JP2011221227A - Photomask - Google Patents

Photomask Download PDF

Info

Publication number
JP2011221227A
JP2011221227A JP2010089379A JP2010089379A JP2011221227A JP 2011221227 A JP2011221227 A JP 2011221227A JP 2010089379 A JP2010089379 A JP 2010089379A JP 2010089379 A JP2010089379 A JP 2010089379A JP 2011221227 A JP2011221227 A JP 2011221227A
Authority
JP
Japan
Prior art keywords
dimension
micro
photomask
dimensional
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010089379A
Other languages
Japanese (ja)
Inventor
Daisuke Nakamura
大亮 中村
Koki Hayashi
甲季 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010089379A priority Critical patent/JP2011221227A/en
Publication of JP2011221227A publication Critical patent/JP2011221227A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a highly accurate photomask which is capable of forming minute three-dimensional shapes with uniform height independently of dimensions of the minute three-dimensional shapes.SOLUTION: In the photomask in which a pattern of minute three-dimensional shape regions surrounded with a light shielding region is formed, light transmittance of the minute three-dimensional shape regions of which the dimensions of the three-dimensional shape regions D are twice or less than twice a boundary dimension R given by R=λ/NA, where NA is an aperture ratio of a projection lens for projecting the pattern of the photomask onto a substrate to be exposed and λ is a wavelength of exposure light, is made lower than light transmittance of the minute three-dimensional shape regions of which the dimensions D are equal to or larger than three times the boundary dimension R.

Description

本発明は、液晶パネルに形成する微小立体形状の配列や、半導体基板などに形成される微小立体形状の配列や、MEMSやバイオチップ等の微小立体形状の配列を製造するために用いるフォトマスクに関するものである。   The present invention relates to a photomask used for manufacturing a micro three-dimensional array formed on a liquid crystal panel, a micro three-dimensional array formed on a semiconductor substrate, or a micro three-dimensional array such as a MEMS or a biochip. Is.

液晶パネルに形成するスペーサ等の微小立体形状の配列や、撮像デバイスの半導体の各受光素子毎にマイクロレンズの微小立体形状の配列や、MEMSやバイオチップ等の微小立体形状の配列を製造する際に、また、それらの配列を形成する金型や母型に微小立体形状の型の配列を形成する場合に、フォトマスクを利用してその微小立体形状の形を感光性レジスト材料層に転写している。   When manufacturing a micro three-dimensional array such as spacers formed on a liquid crystal panel, a micro lens micro three-dimensional array for each light receiving element of a semiconductor of an imaging device, or a micro three-dimensional array such as a MEMS or a biochip In addition, when a micro three-dimensional mold array is formed on the mold or mother mold forming the array, the micro three-dimensional shape is transferred to the photosensitive resist material layer using a photomask. ing.

特許文献1には、被露光基板上に感光性レジスト材料層を形成し、この感光性レジスト材料層に、フォトマスクのパターンを投影露光し、現像してマイクロレンズの微小立体形状を得る技術が開示されている。この方法は、フォトマスクのレチクルに微小図形(微小網点図形)を微細なピッチの間隔で設置し、そのフォトマスクの微小図形(微小網点図形)の寸法と微細なピッチを、ステッパーでパターンを縮小投影して光の波長以下の長さで解像されない長さに投影することで露光濃度を分布させて被露光基板の感光性レジスト材料層を露光する。これにより、マイクロレンズの微小立体形状を形成できる。   Patent Document 1 discloses a technique in which a photosensitive resist material layer is formed on a substrate to be exposed, a photomask pattern is projected and exposed on the photosensitive resist material layer, and developed to obtain a micro three-dimensional shape of a microlens. It is disclosed. In this method, fine figures (fine halftone dots) are placed on a photomask reticle at fine pitch intervals, and the dimensions and fine pitch of the fine figures (fine halftone figures) on the photomask are patterned with a stepper. The photosensitive resist material layer of the substrate to be exposed is exposed by distributing the exposure density by projecting to a length that is less than the wavelength of light and projecting to a length that is not resolved. Thereby, the micro three-dimensional shape of a micro lens can be formed.

特表平08−504515号公報Japanese Translation of National Publication No. 08-504515

一方、例えば液晶パネルにスペーサの微小立体形状を形成する場合に、そのパネル上に寸法の異なる微小立体形状を混在させて、それらの高さを揃える必要がある。本発明者らは、鋭意研究の結果、フォトマスクに同じ光透過率の微小立体形状領域のパターンを形成し、そのパターンを被露光基板上の感光性レジスト材料層に投影した場合に、微小立体形状の寸法が小さくなるにつれ、感光性レジスト材料層に投影される光量(投影光強度)が、設計値からずれて来て、その結果、感光性レジスト材料層を露光・現像して得られる微小立体形状の高さがその微小立体形状の寸法に依存して変わってしまう問題が有るという知見を得た。   On the other hand, for example, when forming a micro three-dimensional shape of a spacer on a liquid crystal panel, it is necessary to mix micro three-dimensional shapes having different dimensions on the panel and to align their heights. As a result of diligent research, the inventors of the present invention formed a micro three-dimensional shape pattern having the same light transmittance on a photomask and projected the pattern onto the photosensitive resist material layer on the substrate to be exposed. As the size of the shape becomes smaller, the amount of light (projected light intensity) projected onto the photosensitive resist material layer deviates from the design value. As a result, the minute amount obtained by exposing and developing the photosensitive resist material layer. It was found that there is a problem that the height of the solid shape changes depending on the size of the small solid shape.

そのため、本発明は、フォトマスクのパターンを投影レンズで被露光基板上の感光性レジスト材料層に投影して微小立体形状を形成する場合に、寸法の異なる微小立体形状が混在する場合に、それらの微小立体形状の寸法に依存せずに高さを揃えて微小立体形状を形成することができるフォトマスクを得ることを課題とする。   For this reason, the present invention projects a photomask pattern onto a photosensitive resist material layer on an exposed substrate with a projection lens to form a micro three-dimensional shape. It is an object of the present invention to obtain a photomask capable of forming a micro three-dimensional shape with the same height without depending on the size of the micro three-dimensional shape.

本発明は、上記課題を解決するために、遮光領域で囲まれた微小立体形状領域のパターンが形成されたフォトマスクであって、前記微小立体形状領域の寸法Dが、フォトマスクのパターンを被露光基板に投影する投影レンズの開口比NAと露光光の波長λに関する境界寸法R=λ/NAに関して、前記寸法Dが前記境界寸法Rの2倍以下の前記微小立体形状領域の光透過率を、前記寸法Dが前記境界寸法Rの3倍以上の微小立体形状領域の光透過率よりも小さくしたことを特徴とするフォトマスクである。   In order to solve the above-described problems, the present invention provides a photomask in which a pattern of a micro three-dimensional area surrounded by a light shielding area is formed, and the dimension D of the micro three-dimensional area covers the pattern of the photo mask. With respect to the boundary dimension R = λ / NA with respect to the aperture ratio NA of the projection lens projected onto the exposure substrate and the wavelength λ of the exposure light, the light transmittance of the micro three-dimensional shape region in which the dimension D is not more than twice the boundary dimension R The photomask is characterized in that the dimension D is smaller than the light transmittance of a micro three-dimensional region that is three times or more the boundary dimension R.

また、本発明は、上記のフォトマスクであって、前記寸法Dが前記境界寸法Rの2倍以下の前記微小立体形状領域の光透過率を、前記寸法Dが前記境界寸法Rの3倍以上の前記微小立体形状領域の光透過率に対して[0.0450(D/R)−0.328(D/R)+1.566]分の1にしたことを特徴とするフォトマスクである。 Further, the present invention is the above-described photomask, wherein the dimension D is less than twice the boundary dimension R and the light transmittance of the micro three-dimensional region, and the dimension D is more than three times the boundary dimension R. The photomask is characterized in that it is reduced to [0.0450 (D / R) 2 −0.328 (D / R) +1.5666] to the light transmittance of the minute three-dimensional shape region. .

また、本発明は、上記のフォトマスクであって、少なくとも、前記寸法Dが前記境界寸法Rの2倍以下となる前記微小立体形状領域が、前記境界寸法Rより小さいピッチの格子点に設置した遮光性の微小網点図形と、前記微小網点図形の間の微小間隙図形のパターンを有するることを特徴とするフォトマスクである。   Further, the present invention is the above-described photomask, wherein at least the micro three-dimensional region in which the dimension D is equal to or less than twice the boundary dimension R is set at a lattice point having a pitch smaller than the boundary dimension R. A photomask having a pattern of light-shielding fine halftone dots and a fine gap figure between the fine halftone dots.

また、本発明は、上記のフォトマスクであって、少なくとも1つの前記微小立体形状領域が、透明基板上に形成された半透光膜を有することを特徴とするフォトマスクである。   In addition, the present invention is the above-described photomask, wherein at least one of the micro three-dimensional regions has a semi-transparent film formed on a transparent substrate.

本発明のフォトマスクは、フォトマスクのパターンを被露光基板に投影する投影レンズの開口比NAと露光光の波長λに関する境界寸法R=λ/NAに関して、寸法Dが境界寸法Rの2倍以下の微小立体形状領域のパターンのマスクの光透過率を、寸法Dが境界寸法Rの3倍以上の微小立体形状領域のパターンのマスクの光透過率に対して[0.0450(D/R)−0.328(D/R)+1.566]分の1にすることで、寸法Dが境界寸法Rの2倍以下の微小立体形状領域も、寸法Dが境界寸法Rの3倍以上の微小立体形状領域と同じ投影光強度に揃えて被露光基板上の感光性レジスト材料層を露光できる効果がある。 In the photomask of the present invention, the dimension D is not more than twice the boundary dimension R with respect to the boundary dimension R = λ / NA with respect to the aperture ratio NA of the projection lens that projects the photomask pattern onto the substrate to be exposed and the wavelength λ of the exposure light. The light transmittance of the mask of the pattern of the micro three-dimensional region is [0.0450 (D / R) with respect to the light transmittance of the mask of the pattern of the micro three-dimensional shape region whose dimension D is three times the boundary dimension R or more. 2 -0.328 (D / R) +1.566 ] fraction of it to 1, 2 times the micro three-dimensional shaped region dimensions D boundary dimension R also, the dimension D is more than 3 times the boundary dimension R There is an effect that the photosensitive resist material layer on the exposed substrate can be exposed with the same projection light intensity as that of the micro three-dimensional shape region.

本発明の第1の実施形態のフォトマスクの平面図である。1 is a plan view of a photomask according to a first embodiment of the present invention. 本発明の第1の実施形態のフォトマスクの側断面図である。It is a sectional side view of the photomask of the 1st Embodiment of this invention. (a)本発明のフォトマスクの、微小立体形状領域2aから2dのパターンが被露光基板に投影される露光量(投影光強度T)の光強度分布のシミュレーション結果を示す図である。(b)シミュレーションで得られた微小立体形状領域の投影光強度Tを与える関数Fを示す図である。(A) It is a figure which shows the simulation result of the light intensity distribution of the exposure amount (projection light intensity | strength T) by which the pattern of the micro three-dimensional shape area | regions 2a-2d of a photomask of this invention is projected on a to-be-exposed board | substrate. (B) It is a figure which shows the function F which gives the projection light intensity | strength T of the micro solid shape area | region obtained by simulation. 本発明の第2の実施形態のフォトマスクの平面図である。It is a top view of the photomask of the 2nd Embodiment of this invention. 本発明の第2の実施形態のフォトマスクの側断面図である。It is a sectional side view of the photomask of the 2nd Embodiment of this invention. 本発明の第3の実施形態のフォトマスクの平面図である。It is a top view of the photomask of the 3rd Embodiment of this invention. 本発明の第3の実施形態のフォトマスクの側断面図である。It is a sectional side view of the photomask of the 3rd Embodiment of this invention.

<第1の実施形態>
(フォトマスク)
以下、図1から図3によって、本発明の第1の実施形態を説明する。図1に、本実施形態のフォトマスク10の、遮光領域3で囲まれた微小立体形状領域2aから2dの4つのパターンの平面図を示す。本実施形態のフォトマスク10には、合成石英ガラス等の透明基板1上にクロム(Cr)の蒸着(必要に応じて、Crと酸化クロムの2層膜)等により、遮光膜を例えば厚さ200nmに成膜し、その遮光膜のCr等をエッチングする等でパターンを形成する。それにより、遮光領域3で囲まれた領域に、透明基板1を露出させた微小間隙図形4の集合を形成した微小立体形状領域2aから2dのパターンを形成する。微小間隙図形4の間はCrの遮光膜のパターンで形成した遮光性の微小網点図形3aがある。微小間隙図形4は、ピッチがPの格子点上に千鳥足状に形成する。
<First Embodiment>
(Photomask)
The first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a plan view of four patterns of micro three-dimensional regions 2a to 2d surrounded by a light shielding region 3 of the photomask 10 of the present embodiment. In the photomask 10 of the present embodiment, a light-shielding film is formed on the transparent substrate 1 such as synthetic quartz glass by vapor deposition of chromium (Cr) (if necessary, a two-layer film of Cr and chromium oxide). A film is formed to 200 nm, and a pattern is formed by etching Cr or the like of the light shielding film. Thereby, in the area surrounded by the light-shielding area 3, the patterns of the micro three-dimensional shape areas 2a to 2d in which a set of the micro-gap figures 4 exposing the transparent substrate 1 are formed are formed. Between the minute gap figures 4, there is a light-shielding minute halftone figure 3a formed by a Cr light-shielding film pattern. The minute gap pattern 4 is formed in a staggered pattern on a lattice point having a pitch P.

図1のフォトマスク10において、遮光領域3で囲まれ、微小間隙図形4の集合で形成した微小立体形状領域2aから2dのパターンは、それぞれの寸法の矩形の底面を有する柱状の微小立体形状を形成するために用いる。微小立体形状領域2aは、一辺の寸法Daが2.5μmの正方形のパターンであり、そのパターンを投影レンズ20により被露光基板30の面上の感光性レジスト材料層に投影することで、同じ寸法の微小立体形状を形成する。微小立体形状領域2bは一辺の寸法Dbが5μmの正方形のパターン、微小立体形状領域2cは一辺の寸法Dcが7・5μmの正方形のパターン、微小立体形状領域2dは一辺の寸法Ddが10μmの正方形のパターンである。   In the photomask 10 of FIG. 1, the patterns of the micro three-dimensional regions 2a to 2d surrounded by the light-shielding region 3 and formed by a set of the micro gap patterns 4 have columnar micro three-dimensional shapes having rectangular bottom surfaces with respective dimensions. Used to form. The micro three-dimensional shape region 2a is a square pattern having a dimension Da of 2.5 μm on one side, and the pattern is projected onto the photosensitive resist material layer on the surface of the substrate 30 to be exposed by the projection lens 20 so that the same dimension is obtained. A micro three-dimensional shape is formed. The micro three-dimensional region 2b is a square pattern having a side dimension Db of 5 μm, the micro three-dimensional region 2c is a square pattern having a side dimension Dc of 7.5 μm, and the micro three-dimensional region 2d is a square having a side dimension Dd of 10 μm. Pattern.

そして、遮光領域3で囲まれた微小立体形状領域2aから2dのそれぞれの寸法Dの正方形の領域内に、ピッチがP(図1ではP=500nm)の格子点上に千鳥足状に微小間隙図形4を配列したパターンを形成する。図2に、このフォトマスク10の断面図を示す。図2のように、透明基板1上にCrの遮光膜から成る遮光領域3と微小網点図形3aのパターンを形成し、遮光性の微小網点図形3aの間に透明基板1を露出する微小間隙図形4のパターンを形成する。そして、微小網点図形3aと微小間隙図形4との面積比を変えることによって光透過率を制御した微小立体形状領域2を形成する。   Then, in the square area of each dimension D of the minute solid shape areas 2a to 2d surrounded by the light-shielding area 3, the minute gap figure is staggered on a lattice point having a pitch P (P = 500 nm in FIG. 1). 4 is formed. FIG. 2 shows a cross-sectional view of the photomask 10. As shown in FIG. 2, a pattern of a light shielding region 3 made of a Cr light shielding film and a fine halftone dot pattern 3a is formed on the transparent substrate 1, and the transparent substrate 1 is exposed between the light shielding fine halftone dot pattern 3a. A pattern of the gap graphic 4 is formed. Then, by changing the area ratio between the minute dot pattern 3a and the minute gap pattern 4, the minute three-dimensional region 2 in which the light transmittance is controlled is formed.

このフォトマスク10のパターンをステッパーの投影レンズ20で被露光基板30上の感光性レジスト材料層に等倍に投影して露光する。すなわち、フォトマスク10に露光光L0が照射された場合、露光光L0は、微小間隙図形4を通過し、縮小投影型露光装置(ステッパー)の投影レンズ20でそのパターンを等倍で被露光基板30の面上に形成した感光性レジスト材料層に投影することでパターン露光する。   The pattern of the photomask 10 is projected onto the photosensitive resist material layer on the exposed substrate 30 at the same magnification by the projection lens 20 of the stepper and exposed. That is, when the exposure light L0 is irradiated onto the photomask 10, the exposure light L0 passes through the minute gap figure 4, and the pattern is exposed at the same magnification by the projection lens 20 of the reduction projection type exposure apparatus (stepper). Pattern exposure is performed by projecting onto a photosensitive resist material layer formed on the surface 30.

(フォトマスクの格子点のピッチP)
鋭意研究の結果、フォトマスク10の、遮光領域3で囲まれた微小立体形状領域2内に微小間隙図形4を、ピッチPの格子点に千鳥足状に配置して形成するが、そのピッチPは以下の寸法に設定する。すなわち、ステッパーの被露光基板30側の投影レンズ20の開口比NAと露光光の波長λに関して、被露光基板30に投影する微小立体形状領域2のパターンの分解能に比例する(式1で定義する)境界寸法R=λ/NAよりも小さいピッチPを設定する(式2)。そのピッチPに設定することで、被露光基板30にほぼ一様な光分布のパターンが投影できる。このフォトマスク10の微小立体形状領域2のパターンを投影して露光した被露光基板30上の感光性レジスト材料層を現像することにより、被露光基板30の表面上に高さの凹凸が少ない微小立体形状を形成することができる。
(式1)R=λ/NA
(式2)P<R
(Pitch P of lattice point of photomask)
As a result of diligent research, the fine gap figure 4 is formed in a staggered pattern at the lattice points of the pitch P in the fine three-dimensional shape region 2 surrounded by the light shielding region 3 of the photomask 10. Set the following dimensions. That is, the aperture ratio NA of the projection lens 20 on the exposed substrate 30 side of the stepper and the wavelength λ of the exposure light are proportional to the resolution of the pattern of the micro three-dimensional region 2 projected onto the exposed substrate 30 (defined by Equation 1). ) A pitch P smaller than the boundary dimension R = λ / NA is set (Formula 2). By setting the pitch P, a substantially uniform light distribution pattern can be projected onto the substrate 30 to be exposed. The photosensitive resist material layer on the exposed substrate 30 exposed by projecting the pattern of the micro three-dimensional region 2 of the photomask 10 is developed, so that the surface of the exposed substrate 30 has a small height unevenness. A three-dimensional shape can be formed.
(Formula 1) R = λ / NA
(Formula 2) P <R

ステッパーの被露光基板30側の投影レンズ20の開口比NAを0.15にしてコヒーレンスファクタσを0.6にした条件で、波長λが365nmの露光光L0でフォトマスク10のパターンを被露光基板30に露光する場合に境界寸法Rを(式1)で計算すると、境界寸法Rは、R=λ/NA=365nm/0.15=2433nm=2.43μmと計算される。フォトマスク10の格子点(グリッド)のピッチPは、露光の波長λ=365nmより大きいが、その境界寸法R=2.43μmよりも小さい500nmのピッチPに設定する。   The pattern of the photomask 10 is exposed with exposure light L0 having a wavelength λ of 365 nm under the condition that the aperture ratio NA of the projection lens 20 on the exposure substrate 30 side of the stepper is 0.15 and the coherence factor σ is 0.6. When the boundary dimension R is calculated by (Equation 1) when the substrate 30 is exposed, the boundary dimension R is calculated as R = λ / NA = 365 nm / 0.15 = 2433 nm = 2.43 μm. The pitch P of the lattice point (grid) of the photomask 10 is set to a pitch P of 500 nm, which is larger than the exposure wavelength λ = 365 nm but smaller than the boundary dimension R = 2.43 μm.

(フォトマスクの階調)
フォトマスク10のパターンは、マスクの各部で指定された階調(グレースケール:濃度)に従って寸法(面積)を変えた微小間隙図形4を格子点に設置する。すなわち、矩形の微小間隙図形4の辺の長さを0から格子点のピッチPの2倍の大きさにまで変えることによりフォトマスクの格子点毎の光透過率を変えて階調を調整する。例えば、一辺が316nmの矩形の微小間隙図形4を格子点上に千鳥足状に設置することで、フォトマスク1
0の光照射領域に対する微小間隙図形4の面積の割合を20%にする。
(Photomask gradation)
In the pattern of the photomask 10, a minute gap graphic 4 having a dimension (area) changed according to a gradation (gray scale: density) designated in each part of the mask is set at a lattice point. That is, the gradation is adjusted by changing the light transmittance at each lattice point of the photomask by changing the length of the side of the rectangular minute gap figure 4 from 0 to twice the pitch P of the lattice point. . For example, the photomask 1 is formed by arranging rectangular minute gap figures 4 each having a side of 316 nm in a staggered pattern on the lattice points.
The ratio of the area of the minute gap figure 4 to the 0 light irradiation region is set to 20%.

(投影光強度の微小立体形状領域の寸法Dへの依存性)
図3(a)は、図1に示すフォトマスク10の遮光領域3で囲まれた微小立体形状領域2aから2dのパターンが、投影レンズ20により、被露光基板30に投影される露光量(投影光強度T)の光強度分布のシミュレーション結果を示す。この場合では、フォトマスク10のパターンは、境界寸法R=2.43μmよりも小さいピッチP=0.5μmの格子点上に微小間隙図形4を千鳥足状に配置する。ここで、フォトマスク10における微小立体形状領域2が投影レンズ20で被露光基板30に投影される光の投影光強度Tを20%にすることを狙って(狙いとする投影光強度A=0.2)、その微小間隙図形4の矩形の一辺の寸法を316nmに設定した。この場合は、微小間隙図形4の間の遮光性の微小網点図形3aは端部で連結される。図3(a)の横軸Xは、各微小立体形状領域2aから2dが投影レンズ20で被露光基板30に投影されるパターンの位置座標をあらわす。シミュレーション結果の投影光強度Tの分布は、寸法Daの微小立体形状領域2aが投影された寸法が2.5μm、寸法Dbの微小立体形状領域2bが投影された寸法が5μm、寸法Dcの微小立体形状領域2cが投影された寸法が7.5μm、寸法Ddの微小立体形状領域2dが投影された寸法が10μmの、正方形の微小立体形状の露光パターンが被露光基板30に投影される。
(Dependence of projected light intensity on dimension D of the micro three-dimensional region)
FIG. 3A shows an exposure amount (projection) in which the patterns of the micro three-dimensional regions 2a to 2d surrounded by the light shielding region 3 of the photomask 10 shown in FIG. The simulation result of the light intensity distribution of the light intensity T) is shown. In this case, in the pattern of the photomask 10, the minute gap figures 4 are arranged in a staggered pattern on lattice points having a pitch P = 0.5 μm smaller than the boundary dimension R = 2.43 μm. Here, aiming at the projection light intensity T of the light projected onto the substrate 30 to be exposed by the projection lens 20 in the minute three-dimensional shape region 2 in the photomask 10 (target projection light intensity A = 0). .2), the dimension of one side of the rectangle of the minute gap figure 4 was set to 316 nm. In this case, the light shielding fine halftone dots 3a between the minute gap figures 4 are connected at the ends. The horizontal axis X in FIG. 3A represents the position coordinates of the pattern in which each micro three-dimensional region 2a to 2d is projected onto the substrate 30 to be exposed by the projection lens 20. The distribution of the projection light intensity T as a result of the simulation is as follows: the dimension in which the micro three-dimensional area 2a having the dimension Da is projected is 2.5 μm, the dimension in which the micro three-dimensional area 2b having the dimension Db is projected is 5 μm, and the micro solid having the dimension Dc. A square micro three-dimensional exposure pattern is projected onto the substrate 30 to be exposed, with the size projected onto the shape area 2c of 7.5 μm and the dimension onto which the micro solid area 2d with the dimension Dd projected is 10 μm.

図3(a)に示すシミュレーション結果は、フォトマスク10の正方形の微小立体形状領域2の寸法Dが5μm以上ある微小立体形状領域2bから2dでは、被露光基板30に投影される光強度分布の投影光強度Tのピークが概ね20%に揃う。一方、寸法Daが2.5μmの微小立体形状領域2aは、被露光基板30に投影される投影光強度Tが25%になり、他の微小立体形状領域2のパターンよりも投影光強度Tが25%程大きくなる。このように、フォトマスク10における遮光領域3で囲まれる微小立体形状領域2の寸法Dが(式1)で計算される境界寸法R=2.43μmよりも小さくなると、投影レンズ20により被露光基板30に投影される投影光強度Tが大きくなり始めるという知見を得た。   The simulation result shown in FIG. 3A shows that the light intensity distribution projected onto the substrate to be exposed 30 is small in the micro three-dimensional regions 2b to 2d in which the dimension D of the square micro three-dimensional region 2 of the photomask 10 is 5 μm or more. The peaks of the projected light intensity T are approximately 20%. On the other hand, in the micro three-dimensional shape region 2a having the dimension Da of 2.5 μm, the projection light intensity T projected onto the substrate 30 to be exposed is 25%, and the projection light intensity T is higher than the patterns of the other micro three-dimensional shape regions 2. Increases by about 25%. As described above, when the dimension D of the micro three-dimensional region 2 surrounded by the light shielding region 3 in the photomask 10 becomes smaller than the boundary dimension R = 2.43 μm calculated by (Equation 1), the projection lens 20 causes the substrate to be exposed. It was found that the projection light intensity T projected onto the lens 30 starts to increase.

シミュレーションの結果、微小立体形状領域2の寸法Dが小さくなると微小立体形状領域2の投影光強度Tが大きくなり、その関係式として、微小立体形状領域2の寸法Dと境界寸法Rの比(D/R)の多項式であらわされる関数Fに係数Aを掛け算して投影光強度Tをあらわす以下の(式3)を得た。
(式3)T=A・F
=A・[0.0450(D/R)−0.328(D/R)+1.566]
(式4)(D/R)<4
この(式3)の適用範囲は、(D/R)<4(式4)となる範囲内の寸法Dで有効である。(式3)の係数Aは、寸法Dが境界寸法Rの3倍以上の微小立体形状領域2が投影レンズ20で被露光基板30に露光・投影される光強度(投影光強度T)をあらわす。
As a result of the simulation, when the dimension D of the minute solid shape region 2 becomes smaller, the projection light intensity T of the minute solid shape region 2 becomes larger. As a relational expression thereof, the ratio of the dimension D of the minute solid shape region 2 to the boundary dimension R (D / R) is multiplied by a coefficient A and a function F represented by a polynomial is obtained to obtain the following (Expression 3) representing the projected light intensity T.
(Formula 3) T = A · F
= A · [0.0450 (D / R) 2 −0.328 (D / R) +1.666]
(Formula 4) (D / R) <4
The applicable range of (Equation 3) is effective for the dimension D within the range of (D / R) <4 (Equation 4). The coefficient A in (Expression 3) represents the light intensity (projection light intensity T) at which the micro three-dimensional region 2 having the dimension D three times or more the boundary dimension R is exposed and projected onto the exposure target substrate 30 by the projection lens 20. .

この(式3)の、A=1の場合の投影光強度T、すなわち関数Fの計算結果を、図3(b)に実線で示す。こうして(式3)により、微小立体形状領域2の寸法Dの関数として被露光基板30に投影する投影光強度Tが計算できる。このように、投影光強度Tは、微小立体形状領域2の寸法Dが小さくなると大きくなる関係がある。こうして得られた、投影光強度Tが微小立体形状領域2の寸法Dに依存する関係式(式3)を利用することで、微小立体形状領域2の寸法Dにかかわらず一定の光強度で被露光基板30を露光するようにするフォトマスクの微小立体形状領域2の光透過率が計算できる。すなわち、フォトマスク10において、寸法Dが境界寸法Rの2倍以下の微小立体形状領域2に対しては、その光透過率A1を以下の(式5)に設定するように寸法を調整した微小間隙図形4を形成することで、それを投影レンズ20で被露光基板30に投影する投影光強度Tの寸法D依
存性を補正する。
(式5)マスクの光透過率A1=A0/F
=A0/[0.0450(D/R)−0.328(D/R)+1.566]すなわち、フォトマスク10において、寸法Dが境界寸法Rの2倍以下の微小立体形状領域のパターンの光透過率A1を、寸法Dが境界寸法Rの3倍以上の微小立体形状領域のパターンの光透過率A0に対して[0.0450(D/R)−0.328(D/R)+1.566]分の1にする。これにより、投影レンズ20で被露光基板30に投影する投影光強度Tを、寸法Dが境界寸法Rの2倍以下の微小立体形状領域2においても、寸法Dが境界寸法Rの3倍以上の微小立体形状領域2と同じ投影光強度Tに揃えることができる効果がある。
The calculation result of the projection light intensity T, that is, the function F in the case of A = 1 in (Equation 3) is shown by a solid line in FIG. Thus, by (Equation 3), the projection light intensity T projected onto the exposed substrate 30 as a function of the dimension D of the micro three-dimensional region 2 can be calculated. Thus, the projection light intensity T has a relationship that increases as the dimension D of the minute three-dimensional shape region 2 decreases. By using the relational expression (Equation 3) in which the projection light intensity T obtained in this way depends on the dimension D of the minute three-dimensional shape region 2, the target light intensity can be kept constant regardless of the dimension D of the minute three-dimensional shape region 2. The light transmittance of the micro three-dimensional region 2 of the photomask that exposes the exposure substrate 30 can be calculated. That is, in the photomask 10, for a small three-dimensional shape region 2 whose dimension D is twice or less than the boundary dimension R, the dimension is adjusted so that the light transmittance A 1 is set to the following (formula 5). By forming the gap figure 4, the dependency of the projection light intensity T projected onto the substrate 30 to be exposed by the projection lens 20 is corrected.
(Expression 5) Light transmittance of mask A1 = A0 / F
= A0 / [0.0450 (D / R) 2 −0.328 (D / R) +1.566] That is, in the photomask 10, the pattern of the micro three-dimensional region whose dimension D is not more than twice the boundary dimension R The light transmittance A1 of [0.0450 (D / R) 2 −0.328 (D / R) with respect to the light transmittance A0 of the pattern of the micro three-dimensional region whose dimension D is three times or more of the boundary dimension R. ) +1.566]. As a result, the projection light intensity T projected onto the substrate to be exposed 30 by the projection lens 20 is such that the dimension D is 3 times or more the boundary dimension R even in the micro three-dimensional shape region 2 whose dimension D is 2 times or less the boundary dimension R. There is an effect that the same projection light intensity T as that of the minute solid shape region 2 can be made uniform.

<第2の実施形態>
図4に第2の実施形態のフォトマスク10の平面図を示し、図5に、その側断面図を示す。第2の実施形態では、図5の側断面図のように、フォトマスク10の透明基板1上に半透光膜5の層を形成する。そして、その半透光膜5の層の上に遮光膜の層を形成し、遮光膜の層のパターンで遮光領域3及び微小網点図形3aを形成する。半透光膜5の層の光透過率は、寸法Dが境界寸法Rの3倍以上の微小立体形状領域2cと2dにおける投影光強度Tの値(光透過率A0)と等しく設定する。そして、図4に示すように、寸法Dが境界寸法Rの2倍以下の微小立体形状領域2aと2b内には遮光性の微小網点図形3aを形成し、微小網点図形3aと他の微小網点図形3aとの間に微小間隙図形4aのパターンを形成する。第2の実施形態では、第1の実施形態とは逆に、遮光性の微小網点図形3aの間の微小網点図形3aが端部で連結されたパターンを形成する。この遮光性の微小網点図形3aは、(式1で定義する)境界寸法R=λ/NAよりも小さいピッチPの格子点上に千鳥足状に設置する。一方、寸法Dが境界寸法Rの3倍以上の微小立体形状領域2cと2d内には、微小網点図形3aを形成せずに、微小立体形状領域2cと2dそれぞれの領域全体を遮光領域3で囲まれた一辺の長さDの開口部6に形成する。微小立体形状領域2cと2dでは、透明基板1の全面が半透光膜5で覆われることで、開口部6の光透過率を光透過率A0にする。
<Second Embodiment>
FIG. 4 shows a plan view of the photomask 10 of the second embodiment, and FIG. 5 shows a side sectional view thereof. In the second embodiment, as shown in the side sectional view of FIG. 5, the layer of the semi-transparent film 5 is formed on the transparent substrate 1 of the photomask 10. Then, a light-shielding film layer is formed on the semi-transparent film 5 layer, and the light-shielding region 3 and the minute dot pattern 3a are formed with the pattern of the light-shielding film layer. The light transmittance of the layer of the semi-transparent film 5 is set equal to the value of the projected light intensity T (light transmittance A0) in the micro three-dimensional regions 2c and 2d whose dimension D is three times or more the boundary dimension R. Then, as shown in FIG. 4, a light-shielding fine halftone dot pattern 3a is formed in the fine three-dimensional shape regions 2a and 2b whose dimension D is not more than twice the boundary dimension R. A pattern of the minute gap figure 4a is formed between the minute dot figure 3a. In the second embodiment, contrary to the first embodiment, a pattern is formed in which the fine halftone dots 3a between the light-shielding fine halftone dots 3a are connected at the ends. This light-shielding minute halftone dot pattern 3a is arranged in a staggered pattern on lattice points having a pitch P smaller than the boundary dimension R = λ / NA (defined by Equation 1). On the other hand, in the minute solid shape regions 2c and 2d whose dimension D is three times or more of the boundary dimension R, the entire area of each of the minute solid shape regions 2c and 2d is not formed in the light shielding region 3 without forming the minute dot pattern 3a. Is formed in the opening 6 having a length D on one side surrounded by. In the micro three-dimensional regions 2c and 2d, the entire surface of the transparent substrate 1 is covered with the semi-transparent film 5, so that the light transmittance of the opening 6 is set to the light transmittance A0.

フォトマスク10の寸法Dが境界寸法Rの2倍以下の微小立体形状領域2aと2bでは、微小網点図形3aの寸法を調整することで、その光透過率A1を(式5)の通りに、微小立体形状領域2cと2dの光透過率A0に対して[0.0450(D/R)−0.328(D/R)+1.566]分の1にする。これにより投影光強度Tの寸法D依存性を補正し、第1の実施形態と同様に、被露光基板30に投影する投影光強度Tを、寸法Dが境界寸法Rの2倍以下の微小立体形状領域2も、寸法Dが境界寸法Rの3倍以上の微小立体形状領域2と同じ投影光強度Tに揃えることができる効果がある。 In the micro three-dimensional regions 2a and 2b in which the dimension D of the photomask 10 is less than or equal to twice the boundary dimension R, the light transmittance A1 is adjusted as shown in (Formula 5) by adjusting the dimension of the micro dot pattern 3a. , to [0.0450 (D / R) 2 -0.328 (D / R) +1.566] 1 of worth to light transmittance A0 of micro three-dimensional shaped region 2c and 2d. As a result, the dependency of the projection light intensity T on the dimension D is corrected, and the projection light intensity T projected onto the substrate to be exposed 30 is a micro solid whose dimension D is not more than twice the boundary dimension R, as in the first embodiment. The shape area 2 also has an effect that the same projection light intensity T as that of the micro three-dimensional shape area 2 whose dimension D is three times or more the boundary dimension R can be obtained.

本実施形態で用いる半透光膜5は以下の材料を用い以下の厚さに成膜することで光透過率を20%にする。露光光として水銀ランプのi線(波長λ=365nm)を用いる場合、酸化モリブデンシリサイド(MoSiO)で、酸素(O)の原子%が40%の成分組成の薄膜を80nmから120nmの厚さで半透光膜5を形成すれば、その光透過率はi線の波長で20%程度になる。また、酸化窒化モリブデンシリサイド(MoSiON)で、酸素(O)の原子%が40%で窒素(N)の原子%が18%の成分組成の薄膜を64nmの厚さで半透光膜5を形成すれば、その光透過率はi線の波長で20%程度になる。更に、KrFエキシマレーザーの波長λ(=248nm)で露光する場合に、窒化モリブデンシリサイド(MoSiN)を、窒素(N)が48原子%で、Siが34原子%でMoが18原子%にした組成の薄膜を35nmの厚さで半透光膜5を形成すれば、半透光膜5のその波長での光透過率は20%程度になる。   The semi-transparent film 5 used in the present embodiment is made of the following material and formed into the following thickness so that the light transmittance is 20%. When i-line (wavelength λ = 365 nm) of a mercury lamp is used as exposure light, a thin film having a composition of molybdenum oxide silicide (MoSiO) and 40% atomic percent of oxygen (O) is 80 to 120 nm in thickness. If the light-transmitting film 5 is formed, the light transmittance is about 20% at the wavelength of i-line. Further, a semi-transparent film 5 having a thickness of 64 nm is formed from a thin film of molybdenum oxynitride silicide (MoSiON) having a component composition of 40% atomic% of oxygen (O) and 18% atomic% of nitrogen (N). Then, the light transmittance is about 20% at the wavelength of i-line. Further, in the case of exposure at a wavelength λ (= 248 nm) of a KrF excimer laser, molybdenum nitride silicide (MoSiN) has a composition in which nitrogen (N) is 48 atomic%, Si is 34 atomic%, and Mo is 18 atomic%. If the semi-transparent film 5 is formed with a thickness of 35 nm, the light transmittance of the semi-transparent film 5 at that wavelength is about 20%.

半透光膜5の製造方法は、例えば、酸化窒化モリブデンシリサイド(MoSiON)の
薄膜の半透光膜5を合成石英ガラス基板からなる透明基板1上に、反応性スパッタにより成膜できる。すなわち、この半透光膜5は、モリブデン(Mo)とシリコン(Si)との混合ターゲット(Mo:Si=1:2mol%)を用い、アルゴン(Ar)と亜酸化窒素(NO)との混合ガス雰囲気(Ar;84体積%、NO;16体積%、圧力;1.5×10−3Torr)で反応性スパッタを行うことで形成できる。
As a method for manufacturing the semi-transparent film 5, for example, a thin translucent film 5 of molybdenum oxynitride silicide (MoSiON) can be formed on the transparent substrate 1 made of a synthetic quartz glass substrate by reactive sputtering. That is, the semi-transparent film 5 uses a mixed target (Mo: Si = 1: 2 mol%) of molybdenum (Mo) and silicon (Si), and uses argon (Ar), nitrous oxide (N 2 O), and Can be formed by performing reactive sputtering in a mixed gas atmosphere (Ar; 84% by volume, N 2 O; 16% by volume, pressure: 1.5 × 10 −3 Torr).

<第3の実施形態>
図6に第3の実施形態のフォトマスク10の平面図を示し、図7に、その側断面図を示す。第3の実施形態では、第2の実施形態と同様に、遮光膜の層と透明基板1との間に半透光膜5の層を形成する。図6の平面図のように、寸法Dが境界寸法Rの3倍以上の微小立体形状領域2cと2dでは、第2の実施形態と同様に、微小網点図形3aを形成せずに、微小立体形状領域2全体を遮光領域3で囲まれる一辺の長さDの開口部6にし、開口部6の透明基板1の全面を半透光膜5で覆うことで、その領域の光透過率を半透光膜5の光透過率A0に設定する。
<Third Embodiment>
FIG. 6 shows a plan view of the photomask 10 of the third embodiment, and FIG. 7 shows a side sectional view thereof. In the third embodiment, as in the second embodiment, the semi-transparent film 5 is formed between the light shielding film layer and the transparent substrate 1. As in the plan view of FIG. 6, in the small three-dimensional shape regions 2c and 2d whose dimension D is three times or more of the boundary dimension R, the minute dot pattern 3a is not formed as in the second embodiment. The entire three-dimensional region 2 is formed as an opening 6 having a side length D surrounded by the light-shielding region 3, and the entire surface of the transparent substrate 1 in the opening 6 is covered with the semi-transparent film 5, so that the light transmittance of the region can be increased. The light transmittance A0 of the semi-transparent film 5 is set.

第3の実施形態では、微小立体形状領域2bが第2の実施形態と異なる。すなわち、微小立体形状領域2bでは、図7の側断面図で示すように、遮光性の微小網点図形3aの間の微小間隙図形4bでは半透光膜5を除去して透明基板1の面を露出させる。一方、微小立体形状領域2aでは、遮光性の微小網点図形3aの間の微小間隙図形4aには半透光膜5を残す。   In the third embodiment, the micro three-dimensional shape region 2b is different from the second embodiment. That is, in the minute three-dimensional shape region 2b, as shown in the side sectional view of FIG. 7, the semi-transparent film 5 is removed in the minute gap pattern 4b between the light-shielding minute dot patterns 3a, and the surface of the transparent substrate 1 is removed. To expose. On the other hand, in the minute solid shape region 2a, the semi-transparent film 5 is left in the minute gap pattern 4a between the light-shielding minute dot patterns 3a.

このフォトマスク10の半透光膜5のパターンは以下のようにして形成する。すなわち、微小立体形状領域2aの光透過率A0の半透光膜5はエッチングレジスト材料層で覆い、微小立体形状領域2bの半透光膜5は、遮光領域3と微小網点図形3aのパターンをエッチングマスクにして、CF+O混合ガスのエッチングガスを用いてドライエッチングすることで、微小立体形状領域2bでは、遮光領域3と微小網点図形3aの下地以外の部分である微小間隙図形4bの半透光膜5をドライエッチングで除去して透明基板1の面を露出させる。 The pattern of the semi-transparent film 5 of the photomask 10 is formed as follows. That is, the semi-transparent film 5 having the light transmittance A0 of the micro three-dimensional region 2a is covered with an etching resist material layer, and the semi-transparent film 5 of the micro three-dimensional region 2b is a pattern of the light-shielding region 3 and the micro dot pattern 3a. Is used as an etching mask and dry etching is performed using an etching gas of a CF 4 + O 2 mixed gas, so that in the minute solid shape region 2b, a minute gap graphic which is a portion other than the base of the light shielding region 3 and the minute dot graphic 3a The semitranslucent film 5b of 4b is removed by dry etching to expose the surface of the transparent substrate 1.

第3の実施形態では、透明基板1の面を半透光膜5で覆う部分と半透光膜5を除去して透明基板1の面を露出させた部分を有する。これにより、式5で計算される、微小立体形状領域2bが必要とするマスクの光透過率A1を得るために、製造が難しい小さなパターンの微小網点図形3aを用いる代わりに、透明基板1の面を露出させた微小間隙図形4bを用いることで、微小網点図形3aを適度な大きさに形成することができる。それにより、必要とする投影光強度Tを得るのに必要なマスクの光透過率A1の微小立体形状領域2bを容易に形成してフォトマスク10の製造コストを低減できる効果がある。   In the third embodiment, the transparent substrate 1 has a portion where the surface of the transparent substrate 1 is covered with the semi-transparent film 5 and a portion where the surface of the transparent substrate 1 is exposed by removing the semi-transparent film 5. Thus, in order to obtain the light transmittance A1 of the mask required by the micro three-dimensional shape region 2b calculated by Equation 5, instead of using the micro dot pattern 3a having a small pattern that is difficult to manufacture, the transparent substrate 1 By using the minute gap graphic 4b with the exposed surface, the minute dot graphic 3a can be formed in an appropriate size. Accordingly, there is an effect that the manufacturing cost of the photomask 10 can be reduced by easily forming the micro three-dimensional region 2b having the light transmittance A1 of the mask necessary for obtaining the required projection light intensity T.

なお、本発明は、遮光性の微小網点図形3aや微小間隙図形4が正方形であるフォトマスク10に限定されず、それらが長方形やその他の多角形状であっても良い。また、微小網点図形3aや微小間隙図形4を設置する格子点の位置も、千鳥足状の位置に限定されず、格子点全部の上に微小網点図形3aを設置しても良いし、格子点のピッチPをフォトマスク10の部分により変えたフォトマスク10にしても良い。更に、本発明は、微小網点図形3aや微小間隙図形4を用いずに開口部6に露出させる半透光膜5の厚さを微小立体形状領域2の寸法に応じて変えることで、寸法Dが境界寸法R=λ/NAの2倍以下の微小立体形状領域2のパターンのマスクの光透過率A1を、寸法Dが境界寸法Rの3倍以上の微小立体形状領域2のパターンのマスクの光透過率A0の[0.0450(D/R)−0.328(D/R)+1.566]分の1にしたフォトマスク10にしても良い。 Note that the present invention is not limited to the photomask 10 in which the light-shielding minute halftone dots 3a and the minute gaps 4 are square, but they may be rectangular or other polygonal shapes. Further, the positions of the grid points where the minute dot graphics 3a and the minute gap graphics 4 are installed are not limited to the staggered positions, and the minute dot graphics 3a may be installed over all the lattice points. A photomask 10 in which the pitch P of dots is changed depending on the portion of the photomask 10 may be used. Furthermore, the present invention changes the thickness of the semi-transparent film 5 exposed to the opening 6 without using the fine halftone dot pattern 3a and the minute gap graphic 4 in accordance with the dimension of the minute three-dimensional shape region 2. The light transmittance A1 of the mask of the pattern of the micro three-dimensional shape region 2 where D is not more than twice the boundary dimension R = λ / NA, and the mask of the pattern of the micro three-dimensional shape region 2 where the dimension D is three times or more of the boundary dimension R Alternatively, the photomask 10 may be reduced to [0.0450 (D / R) 2 −0.328 (D / R) +1.566] of the light transmittance A0.

1・・・透明基板
2、2a、2b、2c、2d・・・微小立体形状領域
3・・・遮光領域
3a・・・微小網点図形
4、4a、4b・・・微小間隙図形
5・・・半透光膜
6・・・開口部
10・・・フォトマスク
20・・・投影レンズ
30・・・被露光基板
D、Da、Db、Dc、Dd・・・微小立体形状領域の寸法
L0・・・露光光
P・・・微小網点図形(微小間隙図形)を設置する格子点のピッチ
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2, 2a, 2b, 2c, 2d ... Micro solid shape area 3 ... Light-shielding area 3a ... Micro dot figure 4, 4a, 4b ... Micro gap figure 5 ... Semitranslucent film 6... Opening 10... Photomask 20... Projection lens 30 .. Exposed substrate D, Da, Db, Dc, Dd. ..Exposure light P: Pitch of lattice points where fine dot patterns (fine gap figures) are placed

Claims (4)

遮光領域で囲まれた微小立体形状領域のパターンが形成されたフォトマスクであって、前記微小立体形状領域の寸法Dが、フォトマスクのパターンを被露光基板に投影する投影レンズの開口比NAと露光光の波長λに関する境界寸法R=λ/NAに関して、前記寸法Dが前記境界寸法Rの2倍以下の前記微小立体形状領域の光透過率を、前記寸法Dが前記境界寸法Rの3倍以上の微小立体形状領域の光透過率よりも小さくしたことを特徴とするフォトマスク。   A photomask in which a pattern of a micro three-dimensional shape region surrounded by a light-shielding region is formed, and the dimension D of the micro three-dimensional shape region is an aperture ratio NA of a projection lens that projects the photo mask pattern onto an exposed substrate. Regarding the boundary dimension R = λ / NA with respect to the wavelength λ of the exposure light, the dimension D is the light transmittance of the minute three-dimensional shape region that is not more than twice the boundary dimension R, and the dimension D is three times the boundary dimension R. A photomask characterized in that it is smaller than the light transmittance of the micro three-dimensional region. 請求項1記載のフォトマスクであって、前記寸法Dが前記境界寸法Rの2倍以下の前記微小立体形状領域の光透過率を、前記寸法Dが前記境界寸法Rの3倍以上の前記微小立体形状領域の光透過率に対して[0.0450(D/R)−0.328(D/R)+1.566]分の1にしたことを特徴とするフォトマスク。 2. The photomask according to claim 1, wherein the dimension D is a light transmittance of the micro three-dimensional shape region that is not more than twice the boundary dimension R, and the dimension D is not less than three times the boundary dimension R. A photomask characterized by being reduced to [0.0450 (D / R) 2 −0.328 (D / R) +1.566] / one of the light transmittance of a three-dimensional region. 請求項1又は2に記載のフォトマスクであって、少なくとも、前記寸法Dが前記境界寸法Rの2倍以下となる前記微小立体形状領域が、前記境界寸法Rより小さいピッチの格子点に設置した遮光性の微小網点図形と、前記微小網点図形の間の微小間隙図形のパターンを有するることを特徴とするフォトマスク。   3. The photomask according to claim 1, wherein at least the micro three-dimensional shape region in which the dimension D is equal to or less than twice the boundary dimension R is installed at a lattice point having a pitch smaller than the boundary dimension R. 4. A photomask having a pattern of light-shielding fine halftone dots and a fine gap figure between the fine halftone dots. 請求項1乃至3の何れか一項に記載のフォトマスクであって、少なくとも1つの前記微小立体形状領域が、透明基板上に形成された半透光膜を有することを特徴とするフォトマスク。   4. The photomask according to claim 1, wherein at least one of the micro three-dimensional regions has a semi-transparent film formed on a transparent substrate. 5.
JP2010089379A 2010-04-08 2010-04-08 Photomask Pending JP2011221227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089379A JP2011221227A (en) 2010-04-08 2010-04-08 Photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010089379A JP2011221227A (en) 2010-04-08 2010-04-08 Photomask

Publications (1)

Publication Number Publication Date
JP2011221227A true JP2011221227A (en) 2011-11-04

Family

ID=45038293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089379A Pending JP2011221227A (en) 2010-04-08 2010-04-08 Photomask

Country Status (1)

Country Link
JP (1) JP2011221227A (en)

Similar Documents

Publication Publication Date Title
KR101544324B1 (en) Photomask for manufacturing a display device and pattern transfer method
CN110824828B (en) Photomask and method for manufacturing display device
KR100263900B1 (en) Mask and the manufacturing method
KR102384667B1 (en) Method for correcting photomask, method for manufacturing photomask, photomask, and method for manufacturing display device
KR101837247B1 (en) Photomask, the method of manufacturing photomask, photomask blank and the method of manufacturing display device
JP2008180897A (en) Gray tone mask and pattern transfer method
JP2002351052A (en) Mask for correcting light proximity effect and method for producing the same
JP4817907B2 (en) Photomask for forming resist pattern, method for manufacturing the same, and method for forming resist pattern using the photomask
JP2010276997A (en) Exposure mask and method for manufacturing semiconductor device
TWI569090B (en) Phase shift mask and resist pattern forming method using the phase shift mask
JPS63216052A (en) Exposing method
JP2923905B2 (en) Photo mask
JP5169796B2 (en) Pattern forming method and imprint mold manufacturing method
TW202024776A (en) Photomask for use in manufacturing a display device and method of manufacturing a display device
JP2011221227A (en) Photomask
JP2008003520A (en) Photomask and method for manufacturing semiconductor device
JP2010175697A (en) Concentration distribution mask
JP4784220B2 (en) Phase shift mask
JP7154572B2 (en) MASK BLANK, TRANSFER MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2011221484A (en) Density distribution mask and design method and design device therefor
TW539917B (en) Photomask combination and its exposure method for forming fine pattern
JP2012083400A (en) Density distribution mask
KR20210116276A (en) Photomask, and method for manufacturing display device
JP2013246339A (en) Photomask and pattern exposure method using the same
JPH0844039A (en) Phase shift mask of halftone system and resist exposing method