程度になる。ばらつきは同程度であるが、低アスペクト比のアルミナ粉末をフィラーとして用いた実施例では、高アスペクト比のフィラーを用いた比較例に比べて、最低値でも平均値でも30(V/μm)以上向上している。   In FIG. 4, when a fine alumina powder having an average particle size of 0.8 (μm) is used, an insulating film having a film thickness of about 22 (μm) can be formed. In the present embodiment, a withstand voltage of about 2.4 to 3.1 (kV), that is, about 109 to 141 (V / μm) is obtained. On the other hand, in the comparative example using alumina having a high aspect ratio, the withstand voltage is about 1.7 to 2.1 (kV), that is, about 77 to 95 (V / μm). In terms of the average value and variation per unit thickness, in the example, the average value is about 120 (V / μm) and the variation is about 22 (V / μm), whereas in the comparative example, the average value is The variation is about 18 (V / μm) at about 84 (V / μm). Although the variation is about the same, the example using the low aspect ratio alumina powder as the filler is 30 (V / μm) or more at the minimum value and the average value compared with the comparative example using the high aspect ratio filler. It has improved.

また、図5において、平均粒径が4(μm)程度の比較的大きなアルミナ粉末を用いた場合には、膜厚が33(μm)程度の絶縁膜を形成することができるが、低アスペクト比のアルミナを用いた実施例では1.3〜2.4(kV)程度、すなわち39〜73(V/μm)程度の耐電圧が得られる。これに対して、高アスペクト比のアルミナを用いた比較例では0.4〜1.5(kV)程度、すなわち12〜45(V/μm)程度の耐電圧に留まる。単位厚み当たりの平均値およびばらつきでみると、実施例では、平均値が62(V/μm)程度で、ばらつきが34(V/μm)程度であるのに対し、比較例では、平均値が27(V/μm)程度で、ばらつきが33(V/μm)程度になる。ばらつきは同程度であるが、低アスペクト比のアルミナ粉末をフィラーとして用いた実施例では、高アスペクト比のフィラーを用いた比較例に比べて、最低値でも平均値でも30(V/μm)前後向上している。   In FIG. 5, when a relatively large alumina powder having an average particle size of about 4 (μm) is used, an insulating film having a thickness of about 33 (μm) can be formed. In the embodiment using alumina, a withstand voltage of about 1.3 to 2.4 (kV), that is, about 39 to 73 (V / μm) can be obtained. On the other hand, in the comparative example using the high aspect ratio alumina, the withstand voltage is about 0.4 to 1.5 (kV), that is, about 12 to 45 (V / μm). Looking at the average value and variation per unit thickness, in the example, the average value is about 62 (V / μm) and the variation is about 34 (V / μm), whereas in the comparative example, the average value is The variation is about 33 (V / μm) at about 27 (V / μm). Although the variation is about the same, in the example using the low aspect ratio alumina powder as the filler, the minimum value and the average value are around 30 (V / μm) compared to the comparative example using the high aspect ratio filler. It has improved.

上記の高アスペクト比アルミナBは、一般に用いられている破砕アルミナで、高アスペクト比アルミナAは、例えばこれを更に粉砕したものであるが、何れもアスペクト比が2前後と大きくなっている。これに対して、低アスペクト比アルミナA,Bは、アスペクト比が1程度と小さい。上記の評価結果によれば、高アスペクト比のアルミナ粉末をフィラーとして用いる場合に比較して、低アスペクト比のアルミナ粉末をフィラーとして用いれば、耐電圧が著しく向上することが明らかである。   The high aspect ratio alumina B is a generally used crushed alumina, and the high aspect ratio alumina A is, for example, further pulverized, and has an aspect ratio as large as about 2. In contrast, the low aspect ratio aluminas A and B have a small aspect ratio of about 1. According to the above evaluation results, it is clear that the withstand voltage is remarkably improved when the low-aspect-ratio alumina powder is used as the filler as compared with the case where the high-aspect-ratio alumina powder is used as the filler.

なお、上記表1,表2に記載した平均アスペクト比は、電子顕微鏡写真で適当な個数、例えば1視野当たり10個程度の粒子を任意に選んで長軸寸法および短軸寸法を測定し、各粒子のアスペクト比(長軸寸法/短軸寸法)を測定して平均値を算出したものである。高アスペクト比アルミナAはアスペクト比が例えば1.38〜2.25の範囲でばらつき、平均値は1.75であった。また、高アスペクト比アルミナBはアスペクト比が1.21〜3.33の範囲でばらつき、平均値は2.31であった。また、低アスペクト比アルミナAはアスペクト比が1.00〜1.13の範囲でばらつき、平均値は1.07であった。また、低アスペクト比アルミナBはアスペクト比が1.00〜1.08の範囲でばらつき、平均値は1.04であった。高アスペクト比アルミナは、アスペクト比の平均値が大きいだけでなく、ばらつきも著しく大きい。   The average aspect ratios listed in Tables 1 and 2 above are determined by measuring the major axis dimension and minor axis dimension by arbitrarily selecting an appropriate number of particles in an electron micrograph, for example, about 10 particles per field of view. The average value was calculated by measuring the aspect ratio (major axis dimension / minor axis dimension) of the particles. The high aspect ratio alumina A varied in the aspect ratio of, for example, 1.38 to 2.25, and the average value was 1.75. Further, the high aspect ratio alumina B varied in the aspect ratio range of 1.21 to 3.33, and the average value was 2.31. Further, the low aspect ratio alumina A varied in the range of 1.00 to 1.13, and the average value was 1.07. Further, the low aspect ratio alumina B varied in the aspect ratio range of 1.00 to 1.08, and the average value was 1.04. High aspect ratio alumina not only has a large average aspect ratio, but also has a large variation.

要するに、本実施例によれば、ガラスを主成分とする厚膜絶縁ペーストには、CVDにより製造されたアスペクト比が1.2以下のアルミナ粉末が含まれていることから、その厚膜絶縁ペーストから形成される絶縁膜の耐電圧が高められる。   In short, according to the present embodiment, the thick film insulating paste mainly composed of glass contains alumina powder having an aspect ratio of 1.2 or less manufactured by CVD, and thus formed from the thick film insulating paste. The withstand voltage of the insulating film is increased.

特に、本実施例においては、低アスペクト比のアルミナA,B共にアスペクト比が1.1以下であって一層球形に近いことから、絶縁膜に突起が生じにくくなると共に、前記厚膜絶縁ペーストを調製するに際して高い分散性が得られるので、印刷、乾燥時に膜の密度が高められ、焼成後に一層緻密な絶縁膜が得られる利点もある。   In particular, in this example, both the low aspect ratio aluminas A and B have an aspect ratio of 1.1 or less and are closer to a spherical shape, so that it is difficult for protrusions to occur in the insulating film and the thick film insulating paste is prepared. In this case, since high dispersibility is obtained, the density of the film is increased during printing and drying, and there is an advantage that a denser insulating film can be obtained after firing.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施でき、その主旨を逸脱しない範囲で種々変更を加え得るものである。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect, A various change can be added in the range which does not deviate from the main point.

Claims (2)

所定の基材の表面に絶縁膜を形成するために用いられるガラスを主成分とする絶縁膜組成物であって、
アスペクト比が1.2以下のアルミナ粉末を含むことを特徴とする絶縁膜組成物。
An insulating film composition mainly composed of glass used for forming an insulating film on the surface of a predetermined substrate,
An insulating film composition comprising an alumina powder having an aspect ratio of 1.2 or less.
前記アルミナ粉末は化学蒸着法を用いて製造されたものである請求項1の絶縁膜組成物。   The insulating film composition according to claim 1, wherein the alumina powder is manufactured using a chemical vapor deposition method.
JP2010089905A 2010-04-08 2010-04-08 Insulating film composition Active JP5466983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089905A JP5466983B2 (en) 2010-04-08 2010-04-08 Insulating film composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089905A JP5466983B2 (en) 2010-04-08 2010-04-08 Insulating film composition

Publications (2)

Publication Number Publication Date
JP2011221259A true JP2011221259A (en) 2011-11-04
JP5466983B2 JP5466983B2 (en) 2014-04-09

Family

ID=45038315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089905A Active JP5466983B2 (en) 2010-04-08 2010-04-08 Insulating film composition

Country Status (1)

Country Link
JP (1) JP5466983B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128533A (en) * 1986-11-19 1988-06-01 Matsushita Electric Ind Co Ltd Flat-type cathode-ray tube
JPH0251840A (en) * 1988-08-11 1990-02-21 Murata Mfg Co Ltd Secondary electron multiplying apparatus
JPH11224617A (en) * 1997-12-01 1999-08-17 Matsushita Electron Corp Image display device
JP2007297249A (en) * 2006-05-01 2007-11-15 Taiyo Nippon Sanso Corp Glass frit
JP2008081775A (en) * 2006-09-27 2008-04-10 Ntn Corp Method for forming alumina coating film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128533A (en) * 1986-11-19 1988-06-01 Matsushita Electric Ind Co Ltd Flat-type cathode-ray tube
JPH0251840A (en) * 1988-08-11 1990-02-21 Murata Mfg Co Ltd Secondary electron multiplying apparatus
JPH11224617A (en) * 1997-12-01 1999-08-17 Matsushita Electron Corp Image display device
JP2007297249A (en) * 2006-05-01 2007-11-15 Taiyo Nippon Sanso Corp Glass frit
JP2008081775A (en) * 2006-09-27 2008-04-10 Ntn Corp Method for forming alumina coating film

Also Published As

Publication number Publication date
JP5466983B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP7379899B2 (en) ceramic electronic components
JP6242800B2 (en) Sintered conductive paste
JP6576907B2 (en) Conductive paste, multilayer ceramic component, printed wiring board, and electronic device
JP2018092730A (en) Composition for resistor and resistor paste containing the same furthermore thick film resistor therewith
TW202147354A (en) Thick film resistor paste, thick film resistor, and electronic component
TWI746515B (en) Conductive paste
JP5466983B2 (en) Insulating film composition
CN106876067B (en) The manufacturing method of high conductivity thick film aluminium cream
TW201941226A (en) Thermistor element and method for producing thereof
JP2017045906A (en) Thick film resistor paste
CN107967973A (en) Positive temperature coefficient resistor body composition, paste, the manufacture method of resistive element and resistive element
JP6558253B2 (en) Thick film resistor composition and resistor paste
TWI631160B (en) Conductive paste and substrate with conductive film
JP5662361B2 (en) Resistor paste for ceramic substrate heater and ceramic substrate heater
JP2017043033A (en) Thick film resistor and thermal head
JP5746929B2 (en) Insulation film
JP2009289839A (en) Anti-static electricity measure material, method of manufacturing the same, and anti-static electricity measure component
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2018154520A (en) Thick film resistor composition having positive temperature coefficient of resistance, thick film resistor paste using the same, thick film resistor, and temperature sensor
JP7116362B2 (en) Resistor composition, resistor paste, and resistor
TW202147353A (en) Thick film resistor paste, thick film resistor, and electronic component
WO2024042872A1 (en) Conductive paste, electrode, electronic component, and electronic device
WO2024057852A1 (en) Electronic component
US10174210B2 (en) Method of fabricating high-conductivity thick-film aluminum paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5466983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250