JP2011220616A - Refrigeration apparatus - Google Patents

Refrigeration apparatus Download PDF

Info

Publication number
JP2011220616A
JP2011220616A JP2010090722A JP2010090722A JP2011220616A JP 2011220616 A JP2011220616 A JP 2011220616A JP 2010090722 A JP2010090722 A JP 2010090722A JP 2010090722 A JP2010090722 A JP 2010090722A JP 2011220616 A JP2011220616 A JP 2011220616A
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
pipe
state
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010090722A
Other languages
Japanese (ja)
Inventor
Jun Nakazato
潤 中里
Tadashi Katsumi
忠士 勝見
Koji Ito
浩二 伊藤
Mitsue Okamoto
光惠 岡本
Naoki Nishijiri
直樹 西尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010090722A priority Critical patent/JP2011220616A/en
Publication of JP2011220616A publication Critical patent/JP2011220616A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration apparatus which has improved efficiency of heat exchange by controlling flow velocity of a refrigerant suitably, and reducing a pressure loss suitably when the flow velocity of the refrigerant is made high.SOLUTION: The refrigeration apparatus 1 includes: a refrigerant circuit formed by connecting a compressor 10 having variable operation capacity, a plurality of condensers 42, an expansion valve 20 and a plurality of evaporators 32 by refrigerant piping 1a; and a changeover mechanism for changing over an operation state from/to such a series state that the plurality of condensers 42 are connected to one another in series with a flow of the refrigerant Rf and the plurality of evaporators 32 are connected to one another in series with the flow of the refrigerant Rf, to/from such a parallel state that the plurality of condensers 42 are connected to one another in parallel with the flow of the refrigerant Rf and the plurality of evaporators 32 are connected to one another in parallel with the flow of the refrigerant Rf. According to the operation capacity of the compressor 10, the operation state is changed over by the changeover mechanism from/to the series state to/from the parallel state.

Description

本発明は、熱交換器を有する冷凍装置に関する。   The present invention relates to a refrigeration apparatus having a heat exchanger.

冷媒が循環する冷媒回路と熱交換器とを有して被冷却水を冷却する冷凍装置は広く知られている。
このような冷凍装置の熱交換の効率を向上させる技術として、例えば、特許文献1には、ブライン(被冷却液)を冷却する2つの冷却器(蒸発器)を熱交換器として備え、これら2つの冷却器の接続を直列または並列に切り替え可能な冷却装置(冷凍装置)が開示されている。
特許文献1に開示される冷却装置は、2つの冷却器の接続を直列または並列に切り替え可能な冷媒回路を備え、冷媒やブラインの温度等に基づいて2つの冷却器の接続の直列と並列を切り替えることによって熱交換の効率を向上している。
A refrigerating apparatus that has a refrigerant circuit in which a refrigerant circulates and a heat exchanger and cools water to be cooled is widely known.
As a technique for improving the efficiency of heat exchange of such a refrigeration apparatus, for example, Patent Document 1 includes two coolers (evaporators) that cool brine (liquid to be cooled) as heat exchangers. A cooling device (refrigeration device) capable of switching the connection of two coolers in series or in parallel is disclosed.
The cooling device disclosed in Patent Document 1 includes a refrigerant circuit that can switch the connection of two coolers in series or in parallel, and the series and parallel of the connections of the two coolers based on the temperature of the refrigerant or brine, for example. The efficiency of heat exchange is improved by switching.

また、特許文献2には、圧縮機の運転容量を好適に制御することで熱交換の効率を向上する冷凍空調装置(冷凍装置)が開示されている。   Patent Document 2 discloses a refrigeration air-conditioning apparatus (refrigeration apparatus) that improves the efficiency of heat exchange by suitably controlling the operating capacity of the compressor.

特許文献1に開示される冷却装置によると、冷却初期には2つの冷却器を並列に接続して冷媒の流速を遅くして圧力損失を小さくし、冷媒やブラインの温度が所定温度に到達したときに2つの冷却器を直列に接続して流速を速くすることで、冷却器における熱交換の効率を向上できる。
また、冷媒の圧力(冷媒蒸発圧力)に基づいて2つの冷却器の接続を切り替えることで、冷却器における熱交換の効率を向上できる。
According to the cooling device disclosed in Patent Document 1, in the initial stage of cooling, two coolers are connected in parallel to reduce the flow rate of the refrigerant to reduce the pressure loss, and the temperature of the refrigerant and brine reaches a predetermined temperature. Sometimes the efficiency of heat exchange in the cooler can be improved by connecting two coolers in series to increase the flow rate.
Moreover, the efficiency of heat exchange in the cooler can be improved by switching the connection of the two coolers based on the pressure of the coolant (refrigerant evaporation pressure).

また、特許文献2に開示される冷凍空調装置によると、水、ブライン等の負荷側熱媒体(被冷却液)が冷凍空調装置の冷凍サイクルに流入するときの温度と、冷凍サイクルから流出するときの温度の差が所定値になるように圧縮機の運転容量を制御して、冷凍空調装置の熱交換の効率を向上できる。   Further, according to the refrigeration air conditioner disclosed in Patent Document 2, when the load-side heat medium (liquid to be cooled) such as water or brine flows into the refrigeration cycle of the refrigeration air conditioner, and when it flows out of the refrigeration cycle By controlling the operating capacity of the compressor so that the temperature difference between the two becomes a predetermined value, the efficiency of heat exchange of the refrigeration air conditioner can be improved.

特開平10−267494号公報Japanese Patent Laid-Open No. 10-267494 特開2008−175476号公報JP 2008-175476 A

例えば、特許文献1に開示される冷却装置のように2つの冷却器の接続を直列または並列に切り替える場合、冷凍初期のように圧縮機から吐出される冷媒の流速を高くするときに2つの冷却器の接続を並列に切り替えると、冷媒の流れに対する圧力損失を小さくすることができ、冷媒の流速を高く維持して冷媒を効率よく冷却器に流通させることができる。そして、冷却器で効果的に冷媒とブラインを熱交換できる。
一方、圧縮機から吐出される冷媒の流速が低いときは、2つの冷却器を直列に接続して冷却器における冷媒の流速を高くすることで、2つの冷却器で効果的に冷媒とブラインを熱交換できる。
For example, when the connection of two coolers is switched in series or in parallel as in the cooling device disclosed in Patent Document 1, the two coolings are performed when the flow rate of the refrigerant discharged from the compressor is increased as in the early stage of refrigeration. When the connection of the units is switched in parallel, the pressure loss with respect to the refrigerant flow can be reduced, and the refrigerant can be efficiently circulated to the cooler while maintaining a high flow rate of the refrigerant. And a refrigerant | coolant and brine can be heat-exchanged effectively with a cooler.
On the other hand, when the flow rate of the refrigerant discharged from the compressor is low, two refrigerants are connected in series to increase the flow rate of the refrigerant in the cooler, so that the two coolers can effectively remove the refrigerant and brine. Heat exchange is possible.

しかしながら、特許文献1において2つの冷却器の接続を切り替える基準となる冷媒の温度や冷媒蒸発圧力は、冷媒回路内の冷媒の流速の変化と関係なく変化することから、冷媒の温度や冷媒蒸発圧力に応じて2つの冷却器の接続を切り替えると、2つの冷却器の接続を切り替えるのに最適な冷媒の流速のときに2つの冷却器の接続を切り替えることができないという問題がある。   However, since the refrigerant temperature and refrigerant evaporation pressure, which serve as a reference for switching the connection between the two coolers in Patent Document 1, change regardless of changes in the refrigerant flow rate in the refrigerant circuit, the refrigerant temperature and refrigerant evaporation pressure are changed. When the connection of the two coolers is switched according to the above, there is a problem that the connection of the two coolers cannot be switched at the optimum refrigerant flow rate for switching the connection of the two coolers.

また、例えば、特許文献2に開示される、運転容量が可変の圧縮機を冷却装置に備える場合、圧縮機の運転容量の変化に応じて冷媒流量(冷媒の流速)が変化することから、冷媒の温度や冷媒蒸発圧力に基づいて2つの冷却器の接続を切り替えると、2つの冷却器の接続を切り替えるのに最適な冷媒の流速のときに2つの冷却器の接続を切り替えることができない。   In addition, for example, when the cooling device is provided with a compressor having a variable operating capacity disclosed in Patent Document 2, the refrigerant flow rate (refrigerant flow velocity) changes according to the change in the operating capacity of the compressor. If the connection of the two coolers is switched based on the temperature and the refrigerant evaporating pressure, the connection of the two coolers cannot be switched at the optimum refrigerant flow rate for switching the connection of the two coolers.

また、冷凍装置には、冷媒を蒸発させる熱交換器(冷却器)の他、冷媒を凝縮させる熱交換器(凝縮器)も備わっている。そして、凝縮器においても冷媒の圧力損失が発生することから、凝縮器の圧力損失を好適に軽減することで冷凍装置の熱交換の効率をさらに向上できる。   Further, the refrigeration apparatus includes a heat exchanger (condenser) for condensing the refrigerant in addition to a heat exchanger (cooler) for evaporating the refrigerant. And since the refrigerant | coolant pressure loss generate | occur | produces also in a condenser, the efficiency of the heat exchange of a freezing apparatus can further be improved by reducing suitably the pressure loss of a condenser.

そこで本発明は、冷媒の流速を好適に制御するとともに冷媒の流速が高速のときの圧力損失を好適に軽減して、熱交換の効率を向上する冷凍装置を提供することを課題とする。   Therefore, an object of the present invention is to provide a refrigeration apparatus that suitably controls the flow rate of the refrigerant and also reduces the pressure loss when the flow rate of the refrigerant is high, thereby improving the efficiency of heat exchange.

前記課題を解決するため、本発明は、運転容量が可変の圧縮機と、複数の凝縮器と、膨張弁と、複数の蒸発器と、が冷媒の流れる管路で接続される冷媒回路を備える冷凍装置とする。そして、前記複数の凝縮器を前記冷媒の流れに対して直列に接続するとともに前記複数の蒸発器を前記冷媒の流れに対して直列に接続する直列状態と、前記複数の凝縮器を前記冷媒の流れに対して並列に接続するとともに前記複数の蒸発器を前記冷媒の流れに対して並列に接続する並列状態と、を切り替える切替機構を備え、前記圧縮機の運転容量に応じて前記切替機構の前記直列状態と前記並列状態とを切り替えることを特徴とする。   In order to solve the above-described problems, the present invention includes a refrigerant circuit in which a compressor having a variable operating capacity, a plurality of condensers, an expansion valve, and a plurality of evaporators are connected by a conduit through which the refrigerant flows. Refrigeration equipment. And connecting the plurality of condensers in series with the refrigerant flow and connecting the plurality of evaporators in series with the refrigerant flow; and connecting the plurality of condensers to the refrigerant flow. A switching mechanism for switching between the parallel connection to the flow and the parallel state in which the plurality of evaporators are connected in parallel to the refrigerant flow, and the switching mechanism according to the operating capacity of the compressor. The serial state and the parallel state are switched.

本発明によると、複数の凝縮器の接続の直列と並列および複数の蒸発器の接続の直列と並列を、圧縮機の運転容量に応じて切り替えることができる。
したがって、圧縮機の運転容量に応じて変化する冷媒の流速に応じて、複数の凝縮器の接続の直列と並列および複数の蒸発器の接続の直列と並列を切り替えることができる。
According to the present invention, the series and parallel of the connections of the plurality of condensers and the series and parallel of the connections of the plurality of evaporators can be switched according to the operating capacity of the compressor.
Therefore, according to the refrigerant | coolant flow velocity which changes according to the operating capacity of a compressor, the series and parallel of the connection of a some condenser and the series and parallel of the connection of a some evaporator can be switched.

本発明によると、冷媒の流速を好適に制御するとともに冷媒の流速が高速のときの圧力損失を好適に軽減して、熱交換の効率を向上する冷凍装置を提供できる。   According to the present invention, it is possible to provide a refrigeration apparatus that suitably controls the flow rate of the refrigerant and reduces the pressure loss when the flow rate of the refrigerant is high, thereby improving the efficiency of heat exchange.

本実施形態に係る冷凍装置の構成を示す図である。It is a figure which shows the structure of the freezing apparatus which concerns on this embodiment. (a)は、積層プレート式熱交換器の一部破断図、(b)は、シェルアンドチューブ式熱交換器の断面図である。(A) is a partially broken view of a laminated plate heat exchanger, and (b) is a cross-sectional view of a shell and tube heat exchanger. (a)は、第1凝縮器と第2凝縮器が並列に接続された状態を示す図、(b)は、第1凝縮器と第2凝縮器が直列に接続された状態を示す図である。(A) is a figure showing the state where the 1st condenser and the 2nd condenser were connected in parallel, (b) is the figure showing the state where the 1st condenser and the 2nd condenser were connected in series. is there. 制御装置が冷凍装置を制御する手順を示すフローチャートである。It is a flowchart which shows the procedure in which a control apparatus controls a freezing apparatus. (a)は、第1凝縮管とバイパス管の分岐点に三方弁を備える構成を示す図、(b)は、3つの凝縮器を備える凝縮回路を示す図である。(A) is a figure which shows the structure provided with a three-way valve in the branch point of a 1st condensing pipe and a bypass pipe, (b) is a figure which shows a condensing circuit provided with three condensers. 2つの熱交換部を有する熱交換モジュールからなる凝縮器を備える凝縮回路を示す図である。It is a figure which shows a condensation circuit provided with the condenser which consists of a heat exchange module which has two heat exchange parts.

以下、本発明の実施形態について、適宜図を参照して詳細に説明する。
図1に示すように、本実施形態に係る冷凍装置1は、圧縮機10、凝縮回路40、膨張弁20、および蒸発回路30が、この順に直列に、冷媒の流れる管路(冷媒配管1a)で接続される冷媒回路を有し、制御装置50によって制御される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, the refrigeration apparatus 1 according to the present embodiment includes a compressor 10, a condensing circuit 40, an expansion valve 20, and an evaporation circuit 30, in this order, in series, a conduit through which refrigerant flows (refrigerant piping 1 a) And is controlled by the control device 50.

圧縮機10で圧縮されて高温高圧になった気体状の冷媒Rfは、凝縮回路40で水配管41を流れる低温の水(冷媒冷却水Wt1)と熱交換して冷却されて凝縮され、低温の状態で膨張弁20に流れ込む。低温の冷媒Rfは、膨張弁20で膨張して温度が下がり蒸発しやすい状態になる。そして、蒸発回路30で水配管31を流れる相対的に高温の水(被冷却水Wt2)と熱交換して蒸発し、気体状になって圧縮機10に流入する。このとき、冷媒Rfが蒸発する気化熱で、水配管31を流れる相対的に高温の被冷却水Wt2を冷却する。
以下において上流および下流は、冷媒回路における冷媒Rfの流れの上流および下流を示す。また、直列は冷媒Rfの流れに対する直列を示し、並列は冷媒Rfの流れに対する並列を示す。
The gaseous refrigerant Rf compressed to high temperature and high pressure by the compressor 10 is cooled and condensed by exchanging heat with low temperature water (refrigerant cooling water Wt1) flowing through the water pipe 41 in the condensing circuit 40. It flows into the expansion valve 20 in a state. The low-temperature refrigerant Rf is expanded by the expansion valve 20 and is in a state where the temperature is lowered and is easily evaporated. Then, it evaporates by exchanging heat with relatively high-temperature water (cooled water Wt2) flowing through the water pipe 31 in the evaporation circuit 30, becomes gaseous, and flows into the compressor 10. At this time, the relatively high temperature water to be cooled Wt2 flowing through the water pipe 31 is cooled by the heat of vaporization of the refrigerant Rf.
Hereinafter, upstream and downstream indicate upstream and downstream of the flow of the refrigerant Rf in the refrigerant circuit. Further, the series indicates a series with respect to the flow of the refrigerant Rf, and the parallel indicates a parallel with the flow of the refrigerant Rf.

凝縮回路40は、圧縮機10の下流に冷媒配管1aで接続される。
冷媒配管1aは、凝縮回路40の上流側に形成される分岐点40aで、分流管となる第1凝縮管43aおよび第2凝縮管43bに分岐し、第1凝縮管43aと第2凝縮管43bは凝縮回路40の下流側に形成される合流点40bで合流する。
そして、凝縮回路40には第1凝縮器42aと第2凝縮器42bの2つの凝縮器42が備わり、第1凝縮管43aに第1凝縮器42aが連結され、第2凝縮管43bに第2凝縮器42bが連結される。つまり、第1凝縮管43aと第2凝縮管43bは冷媒Rfの流れに対して並列に配管され、第1凝縮器42aと第2凝縮器42bは並列に配列される。
The condensing circuit 40 is connected to the downstream of the compressor 10 by the refrigerant | coolant piping 1a.
The refrigerant pipe 1a is branched into a first condensing pipe 43a and a second condensing pipe 43b serving as a diversion pipe at a branch point 40a formed on the upstream side of the condensing circuit 40, and the first condensing pipe 43a and the second condensing pipe 43b. Join at a joining point 40 b formed on the downstream side of the condensing circuit 40.
The condensing circuit 40 includes two condensers 42, a first condenser 42a and a second condenser 42b. The first condenser 42a is connected to the first condenser pipe 43a, and the second condenser pipe 43b is connected to the second condenser 42a. The condenser 42b is connected. That is, the first condensing pipe 43a and the second condensing pipe 43b are connected in parallel to the flow of the refrigerant Rf, and the first condenser 42a and the second condenser 42b are arranged in parallel.

第1凝縮器42aおよび第2凝縮器42bには、ともに冷媒冷却水Wt1が流れる水配管41が配管され、第1凝縮管43aを流れる冷媒Rfは、第1凝縮器42aに配管される水配管41を流れる冷媒冷却水Wt1と熱交換し、冷却されて凝縮する。また、第2凝縮管43bを流れる冷媒Rfは、第2凝縮器42bに配管される水配管41を流れる冷媒冷却水Wt1と熱交換し、冷却されて凝縮する。   Both the first condenser 42a and the second condenser 42b are provided with a water pipe 41 through which the coolant cooling water Wt1 flows, and the refrigerant Rf through the first condenser pipe 43a is a water pipe that is piped into the first condenser 42a. Heat exchange with the coolant cooling water Wt1 flowing through 41 is cooled and condensed. In addition, the refrigerant Rf flowing through the second condensing pipe 43b exchanges heat with the refrigerant cooling water Wt1 flowing through the water pipe 41 piped to the second condenser 42b, and is cooled and condensed.

凝縮回路40に備わる凝縮器42(第1凝縮器42a、第2凝縮器42b)は、それぞれ熱交換器によって構成される。
凝縮器42を構成する熱交換器の種類は限定するものではないが、例えば、図2の(a)に示す積層プレート式熱交換器60や、図2の(b)に示すシェルアンドチューブ式熱交換器70が使用される。
The condensers 42 (first condenser 42a and second condenser 42b) provided in the condenser circuit 40 are each constituted by a heat exchanger.
Although the kind of heat exchanger which comprises the condenser 42 is not limited, For example, the laminated plate type heat exchanger 60 shown to (a) of FIG. 2, and the shell and tube type shown to (b) of FIG. A heat exchanger 70 is used.

図2の(a)に示すように、積層プレート式熱交換器60は、一対のエンドプレート61,62に、複数の伝熱プレート63が挟まれて構成される。複数の伝熱プレート63は、例えば等間隔に平行に配置され、冷媒Rfの流路63aが形成される伝熱プレート63と冷媒冷却水Wt1の流路63bが形成される伝熱プレート63とが交互に配置される。   As shown in FIG. 2A, the laminated plate heat exchanger 60 is configured by a plurality of heat transfer plates 63 sandwiched between a pair of end plates 61 and 62. The plurality of heat transfer plates 63 are, for example, arranged in parallel at equal intervals, and include a heat transfer plate 63 in which the flow path 63a of the refrigerant Rf is formed and a heat transfer plate 63 in which the flow path 63b of the coolant cooling water Wt1 is formed. Alternatingly arranged.

冷媒Rfは、一方のエンドプレート61に形成される冷媒取り込み口64aから積層プレート式熱交換器60に取り込まれて流路63aを流れ、エンドプレート61に形成される冷媒排出口64bから排出される。また、冷媒冷却水Wt1は、冷媒取り込み口64aが形成されるエンドプレート61に形成される液体取り込み口65aから積層プレート式熱交換器60に取り込まれて流路63bを流れ、エンドプレート61に形成される液体排出口65bから排出される。そして、冷媒Rfと冷媒冷却水Wt1は、それぞれ流路63aと流路63bを流れるときに熱交換する。   The refrigerant Rf is taken into the laminated plate heat exchanger 60 from the refrigerant intake port 64a formed in one end plate 61, flows through the flow path 63a, and is discharged from the refrigerant discharge port 64b formed in the end plate 61. . Further, the coolant water Wt1 is taken into the laminated plate heat exchanger 60 from the liquid intake port 65a formed in the end plate 61 where the refrigerant intake port 64a is formed, flows through the flow path 63b, and is formed in the end plate 61. Is discharged from the liquid discharge port 65b. The refrigerant Rf and the refrigerant cooling water Wt1 exchange heat when flowing through the flow path 63a and the flow path 63b, respectively.

なお、第1凝縮器42aにおいて、冷媒取り込み口64aおよび冷媒排出口64bは、第1凝縮管43a(図1参照)と接続され、第2凝縮器42bにおいて、冷媒取り込み口64aおよび冷媒排出口64bは、第2凝縮管43b(図1参照)と接続される。また、液体取り込み口65aおよび液体排出口65bは、水配管41(図1参照)と接続される。   In the first condenser 42a, the refrigerant intake port 64a and the refrigerant discharge port 64b are connected to the first condenser tube 43a (see FIG. 1), and in the second condenser 42b, the refrigerant intake port 64a and the refrigerant discharge port 64b. Is connected to the second condensing pipe 43b (see FIG. 1). The liquid intake port 65a and the liquid discharge port 65b are connected to the water pipe 41 (see FIG. 1).

一方、シェルアンドチューブ式熱交換器70は、例えば、図2の(b)に示すように、外装を形成するシェル71に、冷媒冷却水Wt1を取り込む液体取り込み口71aと冷媒冷却水Wt1が排出される液体排出口71bが形成されて構成される。そして、シェル71の内部には、冷媒Rfが流通する管路72が配管され、液体取り込み口71aからシェル71に取り込まれて液体排出口71bから排出される冷媒冷却水Wt1と、管路72を流通する冷媒Rfとが熱交換するように構成される。   On the other hand, as shown in FIG. 2B, for example, the shell and tube heat exchanger 70 discharges the coolant intake water 71t and the coolant coolant Wt1 into the shell 71 forming the exterior. The liquid discharge port 71b to be formed is formed. A pipe 72 through which the refrigerant Rf flows is piped inside the shell 71, and the refrigerant cooling water Wt 1 that is taken into the shell 71 from the liquid intake port 71 a and discharged from the liquid discharge port 71 b, and the pipe line 72. The refrigerant Rf that circulates is configured to exchange heat.

なお、第1凝縮器42aにおいて、冷媒Rfが流通する管路72は第1凝縮管43a(図1参照)と接続され、第2凝縮器42bにおいて、冷媒Rfが流通する管路72は、第2凝縮管43b(図1参照)と接続される。また、液体取り込み口71aおよび液体排出口71bは、水配管41(図1参照)と接続される。   In the first condenser 42a, the pipe line 72 through which the refrigerant Rf flows is connected to the first condenser pipe 43a (see FIG. 1), and in the second condenser 42b, the pipe line 72 through which the refrigerant Rf flows is 2 is connected to the condenser tube 43b (see FIG. 1). The liquid intake port 71a and the liquid discharge port 71b are connected to the water pipe 41 (see FIG. 1).

説明を図1に戻す。第2凝縮器42bの上流側と第1凝縮器42aの下流側は、第1凝縮管43aと第2凝縮管43bがそれぞれの分岐点44a、44bで分岐するバイパス管44で接続され、バイパス管44には逆止弁46が備わっている。つまり、第1凝縮管43aと第2凝縮管43bはバイパス管44で連結される。
この構成により、第1凝縮器42aと第2凝縮器42bはバイパス管44を介し、冷媒Rfの流れに対して直列に配列される。
そして第1凝縮器42aは、直列に配列される凝縮器42のうちで最も上流に位置する凝縮器42になり、第2凝縮器42bは、直列に配列される凝縮器42のうちで最も下流に位置する凝縮器42になる。
Returning to FIG. The upstream side of the second condenser 42b and the downstream side of the first condenser 42a are connected by a bypass pipe 44 in which the first condensation pipe 43a and the second condensation pipe 43b branch at respective branch points 44a and 44b. 44 has a check valve 46. That is, the first condensing pipe 43 a and the second condensing pipe 43 b are connected by the bypass pipe 44.
With this configuration, the first condenser 42 a and the second condenser 42 b are arranged in series with respect to the flow of the refrigerant Rf via the bypass pipe 44.
The first condenser 42a is the most upstream condenser 42 arranged in series, and the second condenser 42b is the most downstream condenser 42 arranged in series. It becomes the condenser 42 located in this.

逆止弁46は、バイパス管44における冷媒Rfの流れの方向を、第1凝縮器42aの下流側から第2凝縮器42bの上流側に向かう一方向、つまり、分岐点44aから分岐点44bに向かう一方向に規制し、第2凝縮器42bの上流側から第1凝縮器42aの下流側に冷媒Rfが流れることを防止する弁である。   The check valve 46 changes the flow direction of the refrigerant Rf in the bypass pipe 44 in one direction from the downstream side of the first condenser 42a to the upstream side of the second condenser 42b, that is, from the branch point 44a to the branch point 44b. This is a valve that regulates in one direction to prevent the refrigerant Rf from flowing from the upstream side of the second condenser 42b to the downstream side of the first condenser 42a.

さらに、第1凝縮管43aには、第1凝縮器42aの下流で合流点40bと分岐点44aとの間に、第1凝縮管43aを開閉する開閉弁からなる第1電磁弁45aが備わる。また、第2凝縮管43bには、第2凝縮器42bの上流で分岐点40aと分岐点44bとの間に、第2凝縮管43bを開閉する開閉弁からなる第2電磁弁45bが備わる。   Further, the first condensing pipe 43a is provided with a first electromagnetic valve 45a comprising an on-off valve for opening and closing the first condensing pipe 43a between the junction 40b and the branch point 44a downstream of the first condenser 42a. Further, the second condensing pipe 43b is provided with a second electromagnetic valve 45b including an opening / closing valve for opening and closing the second condensing pipe 43b between the branching point 40a and the branching point 44b upstream of the second condenser 42b.

第1電磁弁45aと第2電磁弁45bがともに開弁すると、図3の(a)に示すように、冷媒配管1aから凝縮回路40に流れ込んだ冷媒Rfが、分岐点40aで分岐して第1凝縮管43aと第2凝縮管43bの両方を流れ、それぞれ第1凝縮器42aと第2凝縮器42bを経由して合流点40bで合流し、凝縮回路40から流れ出る。   When both the first electromagnetic valve 45a and the second electromagnetic valve 45b are opened, as shown in FIG. 3A, the refrigerant Rf flowing from the refrigerant pipe 1a into the condensing circuit 40 is branched at the branch point 40a. It flows through both the first condenser pipe 43a and the second condenser pipe 43b, joins at the junction 40b via the first condenser 42a and the second condenser 42b, respectively, and flows out from the condenser circuit 40.

このとき、圧力損失の関係から分岐点44bにおける冷媒Rfの圧力(以下、冷媒圧力と称する)が分岐点44aにおける冷媒圧力より高くなる。そこで、バイパス管44に逆止弁46を備え、冷媒Rfが、分岐点44bから分岐点44aに向かってパイパス管44を流れることを防止している。
なお、分岐点44bにおける冷媒圧力が分岐点44aにおける冷媒圧力より高いため、分岐点44aから分岐点44bに向かって冷媒Rfがパイパス管44を流れることはない。
At this time, the pressure of the refrigerant Rf at the branch point 44b (hereinafter referred to as the refrigerant pressure) becomes higher than the refrigerant pressure at the branch point 44a because of the pressure loss. Therefore, the bypass pipe 44 is provided with a check valve 46 to prevent the refrigerant Rf from flowing through the bypass pipe 44 from the branch point 44b toward the branch point 44a.
Since the refrigerant pressure at the branch point 44b is higher than the refrigerant pressure at the branch point 44a, the refrigerant Rf does not flow through the bypass pipe 44 from the branch point 44a toward the branch point 44b.

このように、第1電磁弁45aと第2電磁弁45bがともに開弁すると、冷媒Rfが第1凝縮器42aと第2凝縮器42bを並行して流れることから、第1凝縮器42aと第2凝縮器42bは並列に接続される。   As described above, when both the first electromagnetic valve 45a and the second electromagnetic valve 45b are opened, the refrigerant Rf flows in parallel through the first condenser 42a and the second condenser 42b. The two condensers 42b are connected in parallel.

一方、第1電磁弁45aと第2電磁弁45bがともに閉弁すると、図3の(b)に示すように、冷媒Rfは、分岐点40aで第2凝縮管43bに流れ込まないで第1凝縮管43aのみに流れ込む。冷媒配管1aから凝縮回路40に流れ込む冷媒Rfは、分岐点40aで第1凝縮管43aに流れ込み、第1凝縮器42aを経由してバイパス管44を流れて第2凝縮管43bに流れ込み、第2凝縮器42bと合流点40bを経由して凝縮回路40から流れ出る。   On the other hand, when both the first electromagnetic valve 45a and the second electromagnetic valve 45b are closed, the refrigerant Rf does not flow into the second condensing pipe 43b at the branch point 40a as shown in FIG. It flows only into the tube 43a. The refrigerant Rf flowing into the condensing circuit 40 from the refrigerant pipe 1a flows into the first condensing pipe 43a at the branch point 40a, flows through the bypass pipe 44 via the first condenser 42a, and into the second condensing pipe 43b. It flows out of the condenser circuit 40 via the condenser 42b and the junction 40b.

このように、第1電磁弁45aと第2電磁弁45bがともに閉弁すると、冷媒Rfが第1凝縮器42aを流れた後に第2凝縮器42bを流れることから、第1凝縮器42aと第2凝縮器42bは直列に接続される。   Thus, when both the first electromagnetic valve 45a and the second electromagnetic valve 45b are closed, the refrigerant Rf flows through the second condenser 42b after flowing through the first condenser 42a. The two condensers 42b are connected in series.

以上のように、凝縮回路40は、第1電磁弁45aと第2電磁弁45bの開閉によって、第1凝縮器42aと第2凝縮器42bの接続を直列または並列に切り替えることができる。   As described above, the condensing circuit 40 can switch the connection of the first condenser 42a and the second condenser 42b in series or in parallel by opening and closing the first electromagnetic valve 45a and the second electromagnetic valve 45b.

再度、説明を図1に戻す。膨張弁20は、凝縮回路40の第1凝縮器42aおよび第2凝縮器42bで凝縮されて液化した冷媒Rfを断熱膨張して減圧し、冷媒Rfを低温低圧にする。膨張弁20には、例えば、開度調整の応答速度が速い電動膨張弁が使用され、凝縮回路40から流れ込む冷媒Rfを減圧して、蒸発しやすい状態にして蒸発回路30に送る。また、膨張弁20は、弁開度の調節によって冷媒回路における冷媒Rfの循環量を調節することができる。   The description returns to FIG. 1 again. The expansion valve 20 adiabatically expands and decompresses the refrigerant Rf condensed and liquefied by the first condenser 42a and the second condenser 42b of the condensation circuit 40, and makes the refrigerant Rf low temperature and low pressure. As the expansion valve 20, for example, an electric expansion valve having a high response speed of opening adjustment is used, and the refrigerant Rf flowing from the condensing circuit 40 is decompressed to be easily evaporated and sent to the evaporating circuit 30. The expansion valve 20 can adjust the circulation amount of the refrigerant Rf in the refrigerant circuit by adjusting the valve opening.

蒸発回路30は、膨張弁20の下流に冷媒配管1aで接続される。
冷媒配管1aは、蒸発回路30の上流側に形成される分岐点30aで分流管となる第1蒸発管33aおよび第2蒸発管33bに分岐し、第1蒸発管33aと第2蒸発管33bは蒸発回路30の下流側に形成される合流点30bで合流する。そして、蒸発回路30には第1蒸発器32aと第2蒸発器32bの2つの蒸発器32が備わり、第1蒸発管33aに第1蒸発器32aが連結され、第2蒸発管33bに第2蒸発器32bが連結される。
つまり、第1蒸発管33aと第2蒸発管33bは冷媒Rfの流れに対して並列に配管され、第1蒸発器32aと第2蒸発器32bは並列に配列される。
The evaporation circuit 30 is connected to the downstream side of the expansion valve 20 by a refrigerant pipe 1a.
The refrigerant pipe 1a branches into a first evaporation pipe 33a and a second evaporation pipe 33b that serve as branch pipes at a branch point 30a formed on the upstream side of the evaporation circuit 30, and the first evaporation pipe 33a and the second evaporation pipe 33b are They merge at a junction 30b formed on the downstream side of the evaporation circuit 30. The evaporation circuit 30 includes two evaporators 32, a first evaporator 32a and a second evaporator 32b. The first evaporator 32a is connected to the first evaporator pipe 33a, and the second evaporator 32b is connected to the second evaporator pipe 33b. The evaporator 32b is connected.
That is, the first evaporator pipe 33a and the second evaporator pipe 33b are connected in parallel with the flow of the refrigerant Rf, and the first evaporator 32a and the second evaporator 32b are arranged in parallel.

第1蒸発器32aおよび第2蒸発器32bには、ともに被冷却水Wt2が流れる水配管31が配管され、第1蒸発器32aに配管される水配管31を流れる被冷却水Wt2は、第1蒸発管33aから第1蒸発器32aに流れ込む冷媒Rfと熱交換し、冷媒Rfが気化するときの気化熱が吸収されて冷却される。
また、第2蒸発器32bに配管される水配管31を流れる被冷却水Wt2は、第2蒸発管33bから第2蒸発器32bに流れ込む冷媒Rfと熱交換し、冷媒Rfが気化するときの気化熱が吸収されて冷却される。なお、水配管31には、第1蒸発器32aおよび第2蒸発器32bで熱交換された後の被冷却水Wt2の水温を計測する水温計31aが備わっている。
Both the first evaporator 32a and the second evaporator 32b are provided with a water pipe 31 through which the water to be cooled Wt2 flows, and the water to be cooled Wt2 flowing through the water pipe 31 piped into the first evaporator 32a Heat is exchanged with the refrigerant Rf flowing into the first evaporator 32a from the evaporation pipe 33a, and the heat of vaporization when the refrigerant Rf is vaporized is absorbed and cooled.
Further, the water to be cooled Wt2 flowing through the water pipe 31 piped to the second evaporator 32b exchanges heat with the refrigerant Rf flowing into the second evaporator 32b from the second evaporator pipe 33b, and is vaporized when the refrigerant Rf is vaporized. Heat is absorbed and cooled. The water pipe 31 is provided with a water temperature gauge 31a for measuring the temperature of the water to be cooled Wt2 after heat exchange is performed by the first evaporator 32a and the second evaporator 32b.

蒸発回路30に備わる蒸発器32(第1蒸発器32a、第2蒸発器32b)は、凝縮器42と同様に、それぞれ、積層プレート式熱交換器60(図2の(a)参照)や、シェルアンドチューブ式熱交換器70(図2の(b)参照)などの熱交換器によって構成される。   Like the condenser 42, the evaporator 32 (first evaporator 32a, second evaporator 32b) provided in the evaporation circuit 30 is a laminated plate heat exchanger 60 (see FIG. 2A), It is configured by a heat exchanger such as a shell and tube heat exchanger 70 (see FIG. 2B).

なお、図2の(a)に示す積層プレート式熱交換器60や図2の(b)に示すシェルアンドチューブ式熱交換器70の冷媒冷却水Wt1は、蒸発器32においては被冷却水Wt2になる。
また、蒸発器32(図1参照)において、積層プレート式熱交換器60の液体取り込み口65aおよび液体排出口65b、シェルアンドチューブ式熱交換器70の液体取り込み口71aおよび液体排出口71bは、水配管31(図1参照)と接続される。さらに、第1蒸発器32a(図1参照)において、積層プレート式熱交換器60の冷媒取り込み口64aおよび冷媒排出口64b、シェルアンドチューブ式熱交換器70の管路72は、第1蒸発管33aと接続され、第2蒸発器32b(図1参照)において、積層プレート式熱交換器60の冷媒取り込み口64aおよび冷媒排出口64b、シェルアンドチューブ式熱交換器70の管路72は、第2蒸発管33bと接続される。
The refrigerant cooling water Wt1 of the laminated plate heat exchanger 60 shown in FIG. 2A and the shell-and-tube heat exchanger 70 shown in FIG. 2B is the cooling water Wt2 in the evaporator 32. become.
In the evaporator 32 (see FIG. 1), the liquid intake port 65a and the liquid discharge port 65b of the laminated plate heat exchanger 60 and the liquid intake port 71a and the liquid discharge port 71b of the shell-and-tube heat exchanger 70 are: It connects with the water piping 31 (refer FIG. 1). Further, in the first evaporator 32a (see FIG. 1), the refrigerant intake port 64a and the refrigerant discharge port 64b of the laminated plate heat exchanger 60 and the pipe 72 of the shell and tube heat exchanger 70 are connected to the first evaporator tube. 33a, in the second evaporator 32b (see FIG. 1), the refrigerant intake port 64a and the refrigerant discharge port 64b of the laminated plate heat exchanger 60 and the pipe 72 of the shell-and-tube heat exchanger 70 are 2 is connected to the evaporation pipe 33b.

第2蒸発器32bの上流側と第1蒸発器32aの下流側は、第1蒸発管33aと第2蒸発管33bがそれぞれの分岐点34a、34bで分岐するバイパス管34で接続され、バイパス管34には逆止弁36が備わっている。
つまり、第1蒸発管33aと第2蒸発管33bはバイパス管34で連結される。
この構成により、第1蒸発器32aと第2蒸発器32bは、バイパス管34を介し、冷媒Rfの流れに対して直列に配列される。そして、第1蒸発器32aは、直列に配列される蒸発器32のうちで最も上流に位置する蒸発器32になり、第2蒸発器32bは、直列に配列される蒸発器32のうちで最も下流に位置する蒸発器32になる。
The upstream side of the second evaporator 32b and the downstream side of the first evaporator 32a are connected by a bypass pipe 34 in which the first evaporator pipe 33a and the second evaporator pipe 33b branch at respective branch points 34a and 34b. 34 is provided with a check valve 36.
That is, the first evaporation pipe 33 a and the second evaporation pipe 33 b are connected by the bypass pipe 34.
With this configuration, the first evaporator 32 a and the second evaporator 32 b are arranged in series with respect to the flow of the refrigerant Rf via the bypass pipe 34. The first evaporator 32a becomes the most upstream evaporator 32 among the evaporators 32 arranged in series, and the second evaporator 32b is the most among the evaporators 32 arranged in series. It becomes the evaporator 32 located downstream.

逆止弁36は、バイパス管34における冷媒Rfの流れの方向を第1蒸発器32aの下流側から第2蒸発器32bの上流側に向かう一方向、つまり、分岐点34aから分岐点34bに向かう一方向に規制し、第2蒸発器32bの上流側から第1蒸発器32aの下流側に冷媒Rfが流れることを防止する弁である。   The check valve 36 moves the refrigerant Rf in the bypass pipe 34 in one direction from the downstream side of the first evaporator 32a to the upstream side of the second evaporator 32b, that is, from the branch point 34a to the branch point 34b. It is a valve that regulates in one direction and prevents the refrigerant Rf from flowing from the upstream side of the second evaporator 32b to the downstream side of the first evaporator 32a.

さらに、第1蒸発管33aには、第1蒸発器32aの下流で合流点30bと分岐点34aとの間に、第1蒸発管33aを開閉する開閉弁からなる第3電磁弁35aが備わる。
また、第2蒸発管33bには、第2蒸発器32bの上流で分岐点30aと分岐点34bとの間に、第2蒸発管33bを開閉する開閉弁からなる第4電磁弁35bが備わる。
Further, the first evaporation pipe 33a is provided with a third electromagnetic valve 35a composed of an opening / closing valve for opening and closing the first evaporation pipe 33a between the junction 30b and the branch point 34a downstream of the first evaporator 32a.
Further, the second evaporation pipe 33b is provided with a fourth electromagnetic valve 35b comprising an opening / closing valve for opening and closing the second evaporation pipe 33b between the branch point 30a and the branch point 34b upstream of the second evaporator 32b.

蒸発回路30においては、凝縮回路40と同様に、第3電磁弁35aと第4電磁弁35bがともに開弁すると、第1蒸発器32aと第2蒸発器32bが並列に接続され、第3電磁弁35aと第4電磁弁35bがともに閉弁すると、第1蒸発器32aと第2蒸発器32bが直列に接続される。すなわち、蒸発回路30は、第3電磁弁35aと第4電磁弁35bの開閉によって、第1蒸発器32aと第2蒸発器32bの接続を直列または並列に切り替えることができる。   In the evaporation circuit 30, similarly to the condensation circuit 40, when both the third electromagnetic valve 35 a and the fourth electromagnetic valve 35 b are opened, the first evaporator 32 a and the second evaporator 32 b are connected in parallel, and the third electromagnetic valve When both the valve 35a and the fourth electromagnetic valve 35b are closed, the first evaporator 32a and the second evaporator 32b are connected in series. That is, the evaporation circuit 30 can switch the connection between the first evaporator 32a and the second evaporator 32b in series or in parallel by opening and closing the third electromagnetic valve 35a and the fourth electromagnetic valve 35b.

本実施形態に係る冷凍装置1に備わる圧縮機10は、運転容量が可変に構成される。
例えば、圧縮機10は、インバータ回路から供給される交流電流で駆動するDCブラシレスモータを備えるスクロール圧縮機であり、例えば、交流電流の周波数(駆動周波数)を制御することによって、低速(例えば、700rpm)から高速(例えば、7000rpm)の間で回転速度が制御できるように構成される。
そして、圧縮機10は、高速の回転で駆動するときに運転容量が大きくなり、低速の回転で駆動するときに運転容量が小さくなる。すなわち、圧縮機10は、駆動周波数を制御することによって回転速度を制御することができ、回転速度の制御によって運転容量を制御できるように構成される。
The compressor 10 provided in the refrigeration apparatus 1 according to the present embodiment is configured to have a variable operating capacity.
For example, the compressor 10 is a scroll compressor including a DC brushless motor that is driven by an alternating current supplied from an inverter circuit. For example, the compressor 10 is controlled at a low speed (for example, 700 rpm) by controlling the frequency (driving frequency) of the alternating current. ) To a high speed (for example, 7000 rpm).
The compressor 10 has a large operating capacity when driven at a high speed and a small operating capacity when driven at a low speed. That is, the compressor 10 is configured to be able to control the rotational speed by controlling the driving frequency and to control the operating capacity by controlling the rotational speed.

冷凍装置1に備わる制御装置50は、圧縮機10の回転速度、膨張弁20の弁開度、凝縮回路40に備わる第1電磁弁45aと第2電磁弁45bの開閉、および蒸発回路30に備わる第3電磁弁35aと第4電磁弁35bの開閉をそれぞれ制御することによって、冷凍装置1の運転を制御する。   The control device 50 provided in the refrigeration apparatus 1 is provided in the rotation speed of the compressor 10, the opening degree of the expansion valve 20, the opening and closing of the first electromagnetic valve 45 a and the second electromagnetic valve 45 b provided in the condensation circuit 40, and the evaporation circuit 30. The operation of the refrigeration apparatus 1 is controlled by controlling the opening and closing of the third electromagnetic valve 35a and the fourth electromagnetic valve 35b.

例えば、冷凍装置1の始動直後は、蒸発回路30の第1蒸発器32a、第2蒸発器32bで冷却される被冷却水Wt2の温度(水温)が予め決定される目標温度よりはるかに高いため、制御装置50は、圧縮機10を高い運転容量で運転する。つまり、圧縮機10を高速回転(例えば、7000rpm)で運転する。
圧縮機10は、負荷が最大の全負荷状態となり、冷媒Rfが高い流速で冷媒回路を循環する。
For example, immediately after the start of the refrigeration apparatus 1, the temperature (water temperature) of the water to be cooled Wt2 cooled by the first evaporator 32a and the second evaporator 32b of the evaporation circuit 30 is much higher than a predetermined target temperature. The control device 50 operates the compressor 10 with a high operating capacity. That is, the compressor 10 is operated at a high speed (for example, 7000 rpm).
The compressor 10 is in a full load state with the maximum load, and the refrigerant Rf circulates in the refrigerant circuit at a high flow rate.

その後、被冷却水Wt2の水温が所定の温度まで低下したとき、制御装置50は圧縮機10の運転容量を低下させる。つまり、制御装置50は圧縮機10の回転速度を減速する(例えば、700rpm)。そして、圧縮機10の運転容量の低下にともなって冷媒回路を流れる冷媒Rfの流速が低下する。   Thereafter, when the water temperature of the to-be-cooled water Wt2 decreases to a predetermined temperature, the control device 50 decreases the operating capacity of the compressor 10. That is, the control device 50 reduces the rotational speed of the compressor 10 (for example, 700 rpm). As the operating capacity of the compressor 10 decreases, the flow rate of the refrigerant Rf flowing through the refrigerant circuit decreases.

さらに、本実施形態に係る制御装置50は、圧縮機10の運転容量が大きく冷媒回路を循環する冷媒Rfの流速が高いときは凝縮回路40の第1電磁弁45aおよび第2電磁弁45bをともに開弁し、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bをともに開弁する。凝縮回路40の第1凝縮器42aと第2凝縮器42bが並列に接続され、冷媒Rfは第1凝縮器42aと第2凝縮器42bを並行して流れる。同様に、蒸発回路30の第1蒸発器32aと第2蒸発器32bが並列に接続され、冷媒Rfは第1蒸発器32aと第2蒸発器32bを並行して流れる。   Furthermore, when the operating capacity of the compressor 10 is large and the flow rate of the refrigerant Rf circulating through the refrigerant circuit is high, the control device 50 according to this embodiment includes both the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40. The valve is opened, and both the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30 are opened. The first condenser 42a and the second condenser 42b of the condenser circuit 40 are connected in parallel, and the refrigerant Rf flows through the first condenser 42a and the second condenser 42b in parallel. Similarly, the first evaporator 32a and the second evaporator 32b of the evaporation circuit 30 are connected in parallel, and the refrigerant Rf flows through the first evaporator 32a and the second evaporator 32b in parallel.

また、制御装置50は、圧縮機10の運転容量が小さく冷媒回路を循環する冷媒Rfの流速が低いとき、凝縮回路40の第1電磁弁45aおよび第2電磁弁45bをともに閉弁し、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bをともに閉弁する。
凝縮回路40の第1凝縮器42aと第2凝縮器42bが直列に接続され、冷媒Rfは第1凝縮器42aと第2凝縮器42bを直列に流れる。同様に、蒸発回路30の第1蒸発器32aと第2蒸発器32bが直列に接続され、冷媒Rfは第1蒸発器32aと第2蒸発器32bを直列に流れる。
In addition, when the operating capacity of the compressor 10 is small and the flow rate of the refrigerant Rf circulating through the refrigerant circuit is low, the control device 50 closes both the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40 and evaporates. Both the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the circuit 30 are closed.
The first condenser 42a and the second condenser 42b of the condensing circuit 40 are connected in series, and the refrigerant Rf flows through the first condenser 42a and the second condenser 42b in series. Similarly, the first evaporator 32a and the second evaporator 32b of the evaporation circuit 30 are connected in series, and the refrigerant Rf flows through the first evaporator 32a and the second evaporator 32b in series.

凝縮回路40および蒸発回路30(以下、凝縮回路40と蒸発回路30をまとめて熱交換回路と称する)を流れる冷媒Rfの流速は圧縮機10の運転容量に比例し、圧縮機10の運転容量が大きいとき熱交換回路を流れる冷媒Rfの流速は高くなり、圧縮機10の運転容量が小さくなると熱交換回路を流れる冷媒Rfの流速も低くなる。   The flow rate of the refrigerant Rf flowing through the condensing circuit 40 and the evaporating circuit 30 (hereinafter, the condensing circuit 40 and the evaporating circuit 30 are collectively referred to as a heat exchange circuit) is proportional to the operating capacity of the compressor 10, and the operating capacity of the compressor 10 is When it is large, the flow rate of the refrigerant Rf flowing through the heat exchange circuit is high, and when the operating capacity of the compressor 10 is small, the flow rate of the refrigerant Rf flowing through the heat exchange circuit is also low.

また、熱交換回路においては、冷媒Rfの流速が高いほど熱交換の効率が向上するが、冷媒Rfと冷媒流路(第1凝縮管43a、第2凝縮管43b、第1蒸発管33a、第2蒸発管33b)との摩擦による圧力損失が大きくなる。   In the heat exchange circuit, the higher the flow rate of the refrigerant Rf, the higher the efficiency of heat exchange. However, the refrigerant Rf and the refrigerant flow path (the first condensing pipe 43a, the second condensing pipe 43b, the first evaporating pipe 33a, the first evaporating pipe 33a, 2) Pressure loss due to friction with the evaporation tube 33b) increases.

そこで、本実施形態に係る冷凍装置1の制御装置50は、圧縮機10を大きい運転容量(高い回転速度)で運転するときは、凝縮回路40の第1凝縮器42aと第2凝縮器42bの接続と、蒸発回路30の第1蒸発器32aと第2蒸発器32bの接続と、をともに並列に切り替えて、熱交換回路における圧力損失を軽減する。具体的に、制御装置50は、凝縮回路40の第1電磁弁45aおよび第2電磁弁45bをともに開弁し、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bをともに開弁して、凝縮回路40の第1凝縮器42aと第2凝縮器42bの接続、および蒸発回路30の第1蒸発器32aと第2蒸発器32bの接続をともに並列に切り替え、熱交換回路における圧力損失を軽減する。凝縮回路40および蒸発回路30における冷媒Rfの流速は低下するが、圧縮機10から吐出される冷媒Rfの流速が高いため熱交換回路を流れる冷媒Rfの流速を高く維持できる。   Therefore, the control device 50 of the refrigeration apparatus 1 according to the present embodiment operates the first condenser 42a and the second condenser 42b of the condenser circuit 40 when the compressor 10 is operated at a large operating capacity (high rotational speed). The connection and the connection of the first evaporator 32a and the second evaporator 32b of the evaporation circuit 30 are both switched in parallel to reduce pressure loss in the heat exchange circuit. Specifically, the control device 50 opens both the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40, and opens both the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30. Thus, the connection between the first condenser 42a and the second condenser 42b in the condenser circuit 40 and the connection between the first evaporator 32a and the second evaporator 32b in the evaporator circuit 30 are switched in parallel, and the pressure loss in the heat exchange circuit Reduce. Although the flow rate of the refrigerant Rf in the condensing circuit 40 and the evaporation circuit 30 decreases, the flow rate of the refrigerant Rf flowing through the heat exchange circuit can be maintained high because the flow rate of the refrigerant Rf discharged from the compressor 10 is high.

一方、圧縮機10を小さい運転容量(低い回転速度)で運転するとき、制御装置50は、凝縮回路40の第1凝縮器42aと第2凝縮器42bの接続、および蒸発回路30の第1蒸発器32aと第2蒸発器32bの接続をともに直列に切り替える。具体的に、制御装置50は、凝縮回路40の第1電磁弁45aおよび第2電磁弁45bをともに閉弁し、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bをともに閉弁して、凝縮回路40の第1凝縮器42aと第2凝縮器42bの接続、および蒸発回路30の第1蒸発器32aと第2蒸発器32bの接続をともに直列に切り替える。この状態のとき、熱交換回路を流れる冷媒Rfの流速は高くなる。   On the other hand, when the compressor 10 is operated at a small operating capacity (low rotational speed), the control device 50 connects the first condenser 42a and the second condenser 42b of the condensation circuit 40 and the first evaporation of the evaporation circuit 30. The connection between the evaporator 32a and the second evaporator 32b is switched in series. Specifically, the control device 50 closes both the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40, and closes both the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30. Thus, the connection of the first condenser 42a and the second condenser 42b of the condenser circuit 40 and the connection of the first evaporator 32a and the second evaporator 32b of the evaporator circuit 30 are both switched in series. In this state, the flow rate of the refrigerant Rf flowing through the heat exchange circuit is increased.

このように、本実施形態に係る冷凍装置1の制御装置50は、圧縮機10の運転容量に応じて、凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bの開閉を切り替えて、熱交換回路における冷媒Rfの流速を好適に高く維持し、熱交換回路の熱交換の効率を向上するように冷凍装置1を制御する。   As described above, the control device 50 of the refrigeration apparatus 1 according to the present embodiment is configured so that the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40 and the third of the evaporation circuit 30 correspond to the operating capacity of the compressor 10. The refrigerating apparatus 1 is controlled so as to switch the opening and closing of the electromagnetic valve 35a and the fourth electromagnetic valve 35b so that the flow rate of the refrigerant Rf in the heat exchange circuit is suitably kept high and the heat exchange efficiency of the heat exchange circuit is improved.

そして、凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bは、その開閉によって、第1凝縮器42aと第2凝縮器42bの接続、および第1蒸発器32aと第2蒸発器32bの接続を直列または並列に切り替える切替機構としての機能を有する。以下、凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bをまとめて切替機構と称する場合がある。   The first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40 and the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30 are opened and closed so that the first condenser 42a and the second condenser 42b are opened and closed. And a switching mechanism for switching the connection between the first evaporator 32a and the second evaporator 32b in series or in parallel. Hereinafter, the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40 and the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30 may be collectively referred to as a switching mechanism.

凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bが全て開弁すると、第1凝縮器42aと第2凝縮器42bの接続、および第1蒸発器32aと第2蒸発器32bの接続が並列に切り替わることから、凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bの全てが開弁した状態を切替機構の並列状態と称する。   When the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40 and the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30 are all opened, the connection between the first condenser 42a and the second condenser 42b. Since the connection between the first evaporator 32a and the second evaporator 32b is switched in parallel, the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensation circuit 40, the third electromagnetic valve 35a and the fourth electromagnetic valve of the evaporation circuit 30 are switched. A state in which all of the electromagnetic valves 35b are opened is referred to as a parallel state of the switching mechanism.

また、凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bが全て閉弁すると、第1凝縮器42aと第2凝縮器42bの接続、および第1蒸発器32aと第2蒸発器32bの接続が直列に切り替わることから、凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bの全てが閉弁した状態を切替機構の直列状態と称する。   When the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40 and the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30 are all closed, the first condenser 42a and the second condenser 42b. And the connection of the first evaporator 32a and the second evaporator 32b are switched in series, so that the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40, the third electromagnetic valve 35a of the evaporation circuit 30 and A state where all the fourth electromagnetic valves 35b are closed is referred to as a serial state of the switching mechanism.

換言すると、第1電磁弁45aおよび第2電磁弁45bは、切替機構が並列状態のときに冷媒Rfが第1凝縮管43aおよび第2凝縮管43bを流れるように、第1凝縮管43aおよび第2凝縮管43bを開通し、第3電磁弁35aおよび第4電磁弁35bは、切替機構が並列状態のときに冷媒Rfが第1蒸発管33aおよび第2蒸発管33bを流れるように、第1蒸発管33aおよび第2蒸発管33bを開通する。   In other words, the first solenoid valve 45a and the second solenoid valve 45b are arranged such that the refrigerant Rf flows through the first condensation pipe 43a and the second condensation pipe 43b when the switching mechanism is in the parallel state. The second condensing pipe 43b is opened, and the third electromagnetic valve 35a and the fourth electromagnetic valve 35b are arranged so that the refrigerant Rf flows through the first evaporation pipe 33a and the second evaporation pipe 33b when the switching mechanism is in the parallel state. The evaporation pipe 33a and the second evaporation pipe 33b are opened.

また、第1電磁弁45aおよび第2電磁弁45bは、切替機構が直列状態のときに冷媒Rfがバイパス管44を流れるように、第1凝縮管43aおよび第2凝縮管43bを遮断し、第3電磁弁35aおよび第4電磁弁35bは、切替機構が直列状態のときに冷媒Rfがバイパス管34を流れるように、第1蒸発管33aおよび第2蒸発管33bを遮断する。   The first solenoid valve 45a and the second solenoid valve 45b shut off the first condensing pipe 43a and the second condensing pipe 43b so that the refrigerant Rf flows through the bypass pipe 44 when the switching mechanism is in series. The third solenoid valve 35a and the fourth solenoid valve 35b block the first evaporation pipe 33a and the second evaporation pipe 33b so that the refrigerant Rf flows through the bypass pipe 34 when the switching mechanism is in a series state.

そして、逆止弁46は、切替機構が並列状態のときに冷媒Rfがバイパス管44を流れることを防止する弁であり、逆止弁36は、切替機構が並列状態のときに冷媒Rfがバイパス管34を流れることを防止する弁である。   The check valve 46 is a valve that prevents the refrigerant Rf from flowing through the bypass pipe 44 when the switching mechanism is in the parallel state. The check valve 36 bypasses the refrigerant Rf when the switching mechanism is in the parallel state. This is a valve that prevents the pipe 34 from flowing.

図4を参照して、制御装置50が冷凍装置1を制御する手順を説明する(適宜図1〜図3参照)。制御装置50は水温計31aが計測する水温に応じた運転容量で圧縮機10を運転する(ステップS1)。圧縮機10の運転容量は、水温計31aが計測する水温に応じて決定されることが好適である。そこで、例えば、水温計31aが計測する水温と圧縮機10の運転容量の関係を示すマップが制御装置50の図示しない記憶部に記憶されている構成が好ましく、制御装置50は水温計31aが計測する水温に基づいて当該マップを参照して圧縮機10の運転容量を決定する。   With reference to FIG. 4, the procedure in which the control apparatus 50 controls the refrigerating apparatus 1 will be described (see FIGS. 1 to 3 as appropriate). The control device 50 operates the compressor 10 with an operation capacity corresponding to the water temperature measured by the water temperature gauge 31a (step S1). The operating capacity of the compressor 10 is preferably determined according to the water temperature measured by the water temperature gauge 31a. Therefore, for example, a configuration in which a map indicating the relationship between the water temperature measured by the water temperature gauge 31a and the operating capacity of the compressor 10 is stored in a storage unit (not shown) of the control device 50 is preferable. The control device 50 is measured by the water temperature gauge 31a. The operating capacity of the compressor 10 is determined with reference to the map based on the water temperature to be performed.

さらに、制御装置50は、決定した運転容量になるように圧縮機10の回転速度を決定し、決定した回転速度で圧縮機10を運転する。具体的に、制御装置50は、決定した回転速度になるように圧縮機10に制御信号を送信する。   Furthermore, the control device 50 determines the rotational speed of the compressor 10 so as to achieve the determined operating capacity, and operates the compressor 10 at the determined rotational speed. Specifically, the control device 50 transmits a control signal to the compressor 10 so as to achieve the determined rotation speed.

そして、制御装置50は、決定した運転容量が予め設定される所定値より大きいか否かを判定する(ステップS2)。ステップS2において、制御装置50は、例えば圧縮機10の回転速度に基づいて運転容量の大小を判定する。
前記したように、圧縮機10の回転速度と運転容量には正の相関関係があることから、制御装置50は、例えば、決定した圧縮機10の回転速度が所定の回転速度閾値より高いとき、圧縮機10の運転容量が予め設定される所定値より大きいと判定し、圧縮機10の回転速度が所定の回転速度閾値より低いとき、圧縮機10の運転容量が予め設定される所定値より小さいと判定する。
And the control apparatus 50 determines whether the determined operating capacity is larger than the predetermined value set beforehand (step S2). In step S <b> 2, the control device 50 determines the magnitude of the operation capacity based on, for example, the rotation speed of the compressor 10.
As described above, since the rotational speed of the compressor 10 and the operating capacity have a positive correlation, the control device 50, for example, when the determined rotational speed of the compressor 10 is higher than a predetermined rotational speed threshold, When it is determined that the operating capacity of the compressor 10 is larger than a predetermined value set in advance and the rotational speed of the compressor 10 is lower than a predetermined rotational speed threshold, the operating capacity of the compressor 10 is smaller than a predetermined value set in advance Is determined.

なお、所定の回転速度閾値は適宜設定すればよい。
例えば、切替機構が直列状態で、第1凝縮器42aと第2凝縮器42bが直列に接続され、第1蒸発器32aと第2蒸発器32bが直列に接続された状態であっても、熱交換回路で効率よく熱交換できる冷媒Rfの流速を得られる圧縮機10の運転容量の上限値に対応する回転速度を、所定の回転速度閾値に設定すればよい。
The predetermined rotation speed threshold value may be set as appropriate.
For example, even when the switching mechanism is in a series state, the first condenser 42a and the second condenser 42b are connected in series, and the first evaporator 32a and the second evaporator 32b are connected in series, What is necessary is just to set the rotational speed corresponding to the upper limit of the operating capacity of the compressor 10 which can obtain the flow rate of the refrigerant | coolant Rf which can exchange heat efficiently with an exchange circuit to a predetermined rotational speed threshold value.

制御装置50は、決定した運転容量が予め設定される所定値より大きいときは(ステップS2→Yes)、全ての電磁弁、すなわち、凝縮回路40の第1電磁弁45aおよび第2電磁弁45b、蒸発回路30の第3電磁弁35aおよび第4電磁弁35bの全てを開弁し(ステップS3)、切替機構を並列状態に切り替える。
一方、決定した運転容量が予め設定される所定値より小さいとき(ステップS2→No)、制御装置50は全ての電磁弁を閉弁し(ステップS4)、切替機構を直列状態に切り替える。
When the determined operating capacity is larger than a predetermined value set in advance (step S2 → Yes), the control device 50 determines that all the electromagnetic valves, that is, the first electromagnetic valve 45a and the second electromagnetic valve 45b of the condensing circuit 40, All of the third electromagnetic valve 35a and the fourth electromagnetic valve 35b of the evaporation circuit 30 are opened (step S3), and the switching mechanism is switched to the parallel state.
On the other hand, when the determined operating capacity is smaller than a predetermined value set in advance (step S2 → No), the control device 50 closes all the electromagnetic valves (step S4), and switches the switching mechanism to the serial state.

そして、制御装置40は水温計31aが計測する水温を常に監視し、その水温に応じて圧縮機10の運転容量を決定し、決定した運転容量に基づいて切替機構の並列状態と直列状態を切り替える。   And the control apparatus 40 always monitors the water temperature which the water thermometer 31a measures, determines the operating capacity of the compressor 10 according to the water temperature, and switches the parallel state and serial state of a switching mechanism based on the determined operating capacity. .

このように、図1に示す、本実施形態に係る冷凍装置1の制御装置50は、水温計31aが計測する被冷却水Wt2の水温に基づいて圧縮機10の運転容量を決定して圧縮機10を運転し、さらに、圧縮機10の運転容量に基づいて切替機構の並列状態と直列状態を適宜切り替えて、熱交換回路における熱交換の効率が向上するように冷凍装置1を制御する。   As described above, the control device 50 of the refrigeration apparatus 1 according to the present embodiment shown in FIG. 1 determines the operating capacity of the compressor 10 based on the water temperature of the water to be cooled Wt2 measured by the water temperature gauge 31a. 10 is further operated, and the refrigeration apparatus 1 is controlled so that the efficiency of heat exchange in the heat exchange circuit is improved by appropriately switching the parallel state and the serial state of the switching mechanism based on the operation capacity of the compressor 10.

冷媒回路を流れる冷媒Rfの流速は、圧縮機10の運転容量の変化に応じて変化することから、切替機構の並列状態と直列状態を圧縮機10の運転容量に応じて切り替える本実施形態は、熱交換回路を流れる冷媒Rfの流速に応じて切替機構の並列状態と直列状態を切り替えることができる。そして、熱交換回路における熱交換の効率を好適に向上できる。   Since the flow rate of the refrigerant Rf flowing through the refrigerant circuit changes according to the change in the operating capacity of the compressor 10, the present embodiment for switching the parallel state and the serial state of the switching mechanism according to the operating capacity of the compressor 10 The parallel state and the serial state of the switching mechanism can be switched according to the flow rate of the refrigerant Rf flowing through the heat exchange circuit. And the efficiency of the heat exchange in a heat exchange circuit can be improved suitably.

つまり、冷凍初期など、被冷却水Wt2の水温が目標温度と大きく乖離しているとき、制御装置50は大きな運転容量で圧縮機10を運転するとともに切替機構を並列状態に切り替える。第1凝縮器42aと第2凝縮器42bが並列に接続されるとともに、第1蒸発器32aと第2蒸発器32bが並列に接続され、高い流速の冷媒Rfの熱交換回路における圧力損失を小さくすることができ、熱交換回路における熱交換効率を向上できる。   That is, when the water temperature of the to-be-cooled water Wt2 greatly deviates from the target temperature, such as in the early stage of freezing, the control device 50 operates the compressor 10 with a large operating capacity and switches the switching mechanism to the parallel state. The first condenser 42a and the second condenser 42b are connected in parallel, and the first evaporator 32a and the second evaporator 32b are connected in parallel to reduce the pressure loss in the heat exchange circuit of the high flow rate refrigerant Rf. The heat exchange efficiency in the heat exchange circuit can be improved.

また、被冷却水Wt2の水温が目標温度に近いとき、制御装置50は小さな運転容量で圧縮機10を運転するとともに切替機構を直列状態に切り替える。第1凝縮器42aと第2凝縮器42bが直列に接続されるとともに、第1蒸発器32aと第2蒸発器32bが直列に接続され、熱交換回路における冷媒Rfの流速を高く維持することができ、熱交換回路における熱交換効率を向上できる。   Moreover, when the water temperature of the to-be-cooled water Wt2 is close to the target temperature, the control device 50 operates the compressor 10 with a small operation capacity and switches the switching mechanism to the serial state. The first condenser 42a and the second condenser 42b are connected in series, and the first evaporator 32a and the second evaporator 32b are connected in series, so that the flow rate of the refrigerant Rf in the heat exchange circuit can be kept high. The heat exchange efficiency in the heat exchange circuit can be improved.

なお、本実施形態は発明の趣旨を逸脱しない範囲で適宜設計変更可能である。
例えば、図5の(a)に示すように、凝縮回路40のバイパス管44の逆止弁46(図1参照)と第1電磁弁45a(図1参照)を備えず、第1凝縮管43aとバイパス管44の分岐点44a(図1参照)に、制御装置50によって制御される三方弁47を備える構成としてもよい。
Note that the design of this embodiment can be changed as appropriate without departing from the spirit of the invention.
For example, as shown in FIG. 5A, the check valve 46 (see FIG. 1) and the first electromagnetic valve 45a (see FIG. 1) of the bypass pipe 44 of the condensing circuit 40 are not provided, but the first condensing pipe 43a. A three-way valve 47 controlled by the control device 50 may be provided at a branch point 44a (see FIG. 1) of the bypass pipe 44.

三方弁47は3つの接続口47a〜47cを備え、図示しない弁体の動作によって、接続口47aと接続口47bが連通し接続口47cが閉じる状態Aと、接続口47aと接続口47cが連通し接続口47bが閉じる状態Bとを切り替え可能に構成される。そして、三方弁47は、バイパス管44が接続口47bに接続され、第1凝縮管43aの第1凝縮器42a側が接続口47aに接続され、第1凝縮管43aの合流点40b側が接続口47cに接続されるように備わる。   The three-way valve 47 includes three connection ports 47a to 47c, and a state A in which the connection port 47a and the connection port 47b communicate with each other and the connection port 47c is closed by the operation of a valve body (not shown), The connection port 47b can be switched to the closed state B. In the three-way valve 47, the bypass pipe 44 is connected to the connection port 47b, the first condenser 42a side of the first condensing pipe 43a is connected to the connection port 47a, and the confluence 40b side of the first condensing pipe 43a is connected to the connection port 47c. Provided to be connected to.

第1凝縮器42aと第2凝縮器42bを直列に接続する場合、制御装置50は、三方弁47を状態Aに切り替えるとともに第2電磁弁45bを閉弁する。
冷媒配管1aから分岐点40aを経由して凝縮回路40に流れ込む冷媒Rfは、第1凝縮管43a、第1凝縮器42a、三方弁47の接続口47aの順に流れ、接続口47bからバイパス管44に流れ込む。そして、冷媒Rfは、分岐点44bを流れた後に第2凝縮器42b、第2凝縮管43b、合流点40bを経由して凝縮回路40から流れ出る。
When the first condenser 42a and the second condenser 42b are connected in series, the control device 50 switches the three-way valve 47 to the state A and closes the second electromagnetic valve 45b.
The refrigerant Rf flowing into the condensing circuit 40 from the refrigerant pipe 1a via the branch point 40a flows in the order of the first condensing pipe 43a, the first condenser 42a, and the connection port 47a of the three-way valve 47, and from the connection port 47b to the bypass pipe 44. Flow into. The refrigerant Rf flows out of the condensing circuit 40 through the second condenser 42b, the second condensing pipe 43b, and the confluence 40b after flowing through the branch point 44b.

一方、第1凝縮器42aと第2凝縮器42bを並列に接続する場合、制御装置50は、三方弁47を状態Bに切り替えるとともに第2電磁弁45bを開弁する。
冷媒配管1aから凝縮回路40に流れ込む冷媒Rfは、分岐点40aで分岐して第1凝縮管43aと第2凝縮管43bの両方を流れる。第1凝縮管43aを流れる冷媒Rfは、第1凝縮器42a、三方弁47の接続口47aの順に流れ、接続口47cから第1凝縮管43aを経由して合流点40bに到達する。
On the other hand, when the first condenser 42a and the second condenser 42b are connected in parallel, the control device 50 switches the three-way valve 47 to the state B and opens the second electromagnetic valve 45b.
The refrigerant Rf flowing into the condensing circuit 40 from the refrigerant pipe 1a branches at the branch point 40a and flows through both the first condensing pipe 43a and the second condensing pipe 43b. The refrigerant Rf flowing through the first condenser tube 43a flows in the order of the first condenser 42a and the connection port 47a of the three-way valve 47, and reaches the junction 40b from the connection port 47c via the first condensation tube 43a.

分岐点40aで分岐して第2凝縮管43bを流れる冷媒Rfは、分岐点44b、第2凝縮器42bの順に流れて合流点40bに到達する。そして、第1凝縮管43aを流れる冷媒Rfと第2凝縮管43bを流れる冷媒Rfが合流点40bで合流して凝縮回路40から流れ出る。   The refrigerant Rf branched at the branch point 40a and flowing through the second condensing pipe 43b flows in the order of the branch point 44b and the second condenser 42b and reaches the confluence 40b. And the refrigerant | coolant Rf which flows through the 1st condensation pipe | tube 43a, and the refrigerant | coolant Rf which flows through the 2nd condensation pipe | tube 43b merge at the junction 40b, and flow out from the condensation circuit 40. FIG.

このように、図5の(a)に示すように三方弁47を備える構成としても、凝縮回路40における第1凝縮器42aと第2凝縮器42bの接続を直列または並列に切り替えることができる。   As described above, even when the three-way valve 47 is provided as shown in FIG. 5A, the connection between the first condenser 42a and the second condenser 42b in the condensation circuit 40 can be switched in series or in parallel.

なお、この構成によると、三方弁47を含んで、並列状態と直列状態を切り替え可能な切替機構が構成される。この場合、三方弁47が状態Aに切り替わり、第2電磁弁45bが閉弁した状態が切替機構の直列状態であり、三方弁47が状態Bに切り替わり、第2電磁弁45bが開弁した状態が切替機構の並列状態である。つまり、切替機構が直列状態のとき三方弁47は冷媒Rfがバイパス管44を流れる状態(状態A)に切り替わり、切替機構が並列状態のとき三方弁47は冷媒Rfがバイパス管44を流れない状態(状態B)に切り替わる。そして、逆止弁46(図1参照)は不要になる。   In addition, according to this structure, the switching mechanism which can switch a parallel state and a serial state including the three-way valve 47 is comprised. In this case, the state where the three-way valve 47 is switched to the state A and the second electromagnetic valve 45b is closed is the series state of the switching mechanism, the three-way valve 47 is switched to the state B and the second electromagnetic valve 45b is opened. Is the parallel state of the switching mechanism. That is, when the switching mechanism is in a series state, the three-way valve 47 is switched to a state (state A) in which the refrigerant Rf flows through the bypass pipe 44, and when the switching mechanism is in a parallel state, the three-way valve 47 is in a state where the refrigerant Rf does not flow through the bypass pipe 44. Switch to (State B). And the check valve 46 (refer FIG. 1) becomes unnecessary.

また、図1に示す凝縮回路40の逆止弁46と第2電磁弁45bを備えず、第2凝縮管43bとバイパス管44の分岐点44bに、制御装置50によって制御される三方弁を備える構成としてもよい。さらに、凝縮回路40と同様に、蒸発回路30(図1参照)に三方弁を備える構成としてもよい。   Further, the check valve 46 and the second electromagnetic valve 45b of the condensing circuit 40 shown in FIG. 1 are not provided, but a three-way valve controlled by the control device 50 is provided at the branch point 44b of the second condensing pipe 43b and the bypass pipe 44. It is good also as a structure. Further, similarly to the condensation circuit 40, the evaporation circuit 30 (see FIG. 1) may be provided with a three-way valve.

また、本実施形態においては、図1に示すように凝縮回路40に2つの凝縮器42a,42bを備える構成としたが、3つ以上の凝縮器42を備える凝縮回路としてもよい。
図5の(b)に示すように、3つの凝縮器42a,42b,42cを備える凝縮回路40の場合、冷媒配管1aは分岐点40aで、第1凝縮管43aと第2凝縮管43bに加え、第3凝縮管43cの3つの分流管に分岐し、合流点40bでは、第1凝縮管43aと第2凝縮管43bと第3凝縮管43cが合流する。そして、凝縮回路40には、第3凝縮管43cに接続される第3凝縮器42cが備わる。つまり、第1凝縮管43a〜第3凝縮管43cは冷媒Rfの流れに対して並列に配列される。
なお、図5の(b)において、図1と同じ要素には同じ符号を付し、詳細な説明は適宜省略する。
In the present embodiment, the condenser circuit 40 includes two condensers 42 a and 42 b as shown in FIG. 1, but a condensing circuit including three or more condensers 42 may be used.
As shown in FIG. 5B, in the case of the condensing circuit 40 including three condensers 42a, 42b, and 42c, the refrigerant pipe 1a is a branch point 40a and is added to the first condensing pipe 43a and the second condensing pipe 43b. The first condensing tube 43a, the second condensing tube 43b, and the third condensing tube 43c merge at the confluence 40b. The condensing circuit 40 includes a third condenser 42c connected to the third condensing pipe 43c. That is, the first condensing pipe 43a to the third condensing pipe 43c are arranged in parallel to the flow of the refrigerant Rf.
In FIG. 5B, the same elements as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.

第3凝縮器42cの上流側と第1凝縮器42aの下流側は、第3凝縮管43cと第1凝縮管43aがそれぞれの分岐点44c,44aで分岐するバイパス管441で接続され、バイパス管441には逆止弁461が備わっている。
この逆止弁461は、バイパス管441における冷媒Rfの流れの方向を、第1凝縮器42aの下流側から第3凝縮器42cの上流側に向かう一方向、つまり、分岐点44aから分岐点44cに向かう一方向に規制し、第3凝縮器42cの上流側から第1凝縮器42aの下流側に冷媒Rfが流れることを防止する弁である。
The upstream side of the third condenser 42c and the downstream side of the first condenser 42a are connected by a bypass pipe 441 where the third condenser pipe 43c and the first condenser pipe 43a branch at the respective branch points 44c and 44a. 441 includes a check valve 461.
The check valve 461 changes the flow direction of the refrigerant Rf in the bypass pipe 441 in one direction from the downstream side of the first condenser 42a to the upstream side of the third condenser 42c, that is, from the branch point 44a to the branch point 44c. This is a valve that restricts the refrigerant Rf from flowing from the upstream side of the third condenser 42c to the downstream side of the first condenser 42a.

また、第2凝縮器42bの上流側と第3凝縮器42cの下流側は、第2凝縮管43bと第3凝縮管43cがそれぞれの分岐点44b,44dで分岐するバイパス管442で接続され、バイパス管442には逆止弁462が備わっている。
この逆止弁462は、バイパス管442における冷媒Rfの流れの方向を、第3凝縮器42cの下流側から第2凝縮器42bの上流側に向かう一方向、つまり、分岐点44dから分岐点44bに向かう一方向に規制し、第2凝縮器42bの上流側から第3凝縮器42cの下流側に冷媒Rfが流れることを防止する弁である。
Further, the upstream side of the second condenser 42b and the downstream side of the third condenser 42c are connected by a bypass pipe 442 where the second condenser pipe 43b and the third condenser pipe 43c branch at respective branch points 44b and 44d, The bypass pipe 442 is provided with a check valve 462.
The check valve 462 changes the flow direction of the refrigerant Rf in the bypass pipe 442 in one direction from the downstream side of the third condenser 42c to the upstream side of the second condenser 42b, that is, from the branch point 44d to the branch point 44b. This is a valve that restricts the refrigerant Rf from flowing from the upstream side of the second condenser 42b to the downstream side of the third condenser 42c.

また、第3凝縮器42cの下流側で合流点40bと分岐点44dとの間に、第3凝縮管43cを開閉する開閉弁の第6電磁弁45dが備わり、第3凝縮器42cの上流側で分岐点40aと分岐点44cとの間に、第3凝縮管43cを開閉する開閉弁の第5電磁弁45cが備わる。   In addition, a sixth electromagnetic valve 45d, which is an on-off valve that opens and closes the third condenser pipe 43c, is provided on the downstream side of the third condenser 42c between the junction 40b and the branch point 44d, and upstream of the third condenser 42c. The fifth solenoid valve 45c, which is an on-off valve that opens and closes the third condensing pipe 43c, is provided between the branch point 40a and the branch point 44c.

そして、第1電磁弁45a、第2電磁弁45b、第5電磁弁45cおよび第6電磁弁45dが全て開弁すると、第1凝縮器42a〜第3凝縮器42cが並列に接続され、第1電磁弁45a、第2電磁弁45b、第5電磁弁45cおよび第6電磁弁45dが全て閉弁すると、第1凝縮器42a〜第3凝縮器42cが直列に接続される。
この構成によると、第1電磁弁45a、第2電磁弁45bに加えて第5電磁弁45cおよび第6電磁弁45dを含んで、並列状態と直列状態を切り替え可能な切替機構が構成される。
この場合、第1電磁弁45a、第2電磁弁45b、第5電磁弁45cおよび第6電磁弁45dが全て閉弁した状態が切替機構の直列状態であり、第1電磁弁45a、第2電磁弁45b、第5電磁弁45cおよび第6電磁弁45dが全て開弁した状態が切替機構の並列状態である。
When the first solenoid valve 45a, the second solenoid valve 45b, the fifth solenoid valve 45c, and the sixth solenoid valve 45d are all opened, the first condenser 42a to the third condenser 42c are connected in parallel, and the first When the solenoid valve 45a, the second solenoid valve 45b, the fifth solenoid valve 45c, and the sixth solenoid valve 45d are all closed, the first condenser 42a to the third condenser 42c are connected in series.
According to this structure, the switching mechanism which can switch a parallel state and a serial state is comprised including the 5th solenoid valve 45c and the 6th solenoid valve 45d in addition to the 1st solenoid valve 45a and the 2nd solenoid valve 45b.
In this case, the state where all of the first solenoid valve 45a, the second solenoid valve 45b, the fifth solenoid valve 45c, and the sixth solenoid valve 45d are closed is the series state of the switching mechanism, and the first solenoid valve 45a and the second solenoid valve 45 The state in which all of the valve 45b, the fifth electromagnetic valve 45c, and the sixth electromagnetic valve 45d are opened is the parallel state of the switching mechanism.

このように、3つの凝縮器42(第1凝縮器42a〜第3凝縮器42c)が備わる凝縮回路40であってもよい。また、図5の(b)に示す第3凝縮管43c、第3凝縮器42c、第5電磁弁45c、第6電磁弁45dからなる構成と同等の構成を増設し、バイパス管および逆止弁を適宜設けることで、3つ以上の凝縮器42が備わる凝縮回路40を構成できる。   Thus, the condensing circuit 40 provided with the three condensers 42 (the 1st condenser 42a-the 3rd condenser 42c) may be sufficient. Further, a configuration equivalent to the configuration including the third condenser pipe 43c, the third condenser 42c, the fifth electromagnetic valve 45c, and the sixth electromagnetic valve 45d shown in FIG. 5B is added, and a bypass pipe and a check valve are added. Is provided as appropriate, so that the condensing circuit 40 including three or more condensers 42 can be configured.

さらに、図示はしないが、3つ以上の蒸発器32を備える蒸発回路30(図1参照)を同様に構成することもできる。   Further, although not shown, an evaporation circuit 30 (see FIG. 1) including three or more evaporators 32 can be similarly configured.

また、例えば、図6に示すように、図1の第1凝縮器42a、第2凝縮器42bに替えて、内部に第1熱交換部420aと第2熱交換部420bを有する熱交換モジュールからなる凝縮器420を備える凝縮回路40であってもよい。第1熱交換部420aは、第1冷媒経路421aを流れる冷媒Rfと水配管41を流れる冷媒冷却水Wt1が熱交換するように構成され、第2熱交換部420bは、第2冷媒経路421bを流れる冷媒Rfと水配管41を流れる冷媒冷却水Wt1が熱交換するように構成される。   Further, for example, as shown in FIG. 6, instead of the first condenser 42a and the second condenser 42b of FIG. 1, a heat exchange module having a first heat exchange part 420a and a second heat exchange part 420b therein. The condensation circuit 40 including the condenser 420 may be used. The first heat exchanging part 420a is configured to exchange heat between the refrigerant Rf flowing through the first refrigerant path 421a and the refrigerant cooling water Wt1 flowing through the water pipe 41, and the second heat exchanging part 420b passes through the second refrigerant path 421b. The refrigerant Rf flowing and the refrigerant cooling water Wt1 flowing through the water pipe 41 are configured to exchange heat.

そして、第1冷媒経路421aが第1凝縮管43aに連結され、第2冷媒経路421bが第2凝縮管43bに連結される。さらに、第1冷媒経路421aの下流側で第1凝縮管43aに形成される分岐点44aと第2冷媒経路421bの上流側で第2凝縮管43bに形成される分岐点44bがバイパス管44で連結され、バイパス管44に逆止弁46が備わるとともに、図1に示す凝縮回路40と同様に、第1電磁弁45aと第2電磁弁45bが配設される構成とする。逆止弁46は、冷媒Rfの流れの方向を、分岐点44aの側から分岐点44bの側に流れる方向に規制する。   The first refrigerant path 421a is connected to the first condensing pipe 43a, and the second refrigerant path 421b is connected to the second condensing pipe 43b. Further, the bypass pipe 44 includes a branch point 44a formed in the first condensing pipe 43a on the downstream side of the first refrigerant path 421a and a branch point 44b formed on the second condensing pipe 43b on the upstream side of the second refrigerant path 421b. The bypass pipe 44 is provided with a check valve 46, and the first electromagnetic valve 45a and the second electromagnetic valve 45b are disposed in the same manner as the condensation circuit 40 shown in FIG. The check valve 46 regulates the flow direction of the refrigerant Rf so that it flows from the branch point 44a side to the branch point 44b side.

このように構成される凝縮回路40においては、第1熱交換部420aと第2熱交換部420bが、冷媒Rfの流れに対して並列に配列され、さらに、バイパス管44を介して直列に配列される。そして、第1電磁弁45a、第2電磁弁45bがともに開弁すると冷媒Rfは第1熱交換部420aと第2熱交換部420bを並列に流れ、第1電磁弁45a、第2電磁弁45bがともに閉弁すると冷媒Rfは第1熱交換部420aから第2熱交換部420bに流れる。つまり、冷媒Rfは第1熱交換部420aと第2熱交換部420bを直列に流れる。   In the condensing circuit 40 configured in this way, the first heat exchanging section 420a and the second heat exchanging section 420b are arranged in parallel with the flow of the refrigerant Rf, and further arranged in series via the bypass pipe 44. Is done. When both the first electromagnetic valve 45a and the second electromagnetic valve 45b are opened, the refrigerant Rf flows in parallel through the first heat exchange unit 420a and the second heat exchange unit 420b, and the first electromagnetic valve 45a and the second electromagnetic valve 45b. When both are closed, the refrigerant Rf flows from the first heat exchange section 420a to the second heat exchange section 420b. That is, the refrigerant Rf flows in series through the first heat exchange unit 420a and the second heat exchange unit 420b.

したがって、図6に示すように構成される凝縮回路40であっても、図1に示すように第1凝縮器42a、第2凝縮器42bを備える凝縮回路40と同等の効果を得ることができる。
また、図5の(a)に示すように、第1電磁弁45aに替えて三方弁47を備える構成も可能である。
Therefore, even if it is the condensation circuit 40 comprised as shown in FIG. 6, as shown in FIG. 1, the effect equivalent to the condensation circuit 40 provided with the 1st condenser 42a and the 2nd condenser 42b can be acquired. .
Moreover, as shown to (a) of FIG. 5, it can replace with the 1st solenoid valve 45a, and the structure provided with the three-way valve 47 is also possible.

また、図示はしないが、3つの熱交換部を有する熱交換モジュールからなる凝縮器を使用することも可能である。この場合、例えば図5の(b)に示す凝縮回路40の3つの凝縮器42a,42b,42cを3つの熱交換部に置き換えて接続することで、図5の(b)に示す凝縮回路40と同等の効果を得ることができる。さらに、3つ以上の熱交換部を有する熱交換モジュールからなる凝縮器を使用することも可能である。   Although not shown, it is also possible to use a condenser composed of a heat exchange module having three heat exchange units. In this case, for example, by replacing the three condensers 42a, 42b, and 42c of the condensing circuit 40 shown in FIG. 5B with three heat exchange units, the condensing circuit 40 shown in FIG. 5B is connected. The same effect can be obtained. Furthermore, it is possible to use a condenser comprising a heat exchange module having three or more heat exchange units.

さらに、図示はしないが、蒸発回路30(図1参照)に、2つの熱交換部を有する熱交換モジュールからなる蒸発器を備え、図1に示す蒸発回路30と同様に、バイパス管34、逆止弁36、第3電磁弁35a、第4電磁弁35bを配設して蒸発回路30を構成することも可能であり、2つ以上の熱交換部を有する熱交換モジュールからなる蒸発器を使用した蒸発回路30を構成することも可能である。   Further, although not shown, the evaporator circuit 30 (see FIG. 1) is provided with an evaporator composed of a heat exchange module having two heat exchange units, and, similarly to the evaporator circuit 30 shown in FIG. It is possible to configure the evaporation circuit 30 by disposing the stop valve 36, the third electromagnetic valve 35a, and the fourth electromagnetic valve 35b, and use an evaporator including a heat exchange module having two or more heat exchange units. It is also possible to configure the evaporation circuit 30.

また、例えば、圧縮機10(図1参照)の回転速度を計測する図示しない回転速度計を備え、制御装置50(図1参照)は、圧縮機10の回転速度に応じて切替機構の並列状態と直列状態を切り替える構成としてもよい。
例えば、図4のステップS2において、圧縮機10の回転速度と、前記した所定の回転速度閾値とを比較し、圧縮機10の回転速度が所定の回転速度閾値より高いときステップS3を実行し、圧縮機10の回転速度が所定の回転速度閾値より低いときステップS4を実行するように構成してもよい。
In addition, for example, a rotation speed meter (not shown) that measures the rotation speed of the compressor 10 (see FIG. 1) is provided, and the control device 50 (see FIG. 1) has the switching mechanism in parallel according to the rotation speed of the compressor 10. It is good also as a structure which switches a serial state.
For example, in step S2 of FIG. 4, the rotation speed of the compressor 10 is compared with the predetermined rotation speed threshold, and when the rotation speed of the compressor 10 is higher than the predetermined rotation speed threshold, step S3 is executed. You may comprise so that step S4 may be performed when the rotational speed of the compressor 10 is lower than a predetermined rotational speed threshold value.

また、圧縮機10(図1参照)から吐出される冷媒Rfの流速を計測する図示しない流速計を備え、制御装置50(図1参照)は、冷媒Rfの流速に応じて切替機構の並列状態と直列状態を切り替える構成としてもよい。
例えば、図4のステップS2において、圧縮機10から吐出される冷媒Rfの流速が所定の流速閾値より高いときステップS3を実行し、圧縮機10から吐出される冷媒Rfの流速が所定の流速閾値より低いときステップS4を実行するように構成してもよい。
なお、この場合の流速閾値は、例えば、圧縮機10が、前記した回転速度閾値で運転するときに吐出する冷媒Rfの流速とすればよい。
Moreover, the flowmeter of the refrigerant | coolant Rf discharged from the compressor 10 (refer FIG. 1) is provided, and the control apparatus 50 (refer FIG. 1) is a parallel state of the switching mechanism according to the flow velocity of the refrigerant | coolant Rf. It is good also as a structure which switches a serial state.
For example, in step S2 of FIG. 4, when the flow rate of the refrigerant Rf discharged from the compressor 10 is higher than a predetermined flow rate threshold value, step S3 is executed, and the flow rate of the refrigerant Rf discharged from the compressor 10 is set to the predetermined flow rate threshold value. You may comprise so that step S4 may be performed when it is lower.
The flow rate threshold value in this case may be, for example, the flow rate of the refrigerant Rf that is discharged when the compressor 10 operates at the above-described rotation speed threshold value.

1 冷凍装置
1a 冷媒配管(管路)
10 圧縮機
20 膨張弁
32 蒸発器
32a 第1蒸発器
32b 第2蒸発器
33a 第1蒸発管(分流管)
33b 第2蒸発管(分流管)
34、44、441、442 バイパス管
35a 第3電磁弁(開閉弁、切替機構)
35b 第4電磁弁(開閉弁、切替機構)
36、46、461、462 逆止弁
42 凝縮器
42a 第1凝縮器
42b 第2凝縮器
43a 第1凝縮管(分流管)
43b 第2凝縮管(分流管)
43c 第3凝縮管(分流管)
45a 第1電磁弁(開閉弁、切替機構)
45b 第2電磁弁(開閉弁、切替機構)
45c 第5電磁弁(開閉弁、切替機構)
45d 第6電磁弁(開閉弁、切替機構)
47 三方弁(切替機構)
60 積層プレート式熱交換器
70 シェルアンドチューブ式熱交換器
420 凝縮器(熱交換モジュール)
420a 第1熱交換部
420b 第2熱交換部
421a 第1冷媒経路
421b 第2冷媒経路
1 Refrigeration equipment 1a Refrigerant piping (pipe)
DESCRIPTION OF SYMBOLS 10 Compressor 20 Expansion valve 32 Evaporator 32a 1st evaporator 32b 2nd evaporator 33a 1st evaporation pipe (diversion pipe)
33b Second evaporation pipe (diversion pipe)
34, 44, 441, 442 Bypass pipe 35a Third solenoid valve (open / close valve, switching mechanism)
35b Fourth solenoid valve (open / close valve, switching mechanism)
36, 46, 461, 462 Check valve 42 Condenser 42a First condenser 42b Second condenser 43a First condensing pipe (dividing pipe)
43b Second condensing pipe (split pipe)
43c 3rd condensing pipe (diversion pipe)
45a First solenoid valve (open / close valve, switching mechanism)
45b Second solenoid valve (open / close valve, switching mechanism)
45c Fifth solenoid valve (open / close valve, switching mechanism)
45d Sixth solenoid valve (open / close valve, switching mechanism)
47 Three-way valve (switching mechanism)
60 Laminated plate heat exchanger 70 Shell and tube heat exchanger 420 Condenser (heat exchange module)
420a First heat exchange section 420b Second heat exchange section 421a First refrigerant path 421b Second refrigerant path

Claims (8)

運転容量が可変の圧縮機と、複数の凝縮器と、膨張弁と、複数の蒸発器と、が冷媒の流れる管路で接続される冷媒回路を備える冷凍装置であって、
前記複数の凝縮器を前記冷媒の流れに対して直列に接続するとともに前記複数の蒸発器を前記冷媒の流れに対して直列に接続する直列状態と、
前記複数の凝縮器を前記冷媒の流れに対して並列に接続するとともに前記複数の蒸発器を前記冷媒の流れに対して並列に接続する並列状態と、を切り替える切替機構を備え、
前記圧縮機の運転容量に応じて前記切替機構の前記直列状態と前記並列状態を切り替えることを特徴とする冷凍装置。
A refrigeration apparatus including a refrigerant circuit in which a compressor having a variable operating capacity, a plurality of condensers, an expansion valve, and a plurality of evaporators are connected by a refrigerant flow line,
A series state in which the plurality of condensers are connected in series to the refrigerant flow and the evaporators are connected in series to the refrigerant flow;
A switching mechanism for switching between the plurality of condensers in parallel with the refrigerant flow and the parallel state in which the evaporators are connected in parallel with the refrigerant flow;
The refrigeration apparatus characterized by switching the series state and the parallel state of the switching mechanism according to the operating capacity of the compressor.
前記切替機構は、
前記圧縮機の運転容量が所定値より大きいときは前記並列状態に切り替えられ、
前記圧縮機の運転容量が所定値以下のときは前記直列状態に切り替えられることを特徴とする請求項1に記載の冷凍装置。
The switching mechanism is
When the operating capacity of the compressor is larger than a predetermined value, it is switched to the parallel state,
The refrigeration apparatus according to claim 1, wherein when the operating capacity of the compressor is equal to or less than a predetermined value, the compressor is switched to the serial state.
前記圧縮機は、インバータ回路が発生する交流電流の周波数を制御することによって前記運転容量を制御可能であることを特徴とする請求項1または請求項2に記載の冷凍装置。   The refrigeration apparatus according to claim 1 or 2, wherein the compressor is capable of controlling the operating capacity by controlling a frequency of an alternating current generated by an inverter circuit. 前記複数の凝縮器および前記複数の蒸発器のそれぞれが
前記管路が分岐して前記冷媒の流れに対して並列に配管される複数の分流管に1つづつ連結されて並列に配列されるとともに、前記分流管同士を連結するバイパス管を介して前記冷媒の流れの上流から下流に向かう直列に配列される複数の熱交換器で構成され、
前記切替機構は、
前記直列状態のときに前記冷媒が前記バイパス管を流れるように前記分流管を遮断し、前記並列状態のときに前記冷媒が前記分流管を流れるように前記分流管を開通する開閉弁を含んで構成され、
前記切替機構が前記並列状態のときに前記冷媒が前記バイパス管を流れることを防止する逆止弁が備わることを特徴とする請求項1乃至請求項3のいずれか1項に記載の冷凍装置。
Each of the plurality of condensers and the plurality of evaporators is connected to a plurality of shunt pipes that are branched in parallel with the flow of the refrigerant and arranged in parallel. The heat exchanger comprises a plurality of heat exchangers arranged in series from upstream to downstream of the refrigerant flow via a bypass pipe connecting the branch pipes.
The switching mechanism is
An on-off valve that shuts off the branch pipe so that the refrigerant flows through the bypass pipe when in the series state and opens the branch pipe so that the refrigerant flows through the branch pipe when in the parallel state. Configured,
The refrigeration apparatus according to any one of claims 1 to 3, further comprising a check valve that prevents the refrigerant from flowing through the bypass pipe when the switching mechanism is in the parallel state.
前記切替機構は、
前記直列状態のときに前記冷媒が前記バイパス管を流れる状態に切り替わり、前記並列状態のときに前記冷媒が前記バイパス管を流れない状態に切り替わる三方弁を含んで構成され、
前記逆止弁を不要としたことを特徴とする請求項4に記載の冷凍装置。
The switching mechanism is
It is configured to include a three-way valve that switches to a state in which the refrigerant flows through the bypass pipe in the series state, and switches to a state in which the refrigerant does not flow through the bypass pipe in the parallel state.
The refrigeration apparatus according to claim 4, wherein the check valve is unnecessary.
前記複数の熱交換器の少なくとも1つは、積層プレート式熱交換器であることを特徴とする請求項4または請求項5に記載の冷凍装置。   The refrigeration apparatus according to claim 4 or 5, wherein at least one of the plurality of heat exchangers is a laminated plate heat exchanger. 前記複数の熱交換器の少なくとも1つは、シェルアンドチューブ式熱交換器であることを特徴とする請求項4乃至請求項6のいずれか1項に記載の冷凍装置。   The refrigeration apparatus according to any one of claims 4 to 6, wherein at least one of the plurality of heat exchangers is a shell-and-tube heat exchanger. 前記複数の凝縮器になる複数の熱交換部を備える熱交換モジュールと、前記複数の蒸発器になる複数の熱交換部を備える熱交換モジュールと、の少なくとも一方が、前記複数の熱交換器の替わりに備わり、
前記複数の熱交換部は、
前記複数の分流管に1つづつ連結されて並列に配列されるとともに、前記バイパス管を介して前記冷媒の流れの上流から下流に向かう直列に配列されることを特徴とする請求項4または請求項5に記載の冷凍装置。
At least one of a heat exchange module including a plurality of heat exchange units to be the plurality of condensers and a heat exchange module including a plurality of heat exchange units to be the plurality of evaporators is the plurality of heat exchangers. Instead,
The plurality of heat exchange units are
5. The apparatus according to claim 4, wherein the plurality of flow dividing pipes are connected one by one and arranged in parallel, and arranged in series from upstream to downstream of the flow of the refrigerant through the bypass pipe. Item 6. The refrigeration apparatus according to Item 5.
JP2010090722A 2010-04-09 2010-04-09 Refrigeration apparatus Withdrawn JP2011220616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010090722A JP2011220616A (en) 2010-04-09 2010-04-09 Refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010090722A JP2011220616A (en) 2010-04-09 2010-04-09 Refrigeration apparatus

Publications (1)

Publication Number Publication Date
JP2011220616A true JP2011220616A (en) 2011-11-04

Family

ID=45037826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090722A Withdrawn JP2011220616A (en) 2010-04-09 2010-04-09 Refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP2011220616A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146870A1 (en) * 2012-03-30 2013-10-03 ダイキン工業株式会社 Refrigeration device
JP2014016055A (en) * 2012-07-06 2014-01-30 Orion Mach Co Ltd Precise temperature adjustment apparatus
JP2014088975A (en) * 2012-10-29 2014-05-15 Orion Mach Co Ltd Heating/cooling device
CN104214942A (en) * 2013-05-31 2014-12-17 广东美的暖通设备有限公司 Split type heat pump water heater
WO2015063853A1 (en) * 2013-10-29 2015-05-07 株式会社日立製作所 Refrigeration cycle and air conditioner
JP2016154604A (en) * 2015-02-23 2016-09-01 株式会社東芝 Clothes dryer
KR20160120187A (en) * 2015-04-07 2016-10-17 현대중공업 주식회사 Treatment system of gas
CN107084545A (en) * 2017-05-11 2017-08-22 钹特环保科技(上海)有限公司 A kind of condenser group and its application method
WO2018055739A1 (en) * 2016-09-23 2018-03-29 三菱電機株式会社 Air conditioning device
US10837680B2 (en) 2016-09-23 2020-11-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2020533552A (en) * 2017-09-11 2020-11-19 杭州三花研究院有限公司Hangzhou Sanhua Research Institute Co.,Ltd. Fluid control unit
JPWO2021106079A1 (en) * 2019-11-26 2021-06-03
WO2022059075A1 (en) 2020-09-15 2022-03-24 東芝キヤリア株式会社 Air conditioning apparatus
CN114383218A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114383217A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114576888A (en) * 2022-03-23 2022-06-03 广东美的制冷设备有限公司 Heat exchanger, heat exchanger flow path control method, readable storage medium and household appliance
KR102473595B1 (en) * 2021-09-02 2022-12-05 오승재 Cold water and cold air generator

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210159A (en) * 2012-03-30 2013-10-10 Daikin Industries Ltd Refrigeration device
CN104220823A (en) * 2012-03-30 2014-12-17 大金工业株式会社 Refrigeration device
WO2013146870A1 (en) * 2012-03-30 2013-10-03 ダイキン工業株式会社 Refrigeration device
JP2014016055A (en) * 2012-07-06 2014-01-30 Orion Mach Co Ltd Precise temperature adjustment apparatus
JP2014088975A (en) * 2012-10-29 2014-05-15 Orion Mach Co Ltd Heating/cooling device
CN104214942A (en) * 2013-05-31 2014-12-17 广东美的暖通设备有限公司 Split type heat pump water heater
WO2015063853A1 (en) * 2013-10-29 2015-05-07 株式会社日立製作所 Refrigeration cycle and air conditioner
JP2016154604A (en) * 2015-02-23 2016-09-01 株式会社東芝 Clothes dryer
KR102162157B1 (en) * 2015-04-07 2020-10-06 현대중공업 주식회사 Treatment system of gas
KR20160120187A (en) * 2015-04-07 2016-10-17 현대중공업 주식회사 Treatment system of gas
US10837680B2 (en) 2016-09-23 2020-11-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2018055739A1 (en) * 2016-09-23 2018-03-29 三菱電機株式会社 Air conditioning device
CN107084545A (en) * 2017-05-11 2017-08-22 钹特环保科技(上海)有限公司 A kind of condenser group and its application method
JP2020533552A (en) * 2017-09-11 2020-11-19 杭州三花研究院有限公司Hangzhou Sanhua Research Institute Co.,Ltd. Fluid control unit
EP3683522A4 (en) * 2017-09-11 2021-05-26 Hangzhou Sanhua Research Institute Co., Ltd. Fluid control assembly
US11300336B2 (en) 2017-09-11 2022-04-12 Zhejiang Sanhua Intelligent Controls Co., Ltd. Fluid control assembly
JP7150198B2 (en) 2019-11-26 2022-10-07 三菱電機株式会社 refrigeration equipment
JPWO2021106079A1 (en) * 2019-11-26 2021-06-03
WO2021106079A1 (en) * 2019-11-26 2021-06-03 三菱電機株式会社 Refrigeration apparatus
WO2022059075A1 (en) 2020-09-15 2022-03-24 東芝キヤリア株式会社 Air conditioning apparatus
KR102473595B1 (en) * 2021-09-02 2022-12-05 오승재 Cold water and cold air generator
CN114383217A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114383218A (en) * 2021-12-14 2022-04-22 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114383218B (en) * 2021-12-14 2024-03-19 郑州海尔空调器有限公司 Method and device for controlling air conditioner, air conditioner and storage medium
CN114576888A (en) * 2022-03-23 2022-06-03 广东美的制冷设备有限公司 Heat exchanger, heat exchanger flow path control method, readable storage medium and household appliance

Similar Documents

Publication Publication Date Title
JP2011220616A (en) Refrigeration apparatus
CN203249455U (en) Air conditioning device
JP5611353B2 (en) heat pump
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
WO1998006983A1 (en) Air conditioner
JP2006071137A (en) Refrigeration unit
JP2017101855A (en) Air conditioning system
JP2008070053A (en) Air conditioner
WO2006019074A1 (en) Freezing apparatus
JP3719296B2 (en) Refrigeration cycle equipment
JP2017026289A (en) Air conditioner
WO2019065856A1 (en) Refrigeration device
JP2001355924A (en) Air conditioner
JPH0894205A (en) Air conditioner
JP2009115336A (en) Refrigeration system
JP4169638B2 (en) Refrigeration system
JP2018128167A (en) Air conditioner
JP3858918B2 (en) Refrigeration equipment
JP2010151392A (en) Refrigerating device
JP6593483B2 (en) Refrigeration equipment
WO2023243517A1 (en) Air conditioning device
JP4244900B2 (en) Refrigeration equipment
JP2010025446A (en) Refrigerating device
JP2009156491A (en) Refrigerating device
JP2549231B2 (en) Frozen dessert making machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130702